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Abstract— Localization in aerial imagery-based maps offers
many advantages, such as global consistency, geo-referenced
maps, and the availability of publicly accessible data. However,
the landmarks that can be observed from both aerial imagery
and on-board sensors is limited. This leads to ambiguities or
aliasing during the data association.

Building upon a highly informative representation (that
allows efficient data association), this paper presents a complete
pipeline for resolving these ambiguities. Its core is a robust self-
tuning data association that adapts the search area depending
on the entropy of the measurements. Additionally, to smooth the
final result, we adjust the information matrix for the associated
data as a function of the relative transform produced by the
data association process.

We evaluate our method on real data from urban and rural
scenarios around the city of Karlsruhe in Germany. We com-
pare state-of-the-art outlier mitigation methods with our self-
tuning approach, demonstrating a considerable improvement,
especially for outer-urban scenarios.

I. INTRODUCTION

Autonomous driving has become a major research topic
over recent years. Autonomous navigation systems such
as self-driving cars depend strongly on their localization
capabilities. One of the most comprehensive localization
approaches is Simultaneous Localization And Mapping
(SLAM) [1], where a model of the environment (the map)
is constructed while, at the same time, the vehicle’s state is
estimated.

In some applications, the map is assumed to be already
known from dedicated mapping drives, third-party map
suppliers [2], or the extraction from aerial imagery. While
maps created from mobile mapping vehicles offer high local
accuracy, global consistency and geo-referencing are non-
trivial issues when GNSS reception is impaired. In contrast,
maps that are extracted from aerial imagery do not have this
problems as the aerial imagery is already geo-referenced and,
hence, globally consistent. The localization in geo-referenced
maps can be applied as an online localization system in a
self-driving car, as an offline process to introduce global
consistency to built maps, or even to merge maps created
in different experimental sessions [3].
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Fig. 1. The complete pipeline of our self-tuning geo-referencing approach.
The blue blocks indicate the standard localization architecture, and the
orange block calculates the data information used to tune the data association
method. Both data representation and association are previously presented in
[4]. The yellow block represents the covariance propagation to associations
depending on the relative transformation of the DC-SAC results.

In theory, geo-referencing could be classified in the cat-
egory of localization methods with a previously built map.
However, it has particularities that can differentiate it from
the other localization approaches in practice. For example, it
has special requirements such as a global frame referenced
prior, like GNSS, or an outdoor environment that is visible
from planes or satellites. Also, as an environmental require-
ment, the landmarks selected to perform the localization must
be observable for both satellite systems and on-board sensors.
Such requirements cause sparsity or aliasing problems to the
landmarks that meet them.

We consider lane markings the potentially best observ-
able landmarks for geo-referencing approaches. However,
while lane markings usually offer sufficient information in
lateral direction, they are often ambiguous in the direction
of travel, leading to aliasing. This aliasing effect produces
an unfavorable scenario where the data association suffers
from many outliers. In other words, we can see an aliasing
scenario equivalent to an outlier regime. Most of the works
in geo-referencing usually don’t pay attention to aliasing and
outliers problems because they are typically constrained to
urban environments. In this work, we generalize to perform
geo-referencing for both urban and rural scenarios. For that
reason, we need to focus on avoiding the problem of aliasing
and outliers.

For the past years, there has been a wide variety of
works that aims to perform outlier mitigation in localization
by using different approaches, such as convex relaxation
[5] or covariance scaling [6]. Those approaches focus on
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robust performance of the objective function in the inference
of graph-based probabilistic models. In contrast, automatic
parameter tuning is another strategy to tune the back-end
process depending on the low-level (the front end) data
information [1]. We base our research on the last-mentioned
approach. But, in our case, to provide improved data to the
back-end, we self-tune the data association, that is, in the
front-end.

In this paper, we present a complete geo-referencing
pipeline using lane markings as landmarks. We base our
system on robust performance by self-tunning capabilities to
avoid the problem of aliasing and hence outliers derived from
the use of lane markings. Given our delta-angle lane marking
representation (DA-LMR) [4], we quantify the information
of the data in terms of the curvature of the lane marking for
each data association execution. Then, by using our distance-
compatible sample consensus (DC-SAC) [4] data association,
we can tune the search space depending on the information
content of the measurements. In this way, when there is rich
information like in intersections, DC-SAC can successfully
search a wide space, making it robust to a bad prior. At the
same time, in case of aliasing or poor information due to
straight, solid markings, the data association is defaulting to
a nearest neighbor search. Additionally, as DC-SAC is a pose
estimation method, we adjust the covariance of the associ-
ation depending on the pose results of the data association
process. This kind of covariance adjustment prevents abrupt
changes in the final pose.

Our work contributions can be summarized as follows:

• A complete pipeline for geo-referencing using lane
markings. We use these kind of landmarks to generalize
the localization for both rural and urban environments
by avoiding the aliasing effect.

• Self-tuning data association. In our approach, the search
space in data association depends on the data infor-
mation quantified previously through our lane marking
representation (DA-LMR [4]).

• Covariance adjustment that depends on the relative
transformation resulting from the data association pro-
cess.

The rest of the paper is organized as follows: In Section II,
we review the related works in geo-referencing and localiza-
tion with outlier mitigation. In Section III, we describe the
proposed model for the optimization problem. Then, the main
contributions, self-tuning data association, and covariance
adjustment are explained in Section IV and Section V,
respectively. Next, in Section VI, we present the evaluation
results. Finally, Section VII exposes the main conclusions
derived from this work and possible future works.

II. RELATED WORK

In this section, we briefly review existing geo-referencing
approaches. Additionally, we review localization approaches
with outlier mitigation.

A. Geo-referencing

As we previously mentioned, the type of landmarks se-
lected to perform geo-referencing should be observable from
both aerial images and on-board sensors. Building walls
are commonly used in a wide variety of works. In [7],
[8], the authors obtain information about buildings from
OSM and detect walls by using LiDAR sensors. In other
works [9], [10], buildings are also used as landmarks, but
in this case, the authors obtain the information directly by
detection in aerial geo-referenced images. In [11], the authors
use semantic descriptors performed also using buildings
information. In such cases, buildings landmarks carry the
dependency on navigating within urban environments. In
some works [12], [13], [14], the strategy of matching the
vehicle’s trajectory with lanes obtained from OSM or aerial
imagery is used. Such approaches are not dependent on the
urban environment in theory, but in practice, the achievable
accuracy using lanes is considerably lower than when using
individual lane markings. This holds particularly on outer-
urban roads.

Other approaches are based on learning methods [15],
[16], [17], where a place is recognized from both aerial
imagery and on-board sensors. Such strategies usually suffer
from feature sparsity in the rural areas and depend strongly
on rich-information environments, such as urban. In the
method proposed in [18], the authors use reflectivity infor-
mation to co-register information from LiDAR sensors and
aerial imagery. As when using lane markings, this approach
can suffer from aliasing, especially in rural environments,
but ignores this issue.

In [3], the authors use lane markings and poles as land-
marks for geo-referencing, allowing localization in rural
environments. However, we consider poles hard to detect
from aerial imagery, so we choose only lane markings for
this work. In [3], geo-referencing is performed to achieve
global consistency of maps that were created using a SLAM
algorithm with on-board sensor data.

All discussed geo-referencing works either cannot achieve
comparable accuracy compared to using landmarks like lane
markings, suffer detection challenges and/or suffer from
aliasing. In contrast, we combine easily detectable landmarks
that allow highly accurate geo-referencing with a robust
solution for the aliasing problem that such landmarks suffer
from. An alternative to the explicit handling of aliasing issues
are localization methods with outlier mitigation.

B. Localization with outlier mitigation

The localization problem can be divided into two main
components: the front end and the back end [1]. The front
end involves landmarks detection, data representation, data
association, etc. At the same time, the back end infers the
abstracted information provided by the low-level layer (the
front end). While the problem of aliasing and outliers in
the data association process occurs at the front end level,
it is common to prevent its consequences on the inference,
i. e., at the back end layer. Traditionally, outlier mitigation
in localization relied on robust M-estimators [19], such as



Fig. 2. Example of 2D projected polylines for a set of detections Di. We
mark in colors four polylines that we represent as 1D signals in Fig. 3.

in [20], where the authors use the Huber loss. Additionally
to Huber loss, in [6], the authors use a robust function
that dynamically scales the covariance to reduce the influ-
ence of measurements with significant errors. An additional
experimental analysis of the covariance scaling method is
available in [21]. A popular strategy to deal with outliers
is the convex relaxation of the objective function in the
optimization process, where [22], [5] are seminal works.
Instead of mitigating the effect of the outliers, in [23], [24],
the authors use convex relaxations for outliers rejection.

Previously mentioned works are focused on tuning the ob-
jective functions in the inference of graph-based probabilistic
models. In contrast, other approaches aim at the problem in
the whole back-end structure. For instance, in [25], the au-
thors model ambiguous measurements using hyperedges and
a multimodal mixture of Gaussian constraints. Continuous
and discrete graphical models are mixed in [26] to avoid
perceptual aliasing. In [27], the authors deal with a two-state
implicit filter to perform outlier rejection.

Another robust performance to deal with outliers is the
self-tuning strategy. Here, the front end’s data information
can usually tune the objective function [28], [29] or even
adjusts the graphical model [30].

Dealing with outlier mitigation in the back end is essential
because the presence of outliers is expected, and the high-
level layer must be ready. However, we focus our research
on mitigating the outliers in the front end to pass the infor-
mation as cleanly as possible to the back end. Concretely in
the data association process where we perform self-tuning
capabilities.

In the next section, we briefly introduce the graphical
model defined for the back end of the proposed geo-
referencing.

Fig. 3. Example of 1D signals ∆h derived from polylines represented in
Fig. 2 with different colors.

III. GRAPH MODEL DEFINITION

We assume that we have a prior localization in world frame
coordinates. Such localization could come from GNSS fusion
with odometry systems or SLAM approaches, among others.
We define the prior trajectory as X̂ = (x̂1, ..., x̂N ), where
x̂i

.
= (R̂i, t̂i), t̂i ∈ R2 is the translation, and R̂i ∈ SO(2) is

the rotation matrix. We also assume that we have a word’s
representation defined as a set of landmark L. Then, for
each i-th frame defined by X̂, we observe the landmarks
of the environment using on-board sensors. We name these
observations as detections Di from now on. Using L and
Di, we perform a data association process, where its result
is defined by Ai = ((di1 , li1), ..., (diM , liM )). Given these
associations, if we express as X the pose estimated in the
optimization process, we can define the residuals between
landmarks and detections as follows:

eA(X) =

N∑
i=1

M∑
k=1

‖(Ridik + ti)− lik‖
2
Σik

(1)

Where Σik is the covariance matrix of each detection dik .
The covariance is transformed into an information matrix
Ωik = Σ−1

ik
that weighs the residuals as eTikΩikeik .

Additionally, given the relative transformations from con-
secutive frames i and j from the prior trajectory X̂ and
the estimated X, we can define the odometry residuals as
follows:

eX̂(X) =

N∑
i,j

∥∥∥R̂T
i

(
t̂j − t̂i

)
− tij

∥∥∥2

+
∥∥∥R̂T

i R̂j −Rij

∥∥∥2

Λi

(2)
Where Λi is the covariance matrix of each relative trans-

form. Hence, given the residuals, graph-based localization



aims to estimate the trajectory X∗ that minimizes the error
function:

X∗ = arg min
X

(
eA(X) + eX̂(X)

)
(3)

This is an optimization problem, and we use a Gauss-
Newton Non-linear Least Square (NLS) approach to solve
it.

IV. SELF-TUNING DATA ASSOCIATION

We consider lane marking the best visible landmarks for
aerial imagery and on-board sensors for urban and road
scenarios. Then, previously defined L and Di contains these
kinds of features. The problem is that given the aliasing risk
in the straight roads for lane markings, the associations Ai

usually have outliers.
In Section IV-A, we analyze the detections to quantify

how straight the road is by using our DA-LMR lane marking
representation [4]. This is directly related to the information
theoretical entropy of the detections. Then, to mitigate out-
liers, in Section IV-B, we tune the search area of our DC-
SAC data association [4] depending on the local pseudo-
entropy of the road.

A. Pseudo-entropy quantification by DA-LMR

We can think of lane marking as polylines, while our DA-
LMR [4] defines each one as a set of 3D points P3D =
(p3D

0 ,p3D
1 , ...,p3D

n ) where

p3D
l = (xl, yl,∆αlw). (4)

The third dimension of that representation encodes the
differential angle ∆αl between adjacent segments in polyline
weighed with a configurable parameter w. We show in Fig. 2
an example of 2D projected polylines for a set of detections
Di.

To measure how straight the road that the data repre-
sents is, for each h-th polyline, we extract the delta angle
from DA-LMR and describe it as a 1D signal ∆h =
(∆αh1

, ...,∆αhn
). In Fig. 3, we depicted the 1D signals

∆h from polylines represented in Fig. 2. Then with this
representation, we can calculate the information as follows:

S = −
m∑
h=1

n∑
l=1

∆αhl
log(∆αhl

+ 1) (5)

The index h refers to entire polylines, while l indexes each
element in the polyline. S is not a by-definition entropy as
∆h is not a probabilistic distribution. However, regularizing
the logarithm by +1 term, the behavior is similar, and we can
consider S as a pseudo-entropy calculation. But, to simplify
the terminology, subsequently, we think of S as entropy.

To understand this quantification, we can consider an
example of detections on a straight road. In that case, the lane
markings are linear, and ∆αhl

values are close to 0. Hence,
the measure of S is also close to 0. Then we can consider
this case as low informative for the data association process.
In contrast, the example depicted in Fig. 2 contains polylines

Fig. 4. Covariance propagation in a set Di, where the red ellipse
indicates the data association covariance Σi and the green ellipses depict
the detections covariances propagated Σik .

with an amount of information concentrated in corners. Then,
the value of S can achieve high negative values. Hence,
we can consider this as an example of highly informative
detections.

B. Data association by DC-SAC

The DC-SAC data association method [4] randomly sam-
ples a pair of points in Di and a couple of distance-
compatible points in L. Given the samples, we obtain the
transform ∆T ∈ SE(2) that minimizes the error between
the pairs by solving the Procrustes problem. We repeat
this process generating a hypothesis space H. The final
association comes from the ∆T∗ ∈ H that achieves the
minimum error from the inliers between Di(∆T∗) and L.

As explained in [4], H could be reduced by limiting the
sample area size defined by configurable parameters Φ =
(xmax, ymax, θmax)1. That means we can discard the ∆T ∈
H that fall out of the area defined by Φ. We observed that
DC-SAC, with proper Φ configuration, produces excellent
results with a highly informative set Di, as the one shown
in Fig. 2. However, in straight roads, it suffers, like others,
from an aliasing effect that produces outliers.

It is worth noting that when Φ −→ 0, the space H
only contains a default transform ∆T , 0. Hence, the
associations come from the inliers between Di and L. This
behavior is equivalent to the classical Nearest Neighbour
(NN) data association. For straight markings, NN can mit-
igate that aliasing effect as good as possible given the
odometry’s information. In contrast, NN does not exploit
highly informative environments.

1In [4], the area size configuration is described in text, but only θ is
mathematically defined. Hence, for this work, we derive area size parameters
Φ for the sake of clarity.



Then, given DC-SAC and NN’s complementary behavior,
we can self-tune the parameters Φi dynamically for each Di
by using the entropy information as follows:

Φtunedi =

{
Φ, Si ≤ Smin
Φ
∣∣∣ Si

Smin

∣∣∣ , Si > Smin
(6)

Smin is a configurable parameter that saturates the limit of
the minimum value of entropy, thus controlling the ramp for
the tuning. We can see in (6) that when S −→ 0 (e.g. straight
road), the behavior is close to NN, and when S −→ Smin (e.g.
intersection), the behavior comes to DC-SAC in its maximum
sample area size configuration. And in the middle point, we
have linear changes. This area size self-tuning capability
mitigates the aliasing effect dramatically and, hence, the
outlier risk, as we demonstrate experimentally in Section VI.

V. DYNAMIC COVARIANCE ADJUSTMENT
In addition to the already explained self-tuned data as-

sociation, we implemented another layer of robustness by
dynamic covariance adjustment. For each data association
process, we estimate a covariance matrix depending on the
result of DC-SAC (Section V-A). Afterward, we propagate
that covariance to detections by first-order transformation
(Section V-B), and we use the inverse as an information
matrix in the optimization process.

A. Data association variance
We defined in Section III the prior trajectory as X̂ =

(x̂1, ..., x̂N ), and in the same way, we can define the es-
timated trajectory as X = (x1, ...,xN ). However, in the
data association stage, before pose estimation X at i-th
sample time, we can pre-estimate the pose by using xi−1 and
integrating the last differential of the prior ∆x̂i−1,i. Then,
we can express the pre-estimation as x̄i = xi−1∆x̂i−1,i.

DC-SAC data association method is pose-based, which
means that apart from the associations Ai, the result also
contains the relative transform ∆T∗

i ∈ Hi that produces Ai.
The transform ∆T∗

i is relative to previously explained x̄i.
If we think in a hypothetical ideal case of localization

without errors, the relative transforms T̄ = (∆T1, ...,∆TN )
should have ∆Ti , 0 in all cases. Hence, in the real case,
we can assume that when the evolution of T̄ is stable,
the data association is reliable. In contrast, when T̄ has a
strong variance, the data association results are unreliable.
In theory, the stable behavior of ∆Ti can also come from
the localization to a local minimum. However, we had not
inconvenience at this point in the experiments because we
have the main self-tuning layer described in Section IV. In
this way, the localization can be corrected in the areas of
high informative data avoiding possible local minimums.

Under the previously-mentioned assumption, we perform
the covariance matrix as:

Σi = Ψ(∆Ti−W , ...,∆Ti) (7)

Where Ψ is a function that calculates the variance, and W
is a configurable parameter that defines a window to select
the last data association results.

B. Covariance propagation

The covariance matrix Σi is expressed in the sensor
coordinate frame. To make it suitable for constraints (1), we
use first-order transformation to propagate the covariance to
detections [31], obtaining Σik .

We have estimated pose xi
.
= (Ri, ti), where ti =

(xi, yi). Then, if we express detections as dik = (xdik , y
d
ik

)
in the sensor coordinate frame, we can transform detections
to estimation coordinate frame as:

fxik = xdik cos θi − ydik sin θi + xi (8)

fyik = xdik sin θi + ydik cos θi + yi (9)

If we compute the first-order derivative, we obtain the
Jacobian:

Jik =

∂fx
ik

xi

∂fx
ik

yi

∂fx
ik

θi
∂fy

ik

xi

∂fy
ik

yi

∂fy
ik

θi

 =

[
1 0 −xdik sin θ − ydik cos θ
0 1 xdik cos θ + ydik sin θ

]
(10)

Given the Jacobian, we can propagate the covariance to
detections as follows:

Σik = JikΣiJ
T
ik

(11)

In Fig. 4, we show an example of covariance propagation,
where the red ellipse indicates the data association covariance
Σi and the green ellipses depict the detections covariances
propagated Σik .

VI. EVALUATION

In this section, we show the results of our evaluation. First
(Section VI-A), we comment on the experimental setup. Next
(Section VI-B), we assessed the trajectory compared with
different configurations and state-of-the-art methods. And
finally (Section VI-C), we focus on the evaluation of outlier
mitigation.

A. Experimental setup

The evaluation consists of four closed trajectories driven
through the city of Karlsruhe (Germany) and its outer
roads (Fig. 5 and Table II). The four sessions are initially
referenced with low-cost GNSS measurements using the
approach proposed in [32], and the results are used as a
prior trajectory. Each prior pose has its corresponding lane
markings detections Di. To perform that process, we used
the experimental vehicle BerthaOne [33]. The car comprises
four Velodyne VLP16 LiDARs mounted flat on the roof,
three BlackFly PGE-50S5M cameras behind the front and
rear windshield, and a Ublox C94-M8P GNSS receiver. To
test the proposed geo-referencing approach, we use a hand-
made map built from geo-referenced aerial images around the
area where we completed the trajectories. This map consists
of a set of lane markings landmarks L.



Fig. 5. The four closed trajectories for evaluation, driving through the city of Karlsruhe (Germany) and its outer roads. In Table II, we show more details
about these trajectories.

TABLE I
TRAJECTORY EVALUATION BY ABSOLUTE TRAJECTORY ERROR (ATE) IN METERS.

DC-SAC Self-Tuning Self-Tuning Covariance Convex
Session Prior NN (static) (static) - Cov. Adj. + Cov. Adj. Scaling [6] Relaxation [5]

1 2.61 4.14 11.23 0.14 0.07 0.38 0.24
2 3.36 4.87 10.29 0.67 0.09 0.36 0.21
3 3.35 1.67 8.54 0.25 0.06 0.29 0.27
4 2.68 0.74 2.21 0.09 0.06 0.16 0.14

Fig. 6. Comparison between the prior trajectories (red lines) and the geo-referenced ones estimated using the proposed self-tuning method (blue lines).
The points are the landmarks L inside a window.

TABLE II
SESSIONS CHARACTERISTICS DESCRIPTION.

Session Scan Number Length (km) Environment
1 5085 7.09 Urban + Rural
2 4172 5.49 Urban + Rural
3 5105 6.63 Urban
4 598 0.73 Rural

B. Trajectory evaluation

Using L as a reference, we built a hand-made ground
truth consisting of an artificial trajectory (for each session)
that contains a set of positions drawn by hand following
the center of transited lanes. Each ground truth position is
marked for each i-th sample in the prior trajectory. Given this
ground truth as a reference, we evaluate the prior trajectory
through the Absolute Trajectory Error (ATE) metric [34],
and compare it with different configurations of our approach:
NN (ours with Φ = (0 m, 0 m, 0 rad)), DC-SAC (ours with
Φ = (5 m, 5 m, 0.2 rad)), Self-Tuning -Cov. Adj. (ours

without covariance adjustment), and Self-Tuning +Cov. Adj.
(our complete approach). Additionally, we compare it with
two state-of-the-art (SOTA) methods in outlier mitigation:
Covariance Scaling [6] and Convex Relaxation [5].

Table I shows the results in ATE metric between trajec-
tories estimated from different configurations and methods
mentioned and ground truth. Due to ground truth only
containing positions, we only calculate ATE for translation.

Due to its challenging aliasing problems, we can see the
most significant error in the DC-SAC configuration. In the
NN configuration, we do not have the aliasing problem,
but there is a scaling problem that has the configuration
unreliable (we will depict it in the next section Fig. 7 (a)).
The compared SOTA methods mitigate the aliasing effect
but not sufficiently. We can see that we achieve the best
results with our self-tuning approach, especially with the
combination using the covariance adjustment.

In Fig. 6, we show in blue a qualitative examples of
trajectories estimated though the proposed self-tuning geo-



TABLE III
OUTLIER EVALUATION BY RELATIVE POSE ERROR (RPE) IN TRANSLATION AND ROTATION.

DC-SAC Self-Tuning Self-Tuning Covariance Convex
Session RPE NN (static) (static) - Cov. Adj. + Cov. Adj. Scaling [6] Relaxation [5]

1 trans. (m) 0.04 9.34 0.04 0.04 0.23 0.14
rot. (deg) 0.07 0.14 0.06 0.06 0.08 0.07

2 trans. (m) 0.04 10.00 0.06 0.06 0.25 0.13
rot. (deg) 0.07 0.13 0.12 0.12 0.16 0.14

3 trans. (m) 0.04 9.88 0.07 0.06 0.28 0.16
rot. (deg) 0.08 0.17 0.11 0.11 0.15 0.12

4 trans. (m) 0.04 3.38 0.06 0.06 0.18 0.16
rot. (deg) 0.08 0.13 0.11 0.09 0.14 0.10

Fig. 7. Comparison between the estimated trajectories using the proposed self-tuning method (red lines) and the compared configurations and SOTA
methods (blue lines): (a) NN, (b) DC-SAC, (c) covariance scaling, and (d) convex relaxation.

referenceing. In all cases, the course is located in the center
of the lane. In contrast, we show in red the prior trajectories
that always are out of the lanes.

C. Outlier mitigation evaluation

The prior used for the evaluation is globally inconsistent
but locally little noisy. That means the differential infor-
mation has no considerable errors. Hence, we can use that
relative prior information as a reference to evaluate the
effects of outliers by using the alternative Relative Pose Error
(RPE) metric [34].

In Table III, we show RPE results to compare the configu-
rations and SOTA methods named in the previous section. In
this case, we can see that the error in the NN configuration is
similar to the complete self-tuning approach. This is because,
as previously-mentioned, the NN has no aliasing problems.
However, in Fig. 7 (a), we depict the main problem of that
configuration, where the red line indicates the trajectory
estimated with our complete approach, and the blue line
indicates the NN configuration path with the flaw of scaling
problems that produces localization out of the lane.

We can see in Table III that the DC-SAC configuration
suffers hardly from aliasing problems that produce a con-
siderable number of outliers. In Fig. 7 (b), we depict the
aliasing effect in a straight road compared to our self-tuning
approach. As shown in Table III and Fig. 7, the SOTA
methods of covariance scaling and convex relaxation can
mitigate the effect of outliers but don’t achieve the results of
our self-tuning approach for this scenario. We can observe
that angle RPE is commonly close to 0, which indicates that

Fig. 8. The individual pose RPE evolution in an arbitrary trajectory window
in contrast with the entropy for the same poses.

significant errors are always produced in the front direction
due to aliasing problems.

Finally, to demonstrate our assumption of the relationship
between the data entropy and the outliers, we show the
individual pose RPE evolution in an arbitrary trajectory
window for non-tuning DC-SAC configuration in contrast
with the entropy for the same poses. We can see in Fig. 8
that exists a direct correlation.

VII. CONCLUSIONS

This paper presented a complete geo-referencing pipeline
using lane markings as landmarks. To address the outliers
problems derived from aliasing, we performed a robust
implementation providing self-tuning capabilities to our DC-
SAC data association by adapting the search area depending
on the entropy in the measurements represented by our lane
marking representation (DA-LMR). Additionally, to smooth



the final result, we adjusted the information matrix for
the associated data as a function of the relative transform
produced by the DC-SAC. We demonstrated considerable
outlier mitigation, especially on straight roads, compared
with other state-of-the-art robust implementations by the
experiments performed in urban and outer-urban scenarios,
both of which contained areas with high ambiguity for data
association.

In future work, we plan to extend our approach to new
kinds of landmarks, such as walls or even complete build-
ings, and an automatic landmarks extraction from the aerial
imagery.
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