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ABSTRACT
In optimization approaches to engineering applications, time-consuming
simulations are often utilized that can be configured to deliver solutions for
various fidelity (accuracy) levels. It is common practice to train hierarchical
surrogatemodels on objective functions in order to speed up the optimiza-
tion process. These operate under the assumption that there is a correlation
between the different fidelities that can be exploited to gain information
cheaply. However, limited guidelines are available to help divide the avail-
able computational budget between multiple fidelities in practice. This
article evaluates a range of different choices for a two-fidelity setup that
provide helpful intuitions about this trade-off. An heuristic method is pre-
sented based on subsampling from an initial Design of Experiments to
find a suitable division of the computational budget between the fidelity
levels. This enables the setting up of multi-fidelity optimizations that uti-
lize the available computational budget efficiently, independently of the
multi-fidelity model used.
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1. Introduction

When dealing with simulation based optimization problems in engineering applications, the runtime
cost of each evaluation is typically themost restrictive aspect of a successful approach. Surrogatemod-
els are often used to reduce the total computational load by learning trends fromprevious evaluations.
But the computational cost for single evaluations have grown too high in many modern problems for
such approaches to obtain enough information necessary to train an accurate model in a reasonable
time.

Many such problems offer tunable accuracy and can therefore be classified as either arbitrar-
ily tunable variable-fidelity, or discretely tunable multi-fidelity, problems. This article focuses on
multi-fidelity problems specifically. Supplementing accurate high-fidelity information with cheaper
low-fidelity information is regularly done by incorporating hierarchical (co-)surrogate models based
on work by Kennedy and O’Hagan (2000), such as co-kriging (Forrester, Sóbester, and Keane 2007)
and co-Radial Basis Functions (RBFs) (Durantin et al. 2017). These have been successfully applied
in, for example, the design of ships (Pellegrini et al. 2016), airfoils (Liu et al. 2018), satellites (Shi
et al. 2020), additive manufacturing (Zhou, Hsieh, and Wang 2019) and fire start determination
(Li et al. 2019).

However, it remains unclear under which conditions the inclusion of low-fidelity information
in hierarchical surrogate models is actually beneficial. While previous research has shown that the
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correlation between high- and low-fidelity response surfaces should be fairly high—i.e. a sample cor-
relation coefficient correlation> 0.9 (Toal 2015; Fernández-Godino et al. 2016)—a high correlation
by itself is no guarantee of achieving added benefit formulti-fidelitymodels. That is, regardless of cor-
relation, individual response surface landscapes still have a substantial impact on the final accuracy
of the trained models.

Furthermore, even if a model is beneficial, how best to distribute the available computational bud-
get between the fidelity levels is still an open question. Prior work has included experiments where
models based onmultiple sample sizes were compared, but most presented only a limited selection of
combinations, as can be seen in, for example, the overviews by Fernández-Godino et al. (2016, 2019).
Common heuristics for deciding on this division rely either on the cost ratio between fidelities or
otherwise use expected information gains (Guo et al. 2020; Moss, Leslie, and Rayson 2020; Huang et
al. 2006; Ryou, Tal, and Karaman 2020; Belakaria, Deshwal, and Doppa 2020). Of these, the former
do not use any function information, while the latter are designed to be used in iterative optimization,
not to gain general understanding.

This work explores empirically how to distribute additional computational budget over two
fidelities. The focus is on one-shotDesign of Experiments (DoEs), by enumerating all possible combi-
nations of a wide range of low- and high-fidelity samples, fitting a hierarchical model and measuring
its accuracy for each setup. This approach is similar to a study by Durantin et al. (2017) but with a
much finer granularity, more sample combinations and many more benchmark functions. The aim
is to provide general insight into the behaviour of this trade-off by analysing model accuracy as a
function of the DoE sizes and for various benchmark functions. Recognizing that using an enumer-
ation procedure to obtain this information is far too computationally expensive in terms of problem
evaluations for practical settings, this article presents a method using subsampling that draws smaller
DoEs from an initial DoE to avoid performing any new evaluations. The accuracy trend results are
approximated using these subsampled DoEs and show a high correlation between these results and
those from the original full enumeration.

An heuristic is presented that utilizes the information gained from the subsampling approach to
predict a beneficial split of the number of high- and low-fidelity samples for a given computational
budget. This allows for an efficient use of the available computational resources for the multi-fidelity
modelling approach to optimization.

All files for this work are archived on Zenodo (van Rijn 2021; van Rijn et al. “Generated Data Files
and Figures” 2021). Links are given in notes to the captions for each figure to the source code on
GitHub (van Rijn 2020) and full versions on FigShare (van Rijn et al. “Figures from Paper” 2021),
respectively. Appendices 1 and 2 appear after the references list.

2. Background

This section defines some terms and methods that are used in the remainder of this article.

2.1. Multi-fidelity problems

A multi-fidelity problem is an optimization/simulation problem that is available in multiple fideli-
ties, i.e. accuracy levels. In real-world Computational Fluid Dynamics (CFD) simulations of, for
example, airfoils, these fidelities could correspond to different mesh sizes or simulation types. A low-
fidelity simulation would use a coarse mesh or potential flow solver, and thus give lower accuracy,
but be faster to calculate, while a high-fidelity simulation would use a finer mesh or Reynolds-
Averaged Navier–Stokes (RANS) simulation and therefore be more accurate while taking longer to
calculate.

In the following, fh : X → Y and fl : X → Y are used to denote the high- and low-fidelity levels
of a simulator, abstractly represented by the function f that maps input vectors x ∈ X onto outputs
y ∈ Y .
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2.2. Additive hierarchical surrogatemodels

To make use of the multiple sources of information in a multi-fidelity problem, an additive model
structure has been proposed by Kennedy and O’Hagan (2000):

zh(x) = ρzl(x)+ δ(x). (1)

Here, zh(x), and zl(x) are the high- and low-fidelity surrogate models at point x, respectively, for
approximating fh(x) and fl(x); ρ is a regression parameter and δ(x) is the difference model at point
x, which improves the low-fidelity prediction by additive correction.

Without loss of generality, simplified additive models are considered where the regression param-
eter ρ = 1, to limit algorithmic complexity. While this may reduce the achievable accuracy of the
models, it is of no relevance to the introduced concepts. Learning this parameter will most likely
only further increase the performance of this approach. Independent models for zl and δ are created,
where zl models the lowest accuracy information source fl, and a separate model δ predicts the dif-
ferences between the high- and low-fidelity responses fh(x)− fl(x). Specifically, krigingmodels using
the Matérn kernel were used for this article, although the proposed method does not depend on this
particular choice and could use other models.

2.3. Multi-fidelity design of experiments

A standard approach for systematically sampling a set of input parameter configurations in order to
create a dataset of input–output pairs of a given function is referred to as a Design of Experiments
(DoE) (Montgomery 2019). The goal when choosing such a dataset is to cover the input-space of the
function in such a way that the createdmodel is as good as it can be, whether on a local or global scale.
How large the search space is and how much computational effort can be expended on this depends
on the problem setting.However, a full factorial design (i.e. a grid search) is usually out of the question
owing to the relatively high dimensionality and high computational cost. In this work, the common
Latin Hypercube Sample (LHS) strategy is used. This technique tries to create a sample such that the
samples are evenly distributed over the search space, while avoiding the reuse of coordinate values
for a dimension.

In a multi-fidelity setting, where a difference model between high- and low-fidelity functions is
trained, overlapping DoEs for low- and high-fidelity models where all high-fidelity samples are also
included in the low-fidelity DoE are preferred. Additionally, each DoE should still cover the search
space efficiently and therefore should be an approximate LHS itself.

To achieve this, the procedure from Le Gratiet (2013) is used to generate DoEs for the hierarchical
models, as outlined in Algorithm 1. In lines 1 and 2, two separate LHSs are generated. Then, for

Algorithm 1Multi-fidelity LHS Le Gratiet (2013)
Require: nl ≥ nh + 1
1: H← LHS(nh) � Independent samples per fidelity
2: L← LHS(nl)
3: L′,H′ ← ∅
4: while H not empty do
5: h, l← argminh∈H,l∈L ‖h− l‖ � Find closest pair
6: H′ ← H′

⋃
h

7: L′ ← L′
⋃

h � Effectively adjust l to h
8: Remove h, l from H, L
9: end while
10: L′ ← L′

⋃
L � Add remaining low-fidelity points

11: return H′, L′
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Figure 1. Illustration of Algorithm 1. A two-dimensional DoE with nh = |H| = 10 (shown as pluses) and nl = |L| = 20 (shown as
dots).1,2

each high-fidelity point, the closest low-fidelity point is replaced by that high-fidelity point (the while
loop in lines 4–9). Given the desired sizes, this method returns both a high-fidelity LHS H, and a
more spread-out low-fidelity sample L that is still roughly an LHS itself. The final outcome is a DoE
that is the union of the sets L and H ⊂ L of low- and high-fidelity samples, respectively, denoted as
DoE(H, L) and where the exact differences fh(x)− fl(x) can be computed for all x ∈ H and used as a
training set for the difference model δ. Figure 1 illustrates this procedure.

3. Problem statement

The fundamental question addressed in this work is: how should a given additional computational
budget be distributed among multiple fidelities? Especially, in the context of computationally expen-
sive simulation problems where the overall evaluation budget is constrained, this is a highly relevant
question. Addressing the question of how to split the high- and low-fidelity samples for theDoE(H, L)
is chosen as the starting point for this article.

The answer to this question depends on which fidelity provides the most information for its com-
putational cost. An additional high-fidelity sample in a so-far unexplored area will definitely improve
the model’s accuracy. But if some number of low-fidelity samples can improve the model more with
equal or lower computational cost, that might be a better choice. Howmuch information is gained by
adding another sample for a specific fidelity depends heavily on the number of samples of that fidelity
already present, and on the chosen model’s capacity to capture the problem’s response surface.

An important quantity in determining the split between the number of high- and low-fidelity
evaluations is given by the cost ratio φ = cl/ch ∈ (0, 1), where ch and cl are typical computation times
associated with high- and low-fidelity evaluations, respectively. The problem can thus be stated as
follows: given a fixed evaluation budget b (which is measured in high-fidelity evaluation times) and
cost ratio φ, what are the optimal numbers of high- and low-fidelity evaluations, i.e. the optimal
division ratio nh/nl, thatminimizes themodel error andwhich respects the constraint that the budget
is not exceeded, i.e. nh + φnl ≤ b? The Mean Squared Error (MSE) of the response surface model z
compared with the true function value of the highest fidelity level fh is taken as the error model,
evaluated on a given test set x ∈ T:

MSE(z,T) =
∑
x∈T

(z(x)− fh(x))2

|T| . (2)

The model error is expected to have a non-trivial and in general nonlinear behaviour as a function of
the division ratio. For the case consisting only of high-fidelity evaluations, the low number of overall
samples probably leads to a rather large error. On the other extreme, using only low-fidelity evalu-
ations will also not produce an accurate model as no actual information about the true function is
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used. In the intermediate region, with some low-fidelity samples at the expense of a few high-fidelity
evaluations, it is expected that a reduced model error will be obtained. The details of this trade-off
strongly depend on various aspects of the problem, like the structure of the high-fidelity function and
the similarity between the low- and the high-fidelity functions. However, in order to learn the dom-
inant behaviour of the error as a function of the number of high- and low-fidelity samples, a simple
fit to the error is employed. This enables the extraction of the global trend and allows for formulating
an heuristic that guides the distribution of additional computational budget.

4. Method

4.1. Enumeration ofmulti-fidelity DoE sizes

To examine the trade-off between the number of high- and low-fidelity samples fully, model accuracy
information needs to be obtained for many possible combinations. Such information is gathered by
empirically performing a full enumeration of all possible combinations (nl, nh) for 2 < nh < nhmax

and nh + 1 < nl < nlmax. For each pair (nl, nh) multiple (I = 50) hierarchical multi-fidelity models
were trained to collect some statistics and evaluate the errors on an independent test set T. The tables
of errors for the complete enumeration DoEs are from here on referred to as error grids.

Algorithm 2 Full enumeration error grid
Require: N-dimensional multi-fidelity problem (fh, fl)
Require: nmax

h , nmax
l �Maximum DoE size

Require: I � Number of iterations
1: E← ∅ � Error grid storage
2: T ← LHS(500·N) � Independent test set
3: for nh = 2 . . . nmax

h do
4: for nl = (nh + 1) . . . nmax

l do
5: for i = 1 . . . I do
6: H, L← MF− LHS(nh, nl) � Algorithm 1
7: Yh,Yl ← fh(H), fl(L) � Evaluate
8: Train zh using H, L,Yh,Yl
9: E[nh, n− l, i]←MSE(zh,T) � Equation (2)
10: end for
11: end for
12: end for
13: return E

Algorithm 2 lists a pseudocode representation of the procedure by which the error grids are
obtained. The size of the test set T is set to |T| = 500·N, where N is the dimensionality of the search
space (line 2). For each combination (nh, nl), I = 50 independent DoEs are sampled and the errors
for the multi-fidelity model based on each DoE are evaluated and stored (lines 5–10).

The resulting error between the surrogate model and the true high-fidelity function can be visu-
alized in heatmaps of the error grids as shown in Figure 2. The median error over the I independent
realizations of theDoEs are shown as 2D heatmaps and as a function ofH and L. Experiments showed
that the distribution of the MSEs is exponential, so log10(MSE) is used to account for the different
error scales better. These error grids serve as the basis for the analysis that allow:

• examining the dependence of the model error as a function of the division ratio between the
number of high- and low-fidelity evaluations;

• examining how this dependency varies between multi-fidelity problems; and
• identifying the optimal division ratio for a given budget and problem.
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Figure 2. Error grids. Heatmaps of log10 of the hierarchical model MSE for varying DoE sizes, shown as the median over I = 50
iterations, on four benchmark problems. The black arrow shows the global gradient direction as described in Section 4.3. Overall, it
is clear that addingmore samples improvesmodel accuracy, either additional high-fidelity samples (vertical) or low-fidelity samples
(horizontal).3,4

However, the number of DoEs that need to be evaluated in this full enumeration procedure is
NDoE = I nhmax (nlmax − nhmax/2), which for I = 50, nhmax = 50, nlmax = 125 is a total of NDoE =
250,000 DoEs to sample and models to train. The number of high-fidelity function evaluations is
consequently in the millions, which might be feasible for trivially computable benchmark problems,
but will be prohibitively unfeasible for real-world problems with higher computational demand.

4.2. Cross-validated subsampling of DoE sizes

This section describes how to approximate error grids using only one fixed initial multi-fidelity DoE.
Given one DoE(H, L) with nh = |H| and nl = |L| samples, a full error grid can be created by reusing
these evaluated samples and creating a set of smaller subsampled DoEs. Concretely, H′ ⊂ H, L′ ⊂ L
of size (nh′, nl′) is subsampled such that the set of high-fidelity samples H′ is still a true subset of
the set of low-fidelity samples L′, i.e. H′ ⊂ L′. For this,H′ is first drawn uniformly at randomwithout
replacement from the availableH. Then, those samples are taken as a start forL′, and randomly chosen
low-fidelity points are added until the desired size is reached (see Algorithm 3).

Algorithm 3 Subsampling MF-DoE
Require: Initial multi-fidelity DoE(H, L)
Require: Desired DoE size nh′, nl′
1: H′ ← uniform randomly choose nh′ samples from H
2: L′ ← uniform randomly choose remaining nl′ − nh′ samples from (L \H′)
3: L′ ← L′

⋃
H′

4: return H′, L′

Since the chosen high-fidelity DoEH′ is a strict subset of the original DoEH, some samples left out
of the subsampled DoE H′ can serve as test set Htest = H \H′ and the error of the surrogate models
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for each DoE similar to cross-validation can be calculated. The complete subsampling approach is
summarized in the pseudocode shown in Algorithm 4.

Algorithm 4 Subsampling error grid procedure
Require: N-dimensional multi-fidelity problem (fh, fl)
Require: I � Number of iterations
1: E← ∅ � Error grid storage
2: H, L← MF− LHS(nhmax, nlmax) � Algorithm 1
3: Yh,Yl ← fh(H), fl(L) � Evaluate once
4: for nh = 2 . . . nhmax − 1 do
5: for nl = (nh + 1) . . . nlmax do
6: for i = 1 . . . I do
7: H′, L′ ← Subsample H, L � Algorithm 3
8: Y ′h,Y

′
l ← values from Yh,Yl for H′, L′

9: Train zh using H′, L′,Y ′h,Y
′
l

10: E[nh, nl, i]←MSE(zh,Htst) � Htst : H \H′
11: end for
12: end for
13: end for
14: return E

A comparison of the subsampling and full enumeration procedure is made in Appendix 2.

4.3. Angle of gradient quantification

The error grids provide intuitive information about the trade-off between the numbers of high- and
low-fidelity samples. The contour lines give clear visual guidance about in which direction of the
(nl, nh)-plane the accuracy of the surrogate models increases. To evaluate this behaviour quantita-
tively, the gradient of the error with respect to the number of samples is used. If this gradient direction
is predominantly along the nh direction, i.e. it has an angle close to 90◦ as measured from the hori-
zontal nl axis (see the example in Figure 2), this indicates that improvements in model quality mostly
depend on additional high-fidelity information. However, if the error gradient angle is more hori-
zontal, the benefit of adding low-fidelity information is larger. It is important to note that, even when
the angle is mostly vertical, e.g. 80◦, adding low-fidelity information can still be beneficial if it is
computationally much cheaper.

In the following, the direction of the error gradient is used to estimate the best split between high-
and low-fidelity samples in order to reduce the modelling error. Even though the gradient is not
consistent throughout the error grid, as can be seen by the curved contour lines, the global behaviour
can be extracted by fitting a hyperplane through log10 of the MSE data according to

log10(MSE) = α + βhnh + βlnl. (3)

Although clearly an approximation, the global direction provided by a simple linearmodel is sufficient
for this purpose. From the linear fit, the global direction of the gradient direction of reducing error
can be summarized intuitively by an angle

θ = arctan
(

βh

βl

)
. (4)

For the error grids in Figure 2, for example, this results in angles of θBooth(2D) ≈ 88◦, θCurrin(2D) ≈
34◦, θPark91A(4D) ≈ 72◦ and θBorehole(8D) ≈ 63◦, respectively. Confidence intervals of the calculated
gradient angles are shown in Figure 3, as determined using the calculations shown in Appendix 1.
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Figure 3. Angle as a function of correlation, illustrated for all functions in the mf2 (van Rijn and Schmitt 2020) package. The left-
hand side shows the complete range −1 ≤ r ≤ 1, while the right-hand side highlights the highly correlated region 0.85 ≤ r ≤
1. Single markers are used for non-adjustable functions such as Booth and Borehole, while the lines with markers show various
parameter values for the adjustable functions where the line connects points with adjacent values of A. Error bars show the CI as
defined in Equation (A3).5,6

5. Experiments

5.1. Replication of results and implementation details

All source code of this work is available on GitHub (van Rijn 2020), and archived on Zenodo (van
Rijn 2021; van Rijn et al. “Generated Data Files and Figures” 2021) together with data files. The
analyses are written in Python 3.6+, most notably using the packages matplotlib (Hunter 2007),
numpy (van der Walt, Colbert, and Varoquaux 2011), scikit-learn (Pedregosa et al. 2011) and
xarray (Hoyer and Hamman 2017).7 Reproducibility is guaranteed by using a single fixed random
seed for globally used random values such as the test set T and the initial DoE used for subsampling.8
All experiments use I = 50 iterations.

5.2. Benchmark functions

The benchmark functions used from the mf2 (van Rijn and Schmitt 2020) package range from one
dimensional (1D), such as the Forrester function, to 10D, such as the Trid function, with a majority
of 2D functions such as Bohachevsky, Currin and Six-Hump Camelback. This collection contains
several different problem landscapes and all are previously used in the literature. With the exception
of the 2D Branin function, the correlations between between the high- and low-fidelity functions are
all above 0.7.

The adjustable benchmark functions previously proposed in Section 3 of Toal (2015) are focused
on in particular: the 2D adjustable Branin function,13 the 2D Paciorek, the 3D Hartmann3 and the
10D Trid functions. The low-fidelity functions of these benchmarks include a tuning parameter A,
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Figure 4. Adjustable multi-fidelity function example showing the adjustable Branin function: (a) high-fidelity; (b), (c) and (d) low-
fidelity for A = 0.1, 0.5 and 0.9, respectively.9,10

which controls the correlation between high- and low-fidelity for these functions. Figure 4 shows an
example of this, although the exact influence of A depends on the specific function, and the relation-
ship between A and the correlation for these functions is shown in Figure 5. For all functions, the
correlation can be tuned to any value between maximally positive (r≈ 1) and absent (r≈ 0). Addi-
tionally, for the Branin and Trid functions, this range extends to negative correlations (r≈ − 1). The
explicit functional forms can be found in the article by Toal (2015).

5.3. Error gradient angle analysis

The full enumeration procedure described in Section 4.1 was run for all mf2 functions, using
parameter values A ∈ [0, 0.05, . . . , 0.95, 1.0]14 for the adjustable functions. For each function, the
gradient direction and error gradient angle was estimated using the linear fit procedure described



10 S. VAN RIJN ET AL.

Figure 5. Correlation between high- and low-fidelity for adjustable 2D Branin, 2D Paciorek, 3D Hartmann3 and 10D Trid functions
as a function of parameter A.11,12

in Section 4.3. The resulting angles, along with the confidence intervals, are shown in Figure 3 as
function of the correlation r.

First, it should be noted that the calculated angles cover a very wide range from basically zero up
to almost 120◦, with the bulk of the values between 30◦ and 90◦. For many functions and in a large
range of correlations an angle of around 90◦ is computed, which indicates that the accuracy only
increases when adding high-fidelity samples. Interestingly, angles≥ 90◦ are also present. These high
angles indicate that the added low-fidelity information actually hurts the accuracy of this hierarchical
model, making it perform worse than a model trained with fewer low-fidelity samples. This adverse
effect of increasing the error by adding low-fidelity samples occurs for correlations up to r� 0.8 and
the tendency gets stronger for less correlated or even anti-correlated benchmark functions. It should
be noted that this is not an artifact of the linear fit or the way the error gradient angles are calculated,
but truly reflects the behaviour of the model error for those functions, as can be seen in Figure 6 for
the adjustable Trid function.

Figure 6. (a) Error grids for adjustable Trid function for A = 0.4, 0.8, 0.9, with r = −0.23, ;0.96, 0.92, respectively (upper row, from
left to right) and (b) the adjustable Hartmann3 function for A = 0.1, 0.3, 0.6, with r = 0.54, 0.99, 0.74, respectively (lower row, from
left to right); the black arrow shows the global gradient direction as described in Section 4.3.15,16
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Figure 3 clearly shows a strong relationship between correlation coefficients and the error gradi-
ent angle. For each function, the observed gradient angle decreases for higher correlation coefficients.
However, the exact values and the functional relationship differ vastly. Even for high correlation coef-
ficients, e.g. r≥ 0.9, a large range of resulting error gradient angles can be observed. This means that
a high correlation does not necessarily imply a low error gradient angle in the corresponding error
grid.

Furthermore, the Hartmann3 and Trid functions show some other interesting behaviour. Note
from Figure 5 that, within A’s parameter range (i.e. [0, 1]), the correlation r for the Hartmann3 and
Trid functions is not a bijection. Certain correlation values r are associatedwith two different gradient
angles and vice versa, since different values forA canmap to the same correlation r for theHartmann3
and Trid functions (see Figure 5). Themagnified section on the right-hand side of Figure 3 shows this
most clearly. To help explain this, recall that the lines in the graph connect data points with adjacent
values for A, not r. This behaviour can be visually confirmed by inspecting the error grids directly as
shown in Figure 6.

These examples show that, although only a linear fit is used to extract gradient direction, the overall
functional dependency of the model error is captured rather well. So, for the purpose of this work,
exploring more complicated measures is not necessary. The proposed linear measures are accurate
enough to capture the global tendencies, which can already provide insight and the possibility to
formulate useful heuristics for practical application (see below).

5.4. Extrapolation

Given that the error grids from subsampling and their subsequent error gradient angles have been
shown to match those from full enumeration quite well (see Appendix 2), this information can be
used to answer the question posed in Section 3: how should additional computation budget be divided
between the two available fidelity levels?

As discussed in Section 4.3, the linear fit slope βh/βl is assumed to indicate the direction of most
improvement on the error grid. This implies that, if the error grid is extended with additional sam-
ples, the lowest model errors will be found in the same direction. So, when selecting nh high- and nl
low-fidelity samples, the ratio between them should match the previously mentioned slope βh/βl to
achieve the lowest model error, i.e.

nh
nl
= βh

βl
. (5)

However, in order to apply this method, an initial DoE(nh,0, nl,0) is required from which to create an
error grid and calculate the gradient angle. The number of samples in this initial DoE can be obtained
in any way, so does not have to match the ratio βh/βl. Since the global gradient angle of the error grid
is considered when deciding how to select additional samples, there is no need to select the additional
samples (�nh,�nl) in such as way as to bring the total (nh, nl) to match the calculated ratio. Instead,
the most improvement is expected by having the additional number of samples (�nh,�nl) respect
the relation

�nh = βh

βl
�nl, (6)

where �nh = nh − nh,0 and �nl = nl − nl,0 are the additional samples to be simulated. A fixed
additional budget b can be split between high- and low-fidelity samples according to the cost ratio φ,

�nh + φ�nl = b. (7)

From Equations (6) and (7), the best number of additional low- and high-fidelity samples can be
determined for a given additional computational budget b as

�nl = bβl

βh + φβl
, (8)



12 S. VAN RIJN ET AL.

Figure 7. Schematic representation of the proposedmethod to determine the best split for a given additional budget b by extrap-
olating along the gradient of the error grid, through the upper rightmost point of the error grid until it intersects. The cost ratio for
this example is φ = 0.4.17,18

�nh = bβh

βh + φβl
. (9)

Figure 7 shows the schematic representation of the proposed extrapolation method for splitting an
additional budget b. The dashed line indicates the extension of the error grid along the direction of
the gradient of the error grid. The solid line represents the line where the additional budget is spent
according to the cost ratio. The intersection of both linesmarks the proposed new samples split for the
next DoE. Recall that the initial sample sizes (nh,0, nl,0) do not need to respect the cost ratio relation
of Equation (7), as the initial DoE might be obtained by any method.

To evaluate this method, consider the example case of starting with a (30, 75) initial DoE that is to
be extended with an additional budget b = 20, assuming a cost ratio φ = 0.4. First, an error grid as
described in Section 4.2 is created, and the gradient is calculated as usual. This gradient predicts the
division of additional samples according to Equations (8) and (9), with the size of the resulting DoE
falling between (50, 75) for �nh = 20 and (30, 125) for �nh = 0.

For all DoE sizes between (50, 75) and (30, 125), the actual model error data from the full enu-
meration experiment described in Section 5.3 can be reused. This data is plotted in Figure 8 as
a function of the gradient angle θ = arctan(�nh/�nl), and compared with the predicted gradient
angle.

Generally, it can be observed that the MSE values are quite noisy, even though the median MSE
values of 50 different runs are plotted. This is due to the fact that the total number of samples is
rather low for the investigated functions, leading to a generally large error and also large variations
in error. But since the ultimate interest is in real-world problems, where a low number of (high-
fidelity) samples is the norm, such noise is expected in these scenarios. The first three examples show
that the predicted best angle, i.e. the error gradient angle from the subsampled error grid, matches
roughly with the minimum measured MSE, regardless of whether this angle is high (90◦) or low
(0◦). However, the last plot shows a case where the predicted angle does not lead to a region of
low error but rather high error. This is likely to be an artifact of the linear fit to the error grid. If
the error grid has a significantly different gradient in the region of low samples compared to the
number of high samples, the linear fit matches the low-sample region and cannot accurately describe
the region of a larger number of samples where the extrapolation is done. So the global estimate
of the gradient of the error grid does not align with the local direction of decreasing error around
the upper right of the error grid. This is the case for the Park91A function shown in Figures 2(c)
and 8. The error grid of the initial DoE with (nh,0, nl,0) = (30, 75) is best fitted by a linear function
with a rather large 75◦ error gradient angle and consequently the extrapolation suggests sampling
(�nh,0,�nl,0) = (17, 7) additional points corresponding to that angle. However, only looking at the
region above and to the right of the size of the initial DoE with (nh,0, nl,0) = (30, 75) in the error grid
of Figure 2(c) reveals that the direction of decreasing error is more along the nl axis, i.e. an angle close
to zero.
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Figure 8. Median log10 MSE of DoE sizes along line nh + φnl = 80 (= b) (given φ = 0.4) in the fully enumerated error grid from
Section 4.1, shown on the x-axis as the angle measured from the initial sample point (nh,0, nl,0) = (30, 75) for four benchmark
functions. The dashed vertical line shows the angle for the proposed new sample split as calculated by Equations (8) and (9).19,20

This shortcoming of the extrapolation used to determine the split of an additional budget could
be mitigated by limiting the region of the error grid to which the fit is done to a smaller area in the
upper right of the error grid. By focusing on that region, the strong effect of small sample sizes is
excluded, and the linear fit more accurately models the marginal benefit of adding another sample to
the current set.

6. Conclusions

This work empirically examined the trade-off that exists in dividing computational budget between
high- and low-fidelity samples in the context of multi-fidelity modelling and optimization problems.

So-called error grids were presented that are given by the modelling error of a hierarchical surro-
gate model for a DoE with a given number of high- and low-fidelity samples (nh, nl). For a complete
error grid, the modelling error is evaluated for many DoEs with (nh′, nl′) sample points up to the
size of the initial DoE, i.e. with nh′ ∈ [2, nh] and nl′ ∈ (nh′, nl]. By this, the structure of the model
error is revealed and the behaviour of the modelling error as function of the split between high- and
low-fidelity samples can be analysed.

The global trend in the modelling error is captured by fitting a linear hyperplane through log10
of the mean squared errors. The linear fit easily lends itself to extracting the error gradient’s global
direction, which is used to identify the global direction of reducing error in the nh–nl-plane. Error
grids were analysed for a multitude of benchmark functions, where some functions have a parameter
that allows the tuning of the relation between low- and high-fidelity functions.

The first presented version of the error grid uses an independently sampled DoE for each hierar-
chical model with a given sample split. As this requires a very large number of independent function
evaluations, a simple subsampling method was presented which needs only the available evaluations
of an initial DoE in the spirit of cross-validation. It was shown for multiple benchmark functions
that the direction of the gradient of the error grid can be estimated from the subsampling error grid
reasonably well.
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Based on the extracted global direction of the gradient of the modelling error, a simple scheme
was proposed that allows an informed decision about how to divide additionally available evaluation
budget between the different fidelities. It was shown that the scheme works well on most benchmark
functions. Those cases where the predicted split of the additional budget did not extrapolate to a
region with smaller model error are characterized by a change of the dominant behaviour of the error
grid with the number of high- and low-fidelity samples. This shortcoming of the proposed method
could bemitigated by performing the linear fit only to the regionwith the highest numbers of samples
(i.e. the upper right part of the error grid) to increase the influence of the region of interest and at the
same time reduce the sensitivity to a low number of samples.

Twomain applications are envisioned: first, as a means of characterizing the behaviour of a fidelity
level with respect to its accuracy—rather than relying on heuristics based on the correlation between
fidelity levels, error grids can provide valuable initial insight into the benefit of additional samples
from each fidelity level; secondly, as a possible means of online fidelity selection for multi-fidelity
optimization use cases. The proposed approach determines the optimal division between the number
of high- and low-fidelity samples given a set of samples. This can be utilized at each iteration of an
optimization procedure to determine the split between high and low fidelity of the newly generated
samples. The marginal benefit of each fidelity level will be reflected in the error grid’s gradient
direction, thereby steering the fidelity selection for the optimization.

In future work, experiments on additional benchmark functions and also real-world problems
will have to be performed in order to confirm the benefits of the error grids for those applications. As
only a hierarchical surrogate model based on a simplified additive co-kriging design was considered,
other multi-fidelity models should be investigated, since the gradient angle is expected to to change
according to the quality of the model fit. Additionally, the benefit of using the error grids and the
extrapolation scheme for optimization use cases needs to be explored.

Notes

1. https://github.com/sjvrijn/multi-level-co-surrogates/blob/v2/scripts/processing/2020-07-29-illustrated-bi-fid-do
e.py

2. https://figshare.com/articles/figure/Finding_Efficient_Trade-offs_in_Multi-Fidelity_Response_Surface_Modelin
g_2020-07-29-illustrated-bi-fid-doe/14060912/2

3. https://github.com/sjvrijn/multi-level-co-surrogates/blob/v2/scripts/processing/2019-09-19-plot-error-grids.py
4. https://figshare.com/articles/figure/Finding_Efficient_Trade-offs_in_Multi-Fidelity_Response_Surface_Modelin

g_2019-09-mse-nc/14060957/3
5. https://github.com/sjvrijn/multi-level-co-surrogates/blob/v2/scripts/processing/2020-02-19-adjustable-gradien

ts.py
6. https://figshare.com/articles/figure/Finding_Efficient_Trade-offs_in_Multi-Fidelity_Response_Surface_Modelin

g_2020-02-19-adjustable-gradients/14061017/3
7. https://github.com/sjvrijn/multi-level-co-surrogates/blob/v2/requirements.txt
8. https://github.com/sjvrijn/multi-level-co-surrogates/blob/v2/scripts/experiments/experiments.py#L35
9. https://github.com/sjvrijn/multi-level-co-surrogates/blob/v2/scripts/processing/2021-11-25-plot-adjustable-surfa

ces.py
10. https://figshare.com/articles/figure/Finding_Efficient_Trade-offs_in_Multi-Fidelity_Response_Surface_Modelin

g_2021-11-25-plot-adjustable-surfaces/19188593/1
11. https://github.com/sjvrijn/multi-level-co-surrogates/blob/v2/scripts/processing/2019-10-30-correlation-table.py
12. https://figshare.com/articles/figure/Finding_Efficient_Trade-offs_in_Multi-Fidelity_Response_Surface_Modelin

g_2019-10-correlation-exploration/14061014/3
13. Since Toal’s adjustable Branin function differs from the non-adjustable version by Dong et al. (2015), they are

explicitly differentiated by referring to Toal’s version as adjustable.
14. For A = 0, the high- and low-fidelity versions of the Paciorek function are identical, so it is omitted.
15. https://github.com/sjvrijn/multi-level-co-surrogates/blob/v2/scripts/processing/2019-10-15-plot-error-grids-adju

stables.py
16. https://figshare.com/articles/figure/Finding_Efficient_Trade-offs_in_Multi-Fidelity_Response_Surface_Modelin

g_2019-10-07-adjustables/14061005/3
17. https://github.com/sjvrijn/multi-level-co-surrogates/blob/v2/scripts/processing/2020-07-07-intercept-illustratio

n.py

https://github.com/sjvrijn/multi-level-co-surrogates/blob/v2/scripts/processing/2020-07-29-illustrated-bi-fid-doe.py
https://figshare.com/articles/figure/Finding_Efficient_Trade-offs_in_Multi-Fidelity_Response_Surface_Modeling_2020-07-29-illustrated-bi-fid-doe/14060912/2
https://github.com/sjvrijn/multi-level-co-surrogates/blob/v2/scripts/processing/2019-09-19-plot-error-grids.py
https://figshare.com/articles/figure/Finding_Efficient_Trade-offs_in_Multi-Fidelity_Response_Surface_Modeling_2019-09-mse-nc/14060957/3
https://github.com/sjvrijn/multi-level-co-surrogates/blob/v2/scripts/processing/2020-02-19-adjustable-gradients.py
https://figshare.com/articles/figure/Finding_Efficient_Trade-offs_in_Multi-Fidelity_Response_Surface_Modeling_2020-02-19-adjustable-gradients/14061017/3
https://github.com/sjvrijn/multi-level-co-surrogates/blob/v2/requirements.txt
https://github.com/sjvrijn/multi-level-co-surrogates/blob/v2/scripts/experiments/experiments.py#L35
https://github.com/sjvrijn/multi-level-co-surrogates/blob/v2/scripts/processing/2021-11-25-plot-adjustable-surfaces.py
https://figshare.com/articles/figure/Finding_Efficient_Trade-offs_in_Multi-Fidelity_Response_Surface_Modeling_2021-11-25-plot-adjustable-surfaces/19188593/1
https://github.com/sjvrijn/multi-level-co-surrogates/blob/v2/scripts/processing/2019-10-30-correlation-table.py
https://figshare.com/articles/figure/Finding_Efficient_Trade-offs_in_Multi-Fidelity_Response_Surface_Modeling_2019-10-correlation-exploration/14061014/3
https://github.com/sjvrijn/multi-level-co-surrogates/blob/v2/scripts/processing/2019-10-15-plot-error-grids-adjustables.py
https://figshare.com/articles/figure/Finding_Efficient_Trade-offs_in_Multi-Fidelity_Response_Surface_Modeling_2019-10-07-adjustables/14061005/3
https://github.com/sjvrijn/multi-level-co-surrogates/blob/v2/scripts/processing/2020-07-07-intercept-illustration.py
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18. https://figshare.com/articles/figure/Finding_Efficient_Trade-offs_in_Multi-Fidelity_Response_Surface_Modelin
g_2020-07-07-intercept-illustration/14060960/2

19. https://github.com/sjvrijn/multi-level-co-surrogates/blob/v2/scripts/processing/2020-07-06-extrapolation.py
20. https://figshare.com/articles/figure/Finding_Efficient_Trade-offs_in_Multi-Fidelity_Response_Surface_Modelin

g_2020-07-06-extrapolation/14061026/3
21. https://github.com/sjvrijn/multi-level-co-surrogates/blob/v2/scripts/processing/2020-03-09-adjustables-subsamp

ling-comparisons.py
22. https://figshare.com/articles/figure/Finding_Efficient_Trade-offs_in_Multi-Fidelity_Response_Surface_Modelin

g_2020-03-09-adjustables-subsampling-comparisons/14061020/3
23. https://github.com/sjvrijn/multi-level-co-surrogates/blob/v2/scripts/processing/2020-03-09-subsampling-gradie

nts.py
24. https://figshare.com/articles/figure/Finding_Efficient_Trade-offs_in_Multi-Fidelity_Response_Surface_Modelin

g_2020-03-09-subsampling-gradients/14061023/2
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Appendices

Appendix 1. Gradient angle confidence interval
From the linear fit of Equation (3), the standard errors for the linear fit parameters βi associated with input feature ni
can also be calculated, i.e. the number of high- or low-fidelity samples nh or nl, as

seβi =
√

SSE
NDoE−df√∑
(ni − ni)2

=
√∑

(fh(x)−zh(x))2
NDoE−df√∑
(ni − ni)2

, (A1)

where ni can either be the number of high- or low-fidelity samples, ni is the respectivemean, df is the number of degrees
of freedom, i.e. the number of samples NDoE minus three for the number of parameters from the linear regression
equation (α,βh,βl), and SSE is the sum of squared errors for the linear fit.

Using these standard errors, a 95% Confidence Interval (CI) for the slope βh/βl can be determined, from which the
range of the angle can be estimated:

CI
βh

βl
= βh

βl
± 1.96

√(
seβh
βh

)2
+

(
seβl
βl

)2
(A2)
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CI θ ≈
⎡
⎣tan−1

⎛
⎝βh

βl
− 1.96

√(
seβh
βh

)2
+

(
seβl
βl

)2
⎞
⎠ ,

tan−1
⎛
⎝βh

βl
+ 1.96

√(
seβh
βh

)2
+

(
seβl
βl

)2
⎞
⎠

⎤
⎦ (A3)

This CI allows for more certainty of the global error gradient angle of the error grid. In any local section of the error
grid, the angle can still be significantly different, but the proposed method provides a robust estimate of the average
gradient and serves the purpose of discriminating the global behaviour of different benchmark functions.

Appendix 2. Subsample analysis
To validate the proposed method of reducing the number of necessary function evaluations for the error grid analysis
described in Section 4.2, the influence of the sizes of training and test sets are explored. Results of the following three
setups are compared.

(1) Independent full enumeration of training and test sets as described in Section 4.1.
(2) Subsampled training set and independent test set.
(3) Subsampled training set and left-over test set, i.e. full subsampling as described in Section 4.2.

If accurate enough, the third setup is the preferred approach for practical applications, as it uses any computational
budget most efficiently by using each available evaluation for either test or training sets, and no further evaluations
besides that.

Comparing (1) and (2) shows the dependence of the procedure’s results on the initial DoEs used as the training set:
does the spread of the subsamples cover the search space well enough to simulate independent DoEs of the subsample
size? Comparison between (2) and (3) illustrates how accuracy tests with (much) less information influence the results.

Figure A1 shows example comparisons for the adjustable Branin, Hartmann3 and Trid functions. The ground-
truth error grid (left) shows a mostly 90◦ gradient for nl � nh with a trend toward 45◦ near the nh = nl diagonal. The
subsampling error grids (middle and right panels) are visibly noisier than the ground truth, but show similar shape

Figure A1. Comparison of error grids for (a) the adjustable Branin (A = 0.0, r = 0.99); (b) Hartmann3 (A = 0.4, r = 0.97); and
(c) Trid (A = 0.8, r = 0.96) using different methods. Left: error results using independent training and test set (Section 4.1). The
estimatederror gradient angles, as illustratedby theblack arrows, are θ = 81.8◦ , 55.4◦ , 20.4◦ .Middle: error results using subsampled
training set, with independent test set. The estimated error gradient angles are θ = 80.3◦ , 54.0◦ , 25.5◦ . Right: error results using
subsampled training set and left-over test set (Section 4.2). The estimated error gradient angles are θ = 81.7◦ , 58.0◦ , 32.2◦ .21,22
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characteristics. Despite the subtle differences in curvature, the resulting error gradient angles are very similar between
80◦ and 82◦.

For a more detailed analysis, 21 (function, parameter) combinations as described in Table A1 are selected, covering
a wide range of error gradient angles. For all cases, both subsampling procedures are repeated five times using indepen-
dent initial DoEs in each case, and the error gradient angles are calculated. Figure A2 shows the correlation between
the angles from the full enumeration and the subsampling procedures, as evaluated using both the independent large
test set (left) and with the full subsampling approach with the left-over test set (right).

First considering Figure A2(a), it can be seen that that the angles from subsampling correspond very well with the
ground-truth angles, with a spread of ±5◦ to ±15◦, roughly symmetrical around the diagonal. The magnitude of the
spread is visibly larger as the angles become smaller.

Figure A2(b) compares the ground-truth error gradient angles with those calculated using the test set based on
cross-validation. Again, the variance in the estimated angle becomes smaller for larger angles. It is interesting to note
that the spreads of the angles are also roughly between±5◦ to±15◦, but there seems to be a systematic shifting of the
angles estimated by full subsampling with a cross-validated test set to higher values. The exact shift is dependent on
the underlying function, e.g. the Paciorek function having a much larger shift than the Hartmann3 function. So while
not an exact prediction of the ground-truth error gradient angle, it can be interpreted as a worst-case estimate: the
ground-truth error gradient angle is unlikely to be higher than what results from this procedure.

Table A1. Listing of all parameters that are used to com-
pare correlation between error gradient angles from full
enumeration and subsampling.

Function Parameter values used for A1, . . . , A4

Branin 0.00, 0.05, 0.25
Paciorek 0.05, 0.10, 0.15, 0.20, 0.25
Hartmann3 0.20, 0.25, 0.30, 0.35, 0.40
Trid 0.65, 0.70, 0.75, 0.80, 0.85, 0.90, 0.95, 1.00

Figure A2. Error gradient angle correlation. The horizontal axis shows the angles as determined using the full enumeration pro-
cedure, while the vertical axis shows the angles calculated by the procedure mentioned by the caption below each figure. (a)
Subsampled training set, external test set and (b) Subsampled training set, left-over test set.23,24
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