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Abstract5

In social sciences, the study of group differences concerning latent constructs is ubiquitous.6

These constructs are generally measured by means of scales composed of ordinal items.7

In order to compare these constructs across groups, one crucial requirement is that they8

are measured equivalently or, in technical jargon, that measurement invariance (MI)9

holds across the groups. This study compared the performance of scale- and item-level10

approaches based on multiple group categorical confirmatory factor analysis (MG-CCFA)11

and multiple group item response theory (MG-IRT) in testing MI with ordinal data. In12

general, the results of the simulation studies showed that, MG-CCFA-based approaches13

outperformed MG-IRT-based approaches when testing MI at the scale level, whereas,14

at the item level, the best performing approach depends on the tested parameter (i.e.,15

loadings or thresholds). That is, when testing loadings equivalence, the likelihood ratio16

test provided the best trade-off between true positive rate and false positve rate, whereas,17

when testing thresholds equivalence, the χ2 test outperformed the other testing strategies.18

In addition, the performance of MG-CCFA’s fit measures, such as RMSEA and CFI,19

seemed to depend largely on the length of the scale, especially when MI was tested at the20

item level. General caution is recommended when using these measures, especially when21

MI is tested for each item individually.22
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Scale length does matter: Recommendations for Measurement Invariance Testing with23

Categorical Factor Analysis and Item Response Theory Approaches24

1 Introduction25

One of the main missions of psychological and social sciences is to study individuals26

as well as group differences with regard to latent constructs (e.g., extraversion). Such27

constructs are commonly measured by means of psychological scales in which subjects28

rate their level of agreement on various Likert-scale type of items by selecting one out29

of the possible response options. Most items’ response options range from 3 to 5 with a30

clear ordering (e.g., a score of 3 is higher than a score of 2 which is then higher than 1).31

Such items with few naturally ordered categories are called ordinal items.32

Equivalence in the measurement of a psychological construct across groups is generally33

defined as measurement invariance (MI), and it is a crucial requirement to validly compare34

psychological constructs across groups (Borsboom, 2006; Meredith & Teresi, 2006). In35

fact, ignoring MI when statistically investigating differences between groups can lead to36

under/over estimation of group differences in item means (Jones & Gallo, 2002), sum-37

score means (Jeong & Lee, 2019) and regression parameters in structural equation models38

(Guenole & Brown, 2014).39

In the context of psychological measurement latent variable modeling is one of the most40

popular frameworks, and, within this framework, various approaches have been developed41

to model ordinal data as well as to test for MI. Among them, two of the most used ones are42

multiple group categorical confirmatory factor analysis (MG-CCFA) and multiple group43

item response theory (MG-IRT)(E. S. Kim & Yoon, 2011; Millsap, 2012). Interestingly,44

the difference between these two approaches is rather artificial, and parameters in MG-45

CCFA and MG-IRT models are known to be directly related (Takane & De Leeuw,46

1987). Moreover, Chang, Hsu, and Tsai (2017) proposed a set of minimal identification47

constraints to make MG-CCFA and MG-IRT models fully equivalent.48

The equivalence between these models, however, does not necessarily match the way MI49

is conceptualized and tested within each of the two approaches. For example, one main50

difference between MG-CCFA and MG-IRT refers to which hypotheses are tested. On51
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the one hand, in MG-CCFA, measurement equivalence is mainly investigated at the scale52

level, or, in other words, the tested hypothesis is that the complete set of items functions53

equivalently across groups. On the other hand, in MG-IRT, more attention is dedicated54

towards the study of each individual item, and, for this reason, within this approach, MI55

is tested for each item in the scale separately. Another crucial difference relates to the56

way these hypotheses are tested. In fact, to test whether MI holds, either for a scale or for57

a specific item, different criteria and/or testing strategies are used within each approach.58

Research to date has not yet determined the impact of these differences in terms of the59

performance to detect MI. For instance, some studies compared the performance of MG-60

CCFA and MG-IRT using solely an item-level testing perspective (E. S. Kim & Yoon,61

2011; Chang et al., 2017), whereas Meade and Lautenschlager (2004) compared MG-IRT62

with multiple group confirmatory factor analysis for continuous data (i.e., MG-CFA).63

Providing clear guidelines on which approach to choose and in which setting is particularly64

helpful for applied researchers. In fact, having such guidelines might facilitate decisions65

regarding the level at which (non)invariance will be tested (e.g., scale or item level) as well66

as what are the most powerful tools to test it. However, in the current literature, clear67

guidelines have not been yet provided. Therefore, by means of two simulation studies,68

this paper makes three major contributions: (i) assess to what extent performing a scale-69

or an item-level test affects the power to detect MI, (ii) determine what MG-CCFA- or70

MG-IRT-based testing strategies/measures are more powerful to test MI, and (iii) based71

on the results of the simulation studies, provide guidelines on what approach to choose72

and in which conditions.73

To this end, in Section 2 we discuss both MG-CCFA- and MG-IRT-based models and74

illustrate how they are equivalent under a set of minimal identification constraints. Ad-75

ditionally, in the same section, for each of the two approaches, we discuss the differences76

in the set of hypotheses and the testing strategies in the context of MI. Afterwards, in77

Section 3 we assess the performance of MG-CCFA- and MG-IRT-based testing strategies78

in testing MI by means of two simulation studies. Finally, in Section 4 we conclude by79

giving remarks and recommendations along with a summary of the main results obtained80
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in the simulation studies.81

2 MG-CCFA, MG-IRT models and their MI test82

2.1 The models83

Imagine to have data composed of J items for a group of N subjects. Also, assume that84

a grouping variable exists such that subjects can be divided in G groups. Let Xj be the85

response on item j and further assume that Xj is a polytomously scored response which86

might take on C possible values, with c = {0,1,2,...,C -1}. Let us also assume that a87

unidimensional construct η underlies the observed responses (Chang et al., 2017).88

2.1.1 Multiple group categorical confirmatory factor analysis. In MG-CCFA,89

it is assumed that C possible observed values are obtained from a discretization of a con-90

tinuous unobserved response variable X∗
j via some threshold parameters. The threshold91

τ
(g)
j,c indicates the dividing point for the categories (e.g., division between a score of 392

and 4). Additionally, these thresholds are created such that the first and the last one93

are defined as τ (g)
j,0 = -∞ and τ (g)

j,C = +∞, respectively. Rewriting formally what we just94

described, we have:95

Xj = c, if τ
(g)
j,c < X∗

j < τ
(g)
j,c+1 c = 0, 1, 2, ..., C − 1. (1)

If it is also assumed that the construct under study is unidimensional, according to a96

factor analytical model we have:97

X∗
j = λ

(g)
j η + εj, j = 1, 2, ..., J. (2)

Equation (2) shows that the unobserved continuous response variable X∗
j is determined98

by a latent variable score η via the factor loading λ
(g)
j and a residual component εj.99

The latter represents an error term that is item specific. It is important to note that100

the thresholds τ (g)
j,c and loadings λ(g)

j are group specific. Additionally, both the latent101

variable η and the item-specific residual component εj are mutually independent and102

both normally distributed, with:103

η(g) ∼ N(κ(g), ϕ(g)), and ε(g)
j ∼ N(0, σ2(g)

j ). (3)
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where κ is the factor mean, ϕ the factor variance and σ2
j is the unique variance.104

105

2.1.2 Multiple group normal ogive graded response model. MG-IRT models106

the probability of selecting a specific item category, given a score on the latent construct107

and given a specific group membership. These conditional probabilities, in the case of or-108

dinal items, are modeled indirectly through building blocks that are constructed by means109

of specific functions. Different functions exist for ordinal items which, in turn, are used110

by different MG-IRT models. Because of its similarities with MG-CCFA (Chang et al.,111

2017), in the following, we only consider the multiple group normal ogive graded response112

model (MG-noGRM; Samejima, 1969). The MG-noGRM uses cumulative probabilities113

as its building blocks, and the underlying idea is to treat the multiple categories in a114

dichotomous fashion (Samejima, 1969). First, for each score, the probability of obtaining115

that score or higher is calculated (e.g., selecting 2 or above), given the latent construct116

η. Based on this set of probabilities, the probability of selecting a specific category (e.g.,117

2) is calculated, given a certain score on η. In the MG-noGRM, like in MG-CCFA, it is118

assumed that the observed values Xj arise from an underlying continuous latent response119

variable X∗
j .120

Rewriting formally what we just described, the probability of scoring a certain category121

c is then:122

P (X∗
j = c|η, g) = Φ(α(g)

j (η − δ(g)
j,c ))− Φ(α(g)

j (η − δ(g)
j,c+1))

= Φ(α(g)
j η − α(g)

j δ
(g)
j,c )− Φ(α(g)

j η − α(g)
j δ

(g)
j,c+1)

=
∫ α

(g)
j η−α(g)

j δ
(g)
j,c

α
(g)
j η−α(g)

j δ
(g)
j,c+1

φ(uj)duj

(4)

where, for group g α(g)
j is the discrimination parameter for item j, and δ(g)

j,c is the threshold123

parameter. The latter represents the point at which the probability of answering at or124

above category c is .5 for group g. Since ordered categories are modeled, the probability125

of getting at least the lowest score is 1, and the first threshold δ(g)
j,0 is not estimated and set126

to -∞. That is, C -1 threshold parameters per group need to be estimated. It is relevant127

to highlight that, like in MG-CCFA, also in the case of the MG-noGRM the model128

parameters α(g)
j and δ(g)

j,c are group specific. Also, φ(.) is the probability density function129
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and Φ(.) is the cumulative distribution function of the standard normal distribution.130

2.1.2.1 Similarities with MG-CCFA. The similarities between MG-CCFA and131

the MG-noGRM can be revealed by taking a closer look at how the parameters in the132

two models are related (Takane & De Leeuw, 1987; Kamata & Bauer, 2008; Chang et133

al., 2017):134

α
(g)
j =

λ
(g)
j

σj
, uj = εj

σj
, δ

(g)
j,c =

τ
(g)
j,c

λ
(g)
j

, (5)

and how it is possible to write the probability of X∗
j given η in MG-CCFA terms:135

P (X∗
j = c|η, g) =

∫ λ
(g)
j η−τ (g)

j,c

λ
(g)
j η−τ (g)

j,c+1

φ(εj)dεj

=
∫ λ

(g)
j η/σj−τ (g)

j,c /σj

λ
(g)
j η/σj−τ (g)

j,c+1/σj

φ(uj)duj.
(6)

The difference between (4) and (6) is that in MG-CCFA the loadings λ(g)
j and the thresh-136

olds τ (g)
j,c can be inferred only in a relative sense. In fact, they can only be calculated137

through the ratio with the residual variance σj (Takane & De Leeuw, 1987; Kamata &138

Bauer, 2008; Chang et al., 2017). This is due to the absence of a scale for the latent139

response variable X∗
j . For ease of reading, in the following, only the term loading will be140

used to refer to both the discrimination parameters and the loadings.141

2.1.3 Identification constraints and models equivalence. Identification of mea-142

surement models such as the ones considered here can be achieved by means of iden-143

tification constraints, which are usually imposed either via specification of an arbitrary144

value for some parameters or by setting equalities across them. This way the number of145

parameters to be estimated is reduced, and it is possible to find a unique solution in the146

estimation process (Millsap & Yun-Tein, 2004; San Martín & Rolin, 2013; Chang et al.,147

2017).148

In testing MI with multiple groups, both for MG-CCFA and the MG-noGRM, it is nec-149

essary to ensure that a scale is set for (i) the latent response variable X∗
j , (ii) the latent150

construct η, and that (iii) the scale of the latent construct is aligned across groups such151

that the parameters can be directly compared (Kamata & Bauer, 2008, Chang et al.,152

2017). Interestingly, these constraints are commonly imposed in a different way in MG-153

CCFA and in the MG-noGRM.154
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The observed response for each item is assumed to arise, in both models, from an unob-155

served continuous response variable X∗
j . These underlying continuous response variables156

do not have a scale. For this reason, a scale has to be set by constraining their variances157

and means. In both models, the means of the latent response variables are indirectly158

constrained to be 0 by setting the intercepts κ to be 0, since E(X∗
j ) = λjκ.159

In both models the means of the latent response variables are constrained to be 0. How-160

ever, different ways to constrain the variances are generally used. It is common to either161

set their total variances V (X∗
j ) to 1 (also called Delta parameterization; Muthén, 1998)162

or its unique variances σ2
j to 1 (also called Theta parameterization; Muthén, 1998). The163

former is much more common in MG-CCFA, while the latter is closer to what is usually164

done with the MG-noGRM (Kamata & Bauer, 2008).165

The other unobserved element for which a scale has to be set is the latent construct η.166

Again, this is commonly addressed in a different way in the two approaches. On the one167

hand, in MG-CCFA a fixed value is commonly chosen for a threshold and a loading. On168

the other hand, in the MG-noGRM the scale of the latent variable is commonly defined169

by setting its mean and variance to 0 and 1, respectively. In both cases these constraints170

are applied only for one of the two groups, which is usually called the reference group.171

Finally, it is necessary to align the scale of both groups to make them comparable. This172

is commonly achieved by imposing equality constraints on some of the parameters in the173

model, which is again addressed differently in MG-CCFA and in the MG-noGRM. On the174

one hand, in MG-CCFA for each latent construct, the factor loading and the threshold175

of a single item are constrained to be equal across groups. Generally, the loading and176

the threshold of the first item of the scale are selected. On the other hand, in MG-177

IRT multiple items, assumed to function equivalently in both groups, are set equal by178

constraining their parameters. These items form what is then called the anchor. Note179

that, in the MG-noGRM, and more generally in MG-IRT models, a bigger attention is180

devoted to choosing the items that are constrained to be equal across groups while in181

MG-CCFA this is not necessarily the case. Nevertheless, in MG-CCFA, French and Finch182

(2008) have noted that the referent indicator matters, and various methods have been183
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developed to select one or more referent indicators (Lopez Rivas, Stark, & Chernyshenko,184

2009; Woods, 2009; Meade & Wright, 2012; Shi, Song, Liao, Terry, & Snyder, 2017). For185

a recent overview and comparison of these methods we refer the reader to Thompson,186

Song, Shi, and Liu (2021).187

A set of minimal constraints to make MG-CCFA and the MG-noGRM fully comparable188

have been recently proposed by Chang et al. (2017), which will also be presented here.189

Without loss of generality, imagine that two groups, g = r,f where r represents the190

reference group and f the focal group, exist. Following Chang et al. (2017):191

σ
2(r)
j = 1, for j= 1,..,J (7)

192

E(η(r)) = 0, λ
(r)
1 = 1, (8)

λ
(r)
1 = λ

(f)
1 , σ

2(r)
1 = σ

2(f)
1 , τ

(r)
1,c = τ

(f)
1,c , for some c ∈ (0,1,2,...,C -1) (9)

σ
2(r)
j = σ

2(f)
j for j = 2,..,J . (10)

These constraints serve the purpose to set a scale for the latent response variable X∗
j , for193

the latent construct η and to make the scale comparable across groups. That is, (7) and194

(8) set the scales of the latent response variable X∗
j and the latent construct η for the195

reference group, while (9) makes the scale comparable across groups using the anchor.196

Finally, (10) guarantees a common scale across all the other items. Furthermore, the197

above-mentioned constraints can be seen as MG-IRT-type constraints where the unique198

variances σ2
j are constrained to be 1 both for the focal and the reference group, the mean199

of the latent construct η is set to 0 and at least one item is picked as the anchor item,200

which parameters are set to be equal across groups (Chang et al., 2017).201

By means of these constraints the two models are exactly the same. Thus, differences in202

testing MI between MG-CCFA and the MG-noGRM depend only on the level at which203

MI is tested (i.e., scale or item) as well as what measures and testing strategies are used204

to test it.205
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2.2 MI hypotheses206

Generally, a measure is said to be invariant if the score that a person obtains on a scale207

does not depend on his/her belonging to a specific group but only on the underlying208

psychological construct. Formally, assume that a vector of scores on some items X is209

observed, where X {= X1, X2,..., Xj}, and that a vector of scores on some latent variables210

η underlies these scores, where η {= η1, η2,...,ηr}. Then, measurement invariance holds211

if:212

P (X|η,g) = P (X|η). (11)

Equation (11) shows that the probability of observing a set of scores X given the under-213

lying latent construct (η) is the same across all groups. Moreover, the equation is quite214

general in the sense that no particular model is yet specified for P (X|η).215

As discussed above, an equivalent model for P (X|η) can be specified for MG-CCFA and216

the MG-noGRM. Then, one of the main differences in the way these two approaches217

test MI is whether a test is conducted for the whole vector of scores at once or for218

each element of the vector separately. Although, in principle, both types of test can be219

conducted within each approach, the former is more common in MG-CCFA, while the220

latter is generally used within MG-IRT. However, in principle, both types of test can be221

conducted within each framework.222

2.2.1 Scale level. In MG-CCFA, MI is tested for all items at once. Different model223

parameters can be responsible for measurement non-invariance, and they are tested in224

a step-wise fashion. In each step a new model is estimated, with additional constraints225

imposed on certain parameters (e.g., loadings) to test their invariance. Then, the fit226

of the model to the data is evaluated to test whether these new constraints worsen227

it significantly. The latter being true indicates that at least some of the constrained228

parameters are non-invariant.229

2.2.1.1 Configural. The starting point in MG-CCFA is testing configural invari-230

ance. In this first step the aim is to test whether, across groups, the same number of231

factors hold and that each factor is measured by the same items. This is generally done by232

first specifying and then estimating the same model for all groups. Afterwards, fit mea-233
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sures are examined to determine whether the hypothesis of the same model underlying234

all groups is rejected or not.235

2.2.1.2 Metric. If the hypothesis of configural invariance is not rejected, the next236

step is to test the equivalence of factor loadings. This step is also called the weak or237

metric invariance step. Commonly, the factor loadings of all items are constrained to be238

equal across groups. The hypothesis being tested here is that:239

Hmetric : Λ(g) = Λ. (12)

If (12) is supported, the equivalence of factor loadings indicates that each measured240

variable contributes to each latent construct to a similar extent across groups (Putnick241

& Bornstein, 2016).242

2.2.1.3 Scalar. If metric invariance holds, scalar invariance or invariance of the243

intercepts can be tested. In MG-CCFA, though, the observed data are assumed to come244

from an underlying continuous response variable X∗
j . This variable does not have a scale245

and, generally, its intercept is fixed to 0. That is why instead of the intercepts the246

thresholds are tested. To test the hypothesis of equal thresholds, these parameters are247

constrained to be equal across groups, while keeping the previous contraints in place.248

Formally, the hypothesis being tested is:249

Hscalar : T (g)
j = Tj for j = 1, 2, .., J . (13)

If the hypothesis in (13) is not rejected it can be concluded that the thresholds parameters250

for all items are the same across groups. Finally, it is worth noting that, to obtain full251

factorial invariance, equivalence of the residual variances should also be tested (Meredith252

& Teresi, 2006). However, many researchers do not consider this step, since it is not253

relevant when comparing the mean of the latent constructs across groups (Vandenberg254

& Lance, 2000).255

2.2.2 Item level. In MG-IRT the functioning of each item is tested separately. An256

item shows differential item functioning (DIF) if the probability of selecting a certain257

category on that item differs across two groups, given the same score on the latent258
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construct. It is important to highlight that, when DIF is tested following a typical259

MG-IRT-based approach, configural invariance is generally assumed. Also, compared to260

MG-CCFA where item parameters are firstly allowed to differ and then constrained to261

be equal across groups, testing DIF follows a different rationale. That is, the starting262

assumption is that all items function equivalently across groups. Formally:263

H0 : α(g)
j = αj =

λ
(g)
j

σj
= λj
σj
, δ

(g)
j,c = δj,c =

τ
(g)
j,c

λ
(g)
j

= τj,c
λj

for j = 1,2,..,J, c = 0,1,2,...,C -1.

(14)

The constraints on one item are then freed up to test whether its parameters are invariant,264

while keeping the other items constrained to be equal across groups. Afterwards, the265

procedure is iteratively repeated for all the other items in the scale. DIF can take two266

different forms: uniform and nonuniform.267

2.2.2.1 Uniform DIF. Given two groups, an ordinal item shows uniform DIF268

when, between groups, the thresholds parameters differ. In formal terms:269

Hno uniformDIF : δ(g)
J/k,c = δJ/k,c =

τ
(g)
J/k,c

λ
(g)
J/k

= τJ/k,c
λJ/k

for j = 1,2,..,J, c = 0,1,2,...,C -1 and for some k, where k = 1,2,...,J .

(15)

Where the subscript J/k stands for all items except item k. Equation (15) shows the270

hypothesis of no uniform DIF indicating that the thresholds of all items except item k271

(τJ/k,c) are the same across groups. Furthermore, it is interesting to note the connection272

between uniform DIF and scalar invariance, since both can be seen as tests for shifts in273

the thresholds parameters.274

2.2.2.2 Nonuniform DIF. An ordinal item shows nonuniform DIF when the load-275

ing parameter differ across two groups. The tested hypothesis can be formally written276

as:277

Hno nonuniformDIF : α(g)
J/k = αJ/k =

λ
(g)
J/k

σJ/k
= λJ/k
σJ/k

for j = 1,2,..,J, c = 0,1,2,...,C -1 and for some k, where k = 1,2,...,J .
(16)

Equation (16) shows the hypothesis of no nonuniform DIF indicating that for all items278

except item k the loadings are the same for all groups. Note that, without any further279
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specification on identification constraints used to identify the baseline model, this test280

differs from testing metric invariance in MG-CCFA not only because items are evalu-281

ated individually but also due to the presence of both loadings λ and unique variances282

σ2. However, under the minimal identifiability constraints proposed by Chang et al.283

(2017), unique variances are constrained to be 1 and equal across groups, making this284

test equivalent to testing metric invariance in MG-CCFA but for each individual item.285

2.3 MI testing strategies286

2.3.1 MG-CCFA-based. Besides commonly testing different hypotheses, MG-CCFA287

and MG-IRT differ in terms of what testing strategies/measures are used to test these288

hypotheses. Within MG-CCFA the common strategy is to estimate two nested models289

and then compare how well they fit the data. A measure of how well a model fits the290

data is commonly obtained by means of a goodness-of-fit index. A goodness-of-fit index291

is a measure of the similarity between the model-implied covariance structure and the292

covariance structure of the data (Cheung & Rensvold, 2002). To date many fit indices293

exist, and they can be mainly divided into three categories: measures of absolute fit,294

misfit and comparative fit (for a more detailed review on the available measures we refer295

the reader to Schreiber, Nora, Stage, Barlow, & King, 2006).296

2.3.1.1 Absolute fit indices. Absolute fit indices focus on the exact fit of the model297

to the data and one of the most commonly used is the chi-squared (χ2) test. Imagine298

a MG-CCFA model A, with χ2
ModA and dfModA indicating the model χ2 and degrees of299

freedom, which fits sufficiently well the data. To test one of the MI hypotheses (e.g.,300

metric invariance) a new model is specified by constraining the parameters of interest301

(e.g., loadings) of all items to be equal across groups. Let us call this model B, with302

χ2
ModB and dfModB. A χ2 test is then conducted by looking at the difference in these two303

models:304

T ∼ χ2
D(dfD) = χ2

ModB − χ2
ModA(dfModB − dfModA). (17)

A significant T (e.g., using a significance level of .05) indicates that model B fits signifi-305
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cantly worse, and thus that model A should be preferred. This implies that invariance of306

the constrained parameters (e.g., loadings) does not hold. Two considerable limitations307

of the χ2 test are that, on the one hand, its performance is largely underpowered for small308

samples because the test statistic is only χ2-distributed as N goes to infinity (i.e., only309

with large samples). On the other hand, it is highly strict with large samples indicating,310

for example, that two models are significantly different even when the differences in the311

parameters are small.312

2.3.1.2 Misfit indices. On top of the well known limitations of the χ2 test, a general313

counterargument towards the use of absolute fit indices is that we might not be necessarily314

interested in the exact fit as much as the extent of misfit in the model (Millsap, 2012). In315

this case, misfit indices, such as the root mean square error approximation (RMSEA) can316

be used. This index quantifies the misfit per degrees of freedom in the model (Browne &317

Cudeck, 1993). Specifically, in the case of multiple groups, it can be expressed as:318

RMSEA =
√
G

√√√√max

[
χ2
ModA

dfModA

− 1
N − 1 , 0

]
. (18)

Based on which MI hypothesis is tested, different criteria and procedures are used to319

determine whether the RMSEA is acceptable. In the configural step, the absolute value320

of RMSEA is used. Specifically, values between 0 and .05 indicate a “good" fit, and values321

between .05 and .08 are thought to be a “fair" fit (Browne & Cudeck, 1993; Brown,322

2014). In the subsequent steps, the change in the RMSEA (∆RMSEA) between the323

constrained and the unconstrained model is used instead of the absolute value of the324

measure. Specifically, a ∆RMSEA of .01 has been suggested as a cut-off value in the case325

of metric invariance and, similarly, a value of .01 should be used for scalar invariance326

(Cheung & Rensvold, 2002 Chen, 2007). When the change in the ∆RMSEA is higher327

than the specific cut-off, invariance is rejected.328

2.3.1.3 Comparative fit indices. The third category of fit indices is the one of329

comparative fit, where the improvement of the hypothesized model compared to the330

null model is used as an index to test MI. Differently from exact fit indices, where the331

hypothesized model is compared against a saturated model (a model with df = 0), in332
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comparative fit indices a comparison is conducted between the hypothesized model and333

the null model, with χ2
ModNull and dfModNull. The latter is a model in which all the334

measured variables are uncorrelated (i.e., a model where there is no common factor).335

It is worth to note that numerous comparative fit measures exist and, among them, a336

well-known one is the comparative fit index (CFI) (Bentler, 1990). The CFI measures337

the overall improvement in the χ2 in the tested model compared to the null model, and338

can be formally written as:339

CFI = 1− χ2
ModA − dfModA

χ2
ModNull − dfModNull

(19)

where a value of .95 is used as a cut-off value in the configural invariance step to indicate340

a “good" fit (Bentler, 1990). In the subsequent steps, the common guidelines for cut-341

off values focus on the change in CFI (∆CFI). Specifically, a ∆CFI larger than -.01342

is considered to be problematic both in the case of testing for loadings and thresholds343

invariance (Cheung & Rensvold, 2002; Chen, 2007). It is worth noting that the default344

baseline model used in most CFA softwares (e.g., lavaan; Rosseel, 2012) may not be345

appropriate for testing MI and different alternatives exist (Widaman & Thompson, 2003;346

Lai & Yoon, 2015). Moreover, it is not yet clear whether the commonly accepted cut-off347

values for CFI, or alternative fit measures, can be directly applied to models that are348

not estimated using maximum likelihood, and caution is thus recommended in empirical349

practice when making decisions based on various goodness-of-fit indices (Xia & Yang,350

2019).351

2.3.2 MG-IRT-based. In MG-IRT-based approaches both parametric and nonpara-352

metric methods exist to test for uniform and nonuniform DIF. In this paper the focus is353

on parametric methods, where a statistical model is assumed. Specifically, methods that354

compare the models’ likelihood functions will be discussed (for a more detailed discussion355

on both parametric and nonparametric methods for DIF detection, we refer the reader356

to Millsap, 2012).357

2.3.2.1 Likelihood-Ratio test. One well known technique for the study of DIF358

is the likelihood-ratio test (LRT) (Thissen, Steinberg, and Gerrard 1986; Thissen 1988;359

Thissen, Steinberg, and Wainer 1993). In this test, the log-likelihood of a model with the360
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parameters of all items constrained to be equal across groups is compared against the361

log-likelihood of the same model with freed parameters for one item only. The former362

is sometimes called the compact model (LC), while the latter is sometimes called the363

augmented model (LA, S.-H. Kim and Cohen 1998; Finch 2005). Once these two models364

are estimated and the log-likelihood (lnLC and lnLA) is obtained, the test statistic (G2)365

can be calculate using the following formula:366

G2 = −2lnLC − (−2lnLA) = −2lnLC + 2lnLA. (20)

Similarly to the chi-squared test in MG-CCFA, the test statistic G2 is χ2 distributed367

with df equal to the difference in the number of parameters estimated in the two models368

(Thissen, 1988). The same procedure is then iteratively repeated for all items. It is369

important to highlight that the above equation represents an an omnibus test of DIF,370

which in case of a significant result could be further inspected by constraining only specific371

parameters. For example, it would be possible to test uniform DIF by allowing only the372

thresholds to vary across groups.373

2.3.2.2 Logistic regression. Logistic regression (LoR; Swaminathan & Rogers,374

1990) is another parametric approach that has recently gained interest among DIF ex-375

perts (Yasemin, Leite, & Miller, 2015). The intuition behind the LoR approach is similar376

to the one of step-wise regression in which one can test whether the model improves by377

sequentially entering new predictors. The common order in which the variables are intro-378

duced, starting with a null model where only the intercept is estimated, is by first adding379

the latent construct, then the grouping variable, and finally an interaction between the380

latent construct and the grouping variable. Formally, this sequence of models is written381

as:382

Model 0 : logitP (yj ≥ c) = νc; (21)

Model 1 : logitP (yj ≥ c) = νc + β1η; (22)
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Model 2 : logitP (yj ≥ c) = νc + β1η + β2G; (23)

Model 3 : logitP (yj ≥ c) = νc + β1η + β2G+ β3ηG. (24)

In the equations above P (yj ≥ c) is the probability of the score on item j falling in383

category c or higher, and νc is a category specific intercept. It is worth to point out that,384

compared to the LRT, the latent variable scores are in this case only estimated once and385

then treated as observed, which can be problematic. In fact, since the latent variable386

scores are estimated and not observed, there might be uncertainty in the estimates,387

which could, in turn, affect the performance of this method. Moreover, some alternative388

formulations make use of sum scores instead of estimates of latent variable scores (Rogers389

& Swaminathan, 1993). Once the logistic regression models are estimated and a G2 is390

obtained, an omnibus DIF test can be conducted by:391

G2
omnibus = G2

Model3 −G2
Model1, (25)

which is asymptotically χ2 distributed with df=2 (Swaminathan & Rogers, 1990). Zumbo392

(1999) suggested to investigate the source of bias by separately testing for uniform and393

nonuniform DIF, respectively:394

G2
uniDIF = G2

Model2 −G2
Model1 (26)

and:395

G2
nonuniDIF = G2

Model3 −G2
Model2 (27)

where both (26) and (27) are χ2 distributed with df=1.396

The omnibus test procedure (25) turned out to have an inflated number of incorrectly397

flagged DIF items (Type I error; Li and Stout 1996). To solve this issue, a combination398

of a significant 2-df LRT (25) and a measure of the magnitude of DIF using a pseudo-R2
399

statistic has been suggested as an alternative criterion (Zumbo, 1999). The underlying400

idea is to treat the β coefficients as weighted least squares estimates and look at the401
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differences in pseudo-R2 (∆R2) measures between the model with and without the added402

predictor (e.g., Cox & Snell, 1989). Specifically, to flag an item as DIF, both a significant403

χ2 test (with df=2) and an effect size measure with an ∆R2 of at least .13 is suggested404

to be used (Zumbo, 1999).405

3 Simulation studies406

To evaluate the impact of MG-CCFA- and MG-IRT-based hypotheses and testing strate-407

gies on the power to detect violations of MI, two simulation studies were performed. In408

the first study, an invariance scenario was simulated where parameters were invariant be-409

tween groups. In the second study, a non-invariance scenario was simulated where model410

parameters varied between groups.411

3.1 Simulation Study 1: invariance412

In the first study three main factors were manipulated:413

1. The number of items at 2 levels: 5, 25, to simulate a short and a long scale;414

2. The number of categories for each item at 2 levels: 3, 5;415

3. The number of subjects within each group at 2 levels: 250, 1000.416

These factors were chosen to represent situations that can be encountered in psychological417

measurement. For example, the two levels at which the scale length varies are represen-418

tative of (i) short scales that are used as an initial screening or to save assessment time in419

case of multiple administrations (e.g., clinical setting), and (ii) long scales typically used420

to obtain a more detailed and clear evaluation of the measured psychological construct.421

For the number of categories, the two levels mimic items constructed to capture a less422

or more nuanced degree of a agreement. Finally, the two simulated sample sizes resem-423

ble studies with “relatively” small samples (e.g., clinical setting) and with large samples424

(e.g., cross-cultural research).425

A full-factorial design was used with 2 (number of items) x 2 (number of categories)426

x 2 (number of subjects within each group) = 8 conditions. For each condition 500427

replications were generated.428
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3.1.1 Method.429

3.1.1.1 Data generation.430

Data were generated from a factor model with one factor and two groups. The population431

values of the model parameters were chosen prior to conducting the simulation study and432

are reported in Table 1. Note that, for both groups, the factor mean and variance was set433

to 0 and 1, respectively. The choice of the values began with specifying the standardized434

loadings. Specifically, they were selected to resemble the ones commonly found in real435

applications with items having medium to high correlation with the common factor but436

differing among them (Stark, Chernyshenko, & Drasgow, 2006; Wirth & Edwards, 2007;437

E. S. Kim & Yoon, 2011).438

The second step was to select the thresholds and, in order to choose them, continuous data439

with 10,000 observations were firstly generated under a factor model using the loadings440

in Table 1. Afterwards, using the distribution of the item scores for item 1, which was441

subsequently used as the anchor item, the tertiles (for items with three categories) and442

the quintiles (for items with five categories) were calculated. Then, the generation of the443

remaining thresholds proceeded by shifting the tertiles/quintiles of the first item by half444

a standard deviation. In detail, for both the three- and five-categories case, we shifted445

the thresholds value of the second and fifth item by + .50 and of the third and fourth446

item by - .50 (as can be seen from Table 1). In the conditions with 25 items, the same447

parameters in Table 1 were repeated five times. For all estimated models, we used the448

minimal identification constraints described in Equations (7) through (10) to identify the449

baseline model, and item 1 was used as the anchor item.450

3.1.1.2 Data analysis.451

Scale level. 3.1.1.2.1 The specification of the MG-CCFA models to test MI followed452

the common steps of a general MI testing procedure as described in Section 2.2.1. Specif-453

ically, in the configural step, a unidimensional factor model was fitted to both groups454

allowing loadings and thresholds to differ between groups (configural invariant model).455

In the metric step, factor loadings were constrained to be equal across groups while al-456

lowing the thresholds to be freely estimated (metric invariant model). In the scalar step,457
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both factor loadings and thresholds were constrained to be equal across groups (scalar458

invariant model). Afterwards, a χ2 test (α = .05) was conducted between: (i) the model459

estimated in the configural and the metric step to test for loadings invariance, and (ii)460

the model estimated in the metric and scalar step to test for thresholds invariance. Addi-461

tionally, the change in RMSEA (∆RMSEA) and in CFI (∆CFI) was calculated between462

the just mentioned models. Loadings non-invariance was concluded if at least one of the463

following criteria was met: a significant χ2 test, a ∆RMSEA > .01 or a ∆CFI > .01.464

Additionally, since the common guidelines reported in the literature recommend to base465

decisions about (non)invariance of parameters using various indices, a combined criterion466

was created. According to this combined criterion, loadings non-invariance at the scale467

level was concluded if both a significant χ2 test and at least one between a ∆RMSEA >468

.01 or a ∆CFI > .01 was found (Putnick & Bornstein, 2016). Thresholds non-invariance469

at the scale level was concluded if at least one of the following criteria was met: a signifi-470

cant χ2 test, a ∆RMSEA > .01 or a ∆CFI > .01. Also, in this case a combined criterion471

was created. Specifically, a scale was considered non-invariant with respect to thresholds472

if both a significant χ2 and at least one between a ∆RMSEA > .01 or a ∆CFI > .01473

was found. All MG-CCFA models were estimated using diagonally weighted least squares474

(DWLS), but the full weight matrix was used to compute the mean-and-variance-adjusted475

test statistics (default in lavaan; Rosseel, 2012). This is a two-step procedure, where in476

the first step the thresholds and polychoric correlation matrix are estimated, and then, in477

the second step, the remaining parameters are estimated using the polychoric correlation478

matrix from the previous step.479

In MG-IRT-based procedures MI is tested for each item individually. Therefore, to con-480

duct a test at the scale level, we decided to flag the scale as non-invariant if at least one481

item was flagged as non-invariant, correcting for multiple testing. Two different testing482

strategies were considered: the logistic regression (LoR) procedure and the likelihood-483

ratio test (LRT). Within LoR, two different criteria were used to flag an item as non-484

invariant. The first criterion is based on the likelihood-ratio test (LRT). Specifically, an485

item was non-invariant, either with respect to loadings or thresholds, in the case of a sig-486
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nificant χ2 test (α = .05) between a model where the latent construct score, the grouping487

variable and an interaction between the two are included (see formula 24) and a model488

with only the latent construct score (see formula 22) (Swaminathan & Rogers, 1990). The489

second criterion, which will from this point on be called R2, combines the just mentioned490

χ2 test with a measure of the magnitude of DIF. The latter is obtained by computing the491

difference between a pseudo-R2 measure between the two above mentioned models (∆R2).492

Using this approach, an item was flagged as non-invariant when both a significant χ2 test493

and a ∆R2 > .02 were found (Choi, Gibbons, & Crane, 2011). Specifically, in this sim-494

ulation study, the McFadden pseudo-R2 measure was used (Menard, 2000). In the case495

of the LRT, two different models per item were estimated. In one model the constraints496

on the thresholds were released for a specific item (uniform DIF model), while in the497

other the constraint on the loading was released (nonuniform DIF model). Additionally,498

a model with all items constrained to be equal was estimated (fully constrained model).499

An item was flagged as non-invariant with respect to thresholds in case of a statistically500

significant 1-df LRT (α = .05) between the fully constrained model and the uniform DIF501

model. Similarly, an item was flagged as non-invariant with respect to loadings in case of502

a statistically significant 1-df LRT (α = .05) between the fully constrained model and the503

nonuniform DIF model. This procedure was repeated iteratively for all the other items.504

Since multiple tests are conducted for the scale, a Bonferroni correction was used.505

Item level. 3.1.1.2.2 In order to test MI at the item level using a MG-CCFA-based506

testing strategy a backward/step-down procedure was used (E. S. Kim & Yoon, 2011;507

Brown, 2014). The rationale is the same as the one just described in the LRT for MG-508

IRT. Specifically, the constraints (either on the thresholds or on the loading) were released509

for only one item, while keeping all the other items constrained to be equal. Hence, for510

each item two different models were estimated. Then, the χ2 test (α = .05) was conducted511

and the ∆RMSEA and ∆CFI calculated. This procedure was then repeated iteratively for512

all the other items. Note that, due to the multiple tests conducted, Bonferroni correction513

was used. For MG-IRT-based procedures, the same procedures and criteria used at the514

scale level were used to test MI at the item level (but without applying a Bonferroni515
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correction).516

3.1.1.3 Outcome measures. The convergence rate (CR) and the false positive rate517

(FPR) were calculated both for MG-CCFA- and MG-IRT-based procedures both at the518

scale level and at the item level. The CR indicates the proportion of models that con-519

verged while the FPR represents the scales/items incorrectly flagged as non-invariant. If520

models did not converge, new data were generated and models were rerun in order to521

always calculate the FPR based on 500 repetitions.522

3.1.1.4 Data simulation, softwares and packages. The data were simulated523

and analyzed using R (R Core Team, 2013). Specifically, for estimating MG-CCFA and524

obtaining fit measures the R package lavaan was used (Rosseel, 2012), while for LoR and525

the LRT lordif (Choi et al., 2011) and mirt (Chalmers, 2012) were used, respectively.526

3.1.2 Results.527

3.1.2.1 Convergence Rate. The convergence rate was almost 100% for all the528

considered approaches across all the conditions. Models’ non-convergence was observed529

only for a few conditions with small sample size as well as short scales and never exceeded530

1%. The tables showing the complete results can be found in the appendix (Tables A1531

through A4)532

3.1.2.2 Scale level performance. The scale-level results when loadings equiva-533

lence was tested are reported in Table 2. For MG-CCFA-based approaches, ∆RMSEA534

showed a FPR > .10 in the conditions with short scales, whereas, for ∆CFI, this discrep-535

ancy was observed only in the conditions with both small sample size and short scales.536

Within MG-IRT-based approaches, the results were quite different, depending on the537

testing strategy. For the LoR approach, using the LRT criterion, the results obtained538

in this simulation study aligns with the ones in the existing literature, with an evident539

inflation of the FPR (overall, FPR > .40) (Rogers & Swaminathan, 1993; Li & Stout,540

1996). For the R2 criterion, where a combination of the LRT and a pseudo-R2 measure541

was used, the FPR was at or below the chosen α level using the R2 criterion, with an542

inflated FPR only in the case with N = 250, C = 3 and J = 5 (FPR = 0.182). One543

possible explanation is that, due to the small amount of information available for each544
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person in this condition there is more uncertainty in the estimated scores of the latent545

construct. Since these estimates are then used as observed variables in the LoR procedure,546

they are likely to produce a larger number of items incorrectly flagged as non-invariant.547

Finally, the LRT showed an acceptable FPR in all conditions when testing for loadings548

equivalence at the scale level.549

The results of the simulation study when equivalence of thresholds was tested at the scale550

level are reported in Table 3. For MG-CCFA-based methods, the FPR was above .10 for551

∆RMSEA in the conditions with short scales and for ∆CFI in the conditions with short552

scales and small sample size. The combined criterion and the χ2 test provided acceptable553

FPR rates across conditions. For MG-IRT-based testing strategies, the obtained results554

are similar to the ones observed in the case of testing loadings equivalence. Specifically,555

for the LoR approach, the R2 criterion performed well in all conditions except when N =556

1000, C = 3 and J = 5 (FPR = .189). Moreover, the LRT criterion for LoR showed an557

evident inflation across all conditions. Finally, the LRT performed well in all conditions.558

3.1.2.3 Item-level performance. The results when loadings equivalence was tested559

at the item level are reported in Table 4. For MG-CCFA, all fit measures performed560

well as indicated by the FPRs that were close to the nominal α level. For MG-IRT using561

the LoR procedure, the LRT criterion produced a high number of false positives with562

short scales. Moreover, the results for both the R2 criterion and the LRT were within563

the chosen α level in almost all conditions, and never exceeded 0.06.564

Finally, the results when testing thresholds equivalence at the item level are reported in565

Table 5. For MG-CCFA, all criteria performed reasonably well with some small inflations566

for ∆CFI in the conditions with small sample size and short scales. For MG-IRT-based567

testing strategies, only the LRT criterion for the LoR approach showed a FPR higher568

than the chosen α level with J = 5.569

3.2 Simulation Study 2: non-invariance570

In the second simulation study, three more factors were included to evaluate the per-571

formance of the studied approaches, with their respective testing strategies, in detecting572
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violations of MI when parameters were non-invariant across groups. On top of varying573

the scale length, the number of categories and the sample size we now also vary:574

575

1. Percentage of items with non-invariant loadings at 3 levels: 20%, 40% aligned, and576

40% misaligned;577

2. Percentage of items with non-invariant thresholds at 3 levels: 20%, 40% aligned,578

and 40% misaligned;579

3. The amount of bias imposed for each non-invariant parameter at two levels: small580

and large.581

The first three factors (i.e., number of items, number of categories for each item and582

number of subjects within each group) were the ones used in the previous simulation study.583

Additionally, to simulate differences in loadings/thresholds across groups the values of the584

parameters were changed either for 20% or 40% of the items. Moreover, in the condition585

with 40% of the items having non-invariant loadings, the values were either increased for586

all items (e.g., all loadings on one group are higher), or increased for half of the items587

and decreased for the other half (e.g., in the condition with 5 items, where the values of588

two loadings are changed, one was increased and the other decreased). The former was589

labeled as an aligned change while the latter as a misaligned change.590

The same procedure was followed for the shifts in thresholds both in terms of percentage591

of items with non-invariant thresholds and for the aligned or misaligned shifts. Note that,592

since each item has more than one threshold, all the thresholds of that item were shifted.593

The percentages of items showing non-invariant loadings/thresholds were chosen to rep-594

resent situations that can be observed in psychological measurement. For instance, situ-595

ations with a well functioning scale where only one item (in the case of short scales) or a596

few items (in the case of long scales) seem to function differently across groups or, alter-597

natively, situations with a bad functioning scale where almost half of the items function598

differently across groups. Aligned differences were simulated to represent scales where599
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items favor only one group, while misaligned differences mimic a situation where different600

items favor different groups.601

The manipulated violations of MI, both for loadings and thresholds, were either small or602

large in order to represent both semi-bad functioning items and bad functioning items.603

On the one hand, a difference of .1 or .2 was used to simulate small and large changes in604

the standardized factor loadings, respectively. The chosen values substantially increase605

the variance accounted by the factor for the item. For example, in a standardized factor606

loading of .7 the explained variance of the item by the factor is .72 = .49. If the loading607

is increased by .1 the explained variance will then be .82 = .64. Also, in case of a big608

change (.2), the explained variance will become .92 = .81. On the other hand, for the609

shifts in thresholds, the parameters of one group were shifted by either a quarter (.25)610

or half a standard deviation (.50) to simulate small and large violations of thresholds611

non-invariance.612

In total, 2 (number of items) x 2 (number of categories) x 2 (number of subjects within613

each group) x 3 (percentage of non-invariant loadings) x 3 (percentage of non-invariant614

thresholds) x 2 (amount of bias imposed) = 144 conditions were simulated for the con-615

ditions with non-invariance in the loadings and the thresholds. For each condition 500616

replications were generated.617

3.2.1 Method.618

3.2.1.1 Data analysis. Like in the first simulation study, the data were generated619

from a factor model with one factor and two groups. The population parameters were the620

same as used in the first simulation study and they were varied, based on the condition, as621

just explained above. Moreover, the procedures used to specify and estimate the models,622

both at the scale and at the item level, were the same ones used previously. Differently623

from before, only a subset of the criteria was used to flag a scale/item as non-invariant.624

Specifically, only the criteria that showed an acceptable FPR across all conditions in the625

first simulation study are reported. This was done because procedures with unacceptable626

FPRs should not be considered for testing MI, and hence considering them here would627

not make sense. Thus, for MG-CCFA, only the results of the combined criterion and628
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χ2 test are reported, while for MG-IRT-based procedures the LRT approach and, for the629

LoR approach, only the results of the R2 criterion.630

3.2.1.2 Outcome measures. The convergence rate (CR), true positive rate (TPR)631

and false positive rate (FPR) were calculated both for the MG-CCFA- and MG-IRT-632

based procedures both at the scale and at the item level. Here, the TPR represents the633

proportion of non-invariant scales/items that are correctly identified as such, while the634

FPR represents the proportion of non-invariant scales/items that are incorrectly identified635

as such. If models did not converge, new data were generated and models were rerun in636

order to always calculate the TPR and the FPR for 500 repetitions.637

3.2.2 Results.638

3.2.2.1 Convergence Rate.639

Scale level. 3.2.2.1.1 The results of the CR when testing loadings equivalence at the640

scale level in the non-invariance scenario are displayed in Table A5 in the Appendix. In641

the conditions with large sample size, the CR when testing loadings equivalence at the642

scale level was above 99% for all the approaches. Compared to the conditions with a large643

sample size, the CR dropped in the conditions with small sample size and 40% of the644

items showing large misaligned changes in loadings. Specifically, the CR for MG-CCFA645

was .978 when J = 5 and C = 3 while for MG-IRT using the LoR approach the CR was646

around .9 with N = 250, J = 25 and both for items that had 3 or 5 categories.647

The results of the CR when testing thresholds equivalence at the scale level in the non-648

invariance scenario are displayed in Table A6 in the Appendix. For MG-CCFA, the649

CR was generally lower in the conditions with large shifts in the thresholds compared650

to the conditions with small shifts. For example, with N = 250, C = 3, J = 5, and651

large misaligned shifts in the thresholds parameters the CR was .808. This lower CR652

could be due to a specific issue with the estimation procedure. In fact, using DWLS,653

the estimation heavily relies on the first step, where the thresholds and the polychoric654

correlation matrix are estimated. Large differences in thresholds between the two groups655

might affect this first step and, in turn, the remaining part of the procedure. On the656

contrary, for MG-IRT-based approaches the CR was always above 99%.657
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Item level. 3.2.2.1.2 The results of the CR when testing loadings equivalence at the658

item level in the non-invariance scenario are displayed in Table A7 in the Appendix.659

These results closely resemble the ones observed when loadings equivalence were tested660

at the scale level. Specifically, the CR was below .98 for MG-CCFA only in the condition661

with N = 250, C = 3, J = 5, and large misaligned changes in loadings in 40% of the662

items. Moreover, for MG-IRT using the LoR approach the CR was around .89 when N =663

250, J = 25, and with large misaligned changes in the loadings, regardless of the number664

of categories for each item.665

The results of the CR when testing thresholds equivalence at the item level in the non-666

invariance scenario are displayed in Table A8 in the Appendix. For MG-CCFA, similar667

to what was observed at the scale level, the CR dropped in the conditions with small668

sample size, big shifts in thresholds and short scales compared to the other conditions.669

For example, the lowest CR was observed in the condition with N = 250, C = 3, J =670

5 and large misaligned shifts in thresholds (CR = 0.796). However, for MG-IRT-based671

approaches the CR was always above 99%.672

3.2.2.2 Scale-level performance. The results of the TPR when testing loadings673

equivalence at the scale level in the non-invariance scenario are displayed in Table 6.674

Although none of the approaches was particularly sensitive to small changes in loadings,675

the χ2 test often outperformed the other testing strategies in all conditions. For MG-676

CCFA, in addition to the χ2 test, a combined criterion was used to flag scales or items as677

non-invariant, and Table A11 in the Appendix displays the TPRs for each of the measures678

that form this combined criterion. For ∆CFI, the results seemed to highly depend on the679

length of a scale. In fact, for long scales, when small loading differences were simulated680

and the sample size was large, the TPRs drastically dropped reaching values generally681

close to 0. Also, since in the first simulation study the LoR approach with N = 250, J =682

5 and C = 3 had an unacceptable FPR, the results in this simulation study are reported683

in red indicating that they should not be considered.684

The results of the TPR when testing thresholds equivalence at the scale level in the non-685

invariance scenario are displayed in Table 7, and the results, for each of the fit measures686
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forming the combined criterion are displayed in the Appendix in Table A12. The χ2 test687

for MG-CCFA was remarkably sensitive to differences in thresholds and outperformed688

all the other approaches, regardless of other simulated conditions. In addition, LoR’s689

TPR was lower than the one of MG-CCFA and the LRT, in almost all conditions, and690

especially when the sample size was large. However, in the case of large misaligned shifts691

the TPR was almost always the same as it was for MG-CCFA and the LRT.692

3.2.2.3 Item-level performance. The results of the TPR when testing loadings693

equivalence at the item level in the non-invariance scenario are displayed in Table 8. The694

results of the FPR were also calculated and are displayed in Table A9 in the Appendix.695

The χ2 test often resulted in a TPR higher than the other approaches in all conditions.696

However, for this test, the FPR was generally > .1, especially in conditions with large697

sample size; we marked these TPRs with *, to indicate that these results should be698

interpreted with caution. Similar to the scale-level results, all testing strategies hardly699

detect non-invariance when small changes in the loadings were simulated for short scales,700

reaching a maximum TPR of .267 in the condition with misaligned changes affecting 40%701

of the items, N = 1000 and C = 5. Difficulties in flagging non-invariant items were even702

more pronounced in the conditions with long scales for the combined criterion, showing703

that loadings nonequivalence was not detected in most cases. The performance of each704

of the fit measures forming this criterion, for MG-CCFA, was further investigated. These705

results are displayed in the appendix in Table A13. For both ∆RMSEA and ∆CFI, when706

small loading changes were simulated, the results seemed to highly depend on the length707

of a scale. In fact, for long scales, both measures rarely detected changes in loadings.708

For MG-IRT-based approaches, differences in loadings were rarely detected by the LoR709

approach regardless of the condition, and with even lower frequencies when the sample710

size increases. The LRT outperformed LoR in all conditions in terms of the TPR.711

The results of the TPR when testing thresholds equivalence at the item level in the non-712

invariance scenario are displayed in Table 9. The results of the FPR were also calculated713

and are displayed in Table A10 in the Appendix. The χ2 test for MG-CCFA generally714

outperformed all the remaining approaches, regardless of the other factors. In addition,715
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large differences in thresholds in the conditions with N = 1000 were rarely (or never)716

detected by the MG-CCFA-based combined criterion. Again, we inspected the TPR for717

each of the MG-CCFA-based fit measures that formed this criterion, and the results are718

displayed in Table A14 in the Appendix. The ∆RMSEA and ∆CFI TPRs were heavily719

affected by the length of the scale, and both criteria rarely flagged non-invariant items,720

especially in the conditions where small threshold differences were simulated.721

3.3 Conclusions722

Based on the results observed in the invariance scenario, we can conclude that, for only723

some of the MG-CCFA- and MG-IRT-based testing strategies a FPR below or at the724

chosen α level was found. In fact, among the considered testing strategies used to flag a725

scale/item as non-invariant, quite many methods had an inflated type I error. For MG-726

CCFA-based criteria, the FPR was often below or at the chosen α level for the χ2 test727

or when a combination of a χ2 test and an alternative fit measure (e.g., RMSEA or CFI)728

was used. For MG-IRT-based approaches, the LRT provided a well-controlled FPR in729

all conditions regardless of whether the test was conducted at scale or at the item level.730

The LoR approach for MG-IRT showed an inflated FPR when the LRT criterion was731

used, while adopting a combination of both the LRT criterion and a pseudo-R2 measure732

resulted in a low FPR in (almost) all conditions.733

Based on the results observed in the non-invariance scenario, we can conclude that, when734

testing loadings equivalence, small changes in loadings are hard to detect regardless of735

whether a test is performed at the scale level or at the item level. Furthermore, the χ2 test736

generally outperformed MG-IRT-based testing strategies when loadings non-invariance737

was tested at the scale level, whereas the LRT outperformed MG-CCFA-based testing738

strategies and LoR when loadings non-invariance was tested at the item level. In fact,739

while the item-level χ2 test was more sensitive than the item-level LRT to changes in740

loadings, the FPR for the χ2 test was generally above the nominal α level, and especially741

high in conditions with large sample size. The latter result is in line with previous litera-742

ture, which suggested that the item-level LRT outperforms MG-CCFA-based approaches743
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when considering both TPR and FPR (E. S. Kim & Yoon, 2011). Therefore, in empirical744

practice, the item-level LRT might be preferred if one aims at testing loadings equiva-745

lence for each item separately. In addition, when testing thresholds equivalence, the χ2
746

test outperformed all the other testing strategies both when MI was tested at the scale747

and item level. Furthermore, in the non-invariance scenario, for MG-CCFA, a combined748

criterion was used to flag scales/items as non-invariant, and we further inspected the749

TPRs for each of the measures that form this combined criterion. These results, for the750

scale- and item-level tests, are displayed in the appendix in Table A11 and Table A13,751

respectively. In particular, the TPRs for ∆RMSEA and ∆CFI were heavily affected by752

both scale length and the level at which MI was tested (scale or item). Specifically, for753

long scales, these two measures hardly detected changes in loadings and thresholds, espe-754

cially when the test was conducted at the item level 1. This result is especially relevant755

in empirical practice, where researchers commonly base MI decisions on multiple criteria756

(Putnick & Bornstein, 2016). Based on our results, we would discourage researchers to757

use any of these fit measures, in particular when testing MI for each item individually.758

4 Discussion759

When comparing psychological constructs across groups, testing for measurement invari-760

ance (MI) plays a crucial role. With ordinal data, multiple group categorical confirmatory761

factor analysis (MG-CCFA) and multiple group item response theory (MG-IRT) models762

can be made equivalent using a set of minimal identification constraints (Chang et al.,763

2017). Still, differences between these two approaches exist in the context of MI testing.764

These differences are reflected in: (i) the hypotheses being tested, and (ii) the testing765

strategies/measures used to test these hypotheses. In this paper, two simulation stud-766

ies were conducted to evaluate the performance of the different testing strategies and767

measures in testing MI when: (i) the test is conducted at the scale or at the item level768

and, (ii) MG-CCFA- or MG-IRT-based testing strategies are used. In the first simulation769

1Note that in our simulation studies, the length of the scale was varied only at two levels (5,25). For

this reason, we advise the reader to be cautious in generalizing these results to scales of different lengths.
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study, an invariance scenario was simulated where no differences existed in the parame-770

ters across groups. In addition, a second simulation study was conducted to assess the771

performance of these approaches when non-invariance was simulated between groups.772

A key result of these simulation studies, is that MG-CCFA-based testing strategies are773

generally better than MG-IRT-based ones when testing for MI at the scale level. There-774

fore, in empirical practice, we recommend using either the χ2 test or a combination of775

a χ2 test with an alternative fit measure (i.e., RMSEA or CFI) when testing MI at the776

scale level. In addition, when testing MI at the item level, the χ2 test performed better777

than MG-IRT-based approaches when thresholds equivalence was tested, whereas, when778

loadings equivalence was tested, the item-level LRT provided the best trade-off between779

correctly and incorrectly identified non-invariant items.780

In addition, another key result pertains to how the length of a scale and the level at781

which MI is tested affects the performance of MG-CCFA’s fit measures. In fact, both782

RMSEA and CFI hardly detected non-invariant parameters when MI was tested for each783

item individually, especially with long scales. That is, the more items on a scale, the784

harder it is, for these measures, to detect whether a specific item is non-invariant. These785

results identify a fundamental issue when using these fit measures to test MI at the item786

level. In fact, the cut-off values that are commonly used seem to be inadequate for item-787

level testing, since their performance heavily depends on the scale’s length. Commonly,788

MG-CCFA is used to test for MI at the scale level, which might explain why most papers789

focused on defining optimal cut-off values for these measures when MI is tested at this790

level (Cheung & Rensvold, 2002; Chen, 2007; Rutkowski & Svetina, 2014; Rutkowski791

& Svetina, 2017). If non-invariance is detected, researchers might decide to inspect its792

source by conducting a test for each item individually (E. S. Kim & Yoon, 2011; Putnick &793

Bornstein, 2016). Based on our results, we would discourage researchers from using such794

measures to this aim since the cut-off values need to be re-evaluated for item-level testing795

in future research. In this sense, dynamic procedures for determining fit-indices cut-off796

values, where appropriate cut-off value are derived based on a specific model (McNeish &797

Wolf, 2020), are a promising solution, and it is especially important to extend and evaluate798
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these procedures to MI testing with ordered-categorical. Finally, to obtain indications on799

whether and where DIF exist, modification indices might help; however, the performance800

of such tools in determining non-invariant items remains unclear and requires further801

research.802

The simulation studies conducted provide a useful indication in terms of the performance803

of testing strategies and measures in testing MI for models applied to ordinal data. Still,804

they are not free of limitations and it is relevant to highlight some of those. An important805

limitation of our work has to do with the assumptions that are made by the different806

measurement models. While the imposed constraints and testing steps we followed can807

be considered standard, using these constraints may prevent a more fine-grained analysis808

of MI. Specifically, to validly compare MG-CCFA- and MG-IRT-based approaches it was809

crucial that MI was tested using an equivalent measurement model, which was specified810

using the set of constraints proposed by Chang et al. (2017). These constraints can be811

seen as MG-GRM-type constraints, where both the unique variances and the intercepts812

are constrained to be equal across groups. Imposing such equalities, which is commonly813

done in MG-IRT-based approaches, could be limiting if the goal is to have a more fine-814

grained analysis of MI. Furthermore, MG-CCFA-based constraints may be better suited815

to distinctly unravel differences in unique variances and intercepts across groups, and816

Wu and Estabrook (2016) have recently shown that, within the MG-CCFA framework,817

it may be preferable to select identification constraints based on which parameters are818

tested for non-invariance in order to avoid model misspecification. In detail, the authors819

showed that, for MG-CCFA, constraints that are commonly imposed on a baseline model820

(i.e., the configural model, where equal number of factors and loadings structure are821

imposed across groups) can become restrictions when new invariance constraints (e.g.,822

constraining all loadings to be equal) are added. As a consequence, it may be preferable823

to define a baseline-model on a case-by-case basis depending on the type of invariance824

tested (e.g., thresholds invariance). Therefore, we strongly recommend researchers to825

carefully evaluate the suitability of the restrictions underlying classical MG-CCFA- and826

MG-IRT-based procedures such as the ones presented here before testing for MI.827
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Another important set of limitations pertaines the dimensionality of the simulated scales828

as well as the lack of unique covariances. In particular, we focused on unidimensional829

scales, while researchers are frequently confronted with scales that capture multiple di-830

mensions. Generally, MG-CCFA is used for multidimensional constructs, while MG-831

IRT-based models are preferred with unidimensional constructs. It might therefore be832

interesting to inspect if similar results as the ones observed here would be obtained when833

model complexity is increased by having multiple dimensions. In addition, the data-834

generating models did not include any residual covariances among items, which are not835

uncommon in empirical practice (MacCallum & Tucker, 1991). Ignoring such residual co-836

variances by assuming uncorrelated errors can affect MI testing for continuous data (Joo837

& Kim, 2019) but further research should focus on assessing how residual covariances838

affects MI testing for ordered-categorical data.839

Another set of limitations pertains to the grouping. Firstly, in the current simulation840

studies we inspected the performance of MG-CCFA- and MG-IRT-based testing strate-841

gies with only two groups. However, cross-cultural and cross-national data, where many842

groups are compared simultaneously, are rapidly increasing in psychological sciences. For843

this reason, it might be useful to investigate differences in the performance of the studied844

approaches when many groups are compared. Secondly, in these simulation studies we845

knew which subject belonged to which group, and differences were created between the846

groups’ measurement models. However, the grouping of subjects is not always known847

and/or researchers might not have access to those variables that are thought to cause848

heterogeneity (e.g., nationality, gender). In this case a different approach might be pre-849

ferred to disentangle the heterogeneity across participants (e.g., factor mixture models;850

Lubke & Muthén, 2005).851

One last important set of limitations concern the anchoring of the scale. That is, which852

items’ parameters are set equal across groups in order to identify the model and to make853

the scale comparable across groups. First, the item that was used as the anchor in the854

simulation studies was known to be invariant across groups. In real applications this855

information is never known beforehand, and estimating a model relying on an inade-856
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quate anchor item could impact model’s convergence as well as the ability to detect857

non-invariance of parameters. This issue has been partly discussed in previous studies858

comparing different type of identification constraints (Chang et al., 2017). It could be859

interesting to inspect how the choice of a “good" or “bad" anchor item influences the de-860

tection of MI in a more comprehensive study. Second, in these simulation studies, a set of861

minimal constraints was used to make the measurement models equivalent, and only one862

item was constrained to be equal across groups. Minimal constraints allow most parame-863

ters to be freely estimated. However, when specific items are known to function similarly864

across groups (e.g., knowledge based on prior studies or strong motivations to consider865

them invariant across groups) it might be beneficial, both in terms of the estimation and866

the power to detect non-invariance of the model’s parameters, to constrain them to be867

equal across groups. Such choices are particularly relevant and various approaches exist868

to determine what item(s) should be used as anchor(s), both in MG-CCFA (French &869

Finch, 2008) and in MG-IRT (Candell & Drasgow, 1988; Wainer & Braun, 1988; Clauser,870

Mazor, & Hambleton, 1993; Khalid & Glas, 2014).871

Open practices: The code and data can be made available upon request.872
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Table 1

Population values used in the simulation study

Item 3 categories 5 categories

λ σ2 κ τ1 τ2 τ1 τ2 τ3 τ4

1 .5 0.75 0 -0.38 0.38 -0.84 -0.25 0.25 0.84

2 .7 0.51 0 0.12 0.88 -0.34 0.25 0.75 1.34

3 .6 0.64 0 -0.88 -0.12 -1.34 -0.75 -0.25 0.34

4 .4 0.84 0 -0.88 -0.12 -1.34 -0.75 -0.25 0.34

5 .3 0.91 0 0.12 0.88 -0.34 0.25 0.75 1.34
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Table 2

Loadings’ FPR scale level - invariance scenario

FPR scale level - loadings

MG-CCFA MG-IRT LoR MG-IRT LRT

N C J Comb χ2 ∆RMSEA ∆CFI LRT R2 LRT

250

3
5 0.052 0.052 0.165 0.167 0.577 0.182 0.030

25 0.036 0.040 0.072 0.032 0.399 0.026 0.032

5
5 0.034 0.034 0.194 0.178 0.502 0.022 0.026

25 0.048 0.058 0.074 0.032 0.406 0 0.038

1000

3
5 0.046 0.048 0.100 0.024 0.628 0 0.032

25 0.008 0.052 0.008 0 0.438 0 0.048

5
5 0.042 0.046 0.102 0.020 0.546 0 0.038

25 0.008 0.064 0.008 0 0.366 0 0.032

Note. MG-CCFA = Multiple-group categorical confirmatory factor analysis; MG-IRT LoR =

Logistic regression with MG-IRT; MG-IRT LRT = Likelihood-ratio test with MG-IRT; N =

Sample size within each group; C = Number of categories; J = Number of items; Comb =

combination of χ2, ∆RMSEA and ∆CFI.
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Table 3

Thresholds’ FPR scale level - invariance scenario

FPR scale level - thresholds

MG-CCFA MG-IRT LoR MG-IRT LRT

N C J Comb χ2 ∆RMSEA ∆CFI LRT R2 LRT

250

3
5 0.042 0.042 0.180 0.252 0.660 0.189 0.036

25 0.020 0.042 0.014 0.014 0.404 0.020 0.032

5
5 0.038 0.038 0.178 0.228 0.527 0.020 0.036

25 0.036 0.050 0.048 0.020 0.370 0 0.042

1000

3
5 0.044 0.044 0.118 0.066 0.626 0.002 0.042

25 0 0.046 0 0 0.442 0 0.030

5
5 0.054 0.054 0.124 0.080 0.528 0 0.034

25 0.002 0.040 0.002 0 0.384 0 0.036

Note. MG-CCFA = Multiple-group categorical confirmatory factor analysis; MG-IRT LoR =

Logistic regression with MG-IRT; MG-IRT LRT = Likelihood-ratio test with MG-IRT; N =

Sample size within each group; C = Number of categories; J = Number of items; Comb =

combination of χ2, ∆RMSEA and ∆CFI.
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Table 4

Loadings’ FPR item level - invariance scenario

FPR item level - loadings

MG-CCFA MG-IRT LoR MG-IRT LRT

N C J Comb χ2 ∆RMSEA ∆CFI LRT R2 LRT

250

3
5 0.039 0.046 0.077 0.060 0.243 0.053 0.047

25 0.002 0.055 0.002 0 0.022 0.001 0.050

5
5 0.050 0.061 0.089 0.058 0.202 0.005 0.051

25 0.002 0.059 0.002 0 0.020 0 0.049

1000

3
5 0.025 0.047 0.031 0.006 0.239 0 0.045

25 0 0.052 0 0 0.021 0 0.057

5
5 0.028 0.058 0.038 0.002 0.200 0 0.059

25 0 0.052 0 0 0.021 0 0.047

Note. MG-CCFA = Multiple-group categorical confirmatory factor analysis; MG-IRT LoR =

Logistic regression with MG-IRT; MG-IRT LRT = Likelihood-ratio test with MG-IRT; N =

Sample size within each group; C = Number of categories; J = Number of items; Comb =

combination of χ2, ∆RMSEA and ∆CFI.
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Table 5

Thresholds’ FPR item level - invariance scenario

FPR item level - thresholds

MG-CCFA MG-IRT LoR MG-IRT LRT

N C J Comb χ2 ∆RMSEA ∆CFI LRT R2 LRT

250

3
5 0.048 0.056 0.072 0.100 0.236 0.053 0.051

25 0 0.048 0 0 0.022 0.001 0.053

5
5 0.046 0.050 0.080 0.108 0.194 0.010 0.048

25 0 0.050 0 0 0.020 0 0.050

1000

3
5 0.028 0.052 0.032 0.015 0.256 0 0.048

25 0 0.051 0 0 0.021 0 0.049

5
5 0.034 0.052 0.032 0.017 0.179 0 0.040

25 0 0.049 0 0 0.020 0 0.048

Note. MG-CCFA = Multiple-group categorical confirmatory factor analysis; MG-IRT LoR =

Logistic regression with MG-IRT; MG-IRT LRT = Likelihood-ratio test with MG-IRT; N =

Sample size within each group; C = Number of categories; J = Number of items; Comb =

combination of χ2, ∆RMSEA and ∆CFI.



MEASUREMENT INVARIANCE TESTING FOR ORDINAL DATA 46

Table 6

Loadings’ TPR scale level - non-invariance scenario

TPR scale level - loadings

MG-CCFA MG-IRT

Comb χ2 LoR LRT

N C J % small large small large small large small large

250

3

5

20% 0.052 0.044 0.052 0.044 0.177 0.154 0.048 0.043

40% 0.078 0.124 0.078 0.124 0.183 0.242 0.054 0.079

40% ± 0.082 0.218 0.082 0.218 0.193 0.310 0.048 0.088

25

20% 0.124 0.284 0.140 0.332 0.030 0.092 0.076 0.094

40% 0.118 0.474 0.144 0.532 0.044 0.176 0.064 0.166

40% ± 0.272 0.916 0.306 0.922 0.075 0.365 0.109 0.300

5

5

20% 0.054 0.048 0.054 0.048 0.018 0.018 0.048 0.030

40% 0.076 0.122 0.076 0.122 0.032 0.052 0.054 0.086

40% ± 0.124 0.268 0.124 0.268 0.052 0.103 0.080 0.154

25

20% 0.126 0.410 0.164 0.474 0 0.008 0.062 0.164

40% 0.182 0.692 0.218 0.764 0.002 0.020 0.080 0.256

40% ± 0.274 0.972 0.358 0.986 0.002 0.118 0.114 0.376

1000

3

5

20% 0.060 0.084 0.062 0.094 0 0 0.044 0.098

40% 0.130 0.366 0.140 0.384 0 0.032 0.084 0.322

40% ± 0.204 0.714 0.206 0.714 0.004 0.064 0.092 0.506

25

20% 0.136 0.712 0.390 0.974 0 0 0.138 0.584

40% 0.256 0.940 0.622 1 0 0 0.216 0.718

40% ± 0.500 1 0.892 1 0 0.008 0.298 0.980

5

5

20% 0.054 0.106 0.060 0.110 0 0 0.052 0.128

40% 0.164 0.500 0.182 0.542 0 0 0.108 0.440

40% ± 0.238 0.852 0.262 0.860 0 0.006 0.144 0.692

25

20% 0.174 0.872 0.478 0.998 0 0 0.186 0.720

40% 0.342 0.990 0.732 1 0 0 0.260 0.858

40% ± 0.758 1 0.976 1 0 0 0.398 1

Note. MG-CCFA = Multiple-group categorical confirmatory factor analysis; MG-IRT LoR =

Logistic regression with MG-IRT; MG-IRT LRT = Likelihood-ratio test with MG-IRT; N =

Sample size within each group; C = Number of categories; J = Number of items; % =

percentage of items affected by DIF (± misaligned); small = small bias; large = large bias;

values in red = FPR ≥ .10 in the invariance scenario.
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Table 7

Thresholds’ TPR scale level - non-invariance scenario

TPR scale level - thresholds

MG-CCFA MG-IRT

Comb χ2 LoR LRT

N C J % small large small large small large small large

250

3

5

20% 0.358 0.908 0.358 0.908 0.337 0.673 0.131 0.448

40% 0.720 1 0.720 1 0.336 0.759 0.285 0.759

40% ± 0.652 0.996 0.654 0.996 0.584 0.995 0.246 0.864

25

20% 0.414 1 0.742 1 0.144 0.932 0.264 0.884

40% 0.392 1 0.716 1 0.168 0.948 0.268 0.902

40% ± 0.906 1 0.996 1 0.832 1 0.468 0.996

5

5

20% 0.396 0.974 0.396 0.974 0.076 0.449 0.104 0.512

40% 0.766 1 0.766 1 0.118 0.475 0.230 0.800

40% ± 0.806 1 0.806 1 0.319 0.989 0.271 0.911

25

20% 0.560 1 0.738 1 0.022 0.602 0.254 0.922

40% 0.630 1 0.742 1 0.032 0.592 0.244 0.876

40% ± 0.996 1 1 1 0.612 1 0.400 0.996

1000

3

5

20% 0.956 1 0.956 1 0.026 0.474 0.550 1

40% 1 1 1 1 0.022 0.571 0.888 1

40% ± 1 1 1 1 0.202 1 0.978 1

25

20% 0.828 1 1 1 0 0.556 0.954 1

40% 0.802 1 1 1 0 0.556 0.944 1

40% ± 1 1 1 1 0.626 1 1 1

5

5

20% 0.984 1 0.984 1 0 0.226 0.598 1

40% 1 1 1 1 0 0.220 0.910 1

40% ± 1 1 1 1 0.018 1 0.986 1

25

20% 0.980 1 1 1 0 0.024 0.958 1

40% 0.972 1 1 1 0 0.030 0.964 1

40% ± 1 1 1 1 0.430 1 1 1

Note. MG-CCFA = Multiple-group categorical confirmatory factor analysis; MG-IRT LoR =

Logistic regression with MG-IRT; MG-IRT LRT = Likelihood-ratio test with MG-IRT; N =

Sample size within each group; C = Number of categories; J = Number of items; % =

percentage of items affected by DIF (± misaligned); small = small bias; large = large bias;

values in red = FPR ≥ .10 in the invariance scenario.
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Table 8

Loadings’ TPR item level - non-invariance scenario

TPR item level - loadings

MG-CCFA MG-IRT

Comb χ2 LoR LRT

N C J % small large small large small large small large

250

3

5

20% 0.038 0.060 0.052 0.076 0.004 0.004 0.061 0.064

40% 0.052 0.088 0.061 0.103 0.055 0.088 0.067 0.116

40% ± 0.077 0.192 0.091 0.205 0.063 0.119 0.068 0.142

25

20% 0.007 0.015 0.107 0.259 0.004 0.019 0.087 0.224

40% 0.003 0.007 0.078 0.162* 0.003 0.015 0.084 0.200

40% ± 0.006 0.037 0.147 0.426 0.006 0.041 0.096 0.252

5

5

20% 0.066 0.084 0.080 0.106 0 0 0.074 0.114

40% 0.054 0.130 0.060 0.135 0.005 0.028 0.071 0.173

40% ± 0.095 0.277 0.111 0.291 0.016 0.056 0.085 0.205

25

20% 0.005 0.016 0.129 0.317 0 0.002 0.110 0.251

40% 0.005 0.003 0.094 0.194* 0 0.002 0.111 0.230

40% ± 0.008 0.032 0.172 0.533 0.001 0.012 0.111 0.303

1000

3

5

20% 0.042 0.074 0.096 0.182 0 0 0.098 0.178

40% 0.071 0.213 0.114 0.318* 0.001 0.013 0.109 0.338

40% ± 0.155 0.486 0.224 0.645* 0.001 0.045 0.136 0.421

25

20% 0 0.001 0.274 0.705* 0 0 0.250 0.618

40% 0 0 0.160* 0.465* 0 0 0.217 0.621

40% ± 0 0.003 0.422 0.932 0 0.001 0.261 0.707

5

5

20% 0.042 0.134 0.114 0.238 0 0 0.112 0.206

40% 0.092 0.256 0.146 0.382* 0 0 0.156 0.454

40% ± 0.174 0.526 0.267 0.754* 0 0.002 0.159 0.507

25

20% 0.001 0 0.323 0.818* 0 0 0.283 0.725

40% 0 0 0.207* 0.559* 0 0 0.288 0.732

40% ± 0 0.003 0.491 0.978 0 0 0.298 0.812

Note. MG-CCFA = Multiple-group categorical confirmatory factor analysis; MG-IRT LoR =

Logistic regression with MG-IRT; MG-IRT LRT = Likelihood-ratio test with MG-IRT; N =

Sample size within each group; C = Number of categories; J = Number of items; % =

percentage of items affected by DIF (± misaligned); small = small bias; large = large bias;

* = FPR ≥ .10.
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Table 9

Thresholds’ TPR item level - non-invariance scenario

TPR item level - thresholds

MG-CCFA MG-IRT

Comb χ2 LoR LRT

N C J % small large small large small large small large

250

3

5

20% 0.536 0.976 0.586 0.988 0.014 0.112 0.214 0.660

40% 0.643 0.986 0.647 0.986 0.059 0.289 0.312 0.763

40% ± 0.555 0.984 0.566 0.984 0.239 0.543 0.293 0.784

25

20% 0.003 0.143 0.648 0.997 0.010 0.372 0.349 0.886

40% 0.002 0.127 0.646 0.997 0.019 0.342 0.336 0.886

40% ± 0 0.130 0.657 0.998 0.153 0.655 0.360 0.885

5

5

20% 0.626 0.994 0.674 0.996 0.002 0.011 0.198 0.738

40% 0.689 0.999 0.696 0.999 0.018 0.084 0.305 0.810

40% ± 0.675 0.999 0.678 0.999 0.131 0.503 0.309 0.813

25

20% 0.006 0.368 0.724 0.999 0.002 0.098 0.362 0.880

40% 0.008 0.360 0.724 0.999 0.001 0.098 0.353 0.879

40% ± 0.004 0.357 0.726 0.998 0.100 0.526 0.339 0.875

1000

3

5

20% 0.978 1 0.988 1 0 0 0.758 1

40% 0.993 1 0.999 1 0 0.055 0.869 1

40% ± 0.976 1 0.994 1 0.116 0.500 0.857 0.998

25

20% 0 0.117 1 1 0 0.157 0.918 1

40% 0 0.146 0.997 1 0 0.182 0.908 1

40% ± 0 0.124 0.998 1 0.072 0.579 0.920 1

5

5

20% 0.998 1 0.998 1 0 0 0.808 1

40% 0.998 1 1 1 0 0 0.894 1

40% ± 0.990 1 0.998 1* 0.009 0.500 0.889 1

25

20% 0 0.648 0.999 1 0 0.004 0.904 1

40% 0 0.664 1 1 0 0.007 0.903 1

40% ± 0 0.620 1 1 0.046 0.497 0.907 1

Note. MG-CCFA = Multiple-group categorical confirmatory factor analysis; MG-IRT LoR =

Logistic regression with MG-IRT; MG-IRT LRT = Likelihood-ratio test with MG-IRT; N =

Sample size within each group; C = Number of categories; J = Number of items; % =

percentage of items affected by DIF (± misaligned); small = small bias; large = large bias;

* = FPR ≥ .10.


