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Abstract
Harron and Snowden (J. reine angew. Math. 729 (2017),
151–170) counted the number of elliptic curves over ℚ
up to height 𝑋 with torsion group 𝐺 for each possi-
ble torsion group 𝐺 over ℚ. In this paper, we general-
ize their result to all number fields and all level struc-
tures 𝐺 such that the corresponding modular curve 𝑋𝐺
is a weighted projective line ℙ(𝑤0, 𝑤1) and the mor-
phism 𝑋𝐺 → 𝑋(1) satisfies a certain condition. In par-
ticular, this includes all modular curves 𝑋1(𝑚, 𝑛) with
coarse moduli space of genus 0. We prove our results by
defining a size function on ℙ(𝑤0, 𝑤1) following unpub-
lished work of Deng (Preprint, https://arxiv.org/abs/
math/9812082), and working out how to count the num-
ber of points on ℙ(𝑤0, 𝑤1) up to size 𝑋.

MSC ( 2020 )
11G05 (primary), 11G18, 11G50, 14D23, 14G40 (secondary)

1 INTRODUCTION

Let 𝐸 be an elliptic curve over a number field 𝐾. The Mordell–Weil theorem says that 𝐸(𝐾) is
isomorphic to ℤ𝑟 × 𝐸(𝐾)tor for some 𝑟 ⩾ 0, where 𝐸(𝐾)tor is the (finite) torsion subgroup of 𝐸(𝐾).
It is a natural question which groups appear as 𝐸(𝐾)tor, andmoreover how often each one of these
groups appears. Harron and Snowden [11] studied this question and answered it in the case𝐾 = ℚ.
The aim of this paper is to study the same problem, but to both allow 𝐾 to be any number field
and to answer the more general question how often a prescribed 𝐺-level structure appears.

© 2022 The Authors. Journal of the LondonMathematical Society is copyright © LondonMathematical Society. This is an open access article
under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided
the original work is properly cited.
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2416 BRUIN and NAJMAN

To make this question more precise, let 𝑛 be a positive integer, let 𝐺 be a subgroup of
GL2(ℤ∕𝑛ℤ), and let 𝐾 be a number field. We say that an elliptic curve 𝐸 over 𝐾 admits a
𝐺-level structure if there exists a (ℤ∕𝑛ℤ)-basis of 𝐸[𝑛](�̄�) such that the Galois representation
𝜌𝐸,𝑛 ∶ Gal(�̄�∕𝐾) → GL2(ℤ∕𝑛ℤ) defined by this basis has image contained in 𝐺. We write

𝐺,𝐾 = {elliptic curves over 𝐾 admitting a 𝐺-level structure}∕≅.

We will define a size function 𝑆𝐾 from the set of isomorphism classes of elliptic curves over 𝐾
to ℝ>0; see Definition 7.1. We define a function 𝑁𝐺,𝐾 ∶ ℝ>0 → ℤ⩾0 by

𝑁𝐺,𝐾(𝑋) = #{𝐸 ∈ 𝐺,𝐾 ∣ 𝑆𝐾(𝐸)
12 ⩽ 𝑋}.

Let 𝑋𝐺 be the moduli stack of generalized elliptic curves with 𝐺-level structure. This is a one-
dimensional proper smooth geometrically connected algebraic stack over the fixed field𝐾𝐺 of the
action of𝐺 onℚ(𝜁𝑛) given by (g , 𝜁𝑛) ↦ 𝜁

det g
𝑛 . We consider cases where𝑋𝐺 is a weighted projective

lineℙ(𝑤0, 𝑤1) over𝐾𝐺 .We cannow state ourmain result (which is also stated in a slightly different
form in Theorem 7.6).

Theorem 1.1. Let 𝑛 be a positive integer, and let 𝐺 be a subgroup of GL2(ℤ∕𝑛ℤ). Assume that the
stack 𝑋𝐺 over 𝐾𝐺 is isomorphic to ℙ(𝑤)𝐾𝐺 , where 𝑤 = (𝑤0, 𝑤1) is a pair of positive integers, and let
𝑒(𝐺) be the reduced degree of the canonical morphism𝑋𝐺 → 𝑋(1) (see Definition 4.2). Furthermore,
assume 𝑒(𝐺) = 1 or 𝑤 = (1, 1) holds. Then for every finite extension 𝐾 of 𝐾𝐺 , we have

𝑁𝐺,𝐾(𝑋) ≍ 𝑋
1∕𝑑(𝐺) as 𝑋 → ∞,

where

𝑑(𝐺) =
12𝑒(𝐺)

𝑤0 + 𝑤1
.

As all modular curves 𝑋𝐺 = 𝑋1(𝑚, 𝑛) with coarse moduli space of genus 0 satisfy the assump-
tions of Theorem 1.1, our result generalizes [11, Theorem 1.2], where this statement was proved in
the case where 𝐾 = ℚ and where 𝐺 is one of the 15 groups corresponding to the torsion groups
from Mazur’s theorem.
A recent result of Pizzo, Pomerance and Voight [16] is 𝑁𝐺,ℚ(𝑋) ∼ 𝑋1∕2 for 𝐺 such that 𝑋𝐺 =

𝑋0(3).Moreover, they determined the constant in front of the leading termof the function𝑁𝐺,ℚ(𝑋)
as well as the first two lower order terms. This result falls outside of the reach of our results, as
𝑋0(3) is not a weighted projective line (cf. Remark 7.4).
Similarly, Pomerance and Schaefer [17] proved that𝑁𝐺,ℚ(𝑋) ∼ 𝑋1∕3 for𝐺 such that𝑋𝐺 = 𝑋0(4),

and determined the constants in front of the leading term and the first lower order term. Our
result implies𝑁𝐺,𝐾 ≍ 𝑋1∕3 for all number fields𝐾; for𝐾 = ℚ, this follows from the sharper results
of [17].
Cullinan, Kenney and Voight [4, Theorem 1.3.3] proved a sharper version of Theorem 1.1 in the

special case where 𝑋𝐺 is a projective line (that is, isomorphic to ℙ1 = ℙ(1, 1)) and 𝐾 = ℚ. More
precisely, they give an asymptotic expression for 𝑁𝐺,ℚ(𝑋) containing an effectively computable
leading coefficient and an error term.
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COUNTING ELLIPTIC CURVES WITH LEVEL STRUCTURES 2417

Boggess and Sankar [2] determined the growth rate of the number of elliptic curves overℚwith
a cyclic 𝑛-isogeny for 𝑛 ∈ {2, 3, 4, 5, 6, 8, 9, 12, 16, 18}. Out of these, only the cases 𝑛 = 2 and 𝑛 = 4
(for which a more precise result was already proved in [11, 17]) correspond to weighted projective
lines and are therefore generalized to number fields by Theorem 1.1.

Remark 1.2. The 12th power in the definition of 𝑁𝐺,𝐾(𝑋) is included for easier comparison with
the height function in [11]; see Remark 7.2.

Remark 1.3. Our result gives a more conceptual interpretation of 𝑑(𝐺); cf. [11, § 1.2]. Namely, we
show that 𝑑(𝐺) can be expressed in terms of the pair of positive integers (𝑤0, 𝑤1) for which 𝑋𝐺 is
isomorphic to the weighted projective line with weights (𝑤0, 𝑤1), and 𝑒(𝐺), an invariant (similar
to the degree) of the morphism 𝑋𝐺 → 𝑋(1).
We also remark that our result shows how in certain cases one can count points in the image

of a morphism of stacks, partially answering a question in [11, Remark 1.5].

2 WEIGHTED PROJECTIVE SPACES

Definition 2.1. Given an (𝑛 + 1)-tuple 𝑤 = (𝑤0, … ,𝑤𝑛) of positive integers, the weighted projec-
tive space with weights 𝑤 is the algebraic stack

ℙ(𝑤) = [𝔾m∖𝔸
𝑛+1
≠0
]

over ℤ, where 𝔸𝑛+1
≠0

is the complement of the zero section in 𝔸𝑛+1 and 𝔾m acts on 𝔸𝑛+1
≠0

by

(𝜆, (𝑥0, … , 𝑥𝑛))⟼ (𝜆𝑤0𝑥0, … , 𝜆
𝑤𝑛𝑥𝑛).

It is known that ℙ(𝑤) is a proper smooth algebraic stack over ℤ, and in fact a complete smooth
toric Deligne–Mumford stack in the sense of Fantechi, Mann and Nironi [10, Example 7.27]. For
every ring 𝑅, there is a groupoid of 𝑅-points of ℙ(𝑤). We will mostly be interested in the set of
isomorphism classes of this groupoid, which we call the set of 𝑅-points of ℙ(𝑤) and denote by
ℙ(𝑤)(𝑅). Given a field 𝐿, the set ℙ(𝑤)(𝐿) can be described as

ℙ(𝑤)(𝐿) = 𝐿×∖(𝐿𝑛+1 ⧵ {0}),

where 𝐿× acts on 𝐿𝑛+1 ⧵ {0} by

(𝜆, (𝑥0, … , 𝑥𝑛))⟼ (𝜆𝑤0𝑥0, … , 𝜆
𝑤𝑛𝑥𝑛).

The image in ℙ(𝑤)(𝐿) of an element 𝑥 ∈ 𝐿𝑛+1 ⧵ {0} will be denoted by [𝑥].

Example 2.2. If 𝑤 = (𝑚) with 𝑚 a positive integer, then ℙ(𝑚) is canonically isomorphic to the
classifying stack of the group scheme 𝜇𝑚. If 𝐿 is a field, then we have

ℙ(𝑚)(𝐿) = (𝐿×)𝑚∖𝐿×.
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2418 BRUIN and NAJMAN

3 SIZE FUNCTIONS

Let 𝑤 be an (𝑛 + 1)-tuple as above, let 𝐾 be a number field, and let 𝐾 be its ring of integers.
On the set ℙ(𝑤)(𝐾), we define a size function similarly to Deng [7]; see Definition 3.4. We do not
restrict to weighted projective spaces that are ‘well-formed’ in the sense of [7].

Definition 3.1. For 𝑥 ∈ 𝐾𝑛+1, the scaling ideal of 𝑥, denoted by 𝑤(𝑥), is the intersection of all
fractional ideals 𝔞 of𝐾 satisfying 𝑥 ∈ 𝔞𝑤0 ×⋯ × 𝔞𝑤𝑛 . Similarly, for an (𝑛 + 1)-tuple (𝔟0, … , 𝔟𝑛) of
fractional ideals of𝐾 , the scaling ideal of (𝔟0, … , 𝔟𝑛), denoted by 𝑤(𝔟0, … , 𝔟𝑛), is the intersection
of all fractional ideals 𝔞 of 𝐾 satisfying 𝔟𝑖 ⊆ 𝔞𝑤𝑖 for all 𝑖.

Remark 3.2. For all 𝑥 ∈ 𝐾𝑛+1 ⧵ {0}, the fractional ideal 𝑤(𝑥) is nonzero and satisfies

𝑤(𝑥)
−1 = {𝑎 ∈ 𝐾 ∣ 𝑎𝑤𝑖𝑥𝑖 ∈ 𝐾 for 𝑖 = 0, … , 𝑛}.

Similarly, for every (𝑛 + 1)-tuple (𝔟0, … , 𝔟𝑛) of fractional ideals of 𝐾 , not all zero, the fractional
ideal 𝑤(𝔟0, … , 𝔟𝑛) is nonzero and satisfies

𝑤(𝔟0, … , 𝔟𝑛)
−1 = {𝑎 ∈ 𝐾 ∣ 𝑎𝑤𝑖𝔟𝑖 ⊆ 𝐾 for 𝑖 = 0, … , 𝑛}.

Definition 3.3. LetΩ𝐾,∞ denote the set of Archimedean places of 𝐾, and for each 𝑣 ∈ Ω𝐾,∞, let| |𝑣 ∶ 𝐾 → ℝ⩾0 be the corresponding normalized absolute value. The Archimedean size on 𝐾𝑛+1 ⧵
{0} is the function

𝐻𝑤,∞∶ 𝐾
𝑛+1 ⧵ {0}⟶ ℝ>0

𝑥⟼
∏

𝑣∈Ω𝐾,∞

max
0⩽𝑖⩽𝑛

|𝑥𝑖|1∕𝑤𝑖𝑣 .

Definition 3.4. The size function on ℙ(𝑤)(𝐾) is the function

𝑆𝑤,𝐾 ∶ ℙ(𝑤)(𝐾)⟶ ℝ>0

[𝑥]⟼ N(𝑤(𝑥))
−1𝐻𝑤,∞(𝑥).

It is straightforward to check that 𝑆𝑤,𝐾([𝑥]) does not depend on the choice of the representa-
tive 𝑥.

Example 3.5. If 𝑤 = (𝑚) with𝑚 a positive integer and 𝑥 ∈ ℤ ⧵ {0} is𝑚th power free, we have

𝑆(𝑚),ℚ([𝑥]) = |𝑥|1∕𝑚.
Remark 3.6. If 𝐿∕𝐾 is an extension of number fields, we have

𝑆(1,…,1),𝐿(𝑥) = 𝑆(1,…,1),𝐾(𝑥)
[𝐿∶𝐾],

 14697750, 2022, 4, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/jlm
s.12564 by U

niversity O
f L

eiden, W
iley O

nline L
ibrary on [09/11/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



COUNTING ELLIPTIC CURVES WITH LEVEL STRUCTURES 2419

but for general weights 𝑤 such a relation does not hold. For example, if 𝑤 = (𝑚) with𝑚 ⩾ 2 and
𝑥 ∈ ℤ ⧵ {0} is𝑚th power free, then

𝑆(𝑚),ℚ([𝑥]) = |𝑥|1∕𝑚,
but

𝑆(𝑚),ℚ(𝑥1∕𝑚)([𝑥]) = 𝑆(𝑚),ℚ(𝑥1∕𝑚)([1]) = 1.

Remark 3.7. Definition 3.4 is a special case of the notion of height for rational points on alge-
braic stacks defined by Ellenberg, Satriano and Zureick-Brown [9]. Namely, as explained in [9,
Section 3.3], we have

log 𝑆𝑤,ℚ(𝑥) = ht(𝑥),

where ht is the height function corresponding to the tautological line bundle  on ℙ(𝑤). The
work of Ellenberg, Satriano and Zureick-Brown was recently used by Boggess and Sankar [2] to
count elliptic curves over ℚ with a rational 𝑛-isogeny for 𝑛 ∈ {2, 3, 4, 5, 6, 8, 9}, as mentioned in
the introduction.

Theorem 3.8. Let 𝑛 be a non-negative integer, let 𝑤 = (𝑤0, … ,𝑤𝑛) be an (𝑛 + 1)-tuple of positive
integers, and let 𝐾 be a number field. Let 𝑟1, 𝑟2, 𝑑𝐾 , ℎ𝐾 , 𝑅𝐾 , 𝜇𝐾 and 𝜁𝐾 be the number of real places,
number of nonreal complex places, discriminant, class number, regulator, number of roots of unity
and Dedekind 𝜁-function of 𝐾, respectively. We write

|𝑤| = 𝑤0 + 𝑤1 +⋯ + 𝑤𝑛,

𝜇𝑤𝐾 =
𝜇𝐾

gcd{𝑤0, 𝑤1, … ,𝑤𝑛, 𝜇𝐾}

𝐶𝑤𝐾 =
ℎ𝐾𝑅𝐾

𝜇𝑤
𝐾
𝜁𝐾(|𝑤|)

(
2𝑟1(2𝜋)𝑟2√|𝑑𝐾|

)𝑛+1|𝑤|𝑟1+𝑟2−1.
Then we have

#{𝑥 ∈ ℙ(𝑤)(𝐾) ∣ 𝑆𝑤,𝐾(𝑥) ⩽ 𝑇} ∼ 𝐶
𝑤
𝐾𝑇

|𝑤| as 𝑇 → ∞.

Proof. This was proved by Deng [7, Theorem (A)] in the case where ℙ(𝑤) is well-formed, that
is, each 𝑛 elements from 𝑤 are coprime. However, the proof works in general with only minor
changes: in the paragraph before [7, Proposition 4.2], the statement that the group of roots of
unity acts effectively has to be replaced by the statement that all orbits of points with all coordi-
nates nonzero contain 𝜇𝑤

𝐾
points, and the factor 𝑤 (denoting the number of roots of unity) in [7,

Proposition 4.2, Proposition 4.5, Corollary 4.6 and Theorem (A)] has to be replaced by 𝜇𝑤
𝐾
. □

Remark 3.9. Theorem 3.8 also follows from recent results of Darda [5] on counting rational points
on weighted projective spaces with respect to more general height functions; see in particular [5,
Remark 7.3.2.5].
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2420 BRUIN and NAJMAN

In the remainder of this article, we will only consider weighted projective lines, that is, one-
dimensional weighted projective spaces where the weight is given by a pair (𝑤0, 𝑤1).

4 MORPHISMS BETWEENWEIGHTED PROJECTIVE LINES

Let 𝑢 = (𝑢0, 𝑢1), 𝑤 = (𝑤0, 𝑤1) be two pairs of positive integers. In this section, we classify the
morphisms of stacks from ℙ(𝑤) to ℙ(𝑢) over a field. These morphisms form a groupoid, but for
simplicity we will only be interested in the set of isomorphism classes of this groupoid, or in other
words the set of morphisms from ℙ(𝑤) to ℙ(𝑢). We also prove some facts about such morphisms
generalizing the corresponding facts about morphisms ℙ1 → ℙ1.

Lemma 4.1. Let 𝐾 be a field, and let 𝑢 = (𝑢0, 𝑢1), 𝑤 = (𝑤0, 𝑤1) be two pairs of positive integers.
We consider 𝑅 = 𝐾[𝑥0, 𝑥1] as a graded 𝐾-algebra where 𝑥0 and 𝑥1 are homogeneous of degrees 𝑤0
and𝑤1, respectively. Let 𝑃𝑢,𝑤(𝐾) be the set of pairs (𝑓0, 𝑓1) ∈ 𝑅 × 𝑅 with the following properties.

(i) There exists 𝑒 = 𝑒(𝑓0, 𝑓1) ∈ ℤ⩾0 for which 𝑓0 and 𝑓1 are homogeneous of degrees 𝑒𝑢0 and 𝑒𝑢1,
respectively.

(ii) The homogeneous ideal
√
(𝑓0, 𝑓1) ⊆ 𝑅 contains (𝑥0, 𝑥1).

Let 𝐾× act on 𝑃𝑢,𝑤(𝐾) by 𝑐(𝑓0, 𝑓1) = (𝑐𝑢0𝑓0, 𝑐𝑢1𝑓1). Then there is a natural bijection from
𝐾×∖𝑃𝑢,𝑤(𝐾) to the set of morphisms ℙ(𝑤)𝐾 → ℙ(𝑢)𝐾 sending the class of (𝑓0, 𝑓1) ∈ 𝑃𝑢,𝑤(𝐾) to the
morphism induced by the 𝐾-algebra homomorphism

𝐾[𝑦0, 𝑦1]⟶ 𝐾[𝑥0, 𝑥1]

𝑦0 ⟼ 𝑓0

𝑦1 ⟼ 𝑓1.

Proof. We apply Lemma A.2 to the following data over 𝐾:

– 𝑋 = 𝔸2
≠0
with coordinates 𝑥 = (𝑥0, 𝑥1),

– 𝑌 = 𝔸2
≠0
with coordinates 𝑦 = (𝑦0, 𝑦1),

– 𝐺 = 𝔾m with coordinate g ,
– 𝐻 = 𝔾m with coordinate ℎ,
– 𝑎∶ 𝐺 × 𝑋 → 𝑋 is the weight 𝑤 action, given on points by 𝑎(g , 𝑥) = (g𝑤0𝑥0, g𝑤1𝑥1),
– 𝑏∶ 𝐻 × 𝑌 → 𝑌 is the weight 𝑢 action, given on points by 𝑏(ℎ, 𝑦) = (ℎ𝑢0𝑦0, ℎ𝑢1𝑦1).

(Note that the lemma applies because the Picard group of 𝑋 is trivial.)
We first determine the morphisms ℎ∶ 𝐺 × 𝑋 → 𝐻 satisfying the ‘cocycle condition’ (A.1) of

Lemma A.2. A morphism ℎ∶ 𝐺 × 𝑋 → 𝐻 is given by a monomial of the form ℎ(g , 𝑥) = 𝜆g𝑒 with
𝜆 ∈ 𝐾× and 𝑒 ∈ ℤ, and ℎ satisfies (A.1) if and only if 𝜆 = 1, i.e. ℎ is of the form ℎ(g , 𝑥) = g𝑒.
Given ℎ as above, we now determine the morphisms 𝑓∶ 𝑋 → 𝑌 such that the pair (𝑓, ℎ)

satisfies condition (A.2) of Lemma A.2. Every such 𝑓 is given by a pair (𝑓0, 𝑓1) ∈ 𝑅 × 𝑅, and
(𝑓0, 𝑓1) determines a morphism 𝑋 → 𝑌 if and only if

√
(𝑓0, 𝑓1) contains (𝑥0, 𝑥1). It is straight-

forward to check that condition (A.2) translates to the condition that 𝑓𝑗 is homogeneous of
degree 𝑒𝑢𝑗 for 𝑗 = 0, 1. In particular, morphisms 𝑓∶ 𝑋 → 𝑌 such that (𝑓, ℎ) defines a morphism
[𝐺∖𝑋] → [𝐻∖𝑌] only exist if 𝑒 ⩾ 0; moreover, 𝑒 and therefore ℎ are uniquely determined by 𝑓.
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COUNTING ELLIPTIC CURVES WITH LEVEL STRUCTURES 2421

Finally, the group 𝐻(𝑋) is canonically isomorphic to 𝐾×, and if (𝑓, ℎ) is a pair as above where
𝑓 is defined by (𝑓0, 𝑓1), and 𝑐 ∈ 𝐻(𝑋), then we have 𝑐(𝑓, ℎ) = (𝑓′, ℎ) where 𝑓′ is defined by
(𝑐𝑢0𝑓0, 𝑐

𝑢1𝑓1). The lemma therefore follows from Lemma A.2. □

Definition 4.2. Let 𝐾 be a field, let 𝑢, 𝑤 be two pairs of positive integers, and let 𝜙∶ ℙ(𝑤)𝐾 →
ℙ(𝑢)𝐾 be a morphism. The reduced degree of 𝜙, denoted by degred 𝜙, is the unique integer 𝑒 ⩾ 0
satisfying Lemma 4.1(i) for some (hence every) pair (𝑓0, 𝑓1) giving rise to 𝜙 via the bijection of
Lemma 4.1.

Remark 4.3. A morphism 𝜙∶ ℙ(𝑢)𝐾 → ℙ(𝑤)𝐾 is representable (by which we mean representable
in algebraic spaces) if and only if 𝜙 is faithful as a functor [18, tag 04Y5]. Moreover, it suffices to
check this condition on geometric fibres [3, Corollary 2.2.7]. From this one can deduce that 𝜙 is
representable if and only if its reduced degree 𝑒 = degred 𝜙 satisfies

gcd(𝑤0, 𝑒) = gcd(𝑤1, 𝑒) = 1.

Lemma 4.4. In the setting of Lemma 4.1, let (𝑓0, 𝑓1) ∈ 𝑃𝑢,𝑤(𝐾) and assume 𝑒(𝑓0, 𝑓1) > 0. Then 𝑅
is finite over its graded subalgebra 𝑆 = 𝐾[𝑓0, 𝑓1].

Proof. We write 𝑅+ = 𝑅𝑥0 + 𝑅𝑥1, 𝑆+ = 𝑆𝑓0 + 𝑆𝑓1 and 𝐼 = 𝑅𝑓0 + 𝑅𝑓1 = 𝑅𝑆+. By condition (ii) of
Lemma4.1 and the fact that𝑓0 and𝑓1 are nonconstant,we have

√
𝐼 = 𝑅+. Hence for𝑚 sufficiently

large, we have 𝑅𝑚+ ⊆ 𝐼, so the graded 𝐾-algebra 𝑅∕𝐼 is a quotient of 𝑅∕𝑅
𝑚
+ and is therefore finite-

dimensional over 𝐾. Choose homogeneous elements g1, … , g𝑟 ∈ 𝑅 such that their images in 𝑅∕𝐼
are a 𝐾-basis of 𝑅∕𝐼. In particular, the g𝑖 generate 𝑅∕𝐼 = 𝑅∕𝑅𝑆+ over 𝑆, so we have

𝑅 = 𝑅𝑆+ + 𝑆g1 +⋯ + 𝑆g𝑟.

Hence the ℤ⩾0-graded 𝑆-module 𝑀 = 𝑅∕(𝑆g1 +⋯ + 𝑆g𝑟) satisfies 𝑆+𝑀 = 𝑀. It follows from a
variant of Nakayama’s lemma (see, for example, Eisenbud [8, Exercise 4.6]) that𝑀 = 0 and hence
𝑅 = 𝑆g1 +⋯ + 𝑆g𝑟. □

Lemma 4.5. Let 𝐾 be a field, let 𝑢, 𝑤 be two pairs of positive integers, and let 𝜙∶ ℙ(𝑤)𝐾 → ℙ(𝑢)𝐾
be a nonconstant representable morphism. Then 𝜙 is finite.

Proof. Sinceℙ(𝑤)𝐾 andℙ(𝑢)𝐾 areDeligne–Mumford stacks and𝜙 is representable, wemay choose
a Cartesian diagram

where 𝑆 and 𝑇 are algebraic spaces and the vertical maps are étale coverings. Then 𝜙′ is proper
because 𝜙 is proper, and is locally quasi-finite because 𝜙′ has relative dimension 0 [18, tag 04NV].
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2422 BRUIN and NAJMAN

In particular, 𝜙′ is representable in schemes [18, tag 0418] and is finite [18, tag 0A4X]. It follows
that 𝜙 is finite. □

Remark 4.6. Alternatively, Lemma 4.5 may be proved using Lemma 4.4.

Corollary 4.7. With the notation of Lemma 4.5, let 𝑉 ⊆ ℙ(𝑤)𝐾 be a dense open substack. Then
ℙ(𝑤)𝐾 is the integral closure of ℙ(𝑢)𝐾 in 𝑉.

Proof. By Lemma 4.5, the morphism 𝜙 is finite and in particular integral. Furthermore, ℙ(𝑤)𝐾 is
normal because 𝐾[𝑥0, 𝑥1] is integrally closed. This proves the claim. □

5 SOME RESULTS ON SCALING IDEALS

Let 𝐾 be a number field. We prove two elementary results about scaling ideals.

Lemma 5.1. Let 𝑤 = (𝑤0, 𝑤1) be a pair of positive integers. We consider 𝐾[𝑥0, 𝑥1] as a graded 𝐾-
algebra by assigning weight 𝑤𝑖 to 𝑥𝑖 . Let 𝑓 ∈ 𝐾[𝑥0, 𝑥1] be homogeneous of degree 𝑑. Let 𝔞(𝑓) be the
fractional ideal generated by the coefficients of 𝑓. Then for all 𝑧 ∈ 𝐾2, we have

𝑓(𝑧) ∈ 𝔞(𝑓)𝑤(𝑧)
𝑑.

Proof. We abbreviate

𝔪 = 𝑤(𝑧),

so we have 𝑧0 ∈ 𝔪𝑤0 and 𝑧1 ∈ 𝔪𝑤1 . We write

𝑓 =
∑
𝑘0,𝑘1

𝑎𝑘0,𝑘1𝑥
𝑘0
0
𝑥
𝑘1
1

where the sum ranges over all pairs (𝑘0, 𝑘1) of nonnegative integers such that 𝑘0𝑤0 + 𝑘1𝑤1 = 𝑑,
and 𝑎𝑘0,𝑘1 ∈ 𝐾. We now compute

𝑓(𝑧0, 𝑧1) =
∑
𝑘0,𝑘1

𝑎𝑘0,𝑘1𝑧
𝑘0
0
𝑧
𝑘1
1

∈
∑
𝑘0,𝑘1

𝑎𝑘0,𝑘1(𝔪
𝑤0)𝑘0(𝔪𝑤1)𝑘1

=
∑
𝑘0,𝑘1

𝑎𝑘0,𝑘1𝔪
𝑑

= 𝔞(𝑓)𝔪𝑑,

which proves the claim. □
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COUNTING ELLIPTIC CURVES WITH LEVEL STRUCTURES 2423

Lemma 5.2. Let 𝑧 ∈ 𝐾, and let

ℎ = 𝑥𝑑 + 𝑐1𝑥
𝑑−1 +⋯ + 𝑐𝑑 ∈ 𝐾[𝑥]

be a monic polynomial such that ℎ(𝑧) = 0. Suppose 𝔟1, … , 𝔟𝑑 are fractional ideals of 𝐾 such that
𝑐𝑖 ∈ 𝔟𝑖 for all 𝑖. Then we have

𝑧 ∈ (1,…,𝑑)(𝔟1, … , 𝔟𝑑).

Proof. If all the 𝔟𝑖 are zero, then 𝑧 vanishes and the claim is trivial. Now assume not all of the 𝔟𝑖
are zero. We write

𝔞 = (1,…,𝑑)(𝔟1, … , 𝔟𝑑)
−1 = {𝑎 ∈ 𝐾 ∣ 𝑎𝔟1, 𝑎

2𝔟2, … , 𝑎
𝑑𝔟𝑑 ⊆ 𝐾}.

Then for all 𝑎 ∈ 𝔞 we have

0 = 𝑎𝑑ℎ(𝑧) = (𝑎𝑧)𝑑 + (𝑎𝑐1)(𝑎𝑧)
𝑑−1 +⋯ + (𝑎𝑑𝑐𝑑).

By assumption, each 𝑎𝑖𝑐𝑖 lies in 𝑎𝑖𝔟𝑖 and hence in 𝐾 . This shows that 𝑎𝑧 is integral over 𝐾 .
Thus we have 𝔞𝑧 ⊆ 𝐾 and hence 𝑧 ∈ 𝔞−1. □

6 BEHAVIOUR OF SIZE FUNCTIONS UNDERMORPHISMS

Let 𝐾 be a number field. Let 𝑤 = (𝑤0, 𝑤1) and 𝑢 = (𝑢0, 𝑢1) be two pairs of positive integers, and
let 𝜙∶ ℙ(𝑤)𝐾 → ℙ(𝑢)𝐾 be a nonconstant morphism. Our goal in this section will be to study how
the size of a point in ℙ(𝑤)(𝐾) relates to the size of its image under 𝜙.
By Lemma 4.1, the morphism 𝜙 is defined by a pair of nonconstant homogeneous polynomials

𝑓0, 𝑓1 ∈ 𝐾[𝑥0, 𝑥1] of degrees 𝑒𝑢0 and 𝑒𝑢1, respectively, where 𝑒 is the reduced degree of 𝜙. For
𝑖 ∈ {0, 1}, let 𝔞𝑖 be the fractional ideal generated by the coefficients of 𝑓𝑖 .

Lemma 6.1. For all 𝑧 ∈ 𝐾2, we have

𝑢(𝑓(𝑧)) ⊆ 𝑢(𝔞0, 𝔞1)𝑤(𝑧)
𝑒.

Proof. We abbreviate

𝔪 = 𝑤(𝑧).

Since 𝑓𝑖 is homogeneous of degree 𝑒𝑢𝑖 , Lemma 5.1 gives

𝑓𝑖(𝑧) ∈ 𝔞𝑖𝔪
𝑒𝑢𝑖 .

It follows that

𝑢(𝑓(𝑧)) ⊆ 𝑢(𝔞0𝔪
𝑒𝑢0 , 𝔞1𝔪

𝑒𝑢1) = 𝑢(𝔞0, 𝔞1)𝔪
𝑒,

which proves the claim. □
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2424 BRUIN and NAJMAN

For 𝑖 ∈ {0, 1}, we write the rational number 𝑤𝑖∕𝑒 in reduced form as

𝑤𝑖
𝑒
=
𝜈𝑖
𝛿𝑖

with 𝜈𝑖, 𝛿𝑖 coprime positive integers.
By Lemma 4.4, there are integers 𝑑𝑖 > 0 and polynomials g𝑖,𝑗 ∈ 𝐾[𝑦0, 𝑦1] (for 𝑖 = 0, 1 and 𝑗 =

1,… , 𝑑𝑖) satisfying

𝑥
𝑑𝑖
𝑖
+ g𝑖,1(𝑓0, 𝑓1)𝑥

𝑑𝑖−1

𝑖
+⋯ + g𝑖,𝑑𝑖 (𝑓0, 𝑓1) = 0 in 𝐾[𝑥0, 𝑥1]. (6.1)

After taking homogeneous components of degree 𝑑𝑖𝑤𝑖 , we may and do assume that each
g𝑖,𝑗(𝑓0, 𝑓1) is homogeneous of degree 𝑗𝑤1. After dividing by a power of 𝑥𝑖 if necessary, we may
and do also assume g𝑖,𝑑𝑖 ≠ 0. We write

g𝑖,𝑗 =
∑

𝑘0,𝑘1⩾0
𝑒(𝑘0𝑢0+𝑘1𝑢1)=𝑗𝑤𝑖

𝛾𝑖,𝑗,(𝑘0,𝑘1)𝑦
𝑘0
0
𝑦
𝑘1
1

with 𝛾𝑖,𝑗,(𝑘0,𝑘1) ∈ 𝐾.

In particular, if g𝑖,𝑗 ≠ 0, then 𝑒 divides 𝑗𝑤𝑖 , so 𝑗 is a multiple of the denominator of 𝑤𝑖∕𝑒; in other
words, there is a positive integer 𝑙 with 𝑗 = 𝑙𝛿𝑖 . Since we have ensured that g𝑖,𝑑𝑖 is nonzero, we
obtain in particular a positive integer𝑚𝑖 with

𝑑𝑖 = 𝑚𝑖𝛿𝑖,

and all 𝑗 for which g𝑖,𝑗 does not vanish are of the form 𝑗 = 𝑙𝛿𝑖 with 1 ⩽ 𝑙 ⩽ 𝑚𝑖 . We can therefore
rewrite (6.1) as

𝑥
𝑚𝑖𝛿𝑖
𝑖

+

𝑚𝑖∑
𝑙=1

g𝑖,𝑙𝛿𝑖 (𝑓0, 𝑓1)𝑥
(𝑚𝑖−𝑙)𝛿𝑖
𝑖

= 0 in 𝐾[𝑥0, 𝑥1] (6.2)

and note that

g𝑖,𝑙𝛿𝑖 =
∑

𝑘0,𝑘1⩾0
𝑘0𝑢0+𝑘1𝑢1=𝑙𝜈𝑖

𝛾𝑖,𝑙𝛿𝑗 ,(𝑘0,𝑘1)𝑦
𝑘0
0
𝑦
𝑘1
1
.

For 𝑖 ∈ {0, 1} and 1 ⩽ 𝑙 ⩽ 𝑚𝑖 , we write 𝔠𝑖,𝑙 for the fractional ideal generated by the coefficients
of g𝑖,𝑙𝛿𝑖 , that is,

𝔠𝑖,𝑙 = (𝛾𝑖,𝑙𝛿𝑖 ,(𝑘0,𝑘1) ∣ 𝑘0, 𝑘1 ⩾ 0, 𝑘0𝑢0 + 𝑘1𝑢1 = 𝑙𝜈𝑖).

For 𝑖 ∈ {0, 1}, we write

𝔡𝑖 = (1,…,𝑚𝑖)
(𝔠𝑖,, … , 𝔠𝑖,𝑚𝑖 ).
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COUNTING ELLIPTIC CURVES WITH LEVEL STRUCTURES 2425

Lemma 6.2. For all 𝑧 ∈ 𝐾2 and 𝑖 ∈ {0, 1}, we have

𝑧
𝛿𝑖
𝑖
∈ 𝔡𝑖𝑢(𝑓(𝑧))

𝜈𝑖 .

Proof. For 𝑖 = 0, 1 and 𝑙 = 0, … ,𝑚𝑖 , we write

𝑐𝑖,𝑙 = g𝑖,𝑙𝛿𝑖 (𝑓(𝑧)) ∈ 𝐾.

Substituting (𝑥0, 𝑥1) = (𝑧0, 𝑧1) in (6.2), we obtain

(𝑧
𝛿𝑖
𝑖
)𝑚𝑖 +

𝑚𝑖∑
𝑙=1

𝑐𝑖,𝑙(𝑧
𝛿𝑖
𝑖
)𝑚𝑖−𝑙 = 0 for 𝑖 = 0, 1.

We abbreviate

𝔪 = 𝑢(𝑓(𝑧)).

Since g𝑖,𝑙𝛿𝑗 is homogeneous of degree 𝑙𝜈𝑖 , Lemma 5.1 gives

𝑐𝑖,𝑙 ∈ 𝔠𝑖,𝑙𝔪
𝑙𝜈𝑖 .

Applying Lemma 5.2, we obtain

𝑧
𝛿𝑖
𝑖
∈ (1,…,𝑚𝑖)

(𝔠𝑖,1𝔪
𝜈𝑖 , … , 𝔠𝑖,𝑚𝑖𝔪

𝑚𝑖𝜈𝑖 ) for 𝑖 = 0, 1.

This last ideal equals (1,…,𝑚𝑖)(𝔠𝑖,1, … , 𝔠𝑖,𝑚𝑖 )𝔪
𝜈𝑖 = 𝔡𝑖𝔪

𝜈𝑖 . □

Corollary 6.3. For all (𝑧0, 𝑧1) ∈ 𝐾2 and 𝑖 ∈ {0, 1}, we have

(𝜈0,𝜈1)
(𝑧
𝛿0
0
, 𝑧
𝛿1
1
) ⊆ (𝜈0,𝜈1)

(𝔡0, 𝔡1)𝑢(𝑓(𝑧)).

Theorem6.4. Let𝐾 be a number field, let 𝑢,𝑤 be two pairs of positive integers, and let𝜙∶ ℙ(𝑤)𝐾 →
ℙ(𝑢)𝐾 be a nonconstant morphism. Let 𝑒 be the reduced degree of 𝜙 (see Definition 4.2), and for
𝑖 = 0, 1 write 𝑤𝑖∕𝑒 = 𝜈𝑖∕𝛿𝑖 with 𝜈𝑖 , 𝛿𝑖 coprime positive integers. Then for all 𝑧 ∈ ℙ(𝑤)(𝐾), we have

𝑆𝑢(𝜙(𝑧)) ≪ 𝑆𝑤(𝑧)
𝑒

and

𝑆𝑢(𝜙(𝑧)) ≫ 𝑆(𝜈0,𝜈1)(𝑧
𝛿0
0
, 𝑧
𝛿1
1
),

where the implied constants depend only on 𝐾, 𝑢, 𝑤 and 𝜙.

Proof. Lemma 4.1 gives us homogeneous polynomials 𝑓0, 𝑓1 ∈ 𝐾[𝑥0, 𝑥1] such that 𝜙 is defined
by (𝑓0, 𝑓1). For every Archimedean place 𝑣 of 𝐾, the set ℙ(𝑤)(𝐾𝑣) of points of ℙ(𝑤) over the
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2426 BRUIN and NAJMAN

completion𝐾𝑣 of𝐾 at 𝑣 is in a natural way a compact topological space.We consider the function

𝑞𝑣 ∶ ℙ(𝑤)(𝐾𝑣)⟶ ℝ>0

𝑧⟼
max0⩽𝑖⩽1 |𝑓𝑖(𝑧)|1∕𝑢𝑖𝑣

max0⩽𝑖⩽1 |𝑧𝑖|𝑒∕𝑤𝑖𝑣

.

Using the definitions of the size functions and the 𝑞𝑣, we compute

𝑆𝑢(𝜙(𝑧))

𝑆𝑤(𝑧)
𝑒
=
N(𝑢(𝑓(𝑧)))

−1𝐻𝑢,∞(𝑓(𝑧))

N(𝑤(𝑧))
−𝑒𝐻𝑤,∞(𝑧)

𝑒

= N
(
𝑤(𝑧)

𝑒𝑢(𝑓(𝑧))
−1
) ∏
𝑣∈Ω𝐾,∞

𝑞𝑣(𝑧)

and

𝑆𝑢(𝜙(𝑧))

𝑆(𝜈0,𝜈1)(𝑧
𝛿0
0
, 𝑧
𝛿1
1
)
=

N(𝑢(𝑓(𝑧)))
−1𝐻𝑢,∞(𝑓(𝑧))

N((𝜈0,𝜈1)(𝑧
𝛿0
0
, 𝑧
𝛿1
1
))−1𝐻(𝜈0,𝜈1),∞(𝑧

𝛿0
0
, 𝑧
𝛿1
1
)

= N
(
(𝜈0,𝜈1)

(𝑧
𝛿0
0
, 𝑧
𝛿1
1
)𝑢(𝑓(𝑧))

−1
) ∏
𝑣∈Ω𝐾,∞

𝑞𝑣(𝑧).

Let 𝔞𝑖 , 𝔡𝑖 (𝑖 = 0, 1) be the fractional ideals defined earlier. By Lemma 6.1, we have

𝑤(𝑧)
𝑒𝑢(𝑓(𝑧))

−1 ⊇ 𝑢(𝔞0, 𝔞1)
−1,

and hence

N
(
𝑤(𝑧)

𝑒𝑢(𝑓(𝑧))
−1
)
⩽ N(𝑢(𝔞0, 𝔞1))

−1.

By Corollary 6.3, we have

(𝜈0,𝜈1)
(𝑧
𝛿0
0
, 𝑧
𝛿1
1
)𝑢(𝑓(𝑧))

−1 ⊆ (𝜈0,𝜈1)
(𝔡0, 𝔡1),

and hence

N
(
(𝜈0,𝜈1)

(𝑧
𝛿0
0
, 𝑧
𝛿1
1
)𝑢(𝑓(𝑧))

−1
)
⩾ N((𝜈0,𝜈1)(𝔡0, 𝔡1)).

Finally, for each 𝑣 ∈ Ω𝐾,∞, the function 𝑞𝑣 ∶ ℙ(𝑤)(𝐾𝑣) → ℝ>0 is bounded by compactness. From
this the theorem follows. □

Corollary 6.5. In the setting of Theorem 6.4, suppose 𝑒 = 1 or 𝑤 = (1, 1) holds. Then for all
𝑧 ∈ ℙ(𝑤)(𝐾), we have

𝑆𝑢(𝜙(𝑧)) ≍ 𝑆𝑤(𝑧)
𝑒,

where the implied constants depend only on 𝐾, 𝑢, 𝑤 and 𝜙.
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COUNTING ELLIPTIC CURVES WITH LEVEL STRUCTURES 2427

Proof. First suppose 𝑒 = 1. Then we have 𝛿𝑖 = 1 and 𝜈𝑖 = 𝑤𝑖 for 𝑖 ∈ {0, 1}, and hence

𝑆𝜈0,𝜈1 (𝑧
𝛿0
0
, 𝑧
𝛿1
1
) = 𝑆𝑤(𝑧) = 𝑆𝑤(𝑧)

𝑒.

Next suppose 𝑤 = (1, 1). Then we have 𝛿𝑖 = 𝑒 and 𝜈𝑖 = 1 for 𝑖 ∈ {0, 1}, and hence

𝑆(𝜈0,𝜈1)(𝑧
𝛿0
0
, 𝑧
𝛿1
1
) = 𝑆(1,1)(𝑧

𝑒
0, 𝑧

𝑒
1) = 𝑆(1,1)(𝑧0, 𝑧1)

𝑒 = 𝑆𝑤(𝑧)
𝑒.

In both cases, Theorem 6.4 gives the result. □

Remark 6.6. The condition ‘𝑒 = 1 or 𝑤 = (1, 1)’ in Corollary 6.5 is reminiscent of the condition
‘𝑛 = 1 or𝑚 = 1’ in [11, Proposition 2.1].

Remark 6.7. By Remark 4.3, the assumption 𝑒 = 1 or 𝑤 = (1, 1) implies that every morphism
satisfying the conditions of Corollary 6.5 is representable. However, the conclusion of Corollary 6.5
no longer holds when ‘𝑒 = 1 or 𝑤 = (1, 1)’ is weakened to ‘𝜙 is representable’. For example, take
𝑢 = (1, 3) and 𝑤 = (1, 3), and consider the morphism

𝜙∶ ℙ(1, 3)⟶ ℙ(1, 3)

(𝑥0, 𝑥1)⟼ (𝑥20, 𝑥
2
1),

which has 𝑒 = 2 and is therefore representable. For all primes 𝑝, taking 𝑥 = (𝑝, 𝑝2) ∈ ℙ(1, 3)(ℚ),
we get

𝑆𝑤(𝑥) = 𝑆(1,3)(𝑝, 𝑝
2) = 𝑝,

𝑆𝑢(𝜙(𝑥)) = 𝑆(1,3)(𝑝
2, 𝑝4) = 𝑆(1,3)(𝑝, 𝑝) = 𝑝.

On the other hand, for all primes 𝑝, taking 𝑥 = (1, 𝑝) ∈ ℙ(1, 3)(ℚ), we get

𝑆𝑤(𝑥) = 𝑆(1,3)(1, 𝑝) = 𝑝
1∕3,

𝑆𝑢(𝜙(𝑥)) = 𝑆(1,3)(1, 𝑝
2) = 𝑝2∕3.

This shows that the ratio between 𝑆𝑢(𝜙(𝑥)) and any fixed power of 𝑆𝑤(𝑥) is unbounded as 𝑥 varies.

7 POINTS OF BOUNDED SIZE ONMODULAR CURVES

Let 𝑌(1) be the moduli stack over ℚ of elliptic curves. There is an open immersion

𝜄 ∶ 𝑌(1) ↪ ℙ(4, 6)ℚ

defined as follows: given an elliptic curve 𝐸 over a ℚ-scheme 𝑆, then Zariski locally on 𝑆 we can
choose a nonzero differential 𝜔 and define

𝜄(𝐸) = (𝑐4(𝐸, 𝜔), 𝑐6(𝐸, 𝜔)),
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2428 BRUIN and NAJMAN

where 𝑐4 and 𝑐6 are defined in the usual way. A different choice of 𝜔 gives the same point of
ℙ(4, 6)ℚ, so 𝜄 is well defined.

Definition 7.1. Let 𝐾 be a number field. Using the morphism 𝜄, we define the size function

𝑆𝐾 ∶ 𝑌(1)(𝐾)⟶ ℝ>0

as the composition

Remark 7.2. If 𝐸 is given in short Weierstrass form as

𝐸∶ 𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏,

then we have

𝜄(𝐸) = (−48𝑎,−864𝑏)

and hence

𝑆𝐾(𝐸) = 𝑆(4,6),𝐾(−48𝑎,−864𝑏) ≍ max{|𝑎|1∕4, |𝑏|1∕6}.
This shows that if 𝐸 is an elliptic curve overℚ, then the ratio between 𝑆ℚ(𝐸)12 and the height of𝐸

ℎ(𝐸) = max{|𝑎|3, |𝑏|2},
as defined in [11], is bounded from above and below by a constant.

Now let 𝑛 be a positive integer, and let 𝐺 be a subgroup of GL2(ℤ∕𝑛ℤ). Let 𝐾𝐺 be the subfield
of the cyclotomic field ℚ(𝜁𝑛) fixed by 𝐺, where 𝐺 acts on ℚ(𝜁𝑛) by (g , 𝜁𝑛) ↦ 𝜁

det g
𝑛 . Let 𝑌𝐺 be the

moduli stack of elliptic curves with 𝐺-level structure, viewed as an algebraic stack over𝐾𝐺 . There
is a canonical morphism of stacks

𝜋𝐺 ∶ 𝑌𝐺 → 𝑌(1)𝐾𝐺 .

Let 𝐾 be a finite extension of 𝐾𝐺 . We define

𝐺,𝐾 = {elliptic curves admitting a 𝐺-level structure over 𝐾}∕≅

and

𝑁𝐺,𝐾(𝑋) = #{𝐸 ∈ 𝐺,𝐾 ∣ 𝑆𝐾(𝐸)
12 ⩽ 𝑋}.
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COUNTING ELLIPTIC CURVES WITH LEVEL STRUCTURES 2429

Lemma 7.3. Let 𝑛 be a positive integer, let 𝐺 be a subgroup of GL2(ℤ∕𝑛ℤ), and let 𝑤 be a pair of
positive integers. The following are equivalent.

(i) There is a commutative diagram

of algebraic stacks over 𝐾𝐺 , where 𝜄𝐺 is an open immersion and 𝜙 is representable.
(ii) The integral closure of 𝑋(1) = ℙ(4, 6) in the function field of 𝑌𝐺 is isomorphic to ℙ(𝑤).
(iii) The moduli space of generalized elliptic curves with 𝐺-level structure is isomorphic to ℙ(𝑤).

Proof. The equivalence of (ii) and (iii) follows from the fact that the integral closure from (ii) is
canonically isomorphic to the moduli space of generalized elliptic curves with 𝐺-level structure
[6, IV, Théorème 6.7(ii)].
The implication (ii)⟹ (i) follows from the fact that the integral closure of𝑋(1) in the function

field of 𝑌𝐺 fits in a commutative diagram as above.
The implication (i)⟹ (ii) follows from Corollary 4.7 applied to 𝑉 = 𝜄𝐺(𝑌𝐺). □

Remark 7.4. If 𝐺 is a group satisfying the equivalent conditions of Lemma 7.3, then the coarse
moduli space of 𝑋𝐺 is isomorphic to ℙ1. The converse does not hold. For example, taking 𝐺 to
be the group of upper-triangular matrices in GL2(ℤ∕3ℤ) gives the modular curve 𝑋𝐺 = 𝑋0(3).
The coarse moduli space of 𝑋0(3) is isomorphic to ℙ1, but 𝑋0(3) itself is not a weighted projective
line. One way to see this is to note that the Picard group of a weighted projective line is infinite
cyclic, generated by the class of the tautological line bundle [10, Example 7.27], but considering
dimensions of spaces of global sections shows that the line bundle of modular forms on 𝑋0(3)
cannot be identified with any power of the tautological bundle on a weighted projective line.

Remark 7.5. The equivalent conditions of Lemma 7.3 hold if the graded 𝐾𝐺-algebra of modular
forms for𝐺 is generated by twohomogeneous elements. Overℂ, the groups forwhich this happens
were classified by Bannai, Koike, Munemasa and Sekiguchi [1].

Theorem 7.6. Let 𝑛 be a positive integer, and let 𝐺 be a subgroup of GL2(ℤ∕𝑛ℤ). Let 𝐾𝐺 be the
fixed field of the action of 𝐺 on ℚ(𝜁𝑛) given by (g , 𝜁𝑛) ↦ 𝜁

det g
𝑛 . Assume that 𝐺 satisfies the equiva-

lent conditions of Lemma 7.3 for some (𝑤0, 𝑤1), and let 𝑒(𝐺) be the reduced degree of the canonical
morphism𝑋𝐺 → 𝑋(1) (see Definition 4.2). Furthermore, assume 𝑒(𝐺) = 1 or𝑤 = (1, 1) holds. Then
for every finite extension 𝐾 of 𝐾𝐺 , we have

𝑁𝐺,𝐾(𝑋) ≍ 𝑋
1∕𝑑(𝐺) as 𝑋 → ∞,

where

𝑑(𝐺) =
12𝑒(𝐺)

𝑤0 + 𝑤1
.
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2430 BRUIN and NAJMAN

Proof. Using the commutative diagram of Lemma 7.3 and noting that for counting purposes we
may ignore the cusps (cf. [7, Remark 6.2]), we obtain

𝑁𝐺,𝐾(𝑋) ≍ #{𝑧 ∈ ℙ(𝑤)(𝐾) ∣ 𝑆(4,6)(𝜙(𝑧))
12 ⩽ 𝑋}.

By Corollary 6.5 with 𝑢 = (4, 6), the quotient 𝑆(4,6)(𝜙(𝑧))∕𝑆𝑤(𝑧)𝑒 is bounded. This implies

𝑁𝐺,𝐾(𝑋) ≍ #{𝑧 ∈ ℙ(𝑤)(𝐾) ∣ 𝑆𝑤(𝑧) ⩽ 𝑋
1∕(12𝑒(𝐺))}.

Applying Theorem 3.8, we obtain

𝑁𝐺,𝐾(𝑋) ≍ 𝑋
(𝑤0+𝑤1)∕(12𝑒(𝐺)).

This proves the claim. □

8 EXAMPLES

The groups corresponding to the 15 torsion groups from Mazur’s theorem satisfy the conditions
of Lemma 7.3. In Table 1, we list these groups and a few more satisfying these conditions.
For positive integers𝑚 ∣ 𝑛, we write

𝐺(𝑚, 𝑛) =

{
g ∈ GL2(ℤ∕𝑛ℤ)

|||| g =
(
∗ ∗

0 1

)
and g ≡

(
∗ 0

0 1

)
(mod 𝑚)

}
.

We also put

𝐺1(𝑛) = 𝐺(1, 𝑛)

and

𝐺0(𝑛) =

{
g ∈ GL2(ℤ∕𝑛ℤ)

|||| g =
(
∗ ∗

0 ∗

)}
.

For each group 𝐺, we give its inverse image Γ under the canonical group homomorphism
SL2(ℤ) → GL2(ℤ∕𝑛ℤ), the index of Γ in SL2(ℤ), the weights of the corresponding weighted pro-
jective line, and the values 𝑒(𝐺) and 𝑑(𝐺). The first 12 groups can also be found in [13, Examples 2.1
and Example 2.5], and the 12 groups with 𝑒(𝐺) = 1 can also be found in [1, Table 1]. By construc-
tion, for all groups 𝐺 in the table, the determinant 𝐺 → (ℤ∕𝑛ℤ)× is surjective, hence the index
[GL2(ℤ∕𝑛ℤ) ∶ 𝐺] equals [SL2(ℤ) ∶ Γ], and 𝐾𝐺 equals ℚ. Furthermore, we note that the numbers
𝑒(𝐺) and 𝑑(𝐺) can be expressed as

𝑒(𝐺) =
𝑤0𝑤1
24

[SL2(ℤ) ∶ Γ],

𝑑(𝐺) =
𝑤0𝑤1

2(𝑤0 + 𝑤1)
[SL2(ℤ) ∶ Γ].
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COUNTING ELLIPTIC CURVES WITH LEVEL STRUCTURES 2431

TABLE 1 A selection of groups satisfying the conditions of Lemma 7.3. The first 15 groups are those
appearing in Mazur’s theorem

𝑮 𝚪 [𝐒𝐋𝟐(ℤ) ∶ 𝚪] (𝒘𝟎,𝒘𝟏) 𝒆(𝑮) 𝒅(𝑮)

𝐺1(1) Γ(1) = SL2(ℤ) 1 (4,6) 1 6/5
𝐺1(2) Γ1(2) = Γ0(2) 3 (2,4) 1 2
𝐺1(3) Γ1(3) 8 (1,3) 1 3
𝐺1(4) Γ1(4) 12 (1,2) 1 4
𝐺1(5) Γ1(5) 24 (1,1) 1 6
𝐺1(6) Γ1(6) 24 (1,1) 1 6
𝐺1(7) Γ1(7) 48 (1,1) 2 12
𝐺1(8) Γ1(8) 48 (1,1) 2 12
𝐺1(9) Γ1(9) 72 (1,1) 3 18
𝐺1(10) Γ1(10) 72 (1,1) 3 18
𝐺1(12) Γ1(12) 96 (1,1) 4 24
𝐺(2, 2) Γ(2) 6 (2,2) 1 3
𝐺(2, 4) Γ(2, 4) 24 (1,1) 1 6
𝐺(2, 6) Γ(2, 6) 48 (1,1) 2 12
𝐺(2, 8) Γ(2, 8) 96 (1,1) 4 24
𝐺0(4) Γ0(4) 6 (2,2) 1 3
𝐺(4, 4) Γ(4) 48 (1,1) 2 12
𝐺0(8) ∩ 𝐺1(4) Γ0(8) ∩ Γ1(4) 24 (1,1) 1 6
𝐺(3, 3) Γ(3) 24 (1,1) 1 6
𝐺(3, 6) Γ(3, 6) 72 (1,1) 3 18
𝐺0(9) ∩ 𝐺1(3) Γ0(9) ∩ Γ1(3) 24 (1,1) 1 6
𝐺(5, 5) Γ(5) 120 (1,1) 5 30

9 FUTUREWORK

In work of Manterola Ayala and the first author (see [12]), results are proved that make it possi-
ble to count points of a moduli stack of the form ℙ(𝑤) directly with respect to the pull-back of
the size function from 𝑋(1), rather than first relating this pull-back to the standard size function
on ℙ(𝑤). This approach requires extending the work of Deng [7], but is conceptually simpler than
the approach we have taken here. A similar result has been proved independently by Phillips [15,
Theorem 1.2.2].
Phillips has also obtained a result similar to Theorem 7.6 for moduli stacks of elliptic curves

that are of the form [15, Theorem 5.1.4]. An example of such a moduli stack is 𝑋0(6), so this result
enables one to count elliptic curves with a 6-isogeny over any number field.

APPENDIX A: MORPHISMS BETWEEN QUOTIENT STACKS

In this appendix, we assume some knowledge of stacks. We place ourselves in the following situ-
ation. Let 𝑆 be a scheme, let 𝐺 and𝐻 be two group schemes over 𝑆, and let𝑚𝐺 ∶ 𝐺 ×𝑆 𝐺 → 𝐺 and
𝑚𝐻 ∶ 𝐻 ×𝑆 𝐻 → 𝐻 be the group operations. Let 𝑋 and 𝑌 be two 𝑆-schemes, let 𝑎∶ 𝐺 ×𝑆 𝑋 → 𝑋

be a left action of 𝐺 on𝑋, and let 𝑏∶ 𝐻 ×𝑆 𝑌 → 𝑌 be a left action of𝐻 on 𝑌. Let 𝑝2 ∶ 𝐺 ×𝑆 𝑋 → 𝑋
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2432 BRUIN and NAJMAN

be the second projection, and let 𝑝2,3 ∶ 𝐺 ×𝑆 𝐺 ×𝑆 𝑋 → 𝐺 ×𝑆 𝑋 be the projection onto the second
and third factors.
We consider the quotient stacks [𝐺∖𝑋] and [𝐻∖𝑌] over (the fppf site of) 𝑆, writing quotients

on the left because 𝑎 and 𝑏 are left actions. Below we give an explicit description of the groupoid
of morphisms [𝐺∖𝑋] → [𝐻∖𝑌] of stacks over 𝑆. For this, we will use the following description of
morphisms from the quotient stack [𝐺∖𝑋] to another stack given byNoohi [14, Proposition 3.19];
see also [18, tag 044U] for part of this statement.

Lemma A.1. Let  be a stack in groupoids over 𝑆, and let 𝐶([𝐺∖𝑋],) be the following groupoid.
The objects are the pairs (𝑓, ℎ) where 𝑓∶ 𝑋 →  is a morphism of stacks and ℎ is a descent datum
for 𝑓, that is, an isomorphism ℎ∶ 𝑓◦𝑝2

∼
⟶ 𝑓◦𝑎 of functors 𝐺 ×𝑆 𝑋 →  satisfying

(𝑚𝐺 × id𝑋)
∗ℎ = (id𝐺 × 𝑎)

∗ℎ◦𝑝∗2,3ℎ.

The morphisms from (𝑓, ℎ) to (𝑓′, ℎ′) are the isomorphisms 𝑐∶ 𝑓
∼
⟶ 𝑓′ of functors 𝑋 →  satisfy-

ing

𝑎∗𝑐◦ℎ = ℎ′◦𝑝∗2𝑐.

Then the groupoid of morphisms [𝐺∖𝑋] →  is canonically equivalent to 𝐶([𝐺∖𝑋],).

To state the next lemma, we recall the following. Given a left action of a group Γ on a set 𝑍, the
quotient groupoid Γ ∖∖ 𝑍 is the following groupoid: the set of objects is 𝑍, the morphisms 𝑧 → 𝑧′

are the elements 𝛾 ∈ Γ with 𝛾𝑧 = 𝑧′, and composition of morphisms is the group operation in Γ.
The set of isomorphism classes of Γ ∖∖ 𝑍 is just the quotient set Γ∖𝑍.

Lemma A.2. In the above situation, assume in addition that all𝐻-torsors on𝑋 are trivial. Let 𝑍 be
the set of pairs (𝑓∶ 𝑋 → 𝑌, ℎ∶ 𝐺 ×𝑆 𝑋 → 𝐻) ofmorphisms of 𝑆-schemes such that for all 𝑆-schemes
𝑇, all 𝑥 ∈ 𝑋(𝑇) and all g , g ′ ∈ 𝐺(𝑇) we have

ℎ(g ′g , 𝑥) = ℎ(g ′, g𝑥)ℎ(g , 𝑥) (A.1)

and

𝑓(𝑎(g , 𝑥)) = 𝑏(ℎ(g , 𝑥), 𝑓(𝑥)). (A.2)

Let the group𝐻(𝑋) act on 𝑍 by

(𝑐, (𝑓, ℎ)) ↦ (𝑓′, ℎ′),

where 𝑓′ and ℎ′ are defined on points as follows: for all 𝑆-schemes 𝑇, all 𝑥 ∈ 𝑋(𝑇) and all g ∈ 𝐺(𝑇),
we have

𝑓′(𝑥) = 𝑏(𝑐(𝑥), 𝑓(𝑥))
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and

ℎ′(g , 𝑥) = 𝑐(𝑎(g , 𝑥))ℎ(g , 𝑥)𝑐(𝑥)−1.

Then the groupoid of morphisms [𝐺∖𝑋] → [𝐻∖𝑌] is canonically equivalent to the quotient groupoid
𝐻(𝑋) ∖∖ 𝑍. In particular, there is a canonical bijection between the set of isomorphism classes of such
morphisms and the quotient set𝐻(𝑋)∖𝑍.

Proof. We apply LemmaA.1 with = [𝐻∖𝑌]. Because all𝐻-torsors on𝑋 are trivial, the groupoid
of morphisms 𝑋 → [𝐻∖𝑌] is canonically equivalent to the groupoid 𝐷(𝑋, [𝐻∖𝑌]) defined as fol-
lows: the objects of𝐷(𝑋, [𝐻∖𝑌]) are themorphisms𝑓∶ 𝑋 → 𝑌 of schemes, and the isomorphisms
𝑓

∼
⟶ 𝑓′ in 𝐷(𝑋, [𝐻∖𝑌]) are the elements 𝑐 ∈ 𝐻(𝑋) such that the diagram

is commutative. Similarly, the isomorphisms 𝑓◦𝑝2
∼
⟶ 𝑓◦𝑎 in the groupoid of morphisms 𝐺 ×𝑆

𝑋 → [𝐻∖𝑌] correspond to the elements ℎ ∈ 𝐻(𝐺 ×𝑆 𝑋) such that the diagram

is commutative. Furthermore, such an ℎ is a descent datum for 𝑓 if and only if the diagram

is commutative. On 𝑇-valued points, the commutativity of the last two diagrams comes down to
(A.2) and (A.1), respectively, so the objects of 𝐶([𝐺∖𝑋], [𝐻∖𝑌]) correspond to the elements of 𝑍.
The isomorphisms (𝑓, ℎ)

∼
⟶ (𝑓′, ℎ′) in 𝐶([𝐺∖𝑋], [𝐻∖𝑌]) correspond to the elements 𝑐 ∈ 𝐻(𝑋)

as above such that in addition the diagram

is commutative. Equivalently, these isomorphisms correspond to the elements 𝑐 ∈ 𝐻(𝑋) sending
(𝑓, ℎ) to (𝑓′, ℎ′) under the given action of𝐻(𝑋) on 𝑍. □
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