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Abstract. We compare Schwingerand complexpowersmethods to construct regularized fermion
currents.We show that, although both of them are gauge invariant, they are not always yield the
same result.
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A dif¢culty speci¢c to quantum ¢eld theories is the occurrence of in¢nities and hence
the necessity of regularizing and renormalizing the theory. Whenever a ¢eld theory
possesses a classical symmetryöand hence a conserved currentöit is desirable
to have at hand regularization procedures preserving that symmetry**.

The calculation of vacuum expectation values of vector currents involves the
evaluation of the Green function for the particle ¢elds at the diagonal, so a
regularization is required. In a classic paper, Julian Schwinger introduced a
point-splitting method to regularize fermion currents maintaining gauge symmetry
on the quantum level [1].

More recently, the so-called z-function method, based on complex powers of
pseudodifferential operators [2], has proved to be a very valuable gauge invariant
regularizing tool (see, for example [3]). Some time ago we used it to obtain fermion
currents in two and three dimensional models [4].

It is the aim of this Letter to compare the results obtained by the above-mentioned
methods.

Let M be a n-dimensional spin closed manifold endowed with a Riemannian met-
ric tensor gmn. For any covector am de¢ned on M, we adopt the usual convention
6a � gmam, where the Dirac matrices g satisfy gm�x�gn�x� � gn�x�gm�x� � 2 gmn�x�. Let
6D � i6 r�6A be a Euclidean Dirac operator coupled to a gauge ¢eld Am, where the
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covariant derivative r is given by rm � @m ÿ Gm, with Gm the spin connection associ-
ated with Levi-Civita's. The operator 6D is elliptic and, since its principal symbol
has only real eigenvalues, it ful¢lls the Agmon cone condition [2]. Thus, the complex
powers 6Ds can be constructed following Seeley [2]. For Res < 0 we can write

6Ds :� i
2p

Z
G
ls�6Dÿ l�ÿ1dl; �1�

where G is a contour enclosing the spectrum of 6D, and we de¢ne 6Ds for ResX 0 by
using 6Ds�1 � 6Ds � 6D.

For each s 2 C, 6Ds turns out to be a pseudodifferential operator of order s and so,
if Res < ÿn, its Schwartz kernel Ks�x; y� is a continuous function. The evaluation at
the diagonal x � y of this kernel, Ks�x; x�, admits a meromorphic extension to
the whole complex s-plane C, with at most simple poles at s 2 Zÿ. This extension
will be also denoted by Ks�x; x�.

Since Kÿ1�x; y� coincides with the Green function for x 6� y, the ¢nite part of
Ks�x; x� at s � ÿ1 can be used to de¢ne gauge-invariant regularized fermion currents
[4]:

Jm�x� :� ÿtr

�
gm�x� FP

s�ÿ1
Ks�x; x�

�
: �2�

Notice that this de¢nition makes sense. In fact, owing to the density character of
Ks�x; x� (see, for instance, [5]) and the vectorial nature of the g matrices, the
right-hand side in (2) is a vector density.

In order to compare this regularizing procedure with Schwinger's, it is convenient
to consider the kernels Ks�x; x� within the framework developed within [5]. Since we
are interested in studying the behaviour of these kernels for s!ÿ1, we shall carry
out our analysis just for ÿ1WRes < 0.

By considering the ¢nite expansion (see, for instance, [6])

s�6Ds� �
XN
`�0

csÿ`�x; x� � rN �x; x; s�; �3�

with N � nÿ 1, of the symbol of the operator 6Ds, with csÿ`�x; x� positively homo-
geneous of degree sÿ ` for xj jX 1, we can write, for s 6� ÿ1 the Schwartz kernel
of this operator as

Ks�x; y� �
XN
`�0

Hÿnÿs�` �x; xÿ y� � RN �x; xÿ y; s�; �4�

whereHÿnÿs�`�x; u� is the Fourier transform in the variable x of ecsÿ`�x; x�, the homo-
geneous extension of csÿ`�x; x�, evaluated at u � xÿ y (i.e. Hÿnÿs�`�x; u� �
1
�2p�n

Recsÿ`�x; x� eix:u dx), and consequently u-homogeneous of degree ÿnÿ s� `

158 R. E. GAMBOA SARAVIè ET AL.



and RN �x; u; s� is that of rN �x; x; s� ÿ
PN

`�0�ecsÿ` ÿ csÿ`��x; x�. Note that �ecsÿ`ÿ
csÿ`��x; x� � 0 for xj jX 1.

Now, for u 6� 0, simple poles can arise at s � ÿ1 in Hÿnÿs�N and in RN �x; u; s� [5].
Since Ks�x; xÿ u� is holomorphic in the variable s for u 6� 0, these poles cancel each
other. In fact, they are due to the singularity ofecsÿN�x; x� at x � 0 and then

res
s�ÿ1

RN�x; u; s� � ÿ res
s�ÿ1

Hÿnÿs�N �x; u�: �5�

Thus, for u 6� 0, we have for G�x; y�, the Green function of 6D,

G�x; y� � lim
s!ÿ1

Ks�x; y� �
XN
`�0

Gÿn�1�` �x; u� � RG�x; u�; �6�

with

Gÿn�1�` �x; u� � lim
s!ÿ1

Hÿnÿs�` �x; u� for ` < N;

Gÿn�1�N �x; u� � FP
s�ÿ1

Hÿnÿs�N �x; u� and RG�x; u� � FP
s�ÿ1

RN �x; u; s�:

It is worth noticing that a logarithmic term can arise in FPs�ÿ1 Hÿnÿs�N �x; u�.
Then, taking into account that, for s 6� ÿ1 [5],

Ks�x; x� � RN�x; 0; s�; �7�
we have

FP
s�ÿ1

Ks�x; x� � RG�x; 0�: �8�

As we shall see below, this last expression furnishes the link between the two
regularization methods.

On the other hand, the fermionic currents regularized according to Schwinger's
prescription are given by [1]

Jm�x� � ÿ Sch-lim tr
y!x

gmG�x; y� e
i
R y

x
A:dz

� �
; �9�

whereZ y

x
A:dz � ÿ

Z 1

0
Am�xÿ tu� um dt: �10�

The Schwinger limit, Sch-limy!x, is de¢ned for each term in the expansion in
u-homogeneous functions (and logarithmic ones if they appear) of
gmG�x; y� ei

�
R y

x
A:dz� in the following way: the usual limit when the latter exists,

vanishes for negative degrees and for logarithmic terms, and coincides with the mean
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value at juj � 1 for terms of zero degree. The exponential factor was introduced by
Schwinger [1] in order to maintain gauge invariance.

From (2), (8) and (9) we see that both methods yield the same result for Jm if and
only if

Sch-lim tr
y!x

gm
XN
`�0

Gÿn�1�` �x; u� e
i
R y

x
A:dz

 !
� 0 �11�

since, being RG�x; u� continuous at x � y,

Sch-lim tr
y!x

gmRG�x; u� ei
R y

x
A:dz

� �
� Sch-lim tr

y!x
gmRG�x; u�� �

� lim
u!0

tr gmRG�x; u�� � � tr gm FP
s�ÿ1

Ks�x; x�
0@ 1A:

�12�

Now, we shall see how this works in n � 2, 3 and 4. By computing theGÿn�1�` �x; u�'s
we shall be able to establish when (11) holds and so, when both methods yield the
same regularized currents.

It will be enough for our purposes to consider a £at coordinate patch. In Cartesian
coordinates

6D � gmDm � gm�i@m � Am�; �13�
where the algebra of the g-matrices is

gmgn � gngm � 2 dmn: �14�
Its symbol, s�6D; x; x�, is

s�6D; x; x� � ÿ 6xÿ 6A�x�: �15�
The symbol of the resolvent, s��6Dÿ l�ÿ1; x; x�, has an asymptotic expansionP

`
eCÿ1ÿ`�x; x; l�, where eCÿ1ÿ`�x; x; l� is homogeneous in x and l of degree

ÿ1ÿ ` [2]. Then

�6Dÿ l�ÿ1 j�x� � 1
�2p�n=2

Z X
`

eCÿ1ÿ`�x; x; l� eix:x bj�x� dx: �16�

Applying 6Dÿ l to Equation (3) we get recursive equations for determining theeCÿ1ÿ`�x; x; l�'s:
ÿ �6x� l� eCÿ1�x; x; l� � 1;

6DxeCÿ1ÿ`�x; x; l� ÿ �6x� l� eCÿ1ÿ`ÿ1�x; x; l� � 0:
�17�

Owing to the particular features of the Dirac operator, the standard symbolic cal-
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culus [2] simpli¢es remarkably in our case. In fact, the solution of (17) can be written
in a very concise form:

eCÿ1ÿ`�x; x; l� � ÿ �6xÿ l�
x2 ÿ l2

6Dx
�6xÿ l�
x2 ÿ l2

� �`
: �18�

Now, from Equation (1),

Hÿnÿs�`�x; u�
� 1
�2p�n

Z ecsÿ`�x; x� eix:u dl dx

� i

�2p�n�1
Z Z

G

eCÿ1ÿ`�x; x; l� ls eix:u dl dx;

�19�

where the contour G can be chosen as shown in Figure 1. Therefore,

Hÿnÿs�`�x; u�
� ÿi
�2p�n�1

Z Z
G

�6xÿ l�
�x2 ÿ l2�`�1 6Dx �6xÿ l�� �` ls eix:u dl dx

� ÿi
�2p�n�1

Z Z
G

�ÿi 6@u ÿ l�
�x2 ÿ l2�`�1 6Dx �ÿi 6@u ÿ l�� �` ls eix:u dl dx:

�20�

Taking into account that, for any polynomial P�l�,
i
2p

Z
G

ls P�l�
�x2 ÿ l2�`�1 dl

� i
2p

Z 0

1

�z ei
p
2�s P�iz�

�x2 � z2�`�1 i dz �
Z 1
0

�z eÿi
3p
2 �s P�iz�

�x2 � z2�`�1 i dz

( )

� i
p

eÿi
p
2s sin�ps� P�ÿ@a�

Z 1
0

zs eÿiaz

�x2 � z2�`�1 dz
� �

a�0
;

�21�

Figure 1. The G curve in the l-plane.
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we can write

Hÿnÿs�`�x; u�
� ÿi

p
eÿi

p
2s sin�ps��ÿi 6@u � @a� 6Dx �ÿi 6@u � @a�� �`�

�
X̀�1
k�0

�ÿia�k
k!

Z 1
0

zs�k
1
�2p�n

Z
1

�x2 � z2�`�1 eix:u dx dz

�����
a�0
:

�22�

Now, the integrals in (22) can be performed using the known identities

1
�2p�n

Z
�x2 � z2�s eix:u dx � 21�s

�2p�n2
1

G�ÿs�
z
u

� �n
2�s

Kn
2�s�zu�; �23�

where Km is a Bessel function (see, for instance, [8]) andZ 1
0

zm Kn�zu� dz � 2mÿ1 uÿmÿ1 G
1� m� n

2

� �
G

1� mÿ n
2

� �
�24�

(see, for example, [7]).
Finally, we get the following expression for Hÿnÿs�`�x; u�:

Hÿnÿs�`�x; u�

� ÿi 2
sÿ2`ÿ2

p
n
2�1 `!

eÿi
p
2s sin�ps��

� �ÿi 6@u � @a� 6Dx �ÿi 6@u � @a�� �`
X̀�1
k�0

�ÿia�k
k!
�

� G
1� s� k

2

� �
G

s� k� nÿ 1ÿ 2`
2

� �
uÿsÿn�2`�1ÿk

����
a�0
:

�25�

The ¢rst four Hÿnÿs�`�x; u� terms, obtained from (25) after a straightforward but
tedious computation involving g-matrices's algebra and derivatives, are shown
in Table I. There, as usual, Fmn � @mAn ÿ @nAm � ÿi�DmAn ÿDnAm�. It is worth notic-
ing that the ¢rst terms of the exponential

e
ÿi
R y

x
A:dz � 1� i�u:A� ÿ �u:D��u:A�

2!
ÿ i
�u:D��u:D��u:A�

3!
� . . . �26�

start to appear as an overall factor in the sum of the expansion (4) for Ks�x; y�.
Now, we shall compute the sum in expression (11) in order to see whether both

methods coincide or not. Taking into account that

Gÿn�1�` �x; u� � lim
s!ÿ1

Hÿnÿs�` �x; u� for ` < N
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and

Gÿn�1�N �x; u� � FP
s�ÿ1

Hÿnÿs�N �x; u�;

from Table I, we get the following relations.
For n � 2, we have

X1
`�0

Gÿ2�1�` �x; u� e
i
R y

x
A:dz � ÿ i

2p
6u
u2
�1� o�u2��; �27�

so it is clear that (11) holds in this case.

Table I. The ¢rst four Hÿnÿs�`�x; u�:

Hÿnÿs�x; u� � 2sÿ1

pn2�1
eÿi

p
2s sin�ps��

� G
1� s
2

� �
G

n� s� 1
2

� �
uÿnÿsÿ1 6u ÿ G

2� s
2

� �
G

n� s
2

� �
uÿnÿs

� �

Hÿnÿs�1�x; u� � 2sÿ1

p
n
2�1

eÿi
p
2s sin�ps��

� G
1� s
2

� �
G

n� s� 1
2

� �
uÿnÿsÿ1 6u

�
ÿ G

2� s
2

� �
G

n� s
2

� �
uÿnÿs

�
i�u:A�

Hÿnÿs�2�x; u� � 2sÿ1

p
n
2�1

eÿi
p
2s sin�ps� �

�
�

G
1� s
2

� �
G

n� s� 1
2

� �
uÿnÿsÿ1 6u

�
ÿ G

2� s
2

� �
G

n� s
2

� �
uÿnÿs

�
ÿ �u:D��u:A�

2!

� �
�

� i
8

G
1� s
2

� �
G

n� sÿ 1
2

� �
uÿnÿs�1 urgmgrgn

�
� G

2� s
2

� �
G

n� sÿ 2
2

� �
uÿnÿs�2 gmgn�Fmn

�

Hÿnÿs�3�x; u� � 2sÿ1

p
n
2�1

eÿi
p
2s sin�ps� �

�
�

G
1� s
2

� �
G

n� s� 1
2

� �
uÿnÿsÿ1 6u

�
ÿ G

2� s
2

� �
G

n� s
2

� �
uÿnÿs

�
ÿi �u:D��u:D��u:A�

3!

� �
�

� i
8

G
1� s
2

� �
G

n� sÿ 1
2

� �
uÿnÿs�1 urgmgrgn � G

2� s
2

� �
G

n� sÿ 2
2

� �
uÿnÿs�2 gmgn

� �
Fmn i�u:A��

� 1
24

G
1� s
2

� �
G

n� sÿ 1
2

� �
uÿnÿs�1 ÿ 3

2 uru
sgmgrgn@sFmn ÿ umurgr@nFmn � umungr@nFmr

ÿ ��
�

� G
2� s
2

� �
G

n� sÿ 2
2

� �
uÿnÿs�2 ÿ 3

2 u
mgngr@mFnr � um@nFmn

ÿ ��
�G 1� s

2

� �
G

n� sÿ 3
2

� �
uÿnÿs�3 gn@mFmn

��
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For n � 3, we get

X2
`�0

Gÿ3�1�` �x; u� e
i
R y

x
A:dz

� ÿ i
4p
6u
u3
�1� o�u3�� � 1

16p
ur
u
gmgrgn � gmgn

h i
Fmn;

�28�

and so

Sch-lim tr
y!x

gm
X2
`�0

Gÿ3�1�` �x; u� e
i
R y

x
A:dz

 !

� 1
16p

tr�gmgrgn�Frn;

�29�

which does or does not vanish depending on the g's representation (it does not vanish
if the 2� 2 Pauli matrices are chosen).

Finally, we consider n � 4. In this case, a pole is present inHÿ4ÿs�3�x; u� at s � ÿ1.
After computing the ¢nite part in order to get Gÿ4�1�3�x; u� we have

X3
`�0

Gÿ4�1�` �x; u� e
i
R y

x
A:dz

� ÿ i
2p2
6u
u4
�1� o�u4�� � 1

16p2
ur
u2

gmgrgnFmn�1� o�u2��ÿ

ÿ i
48p2

urus

u2
�ÿ 3

2 g
mgrgn@sFmn ÿ gr@mFsm � gm@rFsm�ÿ

ÿ i
24p2
�ln 2ÿ ln uÿ ip

2
� G0�1��gn@mFmn;

�30�

which, in general, clearly yields a nonzero result for expression (11).
So, we see that although Schwinger and complex powers methods are both

gauge-invariant, they only coincide for the two-dimensional case. In 3 dimensions,
the coincidence depends on the representation chosen for the g-matrices, while
for n � 4 they in general disagree.

Had we considered the general case, additional terms depending on the
Riemannian curvature would have appeared. Nevertheless, those terms coud not
counterbalance the computed Fmn-depending terms which produced the difference
between both methods.
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