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Original Article

Analyzing Data of a Multilab
Replication Project With Individual
Participant Data Meta-Analysis
A Tutorial

Robbie C. M. van Aert

Department of Methodology and Statistics, Tilburg University, The Netherlands

Abstract: Multilab replication projects such as Registered Replication Reports (RRR) and Many Labs projects are used to replicate an effect in
different labs. Data of these projects are usually analyzed using conventional meta-analysis methods. This is certainly not the best approach
because it does not make optimal use of the available data as a summary rather than participant data are analyzed. I propose to analyze data
of multilab replication projects with individual participant data (IPD) meta-analysis where the participant data are analyzed directly. The
prominent advantages of IPD meta-analysis are that it generally has larger statistical power to detect moderator effects and allows drawing
conclusions at the participant and lab level. However, a disadvantage is that IPD meta-analysis is more complex than conventional meta-
analysis. In this tutorial, I illustrate IPD meta-analysis using the RRR by McCarthy and colleagues, and I provide R code and recommendations
to facilitate researchers to apply these methods.

Keywords: meta-analysis, registered replication report, replication, multilevel analysis, individual participant data meta-analysis

Multilab replication projects are exemplary for the increased
attention for replication research in psychology. Prominent
effects in the psychological literature are replicated in these
multilab replication projects in different labs across the
world. These projects yield highly relevant insights about
whether an effect can actually be replicated and also
whether the effect depends on contextual factors such as
the location where a study was conducted. Multiple regis-
tered replication reports (RRRs; Simons et al., 2014) have
been conducted where a single effect is replicated in differ-
ent labs as well as Many Labs projects (Ebersole et al., 2016,
2020; Klein et al., 2014, 2018, 2021) where multiple effects
are replicated in a large collaborative project.

The main publication outlet for multilab replication pro-
jects within psychology was the journal Perspectives on Psy-
chological Science, but Advances in Methods and Practices in
Psychological Science has taken over this role since its launch
in 2018. Twelve RRRs were published in these journals
since the introduction of RRRs and until September 6,
2021. Moreover, the Many Labs projects replicated 12, 28,
10, 1, and 10 effects in Many Labs 1, 2, 3, 4, and 5, respec-
tively. These published RRRs and Many Labs projects show
that multilab replication projects are not uncommon, and
these projects are expected to become more popular due
to the increased attention for replications and the desire
to study the credibility of psychological science.

The usual analysis strategy for analyzing the data of a
single effect in multilab replication projects is equivalent
to how a conventional meta-analysis is conducted. That
is, a summary effect size (e.g., [standardized] mean differ-
ence or correlation) and corresponding sampling variance
(i.e., squared standard error) is computed for each lab
and these summary effect sizes are then usually synthe-
sized by means of a random-effects meta-analysis. The
meta-analytic average effect size is of interest as well as
whether the true effect size of the labs is heterogeneous
and whether this heterogeneity can be explained by moder-
ator variables in a so-called meta-regression model (e.g.,
Thompson & Sharp, 1999; Van Houwelingen et al.,
2002). This is a valid but certainly also suboptimal
approach because the differences of participants within a
lab are lost by aggregating the data to summary effect sizes.
I propose analyzing data of multilab replication projects
through an individual participant data (IPD) meta-analysis
where the participant data are analyzed rather than
summary effect sizes (e.g., L. A. Stewart & Tierney,
2002). Multilab replication projects are ideal for applying
IPD meta-analysis as the participants’ data is, in contrast
to traditional studies, readily available.

IPD meta-analysis is popular among medical researchers,
and it is commonly referred to as individual patient data
meta-analysis. In contrast to research in psychology,
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medical research has a long history with respect to sharing
data that enables researchers to conduct IPD meta-analysis.
For example, the prominent medical journal BMJ required
authors to agree on sharing the IPD data of clinical trials
of drugs or devices on request in 2013, and this policy
was extended to all trials in 2015 (Godlee, 2012; Loder &
Groves, 2015). Medical research also frequently uses binary
data (e.g., dead vs. alive and treatment vs. placebo group),
and these data can easily be reported in a 2 � 2 frequency
table, making reporting of IPD data less cumbersome com-
pared to fields like psychology that mainly use continuous
data. These developments together with the call for more
personalized treatments (Hingorani et al., 2013) made that
IPD meta-analysis is nowadays seen as the gold standard
for synthesizing studies in medical research (Riley et al.,
2008; Rogozińska et al., 2017; Simmonds et al., 2005).

IPD meta-analysis has many advantages over conven-
tional meta-analysis (Riley et al., 2010; L. A. Stewart &
Tierney, 2002). Two advantages are especially valuable for
analyzing data of multilab replication projects. First, partici-
pant-level moderators can be included to explain hetero-
geneity in true effect size, which is one of the main aims of
multilab replication projects. Heterogeneity in the conven-
tional meta-analysis can only be attributed to study level
characteristics and not to characteristics of the participants
within a lab because summary statistics of the primary stud-
ies are analyzed rather than the underlying participant data.
Researchers who draw conclusions at the participant level
using summary effect sizes may introduce aggregation bias
and commit an ecological fallacy (e.g., Berlin et al., 2002;
Borenstein et al., 2009), which will be illustrated below. Sec-
ond, statistical power to test moderating effects is usually lar-
ger than of conventional meta-regression. Simmonds and
Higgins (2007) analytically showed that the statistical power
of testing a moderator variable in IPD meta-analysis is
always larger than of conventional meta-regression in a
fixed-effect meta-analysis (aka equal-effect) model. The only
exception is when all participant scores on the moderator
variable within primary studies are the same because the sta-
tistical power of conventional meta-regression and IPD
meta-analysis is equivalent in this situation. Lambert and col-
leagues (2002) compared statistical power of IPD meta-ana-
lysis with conventional meta-regression in a fixed-effect
meta-analysis model using simulations and showed that sta-
tistical power of IPD meta-analysis was especially larger
when the effect size, number of primary studies, and sample
size in the primary studies was small.

The goal of this paper is to illustrate how data of amultilab
replication project can be analyzed through an IPD meta-
analysis. The focus of this paper will be on the estimation
of the average effect size as well as on quantifying the
heterogeneity in true effect size and explaining this hetero-
geneity with moderator variables because both aspects are

generally studied in multilab replication projects (e.g.,
Ebersole et al., 2016; Klein et al., 2014, 2018). Two different
approaches to IPD meta-analysis are a one-stage and two-
stage approach that I will both explain and illustrate. Before
turning to IPD meta-analysis, I will first provide an example
of aggregation bias in a meta-regression model. Subse-
quently, I will introduce the RRR by McCarthy and col-
leagues (2018) that will illustrate the methods and explain
how these data are commonly analyzed using conventional
random-effects meta-analysis. The paper ends with a con-
clusion section that contains recommendations for analyzing
data of a multilab replication project.

Illustration of Aggregation Bias
in Meta-Regression

Aggregation bias or an ecological fallacy refers to a situation
where conclusions are drawn for individuals based on
aggregated data (Robinson, 1950). Meta-analysts can easily
fall into the trap of introducing aggregation bias if they do
not realize that differences between labs in a meta-regres-
sion analysis can only be attributed to lab level characteris-
tics (e.g., Berlin et al., 2002; Borenstein et al., 2009).
Figure 1A shows data of three labs using a two-independent
groups design where scores of participants in the experi-
mental and control group are denoted by E and C, respec-
tively. The main interest in this analysis is to study whether
age has a moderating effect on the grouping variable, so
whether the effect of the manipulation is strengthened (or
weakened) by the participant’s age.

The model underlying the data of all three labs is a linear
regression model. That is, for lab 1: 51 � 18x + x � age, for
lab 2: 46 � 30x + x � age, and for lab 3: 41 � 42x + x �
age, where x denotes whether a participant belongs to the
experimental (x = 1) or control (x = 0) group and age is
the participant’s age. Within each lab, the age of partici-
pants in the experimental group is larger than that of the
participants in the control group. This may occur in practice
if participants are not randomly assigned to one of the two
groups. The regression equations show that the only differ-
ences between the labs are the intercept and the effect of
the manipulation. These data indicate that there is a posi-
tive interaction effect between the grouping variable and
age at the participant level, so the effect of the manipulation
is strengthened by the participant’s age.

Table 1 shows the summary statistics that are used as
input for the meta-regression analysis. The focus in the
meta-regression analysis is on the relationship between
the raw mean difference of the experimental and control
group and the lab’s mean age. This implies that we are no
longer allowed to draw conclusions at the participant level

�2022 The Author(s). Distributed as a Hogrefe OpenMind article
under the license CC BY 4.0 (https://creativecommons.org/licenses/by/4.0)
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as we are analyzing summary statistics of the labs. Figure 1B
shows the raw mean difference and mean age per lab. The
relationship between the raw mean difference and mean
age is negative (dashed line in Figure 1B) and contradicts
the finding of the analysis based on the participant data.

This example illustrates that the interaction effect may be
substantially different at the lab compared to the participant
level. The effect at a higher level can be in the opposite direc-
tion compared to the lower level (Aitkin & Longford, 1986;
Snijders & Bosker, 1999). Although this example was created
in a way to illustrate aggregation bias, it may also occur in
practice and can only be studied if participant data are avail-
able. Hence, this example also shows that a meta-regression
cannot be used to draw conclusions at the participant level as
it is prone to committing an ecological fallacy. A meta-
regression is, however, suitable to draw conclusions about
moderating effects measured at the level of the lab. This
implies that the results of the meta-regression in this exam-
ple can be used to draw conclusions about the lab’s mean
age on the raw mean difference.

Example of a Registered Replication
Report

The RRR by McCarthy and colleagues (2018) replicated the
study by Srull and Wyer (1979) on assimilative priming.
Assimilative priming refers to the idea that “exposure to
priming stimuli causes subsequent judgments to incorporate
more of the qualities of the primed construct” (McCarthy
et al., 2018, p. 322). In the replicated experiment, partici-
pants were first asked to perform a sentence construction
task where either 20% or 80% of the sentences described

hostile behavior. Participants were then asked to read a
vignette about a man called Donald who behaved in an
ambiguously hostile way and rated Donald’s behavior on
12 traits to get a score of the extent he was perceived as hos-
tile. All 12 traits were measured on a scale ranging from 0 (=
not at all) to 10 (= extremely), and six of these traits were
averaged to create a hostility rating. The tested hypothesis
was that participants who were exposed to a larger number
of sentences describing hostile behavior would rate Don-
ald’s behavior as more hostile.

The RRR by McCarthy and colleagues (2018) was
selected for illustrating the different meta-analysis models
because the data are well-documented, it was possible to
reproduce the reported results, variables were reported that
could be included in the models as moderator, and two-
independent groups design was used, which is common in
psychology. The effect size measure of interest was, as by
McCarthy and colleagues (2018), the raw mean difference.
The raw mean difference is a common effect size measure
in multilab replication projects because the dependent vari-
able is measured in the same way in each lab. Hence, com-
puting standardized mean differences is not necessary and

Table 1. Sample means of the dependent variable in the experimental
and control group and the moderator age. Raw mean difference is the
raw mean difference of the sample means in the experimental and
control group

Sample means
Raw mean
differenceExperimental Control Age

Lab 1 57 51 22.5 6

Lab 2 50 46 32.5 4

Lab 3 43 41 42.5 2
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Figure 1. Artificial example to illustrate aggregation bias in the context of meta-regression analysis. (A) Individual participant data; (B) Data
analyzed in the meta-regression analysis.
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even undesired if the data can be analyzed on its original
(unstandardized) scale (e.g., Baguley, 2009; Bond et al.,
2003; Wilkinson, 1999). The study was replicated in 22 labs
and the total sample size was 7,373 (see McCarthy et al.,
2018 for more details). All analyses were conducted in the
statistical software R (Version 4.1.0, R Core Team, 2021),
the R package papaja (Aust & Barth, 2020) was used for
writing the article, and annotated R code to analyze the
RRR is available in the supplemental materials at the Open
Science Framework (OSF; Van Aert, 2019a: https://osf.io/
c9zep/).

Random-Effects Model

The conventional random-effects model is usually fitted to
data of multilab replication projects, and this is also how the
data of the RRR by McCarthy and colleagues (2018) were
analyzed. A requirement for applying the random-effects
model is that summary effect sizes and corresponding sam-
pling variances per lab are computed. Formulas for comput-
ing these summary effect sizes and sampling variances are
available in Borenstein and Hedges (2019). I will continue
by describing the random-effects model before applying
this model to the RRR.

Statistical Model

The random-effects model assumes that the effect size yi is
observed for each ith lab. The statistical model can be writ-
ten as (e.g., Borenstein et al., 2009)

yi ¼ μþ μi þ ɛi; ð1Þ

where μ is the average true effect size, μi is the random
effect denoting the difference between the average true
effect size μ and a lab’s true effect size θi, and ei reflects
the sampling error. The random effect μi is commonly
assumed to follow a normal distribution with mean zero
and variance τ2, and the sampling error ei is assumed to
follow a normal distribution with mean zero and variance
σ2
i . The μi and ei are assumed to be mutually independent

of each other, and it is common practice to estimate σ2
i

and then assume that its value is known.
The most interesting outcomes in a multilab replication

project are the parameters μ and τ2. The parameter μ
denotes the meta-analytic average effect size estimate
yielding insight into the true effect size of the replicated

study and can also be used to assess whether the original
study can be deemed to be successfully replicated. The
parameter τ2 reflects the between-study variance in true
effect size and indicates whether the lab’s true effect sizes
θi are all the same (homogeneous) or different from each
other (heterogeneous). Heterogeneity in true effect size
can be explained by extending the statistical model in (1)
to a random-effects meta-regression model where study
characteristics are included as moderators (e.g., Thompson
& Sharp, 1999; Van Houwelingen et al., 2002). That is, a
lab’s true effect size becomes a regression equation in a
random-effects meta-regression model (e.g., β0 + β1x where
x is a moderator variable).

Fitting the Random-Effects Model
to the Data

Before fitting the random-effects model to the RRR, I first
computed the raw mean differences and corresponding
sampling variances for each lab (see Van Aert, 2019a:
https://osf.io/c9zep/). I used the R package metafor

(Version 3.0.2, Viechtbauer, 2010) for fitting the random-
effects model. The random-effects model can be fitted
using the rma() function of the metafor package by pro-
viding the lab’s raw mean differences (argument yi) and
the corresponding sampling variances (argument vi). R
code for fitting the random-effects model is1

rma(yi = yi, vi = vi, data = ma_dat)

where ma_dat is a data frame containing the yi and vi.
The results of fitting the random-effects model are pre-

sented in the first row of Table 2. These results exactly
match those of Figure 1 in McCarthy and colleagues
(2018). The average true effect size estimate is equal to
μ̂ = 0.083 (95% confidence interval (CI) [0.004; 0.161]),
and the null-hypothesis of no effect was rejected (z =
2.058, two-tailed p = .040). These results imply that the
average raw mean difference between the mean hostility
rating of participants in the 80%-hostile priming condition
and those in the 20%-hostile priming condition was 0.083.
Hence, the mean hostility rating of participants in the 80%-
hostile priming conditions was larger than those in the
20%-hostile priming condition. There was a small amount
of heterogeneity observed in the true effect sizes. The esti-
mate of the between-study variance τ̂2 = 0.006 (95% CI
[0; 0.043]),2 Cochran’s Q-test (Cochran, 1954) for testing

1 The restricted maximum likelihood estimator (Raudenbush, 2009) was used for estimating the between-study variance τ2. This is the default
estimator of metafor and also allows direct comparison with the results of IPD meta-analysis as these also rely on restricted maximum
likelihood estimation.

2 The 95% CI for the between-study variance τ2 is not in the output of fitting the random-effects model. Such a CI can, for instance, be obtained
using the Q-profile method (Viechtbauer, 2007) via the function confint() where the only argument of the function is the object obtained by
running the function rma(). See the supplemental materials for the actual code and output at https://osf.io/c9zep/ (Van Aert, 2019a).

�2022 The Author(s). Distributed as a Hogrefe OpenMind article
under the license CC BY 4.0 (https://creativecommons.org/licenses/by/4.0)
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the null-hypothesis of no between-study variance was not
statistically significant, Q(21) = 25.313, p = .234.

The null-hypothesis of no heterogeneity could not be
rejected, which is common for multilab replication projects
that consist of direct replications (Olsson-Collentine et al.,
2020). However, the estimated small between-study vari-
ance suggested that a small amount of heterogeneity in
the true effect size was present in the meta-analysis. This
heterogeneity can be explained by including moderators
measured at the lab level in a random-effects meta-regres-
sion analysis. The moderator variable mean age of partici-
pants per lab is included in this paper for illustrating the
methods, but the procedure is similar for any moderator
variable. After computing this mean age per lab, the ran-
dom-effects meta-regression model can be fitted to the data
using the following code

rma(yi = yi, vi = vi, mods = � m_age,

data = ma_dat)

where mods = � m_age indicates that mean age of
participants per lab is included as moderator.

The results of fitting the random-effects meta-regression
model are shown in the first two rows of Table 3.3 The coef-
ficient of the variable mean age is 0.050 (z = 1.237, two-
tailed p = .216, 95% CI [�0.029; 0.128]) implying that a
one unit increase in mean age leads to a predicted increase
of 0.050 in the average raw mean difference. The estimate
of the residual between-study variance was τ̂2 = 0.005
(95%CI [0; 0.043], Q(20) = 23.456, p = .267). These results
of fitting the random-effects model and random-effects
meta-regression model will be contrasted with the results
of IPD meta-analysis when describing those results.

Individual Participant Data
Meta-Analysis

Meta-analysis models can be seen as a special case of
multilevel models (also known as mixed-effects models)

with at level 1 the participants within studies and at level
2 the studies. This is also the reason why meta-analysis
models are discussed in books on multilevel models (e.g.,
Hox et al., 2018). This equivalence between meta-analysis
and multilevel models becomes even more apparent when
we move from the conventional random-effects model ana-
lyzing summary effect sizes to IPD meta-analysis analyzing
the participants’ data directly because IPD meta-analysis
models are actually multilevel models applied to partici-
pants who are nested in studies.

Two different approaches to IPD meta-analysis are com-
mon: the one-stage and two-stage approach. In the two-
stage approach, effect sizes are first computed for each
lab and these are subsequently meta-analyzed. The one-
stage approach does not require the computation of effect
sizes per lab because the data are modeled directly using
a multilevel model. Both approaches allow drawing infer-
ences regarding moderator variables at the participant level
in contrast to the meta-regression model. Moreover, both
approaches generally yield similar (average) effect size esti-
mates (e.g., Koopman et al., 2008; G. B. Stewart et al.,
2012; Tierney et al., 2020; Tudur Smith & Williamson,
2007), but larger practically relevant differences can also
be observed (Tudur Smith et al., 2016).

The two-stage approach appeals to researchers familiar
with conventional meta-analysis models due to the close
similarities between the two. One of the conventional
meta-analysis models (i.e., the fixed-effect or random-
effects model) is fitted in the second step of the two-stage
approach. However, the differences between the conven-
tional and two-stage IPD meta-analysis model also offers
opportunities to gain better insights. Additional variables
can be included in the first step of the two-stage approach
to control for these variables, which is impossible in the
conventional meta-analysis model. The most important dif-
ference is that analyzing the participant data in the first step
of the two-step approach allows drawing inferences at the
participant level. The conventional meta-analysis model
uses summary statistics per lab for studying the effect of

Table 2. Results of fitting a random-effects model (RE MA) and two-stage and one-stage individual participant data meta-analysis to the
registered replication report by McCarthy and colleagues (2018)

μ̂ (SE) (95% CI) Test H0: μ = 0 τ̂2 (95% CI) Test H0: τ
2 = 0

RE MA 0.083 (0.040) (0.004; 0.161) z = 2.058, p = .040 0.006 (0; 0.043) Q(21) = 25.313, p = .234

Two-stage 0.082 (0.040) (0.004; 0.161) z = 2.055, p = .040 0.006 (0; 0.043) Q(21) = 25.266, p = .236

One-stage 0.090 (0.038) (0.017; 0.164) t(18.6) = 2.356, p = .030 0.002 (0; 0.012) w2(2) = 0.554, p = .758a

Note. μ̂ = estimate of the average true effect size; SE = standard error; CI = confidence interval; τ̂2 is the estimate of the between-study variance obtained
with restricted maximum likelihood estimation. aThe anova() function conducts the likelihood-ratio test by first fitting the models to be compared with full
maximum likelihood estimation.

3 The intercept of this random-effects meta-regression model refers to the average true effect size estimate conditional on a mean age of zero. If
the intercept is of interest to the meta-analyst, it is advised to center the variable mean age at, for instance, the grand mean (i.e., the overall
mean of age) to increase the interpretability. The intercept can then be interpreted as the average true effect size estimate conditional on a
mean age equal to the grand mean of age.

Zeitschrift für Psychologie (2022), 230(1), 60–72 �2022 The Author(s). Distributed as a Hogrefe OpenMind article
under the license CC BY 4.0 (https://creativecommons.org/licenses/by/4.0)
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moderators and therefore only allows for drawing infer-
ences at the lab level.

Despite these appealing properties of two-stage IPD
meta-analysis, there are reasons for applying a one-stage
rather than a two-stage IPD meta-analysis approach. For
example, the two-stage approach has lower statistical power
except for situations where all labs have the same mean on
the moderator variable (Fisher et al., 2011; Simmonds &
Higgins, 2007). Furthermore, the one-stage approach is
also more flexible and does not require the assumption of
known sampling variances σi

2 (Papadimitropoulou et al.,
2019). This approach is, however, also more complicated
to implement as convergence problems may arise in the
one-stage approach, whereas these are less common in
the two-stage approach (Kontopantelis, 2018).

I generally recommend applying one-stage IPD meta-
analysis, but the two-stage approach is a useful “stepping
stone” to move from the random-effects meta-analysis
model to a one-stage IPD meta-analysis. Hence, I continue
with describing two-stage IPD meta-analysis before illus-
trating one-stage IPD meta-analysis.

Statistical Model Two-Stage Approach

The first step of the two-stage approach consists of fitting a
linear regression model to the participant data of each ith
lab. In case of raw mean differences, the linear regression
model is (e.g., Riley et al., 2008)

yij ¼ ϕi þ θixij þ ɛij; ð2Þ

where yij denotes the score on the dependent variable of
participant j in lab i, ϕi is a fixed lab effect, xij is a dummy
variable indicating whether participant j in lab i belongs to
the experimental or control group, and ɛij is the sampling
error of participant j in lab i. The same assumptions as
for the random-effects model apply, so θi � N(μ, τ2), ɛij �
N(0, σi

2), and θi and ɛi are assumed to be mutually indepen-
dent. There is no heterogeneity between labs if all θi are
equal, and the parameters μ and τ2 are again the main para-
meters of interest as these indicate the average treatment
effect and the between-study variance in true effect size.

The linear regression model in (2) is fitted to the data of
each ith lab in order to get an estimate of the raw mean dif-
ference (θ̂i) and corresponding sampling variance. In the
second step of the two-stage approach, these mean differ-
ences θ̂i are combined using the random-effects model in
statistical model (1). That is, a conventional random-effects
model is fitted using as input θ̂i as effect size estimate and
Var½θ̂i� as sampling variance for each study.

The effect of moderator variables in a two-stage IPD
meta-analysis is studied by adding interactions between
the moderators and the grouping variable xij to the linear
regression model described in (2). In case of one moderator

variable, the linear regression model fitted to the data of
each ith lab is (e.g., Riley et al., 2008)

yij ¼ ϕi þ αiwij þ θixij þ γiwijxij þ ɛij; ð3Þ

where αi is the predicted change in the dependent variable
for participants in the control group if the moderator vari-
able wij increases with one unit and γi denotes the interac-
tion effect of moderator wij with the grouping variable xij.
Inclusion of the main effect of the moderator variable is
especially beneficial if participants were not randomly
assigned to either the experimental or control group
because it controls for differences between these groups.

Estimates of γi and the corresponding sampling variances
have to be stored for each ith lab if moderator effects are
studied in the two-stage approach. The second step when
estimating moderator effects is equivalent to the second
step when estimating the average true effect except that
now the random-effects model in (1) is fitted to the γi. This
two-stage approach is also called a “meta-analysis of inter-
actions” since moderator effects are now meta-analyzed
(Simmonds & Higgins, 2007).

Applying the Two-Stage Approach to the
Data

A linear regression model can be fitted to the participant
data of each ith lab by using the function lm() in the pre-
loaded R package stats (R Core Team, 2021). The lm()

function requires as argument the regression equation in
so-called formula notation. The linear regression model in
(2) can be fitted using the code

lm(y � x)

where y � x denotes that a linear regression model is fitted
with dependent variable y and independent variable x. The
variables y and x refer to yij and xij of the ith lab in the lin-
ear regression model (2). This R code has to be executed
per lab, and the regression coefficient of variable xij and
its sampling variance has to be stored for each lab. The sup-
plemental materials at https://osf.io/c9zep/ provide code
for extracting this information from the output in R (Van
Aert, 2019a).

R code of the second step is highly similar to the code for
fitting the random-effects model,

rma(yi = thetai_hat, vi = vi_thetai_hat,

data = ma_dat)

where thetai_hat is the regression coefficient of variable
xij and vi_thetai_hat is the corresponding sampling
variance.

The results of the two-stage IPD meta-analysis are pre-
sented in the second row of Table 2. These results were
highly similar to the ones of the random-effects model

�2022 The Author(s). Distributed as a Hogrefe OpenMind article
under the license CC BY 4.0 (https://creativecommons.org/licenses/by/4.0)
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fitted to the summary effect sizes. The average true effect
size estimate slightly decreased (μ̂ = 0.082, 95% CI
[0.004; 0.161]), but was still statistically significant (z =
2.055, two-tailed p = .040). The estimate of the between-
study variance remained the same (τ̂2 = 0.006, 95% CI
[0; 0.043]) and was not statistically significant, Q(21) =
25.266 with p = .236.

The linear regression model in (3) has to be fitted in the
first step of a two-stage IPD meta-analysis in order to study
whether age has a moderating effect on the dependent vari-
able. This can be done by using the lm() function,

lm(y � x + age + x:age)

where age is the age of participant j in lab i and x:age

denotes the interaction effect between the grouping vari-
able and the moderating variable age. After storing the esti-
mated coefficient of the interaction effect and its sampling
variance, the random-effects model can be fitted analogous
to how we fitted this model for the two-stage IPD meta-
analysis for the lab’s estimated treatment effect θ̂i,

rma(yi = gammai, vi = vi_gammai,

data = ma_dat)

where gammai and vi_gammai are the estimated coeffi-
cient of the interaction effect and corresponding sampling
variance, respectively.

The results of the two-stage IPD meta-analysis are pre-
sented in the third row of Table 3. The coefficient of the vari-
able age was slightly larger than the coefficient of the
variable mean age obtained with the random-effects meta-
regression model (0.050 vs. 0.053), which suggested that
the effects at the participant and lab level were comparable.
The variable age was statistically significant in the two-stage
IPD meta-analysis (z = 2.238, two-tailed p = .025).

This indicates that the effect of assimilative priming on
the hostility rating was moderated by age. The between-
study variance of the true effects of the interaction was esti-
mated as τ̂2 = 0, and the null-hypothesis of no heterogeneity
was not rejected, Q(21) = 18.006 with p = .649.

Statistical Model One-Stage Approach

The linear regression model in (2) is fitted in a single analy-
sis using a multilevel model in one-stage IPDmeta-analysis.
A controversial modeling decision is whether the effects of
the labs (parameter ϕi in linear regression model (2)) have
to be treated as fixed or random effects (Brown &
Prescott, 2015; Higgins et al., 2001). Fixed effects imply that
separate intercepts are estimated for each lab, so the num-
ber of parameters increases if the number of labs increase.
This makes the model not parsimonious, and its results
can be difficult to interpret. Treating the effects as fixed
implies that inferences can only be drawn for the included
effects. Treating the effects as random implies the assump-
tion that the effects are a random sample from a population
of effects. Random effects allow, in contrast to fixed effects,
researchers to generalize the results to the population
effects. This is the reason why including the lab’s effects
as random effects has been argued asmore appropriate than
fixed lab’s effects (Schmid et al., 2004). However, estima-
tion of the variance of the population of effects may be dif-
ficult in the case of a small number of labs (Brown &
Prescott, 2015), so random effects may still be incorporated
as fixed parameters in the model to avoid imprecise estima-
tion of this variance. Another solution is to fit this model in a
Bayesian framework where prior information about the vari-
ance of the population effects can be incorporated (e.g.,
Chung et al., 2013).

Table 3. Results of fitting a random-effects meta-regression model (RE MR) and two-stage and one-stage individual participant data meta-
analysis where age is included as a moderator variable to data of the registered replication report by McCarthy and colleagues (2018)

Estimate (SE) (95% CI) Test of no effect τ̂2 (95% CI) Test H0: τ
2 = 0

RE MR 0.005 (0; 0.043) Q(20) = 23.456, p = .267

Intercept �0.921 (0.812) (�2.512; 0.671) z = �1.134, p = .257

Mean age 0.050 (0.040) (�0.029; 0.128) z = 1.237, p = .216

Two-stage 0.000 (0; 0.011) Q(21) = 18.006, p = .649

Age 0.053 (0.024) (0.007; 0.100) z = 2.238, p = .025

One-stage 0.003 (0; 0.011) w2(2) = 0.355, p = .837a

Intercept 8.264 (0.353) (7.570; 8.951) t(1,701.0) = 23.420, p < .001

x �0.791 (0.814) (�2.308; 0.820) t(18.8) = �0.972, p = .343

Age �0.064 (0.017) (�0.096; �0.030) t(4,477.1) = �3.780, p < .001

Age within 0.050 (0.024) (0.003; 0.096) t(5,331.4) = 2.074, p = .038

Age between 0.044 (0.040) (�0.036; 0.118) t(18.8) = 1.087, p = .291

Note. SE = standard error; CI = confidence interval; τ̂2 = estimate of the between-study variance obtained with restricted maximum likelihood estimation. “x”
is a dummy variable that determines whether a participant is in the control (= reference category) or experimental group, “Age within” is the within-lab
interaction between age and “x,” and “Age between” is the between-lab interaction between age and “x.” aThe anova() function conducts the likelihood-
ratio test by first fitting the models to be compared with full maximum likelihood estimation.
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The linear regression model in (3) can be fitted in a single
analysis to include moderator variables in a one-stage IPD
meta-analysis approach. However, the within and between-
lab interaction between the grouping and moderating vari-
able are not disentangled by fitting this model. A better
approach that disentangles the within and between lab
interaction is to fit the linear regression model (Riley
et al., 2008)

yij ¼ ϕi þ αiwij þ θixij þ γWxij wij �mi

� �þ γBxijmi þ ɛij;

ð4Þ
where mi is the mean of the moderator of the ith lab and
γW and γB is the within and between-lab interaction
between the moderating and grouping variable. The term
γWxij(wij � mi) is the interaction effect of the grouping
variable and the moderator variable minus the ith lab’s
mean of the moderating variable. This is known as
group-mean centering in the literature on multilevel mod-
eling (e.g., Enders & Tofighi, 2007). Also including the
interaction between the grouping variable and the lab
mean in the model (i.e., γBxijmi) allows for disentangling
the within and between-lab interaction of the grouping
and moderator variable.

Applying the One-Stage Approach to the
Data

The one-stage IPD meta-analysis model can be fitted to the
data by using the R package lme4 (Version 1.1.27.1, Bates
et al., 2015) and the R package lmerTest (Version 3.1.3,
Kuznetsova et al., 2017) has to be loaded to get p-values
for hypothesis tests of fixed effects.4 I show how to fit the
one-stage IPD meta-analysis model with random effects
for lab’s effects in the paper, but R code for fitting the model
with fixed effects as lab’s effects is available in the supple-
mental material at https://osf.io/c9zep/ (Van Aert, 2019a).5

The statistical model in (2) can be fitted with random lab
effects using the R code

lmer(y � x + (x | lab), data = ipd_dat)

where ipd_dat is a data frame containing the variables
that are included in this model. Random effects are speci-
fied in the lmer() function by including terms between
brackets. Here (x | lab) indicates that a model is fitted
with a random intercept for lab and a random slope for
the treatment effect that is allowed to be correlated.

The results of fitting one-stage IPD meta-analysis to the
data are shown in the last row of Table 2. The results are
similar to the ones obtained with the random-effects model
and two-stage IPD meta-analysis. The average effect size
estimate is μ̂ = 0.090 (95% CI [0.017; 0.164]), and this
effect size is significantly different from zero, t(18.6) =
2.356, two-tailed p = .030. The estimate of the between-
study variance was close to zero (τ̂2 = 0.002) and not
statistically significant, w2(2) = 0.554, p = .758. The correla-
tion between the intercepts and slopes of the labs was
equal to 0.591, so labs with a larger hostility rating in the
control group also showed a larger effect of assimilative
priming.

The statistical model in (4) to study the interaction effect
between age and the grouping variable can also be fitted
with the lmer() function. The following R code fits the
model

lmer(y � x + (x | lab) + age + I(age-

age_gm):x + age_gm:x, data = ipd_dat)

where I(age-age_gm):x is the interaction effect
between the grouping variable and the group-mean cen-
tered age variable, and age_gm:x is the interaction effect
between the mean age per lab and the grouping variable.

The results of one-stage IPD meta-analysis with age as
moderating variable are included in the last rows of Table 3.
Estimates of the intercept and the “x” are controlled for
other variables in the model and reflect the estimated aver-
age score of participants in the control group and the esti-
mated treatment effect. Estimates of the variables “Age
within” and “Age between” are of particular interest as
these indicate the interaction effect between the grouping
variable and age within and between labs. There was a
small positive interaction effect within labs γ̂W = 0.050

4 There is debate about whether p-values should be reported in the context of multilevel models because it is currently unknown how the
denominator degrees of freedom should be computed. I decided to explain how to obtain p-values and report those for the one-stage IPD meta-
analysis as researchers have a strong desire to interpret and report p-values. However, it is important to realize that these p-values are based
on approximate rather than exact denominator degrees of freedom. Luke (2017) showed by means of simulations that the default Satterthwaite
approximation implemented in the R package lmerTest (Kuznetsova et al., 2017) adequately controlled Type-I error and had the comparable
statistical power to other methods.

5 I conducted a small Monte-Carlo simulation study to examine whether the estimate of the treatment effect, its standard error, and the estimate
of the between-study variance were different for models with random and fixed effects as lab’s effects. Data were generated using a procedure
to stay as close as possible to the data of the RRR by McCarthy and colleagues (2018). That is, parameter estimates of the one-stage IPD meta-
analysis with random effects for lab’s effects were used for generating data, and the same number of labs as in the RRR was used. Sample sizes
were based on the observed sample sizes in the labs, but these were also systematically varied as small sample sizes were expected to be
favorable for fixed effects as lab’s effects. Results were highly similar for the two different one-stage IPD meta-analysis models. Non-
convergence occurred in approximately 50% of the iterations. For more details about this Monte-Carlo simulation study, R code, and all results
see Van Aert, 2019b: https://osf.io/r5kqy/.

�2022 The Author(s). Distributed as a Hogrefe OpenMind article
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(95% CI [0.003; 0.096], t(5,331.4) = 2.074, two-tailed p =
.038), but not between labs γ̂B = 0.044 (95% CI [�0.036;
0.118], t(18.8) = 1.087, two-tailed p = .291). However, γ̂W
and γ̂B were highly comparable, so there were no clear indi-
cations that the interaction effect was different between and
within labs. Also, note the difference in degrees of freedom
for testing these interaction effects that may cause a statis-
tically significant effect within but not between labs. The
between-study variance in lab’s true effect size was negligi-
ble (τ̂2 = 0.003) and not statistically significant, w2(2) =
0.355, p = .837. The correlation between the intercepts
and slopes of the labs was equal to 0.371.

Figure 2 provides an overview of the effect of (mean) age
within and between labs. The solid line represents the rela-
tionship between labs that was estimated by the meta-
regression model. Squares denote the observed effect size
and mean age per lab, with the dashed line reflecting the
effect of age within each lab that was obtained in the first
step of the two-stage IPD meta-analysis. The slope of a
dashed line illustrates to what extent the treatment effect
within a lab is moderated by age. Although the slopes of
the within lab effect differs across labs, this figure corrobo-
rates the results in Table 3 showing that the effect of (mean)
age was not substantially different between and within labs.

Conclusion

Multilab replication projects are becoming more popular to
examine whether an effect can be replicated and to what
extent it depends on contextual factors. Data of these pro-
jects are commonly analyzed using lab’s summary statistics

by means of conventional meta-analysis methods. This is
certainly a suboptimal approach because differences within
a lab are lost. This paper illustrated a better approach for
analyzing data of multilab replication projects using IPD
meta-analysis.

IPD meta-analysis allows for distinguishing the effect at
the participant and lab level in contrast to conventional
meta-analysis models. An artificial example illustrated that
drawing conclusions at the participant level using the con-
ventional meta-regression model is not allowed and that
it could lead to committing an ecological fallacy if it is done.
Other advantages of IPD meta-analysis are larger statistical
power for testing moderator effects than conventional
meta-analysis (Lambert et al., 2002; Simmonds & Higgins,
2007) and more modeling flexibility. Applying one-stage
and two-stage IPD meta-analysis to the RRR by McCarthy
and colleagues (2018) did not alter the main conclusion that
assimilative priming had a small but statistically significant
effect on hostility ratings. An interesting finding obtained
with IPD meta-analysis was that the moderating effect of
age was present within but not between labs.

IPD meta-analysis was illustrated by using raw mean dif-
ference as effect size measure because this is a common
effect size measure for multilab replication projects and it
was used in the RRR of McCarthy and colleagues (2018).
However, these models can also be applied for other effect
size measures as, for example, the correlation coefficient
and binary data (see for illustrations Pigott et al., 2012;
Turner et al., 2000; Whitehead, 2002). In the case of the
Pearson correlation coefficient, the independent and
dependent variables need to be standardized before being
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Figure 2. The effect of participant’s age and mean age per lab on the raw mean difference in the RRR by McCarthy and colleagues (2018). Squares
denote the observed effect sizes and mean age in the labs. The size of squares is proportional to the inverse of the standard error of the effect
sizes. The solid line shows the estimated effect between labs based on the meta-regression. The dashed lines show the effect of age within lab
obtained in the two-stage IPD meta-analysis (i.e., γ̂i in model (3)). The length of the dashed lines is proportional to the standard deviation of age
per lab.
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included in a one-stage IPD meta-analysis. The one-stage
IPD meta-analysis then returns an estimate of the average
correlation because the regression coefficient of a standard-
ized dependent variable regressed on a standardized inde-
pendent variable equals a Pearson correlation coefficient.
An IPD meta-analysis based on binary data is generally less
cumbersome than for other effect size measures since par-
ticipant data can be extracted from cell frequencies of con-
tingency tables in a study.

I recommend analyzing data of any multilab replication
project using one-stage IPD meta-analysis. One-stage IPD
meta-analysis is preferred over two-stage IPDmeta-analysis
because it generally has larger statistical power (Fisher et al.,
2011; Simmonds & Higgins, 2007) and has more modeling
flexibility. For example, moderators at the first level (partic-
ipant) and second level (lab) can be added as well as inter-
action effects between these moderators or an extra
random effect can be added to take into account that labs
are located in different countries. The model flexibility of
a one-stage IPDmeta-analysis can also be used to make dif-
ferent assumptions about the within-study residual variance.
This residual variance was assumed to be the same in all
control and experimental groups of the labs in the used
one-stage IPDmeta-analysis, but researchers may have the-
oretical reasons to impose a weaker assumption on the
within-study residual variance. Another advantage of one-
stage IPD meta-analysis is that it does not require special-
ized meta-analysis software in contrast to two-stage IPD
meta-analysis and also conventional meta-analysis. Popular
statistical software packages such as R, SPSS, Stata, and SAS
all include functionality to fit multilevel models that can also
be used for one-stage IPD meta-analysis.

A drawback of one-stage IPD meta-analysis is that it is
more complex to implement compared to two-stage IPD
and conventional meta-analysis. This increased complexity
is caused by the modeling flexibility that requires research-
ers to carefully think about how to specify their model. This
complexity of one-stage IPD meta-analysis is illustrated by
Jackson and colleagues (2018), who identified six one-stage
IPD meta-analysis models for synthesizing studies with
odds ratio as effect size measure, and five of these models
showed acceptable statistical properties. Hence, there is
currently not a single one-stage IPD meta-analysis model,
and future research is needed to assess what the best
one-stage IPDmeta-analysis models are. Another drawback
of one-stage IPD meta-analysis is that convergence prob-
lems may arise. These problems may be solved by simplify-
ing the random part of the model. For example, researchers
may opt for one-stage IPD meta-analysis with fixed rather
than random lab effects. Researchers may use two-stage
IPD meta-analysis to analyze their data as a last resort if
convergence problems of one-stage IPD meta-analysis can-
not be resolved.

This paper and the proposed recommendations are in
line with a recent article (McShane & Böckenholt, 2020)
that advocated meta-analysts by means of a thought exper-
iment to think about how they would analyze their data if
they would possess the participant data rather than only
the summary data. This thought experiment will motivate
researchers to apply more advanced and appropriate
meta-analysis models such as a three-level meta-analysis
model (e.g., Konstantopoulos, 2011; Van den Noortgate &
Onghena, 2003) when the nesting of studies in labs is,
for instance, taken into account or multivariate meta-analy-
sis where multiple outcomes are analyzed simultaneously
(e.g., Hedges, 2019; Van Houwelingen et al., 2002). One-
stage IPD meta-analysis is also ideally suited for fitting
these more advanced meta-analysis models due to its mod-
eling flexibility if the participant data are available.

Fitting IPD meta-analysis models to data in psychology
and this tutorial paper, in particular, may become more rel-
evant in the distant future when publishing participant data
hopefully becomes the norm. However, IPD meta-analysis
models can already be applied within psychology in other
situations than multilab replication projects. For instance,
meta-analyzing studies in a multistudy paper in a so-called
internal meta-analysis (e.g., Cumming, 2008, 2012; Maner,
2014; McShane & Böckenholt, 2017) has increased in popu-
larity (Ueno et al., 2016). The usual approach of an internal
meta-analysis is to meta-analyze summary data, whereas
analyzing the participant data by means of an IPD meta-
analysis is a better alternative. There are, however, also rare
cases where computing summary statistics based on IPD
data is beneficial. In the case of Big Data, it may be unfea-
sible to analyze the IPD data directly because the data are
too large to handle with a computer. A solution could be
to analyze the data using a split/analyze/meta-analyze
(SAM) approach where the data are (1) split into smaller
chunks, (2) each chunk is analyzed separately, and (3) the
results of the analysis of each chunk are combined using a
meta-analysis (Cheung& Jak, 2016; Zhang et al., 2018). This
approach is comparable to a two-stage IPD meta-analysis.

To conclude, the application of IPD meta-analysis meth-
ods to multilab replication projects has the potential to yield
relevant insights that could not have been obtained by con-
ventional meta-analysis methods. I hope that this paper cre-
ates awareness for IPD meta-analysis methods within the
research field of psychology and enables researchers to
apply these methods to their own data.
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