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a b s t r a c t 

In this paper we study the split minimization problem that consists of two constrained 

minimization problems in two separate spaces that are connected via a linear operator 

that maps one space into the other. To handle the data of such a problem we develop 

a superiorization approach that can reach a feasible point with reduced (not necessarily 

minimal) objective function values. The superiorization methodology is based on interlac- 

ing the iterative steps of two separate and independent iterative processes by perturbing 

the iterates of one process according to the steps dictated by the other process. We include 

in our developed method two novel elements. The first one is the permission to restart the 

perturbations in the superiorized algorithm which results in a significant acceleration and 

increases the computational efficiency. The second element is the ability to independently 

superiorize subvectors. This caters to the needs of real-world applications, as demonstrated 

here for a problem in intensity-modulated radiation therapy treatment planning. 

© 2022 The Author(s). Published by Elsevier Inc. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
1. Introduction 

In a fair number of applications the nature and size of the arising constrained optimization problems make it com- 

putationally difficult, or sometimes even impossible, to obtain exact solutions and alternative ways of handling the data 

of the optimization problem should be considered. A common approach is the regularization technique that replaces the 

constrained optimization problem by an unconstrained optimization problem wherein the objective function is a linear 

combination of the original objective and a regularizing term that “measures” in some way the constraints violations. 
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This approach is used for constrained minimization problems appearing in image processing, where the celebrated Fast 

Iterative Shrinkage-Thresholding Algorithm (FISTA) method was pioneered by Beck and Teboulle [1] . In situations when there 

are some constraints whose satisfaction is imperative (“hard constraints”) the problem can be considered as being composed 

of two goals: A major goal of satisfying the constraints and a secondary, but desirable, goal of target (a.k.a. objective, merit,

cost) function reduction, not necessarily minimization. 

In this setting, the superiorization methodology (SM) has proven capable of efficiently handling the data of very large 

constrained optimization problems. The idea behind superiorization is to apply a feasibility-seeking algorithm and introduce 

in each of its iterations a certain change, referred to as a perturbation , whose aim is to reduce the value of the target

function. When the feasibility-seeking iterative algorithm is bounded perturbation resilient (see Definition 2.2 below), the 

superiorized version of the feasibility-seeking algorithm will converge to a feasible solution which is expected to have a 

reduced, not necessarily minimal, target function value. 

We elaborate on the SM in Section 2 below. The reader might find the online bibliography [2] , which is an updated

snapshot of current work in this field, useful. In particular, [3–5] , to name but a few, and the references therein, contain

relevant introductions to the SM. 

Superiorization has successfully found multiple applications, in some cases outperforming other state-of-the-art algo- 

rithms, such as computed tomography [6,7] , inverse treatment planning in radiation therapy [8] , bioluminiscence tomogra- 

phy [9] and linear optimization [10] . Many more are documented in [2] . 

Regarding the question how SM-based algorithms compare with exact constrained optimization algorithms, it should be 

noted that the SM is not intended to solve exactly constrained optimization problems, in spite of that such comparisons 

have been reported. There is an extensive comparison between superiorization methods and regularization methods in [7] , 

see also [11] . In [6] a comparison of SM with the projected subgradient method shows, surprisingly, the advantages of SM

within the computed tomography application discussed there. 

The paper [10] compares the performance of a linear superiorized method (LinSup) and the Simplex algorithm built- 

in Matlab’s linprog solver, for linear optimization problems. The numerical experiments there show that for large-scale 

problems, the use of LinSup can be advantageous to the employment of the Simplex algorithm. 

In this paper we propose a novel superiorized algorithm for dealing with the data of the following split minimization 

problem: 

Problem 1.1. The split minimization problem (SMP) . Given two nonempty, closed and convex subsets C ⊆ R 

n and Q ⊆ R 

m 

of two Euclidean spaces of dimensions n and m , respectively, an m × n real matrix A , and convex functions f : R 

n → R and

g : R 

m → R , find 

x ∗ ∈ C such that x ∗ ∈ argmin { f (x ) | x ∈ C} , and such that (1) 

y ∗ := Ax ∗ ∈ Q and y ∗ ∈ argmin { g(y ) | y ∈ Q} . (2) 

It is important to observe that the two objective functions f and g in (1) and (2) may conflict with each other, and thus

the existence of a solution to Problem 1.1 is not guaranteed even if Ax ∈ Q for all x ∈ C. This is a new genre of problems

which are not considered as multi-objective but rather split between two spaces. Problem 1.1 is a particular instance of the

split variational inequality problem (SVIP), which employs, instead of the minimization problems in (1) and (2) , variational 

inequalities. The SVIP, see [12] , entails finding a solution of one variational inequality problem (VIP), the image of which

under a given bounded linear transformation is a solution of another VIP. Algorithms for solving the SVIP require computing 

the projections onto the corresponding constraint sets at every step, see [12] . In the case when C and Q are each given

by an intersection of nonempty, closed and convex sets, auxiliary algorithms, such as Dykstra’s algorithm [13] (see also 

[ 14 , Subsection 30.2]), the Halpern–Lions–Wittmann–Bauschke (HLWB) algorithm [15] (see also [ 14 , Subsection 30.1]) or the

averaged alternating modified reflections method [16] are needed for computing/approximating these projections, which 

will considerably increase the running time and the numerical errors of the algorithms. 

In this work, we do not aim to find an exact solution of the SMP, but rather obtain a feasible solution with reduced

values of the objective functions f and g. This allows us to drop the usual assumption on the existence of a solution to the

minimization problem, and instead we will only require that the set of solutions to the associated feasibility problem (see, 

Problem 4.2 ) is nonempty. 

Two novel elements are included here in our superiorized algorithm for the SMP. The first is a permission to restart

the perturbations in the superiorized algorithm which increases the computational efficiency. The second is the ability to 

superiorize independently over subvectors. This caters to real-world situations, as we demonstrate here for a problem in 

intensity-modulated radiation therapy (IMRT) treatment planning. 

The remainder of the paper is structured as follows. In Section 2 we briefly present the superiorization methodology 

and in Section 3 , we introduce a new technique for setting up the step-sizes in the perturbations, which results in a new

version of the general structure of the superiorized algorithm. This new structure increases the efficiency of the superiorized 

algorithm by allowing restarts of step-sizes. Our new algorithm for dealing with the data of the split minimization problem 

is developed in Section 4 . Finally, in Section 5 we present some numerical experiments on three demonstrative examples of

the performance of the algorithms. The last example is a nontrivial realistic problem arising in IMRT. 
2 
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2. The superiorization methodology 

In this section we present a brief introduction to the superiorization methodology (SM) 1 , which is a simplified version

of the presentation in [22] . The SM has been shown to be a useful tool for handling the data of difficult constrained mini-

mization problems of the form 

min { φ(x ) | x ∈ C} , (3) 

where φ : R 

n → R is a target function and C ⊆ R 

n is a nonempty feasible set, generally presented as an intersection of a

finite family of constraint sets C := ∩ 

p 
s =1 

C s . When { C s } p s =1 
is a family of nonempty, closed and convex sets in R 

n , there is a

wide range of projection methods (see, e.g., [14,23] ) that can be employed for solving the convex feasibility-seeking problem

find x ∗ ∈ C := ∩ 

p 
s =1 

C s . (4) 

The first building brick of the SM is an iterative feasibility-seeking algorithm, often a projection method, which is referred 

to as the basic algorithm , capable of finding (asymptotically) a solution to (4) . This algorithm employs an algorithmic operator

T C : R 

n → R 

n in the following iterative process. 

Algorithm 1: The basic algorithm 

1 Initialization: Choose an arbitrary initializationpoint x 0 ∈ R 

n 

2 Iterative Step: Giventhe current iterate x k , calculate the next iterate x k +1 by 

x k +1 = T C (x k ) . (5)

Example 2.1. A well-known feasibility-seeking algorithm for the set C given in (4) is the method of sequential alternating 

projections , whose algorithmic operator is given by 

T C := P C p P C p−1 
· · · P C 2 P C 1 , (6) 

where P C s denotes the orthogonal projection onto the set C s , i.e., 

P C s (x ) := argmin {‖ x − c‖ | c ∈ C s } . (7) 

Many other iterative feasibility-seeking projection methods are available, see, e.g., the excellent review paper of Bauschke 

and Borwein [24] and [25] . Such methods have general algorithmic structures of block-iterative projection (BIP), see, e.g., 

[26,27] or string-averaging projections (SAP), see, e.g., [28–30] . 

In the SM one constructs from the basic algorithm a “superiorized version of the basic algorithm” which includes pertur- 

bations of the iterates of the basic algorithm. This requires the basic algorithm to be resilient to certain perturbations. The

definition is given next with respect to the feasibility-seeking operator (6) , but is phrased in the literature with algorithmic

operators of any basic algorithm. 

Definition 2.2. Bounded perturbation resilience . Let { C s } p s =1 
be a family of closed and convex sets in R 

n such that C =⋂ p 
s =1 

C s is nonempty. An algorithmic operator T C : R 

n → R 

n for solving the feasibility-seeking problem associated with C

is said to be bounded perturbation resilient if the following holds: for all x 0 ∈ R 

n , if the sequence { x k } ∞ 

k =0 
generated by

Algorithm 1 converges to a solution of the feasibility-seeking problem, then any sequence { y k } ∞ 

k =0 
generated by 

y k +1 = T C 

(
y k + ηk v k 

)
, for all k ≥ 0 , (8) 

for any y 0 ∈ R 

n , where the vector sequence { v k } ∞ 

k =0 
is bounded and the scalars { ηk } ∞ 

k =0 
are nonnegative and summable, i.e.,∑ ∞ 

k =0 ηk < ∞ , also converges to a solution of the feasibility-seeking problem. 

The property of bounded perturbation resilience has been validated for two major prototypical algorithmic operators that 

give rise to the string averaging projections method and the block iterative projections method mentioned above, see [17,18] ,

respectively. These schemes include many well-known projection algorithms, such as the method of alternating projections 

and Cimmino’s algorithm. The convexity and closedness of the sets C s is present in the results proving the bounded pertur-

bation resilience of the BIP algorithms and the SAP methods. 
1 A word about the history: The superiorization method was born when the terms and notions “superiorization” and “perturbation resilience”, in the 

present context, first appeared in the 2009 paper of Davidi, Herman and Censor [17] which followed its 2007 forerunner by Butnariu et al. [18] . The ideas 

have some of their roots in the 2006 and 2008 papers of Butnariu et al. [19,20] . All these culminated in Ran Davidi’s 2010 PhD dissertation [21] and the 

many papers since then cited in [2] , such as, e.g., [4] . 

3 
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The importance of bounded perturbation resilience for the SM stems from the fact that it allows to include perturbations 

in the iterative steps of the basic algorithm without compromising its convergence to a feasible solution, while steering the 

algorithm toward a feasible point with a reduced (not necessarily minimal) value of the target function. 

The fundamental idea underlying the SM is to use the bounded perturbations in (8) in order to induce convergence

to a feasible point which is superior, meaning that the value of the target function φ is smaller or equal than that of a

point obtained by applying the basic algorithm alone without perturbations. To achieve this aim, the bounded perturbations 

in (8) should imply that 

φ(y k + ηk v k ) ≤ φ(y k ) , for all k ≥ 0 . (9) 

To do so, the sequence { v k } ∞ 

k =0 
is chosen according to the next definition, which is closely related to the concept of descent

direction . 

Definition 2.3. Given a function φ : R 

n → R and a point y ∈ R 

n , we say that a direction v ∈ R 

n is nonascending for φ at y if

‖ v ‖ ≤ 1 and there is some δ > 0 such that 

φ(y + λv ) ≤ φ(y ) , for all λ ∈ [0 , δ] . (10) 

Obviously, the zero vector is a nonascending direction. However, it would not provide any perturbation of the sequence 

in (8) . Denoting by ∂φ
∂x i 

(x ) the partial derivatives, the next result provides a formula for obtaining nonascending vectors of

convex functions. 

Theorem 2.4 [31 , Theorem 2] . Let φ : R 

n → R be a convex function and let x ∈ R 

n . Let u = (u i ) 
n 
i =1 

∈ R 

n be defined, by 

u i := 

{
∂φ
∂x i 

(x ) , if ∂φ
∂x i 

(x ) exists , 

0 , otherwise , 
(11) 

and define 

v := 

{
0 , if ‖ u ‖ = 0 , 

−u/ ‖ u ‖ , otherwise . 
(12) 

Then v is a nonascending vector for φ at the point x . 

Next we present the pseudo-code of the iterative process governing the superiorized version of the basic algorithm. 

The choice of nonascending vectors guarantees that the while loop in lines 8–10 is finite (see [31] for a complete proof

on the termination of the algorithm). When a bounded perturbation resilient operator T C is chosen as the basic algorithm,

Algorithm 2 will converge to a solution of the feasibility-seeking problem. Moreover, it is expected that the perturba- 

Algorithm 2: The superiorized version of the basic algorithm. 

1 Initialization: Choose an arbitrary initialization point y 0 ∈ R 

n , a summable nonnegative sequence { η� } ∞ 

� =0 
and a 

positive integer N; 

2 set k = 0 and � = −1 ; 

3 repeat 

4 set y k, 0 = y k ; 

5 for j = 0 to N − 1 do 

6 set v k, j to be a nonascending vector for φ at y k, j ; 

7 set � = � + 1 ; 

8 while φ(y k, j + η� v k, j ) > φ(y k ) do 

9 set � = � + 1 ; 

10 end 

11 set y k, j+1 = y k, j + η� v k, j ; 

12 end 

13 set y k +1 = T C 
(
y k,N 

)
and k = k + 1 ; 

tions in line 11, which reduce at each inner-loop step the value of the target function φ (line 8), will drive the iterates

of Algorithm 2 to an output which will be superior (from the point of view of its φ value) to the output that would have

been obtained by the original unperturbed basic algorithm. 

2.1. The guarantee problem of the SM 

Proving mathematically a guarantee of global function reduction of the SM will probably require some additional as- 

sumptions on the feasible set, the target function, the parameters involved, or even on the initialization points. We present 

here a simple example where the performance of the SM depends on the choice of the initialization point. 
4 
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Fig. 1. (Left) Taking y 0 = (3 / 10 , 0) T as starting point, the alternating projection method converges in one iteration to the minimum norm point in the 

intersection of two half-spaces, while its superiorized version remains far from the solution after 50 iterations. (Right) If we take y 0 = (11 / 10 , 0) T , in one 

iteration, the superiorized version converges to the minimum norm point while the alternating projection method converges to a feasible point which is 

not the solution. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Consider the problem of finding the minimum norm point in the intersection of two half-spaces A := {
x ∈ R 

2 | x 1 + x 2 ≥ 1 
}

and B := 

{
x ∈ R 

2 | x 1 − x 2 ≤ 0 
}

. If we use the method of alternating projections as the basic algorithm 

with starting point y 0 := (3 / 10 , 0) T , one obtains y 1 = (1 / 2 , 1 / 2) T , which is the solution to the problem. In Fig. 1 2 (left) we

show 50 iterations of its superiorized version for the same starting point with φ(y ) := ‖ y ‖ 2 , step-sizes in the sequence{
2 −� 

}∞ 

� =1 
, N = 1 and taking as nonascending direction v k := − ∇φ(y k ) 

‖∇φ(y k ) ‖ = − y k 

‖ y k ‖ . 
From this starting point the basic algorithm for feasibility-seeking alone without perturbations (i.e., the alternating pro- 

jection method) converges in one iteration to the minimum norm point in the intersection of the two half-spaces, while its

superiorized version remains far from the solution after 50 iterations. This happens because the first perturbation applied 

to this y 0 results in a point on the horizontal axis inside the set A. If we were to choose another y 0 on the x -axis, but far

enough to the right inside the set B , then after one perturbation the next point will be outside both sets A and B on the

positive x -axis and this would lead, following a single iteration of feasibility-seeking, to the minimum norm point whereas

the feasibility-seeking-only from that y 0 onward would lead to a less “superior” feasible point, as shown in Fig. 1 (right). 

Observe that we only computed 50 iterations because after them the norm of the perturbations is smaller than 2 −50 ≈
8 . 9 · 10 −16 . Hence, the effect of the perturbations steering the basic algorithm to a superiorized solution vanishes, having no

real effect on it. This phenomenon is inherent in the SM and the purpose of the restarts, proposed in the next section, is to

improve this unwanted behavior. 

In [ 32 , Section 3] we gave a precise definition of the “guarantee problem” of the SM. We wrote there: “The SM interlaces

into a feasibility-seeking basic algorithm target function reduction steps. These steps cause the target function to reach lower 

values locally, prior to performing the next feasibility-seeking iterations. A mathematical guarantee has not been found to 

date that the overall process of the superiorized version of the basic algorithm will not only retain its feasibility-seeking

nature but also accumulate and preserve globally the target function reductions. We call this fundamental question of the 

SM “the guarantee problem of the SM” which is: under which conditions one can guarantee that a superiorized version of 

a bounded perturbation resilient feasibility-seeking algorithm converges to a feasible point that has target function value 

smaller or equal to that of a point to which this algorithm would have converged if no perturbations were applied – every-

thing else being equal.”

Numerous works that are cited in [2] show that this global function reduction of the SM occurs in practice in many real-

world applications. In addition to a partial answer in [32] with the aid of the “concentration of measure” principle there is

also the partial result of [ 33 , Theorem 4.1] about strict Fejér monotonicity of sequences generated by an SM algorithm. 

3. First development: the superiorization method with perturbations restarts 

We offer here a modification of the SM, applied to the superiorized version of the basic algorithm in Algorithm 2 , by

setting the perturbations step-sizes in a manner that allows restarts. Commonly, the summable sequence { η� } ∞ 

� =0 
employed 

in Algorithm 2 is being generated by taking a real number α ∈ ]0 , 1[ , referred to as kernel , and setting η� := α� , for � ≥ 0 .

This strategy works well in practice, as witnessed by many works cited in [2] , but it has though the inconvenience that, as

the iterations progress, the step-sizes in (8) decrease toward zero quite fast, yielding insignificant perturbations. 
2 All figures in this paper, including this one, are created by the Cinderella interactive geometry software [34] . 

5 



F.J. Aragón-Artacho, Y. Censor, A. Gibali et al. Applied Mathematics and Computation 440 (2023) 127627 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In some applications, various methods have been studied for controlling the step-sizes, see, e.g., [10,35,36] , see also the

software package SNARK14 [37] which is an updated version of [38] . We propose here a new strategy which allows restarting

the sequence of step-sizes to a previous value while maintaining the summability of the series of step-sizes. The restarting 

of step-sizes is a useful approach that allows to improve an algorithm’s performance, see, e.g. [39,40] , where this technique

is applied to the stochastic gradient descent and FISTA, respectively. 

Our proposed scheme for restarting the step-sizes is controlled by a sequence of positive integers { W r } ∞ 

r=0 
and we call the

indices r = 1 , 2 , . . . restart indices . Bearing some similarity to a backtracking scheme, the initial step-size at the beginning of

a new loop of perturbations is reduced after each restart. Specifically, let α ∈ ]0 , 1[ be any fixed kernel, assume that r restarts

have been already performed and let W r denote the number of consecutive step-sizes which must be taken before allowing 

the next restart. 

The algorithm begins with r = 0 and takes W 0 decreasing step-sizes in the sequence { 1 , α, α2 , . . . } . After these W 0 step-

sizes, the algorithm performs a restart in the step-sizes by setting r = 1 and taking anew W 1 decreasing step-sizes in

the sequence { α, α2 , α3 , . . . } . Then the algorithm performs another restart with r = 2 and uses step-sizes in the sequence

{ α2 , α3 , α4 , . . . } , and so on. 

This is accurately described in the pseudo-code of the Superiorized Version of the Basic Algorithm with Restarts presented 

below. Observe that there are no restrictions on how the sequence { W r } ∞ 

r=0 
is chosen. A simple possible choice is to take a

positive constant value W r := W , for all r ≥ 0 . 

Note that, since the kernel α needs to lie in the interval ]0,1[, despite performing restarts, the perturbations may happen

to yield an insignificant decrease in the objective value, specially if the norm of the nonascending vectors is close to zero.

This can be controlled by considering a positive real number c and performing the restarts to the sequence { c α� } ∞ 

� =0 
rather

than to { α� } ∞ 

� =0 . This parameter is also included in the pseudo-code of Algorithm 3 . 

Algorithm 3: The superiorized version of the basic algorithm with restarts. 

1 Initialization: Choose an arbitrary initialization point y 0 ∈ R 

n , α ∈ ]0 , 1[ , apositive number c, a positive integer N and 

a sequence ofpositive integers { W r } ∞ 

r=0 ; 

2 set k = 0 , � = −1 , w = 0 and r = 0 ; 

3 repeat 

4 set y k, 0 = y k ; 

5 for j = 0 to N − 1 do 

6 set v k, j to be a nonascending vector for φ at y k, j ; 

7 set � = � + 1 ; 

8 while φ(y k, j + c α� v k, j ) > φ(y k ) do 

9 set � = � + 1 ; 

10 end 

11 set y k, j+1 = y k, j + c α� v k, j ; 

12 end 

13 set w = w + 1 ; 

14 if w = W r then 

15 set r = r + 1 , � = rand w = 0 ; 

16 end 

17 set y k +1 = T C 
(
y k,N 

)
and k = k + 1 ; 

Fact 3.1. The strategy of restarts in Algorithm 3 preserves the summability of the overall series of step-sizes. This is so

because even if during the iterative process, the largest step-sizes allowed in each of the sets W r were taken, then the

infinite sequence of all step-sizes ((
αr+ � )W r −1 

� =0 

)∞ 

r=0 
, (13) 

forms a bounded series. We have, since α ∈ ]0 , 1[ , 

∞ ∑ 

r=0 

W r −1 ∑ 

� =0 

αr+ � ≤
∞ ∑ 

r=0 

αr 
∞ ∑ 

� =0 

α� = 

1 

(1 − α) 2 
. (14) 

Hence, since only step-sizes leading to expected superior values of the target function are allowed by (9) (line 8 of Algorithm

3 ), each of the step-sizes taken will be smaller than the corresponding one in the sequence (13) , so its sum will always be

smaller than 1 / (1 − α) 2 and will, thus, define bounded perturbations. 

For some applications, the SM with restarts is very useful, notably outperforming the current SM without restarts (see 

Section 5.3 ). 
6
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4. Second development: a superiorized algorithm for subvectors in the split minimization problem 

We develop here a superiorized algorithm for tackling the data of the SMP in Problem 1.1 when C := 

⋂ p 
s =1 

C s and Q :=⋂ q 
t=1 

Q t , where p and q are two integers and { C s } p s =1 
and { Q t } q t=1 

are two families of closed and convex sets with nonempty

intersections in R 

n and R 

m , respectively. To ease the discussion we will refer here to R 

n and R 

m , as the “x -space” and the

“y -space”, respectively. 

4.1. The SMP with subvectors 

In some situations of practical interest, the minimization problem in (2) should be independently applied to subvectors 

of the y -space. We discuss an instance in the field of radiation therapy treatment planning where this is significant in

Section 5 below. 

For simplicity and without loss of generality, we assume that the subvectors are in consecutive order. The m × n real

matrix A is divided into B blocks and is represented by 

A := 

⎛ 

⎜ ⎜ ⎝ 

A 1 

A 2 

. . . 
A B 

⎞ 

⎟ ⎟ ⎠ 

(15) 

where, for each b ∈ B, A b ∈ R 

m b ×n are blocks of rows of the matrix A , with 

∑ B 
b=1 m b = m . Thus, any vector y := Ax is of the

form 

y = 

⎛ 

⎜ ⎜ ⎝ 

y 1 

y 2 

. . . 

y B 

⎞ 

⎟ ⎟ ⎠ 

= 

⎛ 

⎜ ⎜ ⎝ 

A 1 

A 2 

. . . 
A B 

⎞ 

⎟ ⎟ ⎠ 

x (16) 

where y b ∈ R 

m b are subvectors of y ∈ R 

m . 

Problem 4.1 The SMP with subvectors . Given two families of closed and convex sets { C s } p s =1 
⊆ R 

n and { Q t } q t=1 
⊆ R 

m such

that C := 

⋂ p 
s =1 

C s  = ∅ and Q := 

⋂ q 
t=1 

Q t  = ∅ , an m × n real matrix A in the form (15) for a given integer B , a convex function

f : R 

n → R and convex functions φb : R 

m b → R , for b = 1 , 2 , . . . , B , find 

x ∈ C such that x ∗ ∈ argmin { f (x ) | x ∈ C} , and such that (17) 

y ∗ := Ax ∗ ∈ Q and y b∗ ∈ argmin { φb (y b ) | y ∈ Q} for all b ∈ { 1 , 2 , . . . , B } . (18) 

Our algorithm, presented below, can also handle subvectors in the x -space, but for simplicity we restrict ourselves here

to subvectors in the y -space. 

4.2. Reformulation in the product space 

To work out a superiorization method for the data of the SMP with subvectors in Problem 4.1 we look at a multiple sets

split feasibility problem (MSSFP), see, e.g., [41] , as follows. 

Problem 4.2 The multiple sets split feasibility problem (MSSFP) . Given C := 

⋂ p 
s =1 

C s and Q := 

⋂ q 
t=1 

Q t , where p and q are

two integers, and { C s } p s =1 
and { Q t } q t=1 

are two families of closed and convex sets with nonempty intersections each in R 

n 

and R 

m , respectively, and an m × n real matrix A , find 

x ∗ ∈ C = 

p ⋂ 

s =1 

C s such that y ∗ := Ax ∗ ∈ Q = 

q ⋂ 

t=1 

Q t . (19) 

This is a generalization of the split feasibility problem (SFP) that occurs when p = q = 1 in the MSSFP. The SFP, which plays

an important role in signal processing, in medical image reconstruction and in many other applications, was introduced by 

Censor and Elfving [42] in order to model certain inverse problems. Since then, many iterative algorithms for solving the 

SFP have been proposed and analyzed. See, for instance, the references given in [43] or consult the section “A brief review

of ‘split problems’ formulations and solution methods” in [44] . 

Our proposed algorithm deals with an equivalent reformulation of Problem 4.2 in the product space R 

n × R 

m . Adopting 

the notation that quantities in the product space are denoted by boldface symbols, we define the sets 

C := 

( 

p ⋂ 

s =1 

C s 

) 

×
( 

q ⋂ 

t=1 

Q t 

) 

and V := { z = (x, y ) ∈ R 

n × R 

m | Ax = y } . (20)
7 
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Note that the projection onto V is given by P V = Z T (Z Z T ) −1 Z , with Z := [ A, −I] , where I denotes the m × m identity matrix.

Then, Problem 4.2 is equivalent to the problem: 

find a point z ∗ ∈ C ∩ V . (21) 

Without loss of generality, we assume that p = q, since otherwise the whole space (or one particular set) could be added

repeatedly as a constraint until both indices are equal. Since the projection of a Cartesian product is the Cartesian product

of the projections [45, Lemma 1.1] , the following implementation of the method of alternating projections can be employed

to solve (21) . We consider this as our basic algorithm for the superiorization method for subvectors. 

In order to construct a superiorized version of Algorithm 4 that can cope with the data of the SMP with subvectors

Algorithm 4: Basic Algorithm for the MSSFP. 

1 Initialization: Choose an arbitrary initialization point x 0 ∈ R 

n . Set y 0 = Ax 0 ; 

2 IterativeStep: Given the current iterate z k = (x k , y k ) ,calculate the next iterate z k +1 by 

z k +1 = P V 
((

P C p × P Q p 
)
· · · ( P C 1 × P Q 1 ) (z k ) 

)
. (22) 

in Problem 4.1 , we need to establish at each iteration some appropriate perturbations that will steer the algorithm to a

superiorized solution. For this, we note that the vector y k inside z k in (22) is expressed as 

y k = 

⎛ 

⎜ ⎜ ⎝ 

y 1 ,k 

y 2 ,k 

. . . 

y B,k 

⎞ 

⎟ ⎟ ⎠ 

= 

⎛ 

⎜ ⎜ ⎝ 

A 1 x 
k 

A 2 x 
k 

. . . 

A B x 
k 

⎞ 

⎟ ⎟ ⎠ 

. (23) 

Thus, we declare our perturbation vector to be (
x k 

y k 

)
+ ηk 

(
u 

k 

v k 

)
, for all k = 0 , 1 , 2 , . . . , (24) 

where { ηk } ∞ 

k =0 
is a nonnegative summable sequence, u k is a nonascending vector for f at x k and 

v k = 

⎛ 

⎜ ⎜ ⎝ 

v 1 ,k 
v 2 ,k 

. . . 

v B,k 

⎞ 

⎟ ⎟ ⎠ 

, (25) 

with each v b,k being a nonascending vector for φb at the point A b x 
k , for all b ∈ { 1 , 2 , . . . , B } . The complete pseudo-code of

the superiorized version of the basic Algorithm 4 with perturbations of the form given by (24) is shown in Algorithm 5 . 

Since the method of alternating projections is bounded perturbation resilient [18] , Algorithm 5 will converge to a solution

of the feasibility problem (21) . Moreover, by the nature of the SM, the algorithm is expected to converge to a point z ∗ =
(x ∗, y ∗) which will be superior with respect to f for the component x in the x -space, and with respect to φb for the b-th

subvector in the y -space, for b = 1 , 2 , . . . , B . 

5. Numerical experiments 

Our aim in this paper is not to compare the superiorization method with constrained optimization methods, moreover, 

the SM is not a method intended to solve exact constrained optimization problems. Such comparisons were done elsewhere, 

see, e.g., [6,7] . Our goal is to show how the SM can be improved and this is achieved by comparing the SM with and without

restarts and with and without perturbations. We present our results of numerical experiments performed on three different 

problems. The first two problems are simple illustrative examples. The computational performance of the SM with restart 

algorithms, proposed here, can be substantiated with exhaustive testing of the possible specific variants permitted by the 

general framework and their various user-chosen parameters. This should be done on larger problems, preferably within 

the context of a significant real-world application. Therefore, our third problem addresses an actual situation arising in the 

real-world application of intensity-modulated radiation therapy (IMRT) treatment planning. 

The purpose of the first example is to illustrate the potential benefits of superiorization with restarts for finding a point

with reduced norm in the intersection of two convex sets. We first consider the case of two balls and then explore the case

of two half-spaces presented in Remark 2.1 , in which superiorization did not achieve its purpose for a particular setting. 

In the second example we illustrate the behavior of Algorithm 5 in a simple setting with C, Q ⊂ R 

2 , where each of the

sets is an intersections of three half-spaces. 
8 
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Algorithm 5: Superiorized Algorithm for the data of the SMP with subvectors. 

1 Initialization: Choose x 0 ∈ R 

n , a summablenonnegative sequence { η� } ∞ 

� =0 
and a positiveinteger N; 

2 set y b, 0 = A b x 
0 for b ∈ { 1 , 2 , . . . , B } ; set k = 0 and � = −1 ; 

3 repeat 

4 set x k, 0 = x k ; 

5 set y b,k, 0 = y b,k for b ∈ { 1 , 2 , . . . , B } ; 
6 for j = 0 to N − 1 do 

7 set v k, j 
x to be a nonascendingvector for f at x k, j ; 

8 set v b,k, j 
y to be anonascending vector for φb at the point y b,k, j forall b; 

9 set � = � + 1 ; 

10 while f (x k, j + η� v k, j 
x ) > f (x k ) or there exists b with φb (y b,k, j + η� v b,k, j 

y ) > φb (y b,k ) do 

11 set � = � + 1 ; 

12 end 

13 set x k, j+1 = x k, j + η� v k, j 
x ; 

14 set y b,k, j+1 = y b,k, j + η� v b,k, j 
y ; 

15 end 

16 set (x k +1 , y 1 ,k +1 , . . . , y B,k +1 ) = P V 
((

P C p × P Q p 
)
· · ·

(
P C 1 × P Q 1 

)(
x k,N , y 1 ,k,N , . . . , y B,k,N 

))
; 

17 set k = k + 1 ; 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Finally, the last experiment demonstrates the benefits of superiorization with restarts in a difficult realistic setting in 

IMRT, where a large-scale multiobjective optimization problem arises. All tests were run on a desktop of Intel Core i7-4770 

CPU 3.40GHz with 32GB RAM, under Windows 10 (64-bit). 

5.1. The benefits of superiorization with restarts 

Consider the problem of finding the minimum norm point in the intersection of two balls A and B in the Euclidean

2-dimensional space, so φ : R 

2 → R is given by φ(x ) := 

1 
2 ‖ x ‖ 2 for x ∈ R 

2 . The underlying feasibility problem can be solved

by the method of alternating projections, which we chose as the basic algorithm. Hence, the feasibility-seeking algorithmic 

operator used in our computations is 

T = P B P A , (26) 

where P A and P B denote the projection operators onto the balls A and B, respectively. We tested the method of alternat-

ing projections, its superiorized version (with two different kernels α = 0 . 6 and α = 0 . 999 ) and its superiorized version

with restarts (with α = 0 . 6 and W r = 50 , for all r ≥ 0 ). We set N = 1 in all the superiorized algorithms. The nonascending

directions were taken as v k := − ∇φ(y k ) 

‖∇φ(y k ) ‖ = − y k 

‖ y k ‖ . 
The behavior of these algorithms is shown in Fig. 2 . On the left we represent 500 iterations generated by each algorithm.

On the right, we plot the sequence of perturbations obtained before applying the algorithmic operator, that is, we draw the

points 
{

y k,N 
}500 

k =0 
. This sequence coincides with the sequence of iterates 

{
y k 

}500 

k =0 
in the case when no perturbations are per- 

formed at all and only the basic algorithm works, while it coincides with the sequence 
{

y k + ηk v k 
}500 

k =0 
for the superiorized 

algorithms. 

As expected, the method of alternating projections converges to a point in the intersection which is not desirable ac- 

cording to the task of reducing the target function value (the squared norm). Superiorization with kernel α = 0 . 6 reaches a

better point than the output of the basic algorithm, but is yet far from the solution to the problem. This might well be due

to the step-sizes not being big enough for the perturbations to steer the algorithm to a proper function reduction. 

Taking α = 0 . 999 in the standard superiorized version of the algorithm results in a very slow convergence of the algo-

rithm, as can be observed on the right figure in Fig. 2 . These deficiencies are resolved by considering superiorization with

restarts, which achieves fast convergence to a solution with reduced norm in the intersection. 

The example presented in Section 2.1 is artificial in the sense that the vectors defining the half-spaces are orthogonal 

and the starting point was chosen in a particular region of the plane which was less favorable to the superiorized algorithm.

Also, the value of the kernel was chosen to be small ( α = 0 . 5 ), to aggravate the vanishing effect of the perturbations. 

To investigate what happens with random data, we ran an experiment generating 1 0 0 0 0 0 0 pairs of half-spaces of the

form A := 

{
x ∈ R 

2 | 〈 c A , x 〉 ≤ b A 
}

and B := 

{
x ∈ R 

2 | 〈 c B , x 〉 ≤ b B 
}

where the vectors c A , c B ∈ R 

2 were randomly chosen and 

then normalized, and b A , b B ∈ (−1 , 0) (to ensure that (0 , 0) T ∈ A ∩ B ). For each pair of half-spaces, we generated a random

starting point y 0 ∈ [ −1 , 1] 2 such that y 0 ∈ A ∩ B . 

Then, we ran from y 0 the basic algorithm (feasibility-seeking alternating projections), its superiorized version with kernel 

α ∈ { 0 . 5 , 0 . 6 , 0 . 7 , 0 . 8 , 0 . 9 } and its superiorized version with restarts with W r = 20 and N = 1 . The results are summarized in
9 
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Fig. 2. Behavior of the different algorithms considered applied to the data of the problem of finding the minimum norm point in the intersection of the 

balls A and B . The figures show the first 500 points in the sequence of iterates { y k } 500 
k =0 

(left) and the sequence of perturbed iterations before applying the 

algorithmic operator { y k,N } 500 
k =0 

(right) of each algorithm. 

Table 1 

For each pair-wise comparative of methods and kernel choice, the numbers in- 

side the table are the percentage of the 1 0 0 0 0 0 0 runs in which each method 

obtains a solution with lower norm than the other one with which it is com- 

pared. 

AP vs Sup. AP vs Sup. Res. Sup. vs Sup. Res. 

Kernel AP Sup. AP Sup. Res. Sup. Sup. Res. 

α = 0 . 5 1.29% 56.17% 0.08% 57.2% 0.01% 16.9% 

α = 0 . 6 0.73% 56.63% 0.02% 57.26% 0.001% 10.78% 

α = 0 . 7 0.32% 56.96% 0.002% 57.28% 0% 6.1% 

α = 0 . 8 0.10% 57.17% 0% 57.29% 0% 2.86% 

α = 0 . 9 0.01% 57.27% 0% 57.3% 0% 0.68% 

 

 

 

 

 

 

 

 

Table 1 . In this table AP stands for “alternating projections”, Sup stands for “the superiorized version”, and Sup. Res. stands

for “the superiorized version with restarts”. We count that one method is better than the other when the norm of its solu-

tion is smaller than the norm of the second method’s output minus 10 −3 . With kernel α = 0 . 5 , the superiorized algorithm

failed to obtain a solution with lower norm than the basic algorithm in 12 931 of the 1 0 0 0 0 0 0 instances; with kernel

α = 0 . 9 , this number was reduced to 122. The superiorized algorithm with restarts with kernel α = 0 . 7 only failed to get

a better solution than the basic algorithm in 21 instances. Remarkably, when the kernels α ∈ { 0 . 8 , 0 . 9 } were used, superi- 

orization with restarts always reached the same or a better solution than both the basic and the superiorized algorithms 

without restarts. 

5.2. Behavior of the superiorized algorithm for the data of the SMP 

In this section we present another illustrative example of the performance of Algorithm 5 . To be able to display the

iterates, we let both the x -space and the y -space in Problems (17)-(18) be the Euclidean 2-dimensional spaces. We take C

as the intersection of the half-spaces given by C 1 := 

{
(x 1 , x 2 ) ∈ R 

2 | x 1 + x 2 ≤ 10 
}

, C 2 := 

{
(x 1 , x 2 ) ∈ R 

2 | −13 x 1 + 3 x 2 ≤ −26 
}

and C 3 := 

{
(x 1 , x 2 ) ∈ R 

2 | x 2 ≥ 1 
}

. 

We let A be the rotation matrix by an angle of π/ 2 and Q be the image of C under A (i.e., the intersection of the half-

spaces Q 1 := 

{
(y 1 , y 2 ) ∈ R 

2 | y 1 − y 2 ≤ −10 
}

, Q 2 := 

{
(y 1 , y 2 ) ∈ R 

2 | −3 y 1 − 13 y 2 ≤ −26 
}

and Q 3 := 

{
(y 1 , y 2 ) ∈ R 

2 | y 1 ≤ −1 
}

). 

The function to be reduced in the x -space is the value of the second component f (x 1 , x 2 ) := x 2 , whereas in the y -space, we

aim to find a point with increased first and second components (that is, B := 2 , φ1 (y 1 ) := −y 1 and φ2 (y 2 ) := −y 2 ). 

In other words, we want to tackle with the SM the data of the split minimization problem given by 

find x ∗ = 

(
x ∗1 
x ∗2 

)
∈ C such that x ∗ ∈ argmin 

{
x 2 

∣∣∣ (
x 1 
x 2 

)
∈ C 

}
(27) 

and such that 

(
−x ∗2 
x ∗1 

)
∈ Q, −x ∗2 ≥ y 1 and x ∗1 ≥ y 2 for all 

(
y 1 
y 2 

)
∈ Q, (28) 
10 
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Fig. 3. Performance of the method of alternating projections and its superiorized version applied in the setting of problems (27)-(28) . The left image 

displays the iterates in the x -space, while the right one shows the iterates in the y -space. 

 

 

 

 

 

 

 

 

 

with C := 

⋂ 3 
i =1 C i and Q := 

⋂ 3 
j=1 Q j. 

By looking at Fig. 3 , one easily identifies that the point (9 , 1) T , obtained as the intersection of the lines x 1 + x 2 = 10 and

x 2 = 1 , is the unique solution to the SMP with the above described data. 

Again, for the SM we choose the method of alternating projections as the basic algorithm. Consequently, the algorithmic 

operator that we use is 

T := P V ◦
(
P C 3 × P Q 3 

)
◦ ( P C 2 × P Q 2 ) ◦ ( P C 1 × P Q 1 ) , (29) 

where we recall that V := 

{
(x, y ) ∈ R 

2 × R 

2 | Ax = y 
}

. In our experiment, we performed 50 iterations of both the basic algo-

rithm and its superiorized version, taking α = 0 . 9 as the kernel for generating the step-sizes of the perturbations and N = 1 .

The nonascending vectors were taken as v k x := (0 , 1) T for the perturbations in the x -space, and v 1 ,k y := 1 and v 2 ,k y := 1 in the

y -space. 

Fig. 3 shows that, while the method of alternating projection converges to the closest point to the starting point in the

intersection in each of the spaces, the superiorized algorithm converges to the solution of the SMP. 

5.3. A demonstrative example in IMRT 

In this section, we test our SM with restarts algorithm in a sophisticated multiobjective setting motivated from a split 

minimization problem in the field of intensity-modulated radiation therapy (IMRT) treatment planning. IMRT is a radia- 

tion therapy that manipulates particle beams (protons or photons or others) of varying directions and intensities that are 

directed toward a human patient to achieve a goal of eradicating tumorous tissues, henceforth called “tumor structures”, 

while keeping healthy tissues, called “organs-at-risk” below certain thresholds of absorbed dose of radiation. The beams are 

projected onto the region of interest from different angles. 

Many review papers in this field are available, see, e.g., [46–50] and references therein. 

5.3.1. The fully-discretized model of the inverse problem of IMRT 

In the fully-discretized model of the inverse problem of IMRT each external radiation beam is discretized into a finite 

number of “beamlets” (also called “pencil-beams” or “rays”) along which the particles (i.e., their energies) are transmitted. 

Let all beamlets from all directions be indexed by i = 1 , 2 , . . . , n, and denote the “intensity” irradiated along the i th beamlet

by x i . The vector x = (x i ) 
n 
i =1 

∈ R 

n is called the “intensities vector”. 

The 2-dimensional (2D) cross-section 

3 of the irradiated body is discretized. Assume that the cross-section is covered by 

a square that is discretized into a finite number of square pixels. This creates an M × M array of pixels. Let all pixels be

indexed by j = 1 , 2 , . . . , m, with m = M 

2 and let y j denote the “dose” of radiation absorbed in the j-th pixel. The vector

y = (y j ) 
m 

j=1 
∈ R 

m is called the “dose vector”. 

The “intensities space” R 

n and the “dose space” R 

m , defined above are the “x -space” and the “y -space”, respectively, 

mentioned at the beginning of Section 4 . The physics of the model assumes that there exists an m × n real matrix A =
3 Everything presented here can easily be extended to 3D wherein the pixels are replaced by voxels. The choice of the 2D case just makes the presenta- 

tion simpler. 

11 
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(a i j ) 
n,m 

i =1 , j=1 
(sometimes called “the dose matrix”) through which the intensities of the beamlets and the absorbed doses in 

pixels are related via the equation 

Ax = y. (30) 

Each element a i j in A is the dose absorbed in pixel j due to a unit of intensity along the i -th beamlet. This means that 

n ∑ 

i =1 

a i j x i (31) 

is the total dose absorbed in pixel j due to an intensity vector x . With these notions in mind we consider the following

feasibility-seeking problem of the fully-discretized inverse problem of IMRT. 

Problem 5.1 The feasibility-seeking problem of the fully-discretized inverse problem of IMRT . Let R 

n and R 

m be the “in-

tensities space” and the “dose space” (henceforth called the “x -space” and the “y -space”) respectively. Let A = (a i j ) 
n,m 

i =1 , j=1 

be the dose matrix mapping the x -space onto the y -space. For � = 1 , 2 , . . . , L , denote by T � ⊆ { 1 , 2 , . . . , m } the set of pixels

corresponding to the � th tumor structure in the region of interest. For r = 1 , 2 , . . . , R , denote by S r ⊆ { 1 , 2 , . . . , m } the set of

pixels corresponding to the rth organ-at-risk. Set e and e the lower and upper bounds for the available beamlets intensities. 

Let d r and d r , and c � and c � be the lower and upper bounds for the dose deposited in each pixel of the rth organ at risk

and of the � th tumor, respectively. 

The task is to find an intensities vector x such that 

c � ≤
∑ n 

i =1 a i j x i ≤ c � , for all j ∈ T � , � ∈ { 1 , 2 , . . . , L } , 
d r ≤

∑ n 
i =1 a i j x i ≤ d r , for all j ∈ S r , r ∈ { 1 , 2 , . . . , R } , 

e ≤ x i ≤ e , for all i ∈ { 1 , 2 , . . . , n } . 
(32) 

Problem 5.1 is a linear feasibility problem. Usually, e = d r = 0 and the significant bounds are c � for tumor structures 

and d r for organs-at-risk. A pair (x ∗, y ∗) such that x ∗ is a solution of Problem 5.1 and y ∗ = Ax ∗ will be henceforth called “a

treatment plan” for the IMRT inverse planning problem. 

5.3.2. The quest for smoothness and uniformness 

In the IMRT inverse planning problem there is an advantage to generating treatment plans with intensity vectors x ∗

whose subvectors, related to parallel beamlets from the same beam, will be as “smooth” as possible and with dose vectors 

y ∗ whose subvectors, related to specific organs (a.k.a. “structures”), that will be as “uniform” as possible. 

For the intensity vectors x ∗, “smoothness” of subvectors, related to parallel beamlets from the same beam, means that 

the real numbers that are the individual intensities x ∗
i 
, in each subvector separately, would be as close to each other as

possible, subject to the constraints of Problem 5.1 . Such smoothness will allow for less extreme movements of the “multileaf

collimator” (MLC) 4 that modulates the parallel beamlets from the same beam. 

For the dose vectors y ∗, “uniformness” of subvectors, related to specific organs means that the real numbers that are the

individual doses y ∗
j 
, in each pixel of the subvector would be as close to each other as possible, subject to the constraints of

Problem 5.1 . Such uniformness will guarantee uniformness of the dose deposited within each organ separately and help to 

avoid the presence of hot- and cold-spots in the dose distribution in each organ. See, e.g., [52] . 

Each of these aims can be achieved by attempting to minimize or just reduce the total variation (TV) -norm of the as-

sociated subvectors, see, e.g., [53] for a general work on the T V -norm. For an M × M array z = (z s,t ) 
M,M 

s =1 ,t=1 
the T V -norm is

defined as the convex function T V : R 

M×M → R given by 

T V (z) : = 

M−1 ∑ 

s =1 

M−1 ∑ 

t=1 

√ 

(z s,t − z s +1 ,t ) 2 + (z s,t − z s,t+1 ) 2 

+ 

M−1 ∑ 

s =1 

| z s,M 

− z s +1 ,M 

| + 

M−1 ∑ 

t=1 

| z M,t − z M,t+1 | . (33) 

Choosing the T V -norm as the objective function in the “x -space” or the “y -space”, or both, and associating it with the

feasibility-seeking problem of the fully-discretized inverse problem of IMRT ( Problem 5.1 ) leads naturally to formulations of 

the SMP in Problem 1.1 . 

5.3.3. The experimental setup 

For the purpose of our numerical experiment we confine ourselves specifically to a case of the feasibility-seeking problem 

of the fully-discretized inverse problem of IMRT ( Problem 5.1 ) where there are L tumor structures and the whole rest of the

cross-section is considered as one single organ-at-risk, i.e., we let S r = S ⊆ { 1 , 2 , . . . , m } for all r = 1 , 2 , . . . , R. This leads to
4 A multileaf collimator is a beam-limiting device that is made of individual “leaves” of a high atomic numbered material, usually tungsten, that can 

move independently in and out of the path of a radiotherapy beam in order to shape (i.e., modulate) it and vary its intensity. See, e.g., [51] . 
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the next split problem of minimizing the T V -norm of the dose subvectors so that uniformity of dose distribution will be

achieved for each tumor structure separately. 

Problem 5.2. Let R 

n be the x -space of intensity vectors, let R 

m be the y -space of dose vectors, and A be the dose matrix

relating them to each other. For � = 1 , 2 , . . . , L denote by T � ⊆ { 1 , 2 , . . . , m } the sets of pixels corresponding to the � th tumor

structure and let S ⊆ { 1 , 2 , . . . , m } be the complementary set of pixels that do not belong to any of the target structures and

represent all organs at risk. Set 0 and e the lower and upper bounds for the beamlets intensities. Let d and d , and c � and

c � be the dose bounds for pixels in an organ-at-risk and at the tumor structures, respectively. We further assume that the

dose vector y = Ax consists of L + 1 subvectors y = (y � ) L +1 
� =1 

such that the first L subvectors consists of the doses absorbed in

pixels of the L tumor structures and y L +1 is the dose absorbed in the complementary tissue S. 

The task is to find an intensities vector x such that 

c � ≤ y � 
j 
= 

∑ n 
i =1 a i j x i ≤ c � , for all j ∈ T � , � ∈ { 1 , 2 , . . . , L } , 

d ≤ y L +1 
j 

= 

∑ n 
i =1 a i j x i ≤ d , for all j ∈ S, 

e ≤ x i ≤ e , for all i ∈ { 1 , 2 , . . . , n } , 
(34) 

and y � ∈ argmin 

{
TV (u) 

∣∣ u ∈ [ c � , c � ] 
| T � | } for all � ∈ { 1 , 2 , . . . , L } , (35) 

where, for every � ∈ { 1 , 2 , . . . , L } , y � denotes the subvector of the vector y associated with the � th tumor, and | T � | is the

cardinality of the set T � . 

This is the problem we worked on in our experiment. We do not use real data but replicate a realistic situation. In

particular, we consider a cross-section of 50 × 50 square pixels, which translates into the dose vector in the y -space R 

2500 .

The number of external radiation beamlets is n = 2840 , meaning that the x -space is R 

2840 . In the cross-section we have

two tumor structures of irregular shapes, whose location appears in Fig. 4 . In order to guarantee the existence of a feasible

solution for Problem 5.2 , we generated the data as follows. 

• We generate a vector y ∈ R 

2500 with components randomly distributed in the interval [0,15] for the pixels corresponding 

to organs-at-risk, and in the interval [10,40] for pixels of tumor structures. 
• We randomly generated a matrix V ∈ R 

2840 ×2500 with entries in the interval [0,1] and defined the dose matrix A ∈
R 

2500 ×2840 , mapping the x -space onto the y -space, as the generalized left inverse of V , i.e., we took A := (V T V ) −1 V T . 
• We defined x := V y , which implies that y = A x . 
• We set the bounds for the constraints of Problem 5.2 as ⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

d = 0 , d = max { y j | j ∈ S} + 5 ε 1 , 
c 1 = min { y j | j ∈ T 1 } − 5 ε 2 , c 1 = max { y j | j ∈ T 1 } + 5 ε 3 , 
c 2 = min { y j | j ∈ T 2 } − 5 ε 4 , c 2 = max { y j | j ∈ T 2 } + 5 ε 5 , 
e = (ε 6 + 1) / 2 min { x i | i ∈ { 1 , 2 , . . . , n } } , 
e = (1 + ε 7 / 2) max { x i | i ∈ { 1 , 2 , . . . , n } } , 

(36) 

where the sub-indices in c and c refer to the first and second tumor structures and, for i ∈ { 1 , 2 , . . . , 7 } , ε i are randomly

picked real numbers in the interval (0,1]. 

These choices during the data generation guarantee that there exists a feasible solution for Problem 5.2 with these data,

namely x . 

In our experimental work, we ran the basic algorithm ( Algorithm 4 ) and the superiorized version of the basic algorithm

( Algorithm 5 ) with and without restarts. For all of them we took the algorithmic operator as 

T := P V ◦
(
P [ e , e ] × P Q 

)
, (37) 

with V := { (x, y ) ∈ R 

n × R 

m | Ax = y } and P Q : R 

m → R 

m defined component-wise as 

P Q (y j ) := 

{ 

P 
[ d , d ] 

, if j ∈ S, 

P [ c 1 , c 1 ] , if j ∈ T 1 , 

P [ c 2 , c 2 ] , if j ∈ T 2 . 

(38) 

We tested the three algorithms with different choices of the parameters and present here the most advantageous for each 

one. Specifically, in Algorithm 5 with or without restart the step-sizes were taken in the sequence { c α� } ∞ 

� =0 with a constant

kernel α and a positive number c, and we took N = 5 . We performed some experiments in order to determine the best

choice of α and c for each method. The results are shown in Table 2 . We chose α = 0 . 999 and c = 10 0 , 0 0 0 for the supe-

riorized algorithm, since these parameters provide the best reduction in T V -norm values while performing the fastest. For 

the superiorization with restarts, all of the combinations of parameters, except of the first one, provide a great reduction in

the T V -norm values with respect to superiorization with no restarts. Among these combinations, α = 0 . 99 and c = 100 was

the fastest, so we opted for it. The target functions φb were always the appropriate T V -norms. Since no smoothing of the

intensities vectors is included in the experiment, we took v k, j 
x = 0 , for all k and j. The final parameters of the two methods

are the following: 
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Fig. 4. Heat maps of the solutions in the y -space of pixel doses for the first run of each one of the studied algorithms. Represented is a 50 × 50 square 

grid of pixels, where the color indicates the dose absorbed in each pixel. 

Table 2 

Average T V -norm values for the first and second subvectors and average time (in seconds) obtained by running the Superiorized and Superiorized with 

restarts algorithm with different choices of parameters for 10 random initial points. The algorithms were stopped when a proximity of 0.01 was reached. 

α = 0 . 99 α = 0 . 999 

c = 10 c = 100 c = 10 0 0 c = 10 , 0 0 0 c = 10 0 , 0 0 0 c = 10 c = 100 c = 10 0 0 c = 10 , 0 0 0 c = 10 0 , 0 0 0 

Sup. T V 1 2433.38 2433.36 2432.93 2430.40 2430.40 2432.26 2423.20 2300.88 2167.01 2166.97 

T V 2 3056.41 3056.34 3055.51 3052.28 3052.28 3054.67 3039.15 2899.47 2714.62 2714.58 

Time 204.34 202.87 203.46 201.12 208.12 202.69 201.84 199.67 199.33 196.57 

Sup. Restarts T V 1 2078.81 368.81 397.35 381.65 371.03 249.96 361.70 386.13 381.51 382.51 

T V 2 2689.98 707.2 598.24 579.47 568.02 585.33 583.39 534.21 528.54 528.56 

Time 367.65 453.47 598.55 779.16 950.63 2362.15 3560.19 4426.75 6181.23 7174.09 

 

 

 

 

 

 

• Superiorization: We took α = 0 . 999 , c = 10 0 0 0 0 and N = 5 , and v k,b, j 
y was defined as the nonascending direction given

by Theorem 2.4 . 
• Superiorization with restarts: We took α = 0 . 99 , c = 100 , W r = 20 for all r and N = 5 , and v k,b, j 

y was defined as the

nonascending direction given by Theorem 2.4 . 

We performed multiple runs of the three algorithms. At each run, each of the algorithms was initialized at the same

starting point which was randomly generated in the interval [ e , e ] . We define the proximity of an iterate as the distance to

the feasible region, i.e., for an iterate pair (x k , y k ) , we define its proximity as 

prox (x k , y k ) := ‖ x k − P [ e , ̄e ] (x k ) ‖ + ‖ y k − P Q (y k ) ‖ . (39)

Note that, due to the definition of the algorithmic operator T , the distance of (x k , y k ) to V is 0. All three algorithms

were terminated once the proximity became less than 0.01. The obtained results for all different runs are summarized 
14 
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Table 3 

T V -norm values for the first and second subvector, run times and number of iterations resulting 

from running the Basic, Superiorized and Superiorized with restarts algorithms (for runs with 

5 different random initial points) until a proximity of 0.01 was reached. 

Run 1 2 3 4 5 

T V for subvector 1 Basic 2405.3 2498.4 2289.3 2624.74 2474.9 

Superiorized 2072.8 2230.1 2089.6 2362.7 227.2 

Sup. Restarts 421.9 315.6 404.3 349.3 301.1 

T V for subvector 2 Basic 3019.1 3252.8 3002.5 3076.6 3096.3 

Superiorized 2703.3 2837.4 2558.9 2744.3 2848.2 

Sup. Restarts 817.7 759.7 688.1 709.2 531.2 

Run time (sec.) Basic 96.1 94.6 91.6 93.6 95.4 

Superiorized 261.6 263.3 253.8 269.4 267.3 

Sup. Restarts 577.5 588.0 630.9 580.3 582.7 

No. of iterations Basic 7352 7265 7117 7400 7505 

Superiorized 7327 7195 7095 7382 7478 

Sup. Restarts 14880 14819 17140 15275 14778 

Fig. 5. The evolution of the total variation and the proximity of the iterations of the first run of each of the algorithms for the subvector associated to the 

first tumor (left) and the second tumor (right). In these “proximity-target function curves” the iteration indices k increase from right to left in each of the 

plots. 

 

 

 

 

in Table 3 . Our numerical experiments showed that superiorization with restarts was considerably the best performing 

algorithm regarding the target function reduction, while superiorization alone, without restarts, did not achieve a significant 

reduction with respect to the basic algorithm. 

This fact can be graphically observed in the heat maps of Fig. 4 , where we represent the dose in the pixels of the cross-

section at the last iteration of each algorithm. The uniformity of the heat distribution in a tumor structure represents the

dose distribution in that structure. Clearly, superiorization with restarts provided a more homogeneous dose distribution in 

the tumorous pixels. We observed the increased uniformity of dose distributions in the tumors in all our algorithmic runs 

of the superiorization with restarts method. However, depending on the datasets and the allowable parameters the level of 

the uniformity may vary. 

The evolution along the iterations of the proximity and the total variation of the algorithms is shown in Fig. 5 with

“proximity-target function curves” (which were introduced in [54] ), where the iteration indices k increase from right to left 

in each of the plots. Finally, we note that superiorization with restarts needed more time and a larger number of iterations

to reach the desired proximity. 

In our experiments we have observed that other choices of parameters for the superiorization with restarts runs can be 

employed to reduce its running times and make them comparable to those of the superiorized algorithm without restarts 

and, at the same time, still achieve a significant reduction of the target function when compared to the other algorithms. 
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