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Abstract—Gas turbines (GTs) are thermal machines used to transform the energy released in
combustion with a hydrocarbon into mechanical power, in order to drive a machine or generate
thrust in aircraft. The critical issue in the GT design are the parts exposed to extreme mechanical and
thermal conditions, e.g., the first row of turbine blades. The GT thermal efficiency is limited by the
maximum temperature the blade materials can withstand without softening or creeping. Currently,
the maximum operating temperature is above the softening point of the blade material thanks to
techniques of ceramic coatings of low thermal conductivity, called Thermal Barrier Coating (TBC),
and techniques of blade cooling. The internal cooling of blades involves conduits inside them for air
that comes from a bleed in an intermediate compressor stage. The air bleeding is around 3 to 5%
of the main GT flow. This air and the heat flow that it receives are not used to generate power,
so it is necessary to optimize the cooling techniques in order to control the temperature using
the least amount of air and minimum heat flux evacuated, for holding the GT overall efficiency
high. The present work studies the internal cooling of Elemental Gas Turbine Blade (EGTB)
with a fixed thickness of the TBC and the optimization of the conduit shape and position over a
cross section in 2D. The optimization is carried out by exhaustive searching method based on the
Constructal Theory. The optimization of the position, size, and aspect ratio of EGTBs was done for
two types of standard elliptical conduits of different geometries, uniformly distributed. Two different
objective functions are analyzed: minimum maximum temperature on the metal and maximum heat
evacuation efficiency. The outcome of this work establishes that the use of elliptical conduits of
aspect ratio 2:5 leads to improvement in the thermal performance of cooled blades. As compared with
circular conduits of the same area, elliptical conduits allow transfer of a greater amount of heat; with
a correct design, they enable a lower maximum temperature on the metal. Besides, the constructal
designs obtained in this study for the minimum maximum relative temperature T̃max or maximum
heat evacuation efficiency ξ were not identical.

DOI: 10.1134/S1810232819040064

1. INTRODUCTION

The critical issue in a GT (Gas Turbine) design is the sections exposed to extreme conditions, such
as the first fixed blades of the nozzle (vanes) and the moving blades of the first turbine. The Rotor Inlet
Temperature (RIT) is the critical variable that limits the efficiency and durability of GT [1, 6].

Currently, the RIT is above the softening point of material blade, due to ceramic coatings of low
thermal conductivity, known as Thermal Barrier Coating (TBC), and internal and external cooling of
blades, allowing the temperature in modern turbines to exceed 1400◦C [1, 7].
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The internal cooling is carried out by means of internal conduits disposed radially in the blade body,
which are to evacuate the heat coming from the hot gases in contact with the external surface. The
evacuation is performed by the flow of air supplied from a compressor. This air and the heat flow that it
receives are not used to generate power, so it is necessary to optimize the cooling techniques in order to
control the temperature using the least amount of air and minimum heat flux evacuated, the GT overall
efficiency kept high [1].

Bejan and Lorente [2] applied the Constructal Theory to study optimization of cooling conduits in
gas turbines using an EGTB (Elemental Gas Turbine Blade) in reduced-scale models with circular
conduits. The thermal optimization was carried out by analytical minimization of the distance travelled
by the heat flow; its results are valid under the assumption that the temperature minimization is similar
to minimization of the distance travelled by the heat flow L and that the optimal design divides the heat
equally in multiple scale designs.

Feng et al. [4] studied the same EGTB using the Constructal Design by solving the heat diffusion with
numerical methods to minimize the maximum thermal resistance. Their results establish that for a fixed
ratio of the cavity area and the domain area, it is possible to optimize the conduit sizes and the domain
aspect ratio and that the vertical position of one duct cannot be optimized. With respect to the simple
case of one type of conduits, the configuration of multiple scales with two types of conduit sizes yields
a sensible improvement in the cooling, reducing the thermal resistance by 51.3% and thus lowering the
maximum temperature.

The objective of this work is to improve the internal cooling efficiency of EGTB, replacing circular
multiple-scale conduits with elliptical conduits with variable aspect ratio, which gives two additional
degrees of freedom in the model. Besides that, for a more representative model, a fixed thickness of the
thermal barrier coating is added, and the heat transfer by convection and radiation on the boundaries is
considered.

2. PHYSICAL AND MATHEMATICAL MODELS

This work focuses on the optimization design of two types of elliptical cooling conduits in an EGTB,
in search for a design that minimizes the highest temperature on the metal or generates the maximum
heat evacuation. The optimization is carried out by exhaustive searching methodology, the heat diffusion
equation solved using the finite elements method. The analysis is performed in the steady regime in a
two-dimensional blade section, as illustrated in Fig. 1a, with constant thermo-physical properties. The
outer blade surface is completely wetted by a stream of combustion gases at high temperature, while the
blade is internally cooled by air passing through internal elliptical conduits that run radially the blade
length.

Figure 1a shows two types of elliptical conduits. Two larger conduits are fixed vertically in the blade
centre; their perimeter defines ellipse 0. The second-type elliptical conduits are placed in the middle
between two consecutive ellipses 0; they are called ellipses 1. The blade design is defined by the
shape, size, and position of both conduits, causing a problem of multiple scales. Due to the vertical
and horizontal symmetry of the conduit patterns, one-eighth portion of the central section of height H
and base L is chosen as the numerical domain (the hatched section shown in Fig. 1b along with the
imposed boundary conditions).

The numerical model is supplemented with a thermal barrier coating (TBC) of 7YSZ ceramic of 1 mm
constant thickness, which is typical of land based GT [7]. The boundary conditions incorporate the heat
transfer by convection and radiation at the outer edge and convection in the internal conduits through
which air circulates. Due to the symmetry, the remaining surfaces are considered as adiabatic.

The outer edge is wetted by the stream of combustion gases, whose temperature is T∞ = 1473 K.
The external convection coefficient (he) is obtained from the average Nusselt number in the turbulent
regime for a flat plate of a fixed length of 0.4 m [24],

Nu = 0.037 Re0.8Pr1/3 = (he4L)/k∞. (1)

The Reynolds number is set equal to 500,000, and the thermo-physical properties of the gas stream
are given by k∞ = 0.07868 W/(m·K) (obtained at 1473 K) and Pr = 0.726 (obtained at 1473 K). Note
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Fig. 1. (a) EGTB cross section of length 4L and height 2H with 2 types of elliptical conduits; (b) dimensions and
boundary condition on the study domain; (c) EGTB with successive mesh refination.

that at high temperature, the Prandtl number of combustion gases can be considered as the air Prandtl
number.

At the conduit edges, the surface is in contact with air at the average temperature Tmin = 873 K.
The internal convection coefficients hi0 and hi1 for ellipses 0 and 1, respectively, are obtained from the
Nusselt number for smooth pipes in the turbulent regime with an equivalent hydraulic diameter Dh [24],

Nu = 0.023 Re0.8Pr0.4 = (hiDh)/kair, (2)

where the hydraulic diameters of each elliptical conduit are given by the following expressions:

Dh1 =
4L1H1

3(L1 + H1) −
p

(3L1 + H1)(L1 + 3H1)
,
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Fig. 1. (Contd.)

Dh0 =
4L0H0

3(L0 + H0) −
p

(3L0 + H0)(L0 + 3H0)
, (3)

and the Reynolds number for each conduit is obtained from its definition,

Re =
V Dh

ν
. (4)

The average velocity (V ) of air circulating through the conduits is obtained from the equation that
establishes the pressure drop for fully developed viscous flows circulating inside pipes in the steady
regime [24]:

V =
µ

2Dh(Pbase − Ptip)
ρfs

¶1/2

, (5)

where f is the Darcy friction factor, S is the conduit length, and ρ is the density of air. The density of air
is determined from the ideal gas state equation at the average pressure and temperature of 873 K.

The Darcy friction factor for smooth tubes in the turbulent regime is determined according to the
explicit first Petukhov equation [24], valid for Reynolds number between 3 × 103 and 5 × 106.

The physical properties used to determine the internal convection coefficient are as follows:
kair = 0.006093 W/(m·K), air conductivity at 873 K;
Pr = 0.7037, air Prandtl number at 873 K;
ν = 7.806 × 10−5 m/s2, kinematic viscosity of air at 500◦C;
Ptip = 200.1 kPa, pressure at the blade tip;
Pbase = 200 kPa, pressure at the blade base;
ρ = 0.7984 kg/m3, air density at 873 K and 200.05 kPa;
S = 0.2 m.
The heat transfer through the blade metallic body and the ceramic coating is entirely defined by

the thermal diffusion. The metallic and ceramic parts are considered isotropic with constant thermal
conductivity, km and kc, respectively.

The heat diffusion is modelled by the following partial differential equation:

µ
∂2T

∂x2
+

∂2T

∂y2

¶
= 0. (6)
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3. NUMERICAL METHODS AND SOLUTION STRATEGIES

3.1. Boundary Conditions

The heat diffusion equation, Eq. (6), is solved using the routine developed in MATLAB with the
boundary conditions detailed below and shown in Fig. 1b.

With symmetry edges, the adiabatic conditions are defined as follows:

∂T

∂x
= 0 for x = 0; 0 ≤ y ≤ H − 2H1 − H2 and H − H2 ≤ y ≤ H, (7a)

∂T

∂y
= 0 for y = 0; 0 ≤ x ≤ L − L0, (7b)

∂T

∂x
= 0 for x = L; H0 ≤ y ≤ H. (7c)

The external edge at the temperature T in contact with the combustion gases at the temperature
T∞ transfers heat by convection and thermal radiation to the surroundings. The thermal-radiation heat
transfer between the high temperature combustion gases at T∞ and the ceramic coating surface at T is
modelled as thermal radiation exchange between a small surface at the temperature T placed in a large
cavity with the temperature T∞, which allows us to write the net heat exchange (over the area WL)
as [24]

q

WL
= kc

∂T

∂y
= he(T∞ − T ) + σε(T 4

∞ − T 4) for y = H and 0 ≤ x ≤ L. (8)

With the conduit surfaces at the temperature T and the air inside them at the temperature Tmin, the heat
exchange by convection is described as follows:

Convection at ellipse 0: km
∂T

∂r
= hi0(T − Tmin) for H0 ≤ r ≤ L0 and π/2 ≤ θ ≤ π, (9)

Convection at ellipse 1: km
∂T

∂r
= hi1(T − Tmin) for H1 ≤ r ≤ L1 and − π/2 ≤ θ ≤ π/2. (10)

In steady-state conditions, the net heat flux into the domain must be equal to the heat flux evacuated
through the cooling conduits.

3.2. Dimensionlessness of the problem

To reduce the quantity of variables and make the optimization process feasible, the problem is made
dimensionless as follows.

The relative temperature of the blades is defined as

T̃ =
T − Tmin

T∞ − Tmin
. (11)

The distance perpendicular to the plane is taken equal to unity,

W = 1. (12)

The lengths become dimensionless from the square root of the domain area, given as

A = HL, (13)
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(x̃, ỹ, H̃, L̃, H̃0, L̃0, H̃1, L̃1, H̃2) =
(x, y,H,L,H0, L0,H1, L1,H2)√

A
. (14)

The dimensionless form of the heat diffusion equation, Eq. (6), is as follows:

Ã
∂2T̃

∂x̃2
+

∂2T̃

∂ỹ2

!

= 0. (15)

The heat transfer capacity over different configurations is analysed using the heat evacuation
efficiency indicator, defined as

ξ =
q/(kW )

Tmax − Tmin
. (16)

So, the dimensionless heat evacuation efficiency becomes

ξ =
q/kW

T̃max · (T∞ − Tmin)
. (17)

The configuration with the highest heat flux q and lowest maximum relative blade temperature T̃max

will have the highest efficiency and therefore the highest ξ value, where the rest of the variables are
constant for the model.

The corresponding dimensionless boundary conditions are as follows.
• Adiabatic surfaces:

∂T̃

∂x̃
= 0 for x̃ = 0; 0 ≤ ỹ ≤ H̃ − 2H̃1 − H̃2 and H̃ − H̃2 ≤ ỹ ≤ H̃, (18a)

∂T̃

∂ỹ
= 0 for ỹ = 0; 0 ≤ x̃ ≤ L̃ − L̃0, (18b)

∂T̃

∂x̃
= 0 for x̃ = L̃; H̃0 ≤ ỹ ≤ H̃. (18c)

• External surface: convection + radiation

∂T̃

∂ỹ
= −αeT̃

4 − βeT̃
3 − χeT̃

2 − δeT̃ + φe, (19)

where the constants are as follows:

αe =
σ εc

√
A(ΔT )3

kc
, βe =

4σ εc

√
A (ΔT )2 Tmin

kc
, χe =

6σ εc

√
A (ΔT )T 2

min

kc
,

δe =
he

√
A

kc
+

4σ εc

√
A T 3

min

kc
, and φe =

he

√
A

kc
+

σ εc

√
A (T 4

∞ − T 4
min)

kcΔT
. (20)

• Internal surface (conduits): convection

∂T̃

∂r̃
= −βi T̃ , (21)
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where βi is the Biot number, defined as

βi =
hi

√
A

km
. (22)

The following thermo-physical properties are used:
kc = 2.5 W/(m·K), thermal conductivity of 7YSZ ceramic at 1473 K;
km = 21 W/(m·K), thermal conductivity of Nimonic 90 at 873 K;
εc = 0.6, emissivity of 7YSZ ceramic at 1473 K;
σ = 5.670373 × 10−8 W/(m2·K4), Stefan–Boltzmann constant;
T∞ = 1473 K, temperature of hot gases;
Tmin = 873 K, average temperature of cooling air;
ΔT = T∞ − Tmin = 600 K, maximum temperature difference.

3.3. Treatment of Nonlinearities

With the nonlinearity in Eq. (19) because of the thermal radiation exchange on the outer edge
proportional to the fourth power of the relative temperature, the field of relative temperature T̃ over the
whole blade is solved using the iterative Gauss–Newton method.

Eq. (19) is linearized as follows:

∂T̃

∂ỹ
= −αeT̃

4 − βeT̃
3 − χeT̃

2 − δeT̃ + φe = Se, (23)

where the source term Se is linearized with respect to the previous iteration (explicitly) in the following
way:

Se − S∗
e

T̃ − T̃ ∗ =
dS∗

e

dT̃ ∗ . (24)

S∗
e is the source term evaluated from the known relative temperature T̃ ∗.

So, Eq. (23) takes the following form:

∂T̃

∂ỹ
+ QeT̃ = Ge, (25)

where Qe and Ge are constant functions solely of the relative temperature in the previous iteration T̃ ∗:

Qe = −4αeT̃
∗3 − 3βeT̃

∗2 − 2χeT̃
∗ − δe, (26)

Ge = 3αeT̃
∗4 + 2βeT̃

∗3 + χeT̃
∗2 + φe. (27)

The field of relative temperature can be solved by following algorithm: the relative temperature T̃ ∗

over the outer edge is estimated, and then the coefficients of Eqs. (26) and (27), which become Eq. (25)
in the linear boundary condition, are calculated. The field of relative temperature over the whole blade
is solved by the finite elements method, the relative temperature over the outer edge used as the next
estimation, repeated until convergence. The convergence criterion adopted with respect to the previous
relative temperature iterations T̃ ∗ for all cases is

1 × 10−4 <
T̃ − T̃ ∗

T̃
. (28)
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3.4. Optimization: Restrictions

The dimensionless domain becomes unitary:

1 = H̃ L̃. (29)

The 1/4 ellipse 0 dimensionless area is

φ0 =
π

4
L̃0H̃0. (30)

The 1/2 ellipse 1 dimensionless area is

φ1 =
π

2
L̃1H̃1. (31)

The material ratio (φ) is defined as the ratio of the total area of the elliptical conduits to the domain area.
This relationship represents the percentage of cavity in the solid domain,

φ = φ0 + φ1. (32)

Only the values of φ0 that correspond to an ellipse 0 area greater or equal to the ellipse 1 area are
analysed. The total area of the elliptical conduits in the EGTB is

A0 = 4φ0 and A1 = 2φ1. (33)

Besides, to fulfil the condition A0 ≥ A1,

φ0 ≥ 1/3 φ. (34)

Therefore, for conduit 0 to be always equal to or greater than conduit 1, the following minimum
relationship must be fulfilled: [φ0/φ]min = 0.33. Finally, the limit for the maximum size of conduit 0 such
that it occupies 90% of the assigned material ratio is defined,

[φ0/φ]max = 0.9. (35)

3.5. Optimization: Degrees of Freedom

Minimization of the maximum relative temperature over the metal blade [T̃max]min and maximization
of the heat evacuation efficiency [ξ]max are separate prime objectives of this work. Groups of quotients of
dimensionless variables are defined, representing five geometric degrees of freedom to be optimized for
different values of fixed material relation (restriction φ):

n
[T̃max]min; [ξ]max; φ

o
= f

D
φ0; H̃/L̃; H̃0/L̃0; H̃1/L̃1; H̃2

E
. (36)

The ranges of all variables used during the optimization process are presented in Table 1.
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Table 2. Mesh independency

Refination Number of triangles T̃ i
max |(T̃ i

max − T̃ i−1
max)/T̃ i−1

max| · 100

Initial 142 0.3645 —

1o 568 0.3666 0.58

2o 2272 0.3668 0.05

3o 9088 0.3669 0.03

Table 3. Comparison of T̃max for different H̃/L̃ solved with Matlab R° and Comsol R°

φ φ0 H̃/L̃ H̃0/L̃0 H̃1/L̃1 H̃2 T̃max Matlab T̃max Comsol Difference [%]

0.1 0.0333 0.4 0.4 0.4 0.1 0.97586148 0.97557634 0.029%

0.1 0.0333 0.6 0.4 0.4 0.1 0.96865768 0.96836596 0.029%

0.1 0.0333 0.8 0.4 0.4 0.1 0.96435095 0.96404817 0.030%

0.1 0.0333 1 0.4 0.4 0.1 0.95975634 0.95944476 0.031%

0.1 0.0333 1.2 0.4 0.4 0.1 0.95511816 0.95479964 0.032%

0.1 0.0333 1.4 0.4 0.4 0.1 0.95057332 0.9502479 0.033%

0.1 0.0333 1.6 0.4 0.4 0.1 0.94711033 0.94687107 0.024%

0.1 0.0333 1.8 0.4 0.4 0.1 0.94660378 0.94636598 0.024%

0.1 0.0333 2 0.4 0.4 0.1 0.94610321 0.94587155 0.023%

4. GRID CONVERGENCE STUDY AND VERIFICATION

The field of dimensionless temperatures on a solid is obtained by solving Eq. (15) with the boundary
conditions determined by Eqs. (18a), (18b), (18c), (21), and (25) using the finite element method
(numerical routine developed in MATLAB) with a triangular grid.

For the grid convergence, the grid was continually refined until differences of less than 0.5% in two
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Fig. 2. (a) T̃max vs. H̃2 for different H̃0/L̃0 with φ = 0.1, φ0 = 0.05, H̃/L̃ = 1, and H̃1/L̃1 = 0.4; (b) ξ vs. H̃2 for
different H̃/L̃ values, with φ = 0.1, φ0 = 0.05, H̃1/L̃1 = 0.4, and H̃0/L̃0 = 0.4.

successive minimum maximum relative temperatures were achieved:
¯
¯̄³

T̃ i
max − T̃ i−1

max

´
/T̃ i−1

max

¯
¯̄ · 100 < 0.5. (37)

Figure 1c show an example of successive refinement over an EGBT design. Table 2 presents values of
T̃max obtained for each case, demonstrating that in this case the grid independency is reached in the
second refinement.
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Fig. 3. T̃max vs. φ0 for different (a) H̃0/L̃0 with φ = 0.1, H̃1/L̃1 = 1, H̃/L̃ = 1, and H̃2 = 0.2; (b) H̃1/L̃1 with
φ = 0.1, H̃0/L̃0 = 1, H̃/L̃ = 1, and H̃2 = 0.2.

The numerical routine model developed in Matlab R° (Matlab, 2016) is verified by comparison with
solutions of the same problem obtained in the Comsol R° software (Comsol, 2016). Table 3 presents an

example with the maximum relative temperature T̃max for the same configuration solved by both ways,
with a maximum difference of about 0.033%. So, the Matlab code can be considered as adequate to run
the simulations.
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Fig. 4. ξ vs. φ0 for different (a) H̃1/L̃1, with φ = 0.1, H̃0/L̃0 = 1, H̃2 = 0.1, and H̃/L̃ = 1; (b) H̃0/L̃0, with φ = 0.1,
H̃1/L̃1 = 1, H̃2 = 0.1, and H̃/L̃ = 1.

5. RESULTS

Figure 2a presents the results for T̃max obtained for several H̃0/L̃0 as a function of H̃2, with φ = 0.1,
φ0 = 0.05, H̃/L̃ = 1, and H̃1/L̃1 = 0.4, while Fig. 2b presents the results for ξ also obtained for several
H̃0/L̃0 as a function of H̃2, with φ = 0.1, H̃/L̃ = 1, H̃0/L̃0 = 1, and H̃1/L̃1 = 1. For a fixed material
ratio of 10% (φ = 0.1), the results show that the optimum value of the wall thickness H̃2 that generates
the minimum T̃max is not always found at the lower range value. So, an optimal value can be obtained
at the expense of greater distance travelled by the heat, as in the case showed in Fig. 2a. The heat
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Fig. 5. (a) T̃max vs. H̃/L̃ for different φ0 with φ = 0.1, H̃1/L̃1 = 1, H̃0/L̃0 = 1, and H̃2 = 0.1; (b) T̃max vs. φ0 for
different H̃/L̃ with φ = 0.1, H̃1/L̃1 = 1, H̃0/L̃0 = 1, and H̃2 = 0.1.

evacuation efficiency always increases almost linearly when the wall thickness H̃2 decreases, for different
H̃/L̃, H̃0/L̃0, H̃1/L̃1 and φ0 values, as can be seen in Fig. 2b.

In Fig. 3a, the T̃max variation is plotted against φ0 for different H̃0/L̃0 values. One can see that for
all curves there is an optimum value of φ0 that generates the minimum T̃max. That means that each
aspect ratio of ellipse 0 has a unique optimal conduit size. From all curves, H̃0/L̃0 = 0.4 generates the
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Fig. 6. (a) ξ vs. H̃/L̃ for different φ0, with φ = 0.1, H̃0/L̃0 = 0.4, H̃1/L̃1 = 0.4, and H̃2 = 0.1; (b) Zoom over the
boxed area of Fig. 6 (a).

minimum T̃max for values of φ0 < 0.043, while for φ0 > 0.043 so does the curve of H̃0/L̃0 = 1.9, as can
be seen in the same figure.

Figure 3b presents the T̃max response as a function of φ0 for constant curves H̃1/L̃1. There is an
optimal value for all curves, except for the case of H̃1/L̃1 = 0.4, where the T̃max decreases monotonically
as φ0 also decreases. This thermal behaviour is explained because for H̃1/L̃1 = 0.4 it represents an
ellipse 1 with a lower aspect ratio (flattened). For a fixed material ratio φ = 0.1, as φ0 is reduced,
the ellipse 1 area becomes larger, propagating over a large part of the fixed thickness domain L. The
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Fig. 7. Isotherms plot over optimal designs of Table 4 for minimum T̃max (left) and maximum ξ (right).

Table 4. Minimum T̃max and maximal ξ designs for φ = 0.1

φ φ0 H̃/L̃ H̃0/L̃0 H̃1/L̃1 H̃2 T̃max ξ

0.1 0.043 0.3 0.4 0.4 0.1 0.983 0.42

0.1 0.033 2 0.4 0.4 0.2 0.948 0.34

minimum T̃max is reached for the minimum aspect ratio of ellipse 1 over the entire range of φ0 when
H̃/L̃ takes values equal to or less than 1.

For different ellipse 1 aspect ratios H̃1/L̃1, the heat evacuation efficiency continuously increases as
φ0 decreases, as well as for different ellipse 0 aspect ratios H̃0/L̃0 shown in Figs. 4a and 4b, respectively.
Analysis of the aforementioned figures shows that the maximum efficiency is achieved for both ellipses
with the lowest aspect ratio and same conduit sizes (φ0 = 0.033).

Figures 5a and 5b show the behaviour of T̃max with respect to φ0 and the domain aspect ratio H̃/L̃.
In Fig. 5a, it can be seen that T̃max drops as H̃/L̃ increases for all values of φ0, which shows great
influence of H̃/L̃ on T̃max. In Fig. 5b it is shown that a domain area flattened of rectangular and square
shape (represented by curves of H/L̃ equal to 0.4, 0.7, and 1) has a unique optimal conduit area, which
generate minimum T̃max with some value between the extreme range values. Meanwhile, for all curves
of H̃/L̃ > 1, ever there is a unique optimal value of φ0 = 0.033, that is, conduits of equal size (that the
value of φ0 represents same conduit area, see Eq. (34)). So, the optimal value of the duct size φ0 is
strongly dependent on the domain aspect ratio. The absolute minimum T̃max is reached with the highest
aspect ratio of the domain, H̃/L̃ = 2 and conduits of equal size. Of all the variables analysed so far, the
one with the highest influence on T̃max is the domain aspect ratio and thus its correct choice can reduce
T̃max by up to 3% (from 0.95 to 0.98, Fig. 5b).

The net heat flux entering the domain is a function, among other things, of the external surface
temperature (which is not imposed) and the area wetted by the hot gases (of dimensionless length L
and unitary depth W ). Therefore, as H̃/L̃ increases, the outer edge decreases, as does the net heat
entering the domain. The minimum absolute value of T̃max is reached for φ0 = 0.033 and H̃/L̃ = 2,
which means the lowest transfer area and the largest ellipse 1 size (according to the established range
limits) and therefore lower net heat flux introduced. The behaviour of T̃max with H̃/L̃ makes impossible
optimization beyond the range limits. Therefore, the optimal value of H̃/L̃ for the minimum T̃max is taken
as H̃/L̃ = 2 and the remaining variables are optimized.
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Fig. 8. (a) T̃max vs. H̃2 for different φ with φ0 = 0.033, H̃1/L̃1 = 0.4, H̃0/L̃0 = 0.4, and H̃/L̃ = 1; (b) ξ vs. H̃2 for
different φ with φ0 = 0.033, H̃1/L̃1 = 0.4, H̃0/L̃0 = 0.4, and H̃/L̃ = 1.

Figure 6a presents ξ versus H̃/L̃ for different φ0. The heat evacuation efficiency increases almost
linearly as H̃/L̃ decreases over the range [0.5–2]. The minimum efficiency is reached with the maximum
domain aspect ratio, i.e., H̃/L̃ = 2, which is a geometry that also generates the minimum T̃max owing
to the lower heat flux entering the domain. As the aspect ratio decreases, the external transfer area
increases, thus raising the heat flux input and the efficiency. There is a maximum efficiency that is
reached for φ0 = 0.033 over the whole range [0.4–2]. However, for values H̃/L̃ less than 0.4, curves with
φ0 ≤ 0.063 present an absolute maximum of efficiency, while for curves with φ0 > 0.063, the efficiency
keeps increasing as H̃/L̃ decreases. The curve with φ0 = 0.043 is the optimal value sought, which
generates the maximum absolute efficiency throughout the range of variation, as can be seen in the
extension of that area in Fig. 6b. After successive simulations, with the variable ranges shown in Table 1,
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Fig. 9. T̃max vs. φ0 for different H̃/L̃ with (a) φ = 0.08, H̃1/L̃1 = 0.4, H̃0/L̃0 = 0.4, and H̃2 = 0.1; (b) φ = 0.16,
H̃1/L̃1 = 0.4, H̃0/L̃0 = 0.4, and H̃2 = 0.1.

the maximum absolute efficiency is reached for φ0 = 0.043, H̃/L̃ = 0.3, H̃0/L̃0 = 0.4, H̃1/L̃1 = 0.4, and
H̃2 = 0.1.

Table 4 summarizes the designs of minimum T̃max and maximum ξ for φ = 0.1. Figure 7 presents
isotherms over the optimal configurations of Table 4. In Fig. 7, the maximum efficiency configuration
shows greater penetration of the high temperature isotherms (red colour) over the blade domain,
more heat transferred. On the other hand, the configuration with the minimum maximum temperature
maintains the high temperature isotherms near the outer edge, where ellipses 1 transfer most of the heat
entering the domain.

Then the behaviour of T̃max and the heat evacuation efficiency varying the material ratio φ is analysed.
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As shown in Fig. 8a, there is a minimum T̃max for optimal values of H̃2 when φ is equal to or less than
0.14, i.e., when the conduit sizes are small enough. The optimal design groups the conduits most closely
to each other at the expense of larger distance travelled by the heat flow. This behaviour is not hold for φ
values over 0.14 (Fig. 8a). On the other hand, the heat evacuation efficiency increases practically linearly
as H̃2 decreases for all the φ range, which reduces the distance travelled by the heat flow and increases
the net heat transferred, as seen in Fig. 8b.

The thermal behaviour of the blade with H̃/L̃ and φ0 for different φ values is similar to that already
described for φ = 0.1. This fact is exemplified in Figs. 9a and 9b for φ = 0.08 and 0.16, respectively, where
relocation of the curves toward lower values T̃max is observed, the increase in φ conserving practically
the same tendency. The same happens with the efficiency for φ from 0.08 to 0.16. The curves show a shift
toward higher efficiency values, practically maintaining the same shape. Such a situation is illustrated
in Figs. 10a and 10b.

6. DISCUSSION

As might be expected, the optimal wall thickness H̃2 for the maximum efficiency (or minimum
thermal resistance) corresponds to the lowest range value, meaning the smaller path travelled by heat.
However, it is remarkable that to get the minimum T̃max, the optimal wall thickness H̃2 does not
correspond to the smaller value, conversely it could be find placed between the extremes range values. To
exemplify this, Fig. 11 shows isotherms for two identical geometries, only the wall thickness differing.
The figure on the left corresponds to H̃2 = 0.1 and that on the right, to H̃2 = 0.3. In both cases, the
point of maximum temperature is located in the upper corner over the ellipse 0 side, corresponding to
the farthest point from the ellipses. As can be seen, the case on the right shows a greater penetration
of higher temperature isotherms, flatter isotherms generated and the heat flux over ellipse 0 decreasing
by approximately 3%. In the same way, as ellipse 1 moves away from the outer edge, it generates a
decrease by more than 7% in the heat evacuated by ellipse 1, generating a decrease in T̃max by 12% (for
T∞ − Tmin = 600◦C, it corresponds to a reduction of 72◦C). This optimal distribution of the isotherms
reduces the heat flux entering the domain by 6%, which is beneficial due to the lower energy extracted
to the combustion gases and the lower maximum temperature on the metal.

The Constructal designs for maximum ξ and minimum T̃max were achieved with similar conduit sizes
(φ0 ≈ 0.033) and different H̃/L̃ values. However, for the same H̃/L̃ value, it is possible to generate small
differences in the minimum T̃max and the maximum ξ by varying only φ0. To exemplify that, Fig. 12 plots
isotherms over two identical geometries, where only the relative conduit size was changed. There, the
figure on the left represents conduits of equal sizes, while the figure on the right depicts a configuration
where ellipse 0 takes 53% of the total area belonging to the conduits. In the figure on the right, a greater
ellipse 0 size led to an increase of 36% in the heat evacuation. The reason can be that the increase in
hydraulic diameter led to a raise in the convection coefficient. In turn, the reduction in the ellipse 1 size
generates a drop of 20% in its heat transferred. Overall, the figure on the right presents a reduction of
13% in the total heat evacuated, which decreases the maximum temperature by 6%. For example, for
T∞ − Tmin = 600◦C, it is a reduction of 36◦C in the maximum temperature. This example clearly shows
that the most efficient relative conduit size (Fig. 12, left side) never coincides with the one that generates
the minimum T̃max.

7. CONCLUSIONS

Aimed at increasing the GT efficiency, this work relies on the EGTB cooling model [3], which
replaces circular conduits with elliptical conduits with a variable aspect ratio. The optimal design was
studied with different fixed material ratios for two different objectives: minimization of the maximum
temperature over the metal blade and maximization of the heat evacuation efficiency. Both the objectives
were achieved by exhaustive searching using the Constructal Theory. The blade temperature field was
calculated with solving the diffusion equation by the finite element method, including the heat transfer by
convection and radiation from the boundaries. The external thermal barrier coating was also modelled.
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Fig. 10. ξ vs. φ0 for different H̃/L̃ with (a) φ = 0.08, H̃1/L̃1 = 0.4, H̃0/L̃0 = 0.4, and H̃2 = 0.1; (b) φ = 0.16,
H̃1/L̃1 = 0.4, H̃0/L̃0 = 0.4, and H̃2 = 0.1.

Using elliptical conduits of aspect ratio 2:5 (H̃0/L̃0 = H̃1/L̃1 = 0.4) leads to improvement in the
thermal performance of cooled blades both in terms of the heat evacuation efficiency and the minimum
maximum temperature on the blade. As compared with circular conduits of the same area, elliptical
conduits enable transfer of greater amounts of heat and, with a correct design, a lower maximum
temperature on the metal. The influence of the conduit aspect ratio on T̃max and ξ is considerably lower
than the influence of the domain aspect ratio H̃/L̃ and the relative conduit size φ0.

The blade designs that generate the minimum maximum relative temperature T̃max and maximum
heat evacuation efficiency ξ are not identical in terms of the wall thickness H̃2, the domain aspect ratio
H̃/L̃, or the relative conduit sizes φ0. The heat evacuation efficiency obtained is the inverse of the thermal
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Fig. 11. Thermal behaviour for different wall thickness (different H̃2) with φ = 0.1, φ0 = 0.033, H̃/L̃ = 1, H̃1/L̃1 =

0.4, and H̃0/L̃0 = 0.4.

Fig. 12. Thermal behaviour for different relative conduits size (different φ0) with φ = 0.1, H̃/L̃ = 1, H̃0/L̃0 = 0.4,
H̃1/L̃1 = 1, and H̃2 = 0.2.

resistance of the analysed domain defined by Feng et al. [4]. So, it can be inferred that the objectives of
minimum maximum temperature T̃max or minimum thermal resistance lead to different designs.

The domain aspect ratios H̃/L̃ for minimization of T̃max and maximization of ξ are optimal at the
opposite ends of the range, leading to different optimal relative conduit size and wall thickness and thus
to a different external blade design, as shown in Table 2 and Fig. 7. For greater efficiency, the temperature
profile depicts deeper penetration of high temperature isotherms, while for lower maximum temperature,
the distance between two consecutive ellipses 1 (for two consecutive domains) must be minimized, the
high temperature isotherms kept near the outer edge of the domain.

In designs with a material ratio of 10% and the same domain aspect ratio, it was possible to obtain
different optimal values of relative conduit size and wall thickness, which implies slight variations in
the efficiency and maximum temperature on the metal. The reason is that when the conduit design on
the domain varies, so does the distribution of temperatures (isotherms), which directly influences the
incoming heat. Although the reduction in the maximum temperature or the rise in the heat evacuated
could seem insignificant, the relevance of the improvement will depend on the total domain size, which
is dimensionless in this work.

NOTATIONS
A—area, dm2

JOURNAL OF ENGINEERING THERMOPHYSICS Vol. 28 No. 4 2019



CONSTRUCTAL DESIGN OF ELLIPTICAL CONDUITS 527

Dh—hydraulic diameter
f—Darcy friction coefficient
H—elemental blade height, dm

h—convection coefficient, W/(m2 · K)
H0—vertical semi-axis of the ellipse 0, dm
H1—vertical semi-axis of the ellipse 1, dm
H2—wall thickness of ellipse 1, dm

k—thermal conductivity coefficient, W/(m·K)
L—elemental blade width, dm
L0—horizontal semi-axis of the ellipse 0, dm
L1—horizontal semi-axis of ellipse 1, dm
Nu—Nusselt number
ε—emissivity

μ—dynamic viscosity, kg/m·s
ν—cinematic viscosity, m2/s
ξ—heat evacuation efficiency

ρ—density, kg/m3

P—pressure
Pe—Peclet number
Pr—Prandtl number
q—total heat, W

R—thermal resistance, m2·K/W
Re—Reynolds number

S—heat source, W/m3

T —temperature, K

V —velocity, m/s
W —transversal dimension, dm
x—abscissa coordinate, dm
y ordinates coordinate, dm

σ—Stefan–Boltzmann constant, W/(K4m2)
φ—material ratio
φ0—1/4 ellipse 0 dimensionless area

φ1—1/2 ellipse 1 dimensionless area

Superscript

∼—non dimensional parameter

Subscripts

0—ellipse 0
1—ellipse 1
max—maximum
min—minimum
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