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Abstract
We calculate the spectral statistics of the Kramers–Weyl Hamiltonian H =
v

∑
α σα sin pα + tσ0

∑
α cos pα in a chaotic quantum dot. The Hamiltonian

has symplectic time-reversal symmetry (H is invariant when spin σα and
momentum pα both change sign), and yet for small t the level spacing
distributionP(s) ∝sβ follows the β = 1 orthogonal ensemble instead of the β =
4 symplectic ensemble. We identify a supercell symmetry of H that explains
this finding. The supercell symmetry is broken by the spin-independent hop-
ping energy∝ t cos p, which induces a transition from β = 1 to β = 4 statistics
that shows up in the conductance as a transition from weak localization to weak
antilocalization.

Keywords: random matrix theory, Kramers–Weyl fermions, quantum chaos,
weak localization

(Some figures may appear in colour only in the online journal)

1. Introduction

The Wigner surmise P(s) ∝ sβ for the probability distribution of level spacings [1] is a quantum
signature of chaos [2]. The exponent β, the Dyson index [3], can take on the values 1, 2 or 4,
depending on the presence or absence of time-reversal symmetry and spin-rotation symmetry.
Electrons in zero magnetic field have β = 1 in the absence of spin–orbit coupling and β = 4

∗Contribution to the special issue of J. Phys. A in honour of the life and work of Fritz Haake.
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with spin–orbit coupling, while β = 2 in a magnetic field irrespective of the spin degree of
freedom. In the context of random-matrix theory one says that the Hamiltonian belongs to
the universality class of the Gaussian orthogonal ensemble (β = 1, GOE), Gaussian unitary
ensemble (β = 2), or Gaussian symplectic ensemble (β = 4, GSE)3.

This classification applies both to massive electrons [4] (e.g. in a metal grain or in a semi-
conductor quantum dot) and to massless electrons [5] (e.g. in graphene or on the surface of a
topological insulator). Here we consider a specific model in the latter category: massless elec-
trons (Weyl fermions) with a band crossing (Weyl point) enforced by Kramers degeneracy
[6, 7]. These low-energy excitations known as Kramers–Weyl fermions appear at time-
reversally invariant momenta Π in the Brillouin zone (such that Π and −Π differ by a
reciprocal lattice vector). A strong spin–orbit coupling without reflection or mirror symme-
try produces a linear band splitting ±(p−Π) · σ near each of the high-symmetry points. The
± sign designates the chirality of the excitations.

On a three-dimensional (3D) cubic lattice (unit lattice constant a0) the Hamiltonian

H = v(σx sin px + σy sin py + σz sin pz) + tσ0(cos px + cos py + cos pz) + V(r)σ0 (1)

describes Kramers–Weyl fermions of positive chirality with momenta near (0, 0, 0), (π, π, 0),
(π, 0, π), (0, π, π) and of negative chirality near (π, π, π), (π, 0, 0), (0, π, 0), (0, 0, π). The
Hamiltonian contains spin-independent terms, hopping terms ∝ cos pα and a scalar potential
V , as well as spin–orbit coupling terms ∝σα sin pα.

The numerical study of the spectral statistics of Kramers–Weyl fermions that prompted
our investigation is shown in figure 1. A quantum dot is formed by restricting the lattice to
a small region and chaotic dynamics is produced by a random potential. For t = 0 the level
spacing distribution is well described by the β = 1 Wigner surmise (orthogonal statistics),
while the spin–orbit coupling would have suggested symplecticβ = 4 statistics. Paradoxically,
the β = 4 distribution requires the addition of spin-independent hopping.

In the next section we construct the ‘fake’ time-reversal operation T ∗ that squares to +1
and is responsible for the β = 1 spacing distribution when t = 0. The supercell symmetry
that enables T ∗ is broken by the cos p terms, which reveal the true T , squaring to −1 with a
β = 4 spacing distribution. In section 3 we investigate how the symmetry breaking manifests
itself in a transport property (the magnetoconductance). The analytical results are compared
with numerical simulations in section 4. In the concluding section we make contact with the
spectrum of lattice Dirac operators on a torus, which shows a similar shift of symmetries when
the number of lattice sites changes from even to odd [8, 9].

2. Supercell symmetry

2.1. Zero magnetic field

The tight-binding Hamiltonian of a spin-1/2 degree of freedom with nearest-neighbor hopping
and on-site disorder on an orthorhombic lattice (lattice constants ax , ay, az) has the generic form

H =
∑

α=x,y,z

[tασ0 cos aαpα + vασα sin aαpα] + V(r)σ0. (2)

3 The orthogonal, unitary, and symplectic matrices in this nomenclature refer to the matrix that diagonalizes the
Hamiltonian.
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Figure 1. Distribution of the level spacings δE (normalized by the mean spacing 〈δE〉 ≡
δ = 4.04 · 10−3v/a0) of the Hamiltonian (1), for t = 0 (blue) and t �= 0 (red), on a 20 ×
20 × 20 cubic lattice. The potential V was chosen independently on each site from a
uniform distribution in the interval (−V0/2, V0/2) with V0 = 1.5v/a0. The solid and
dashed black curves give the Wigner surmise for β = 1 and β = 4, respectively.

Both the spin-independent hopping energies tα and the spin–orbit coupling amplitudes vα may
be anisotropic. We set h̄ equal to unity, pα = −i∂/∂xα is the momentum operator, the Pauli
spin matrices are σ = (σx , σy, σz), and σ0 is the 2 × 2 unit matrix.

The Hamiltonian (2) is constrained by the symplectic symmetry

H = σyH∗σy ≡ T HT . (3)

This is a time-reversal operation that changes the sign of both σ and p= −i∇, leaving H
invariant. The operator T = σy × complex conjugation squares to −1, thus we expect GSE
statistics, while GOE statistics would require a time-reversal operator that squares to +1.

The eight flavours of Kramers–Weyl fermions at pα ∈ {0, π/aα} are displaced in energy
from E = 0 by the tα terms. Without these terms, the Hamiltonian

H0 =
∑
α

vασα sin aαpα + V(r)σ0 (4)

has the supercell symmetry4

UyH0U†
y = H0, Uy = σyeiπnx+iπnz , nα =

xα
aα

∈ Z, (5)

which transforms px → px + π/ax , pz → pz + π/az, while leaving py unaffected. The operator
Uy thus maps each Kramers–Weyl fermion onto a partner of the same chirality.

Since U2
y = 1 its eigenvalues are ±1 and we can block-diagonalize H0 in sectors of

the Hilbert space where UyΨ = ±Ψ. In a given sector the time-reversal operator T = σy ×
complex conjugation can be replaced by

T ∗ = ±T Uy = ∓eiπnx+iπnz × complex conjugation. (6)

4 The unitary transformation (5) has a periodicity of twice the lattice constant, hence the name ‘supercell symmetry’,
suggested to us by Anton Akhmerov.
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Figure 2. Top panel: same as figure 1, but now for a 2D square lattice (size 200 × 200,
disorder strength V0 = 0.5v/a0) and for four values of the spin-independent hopping
energy t. The bottom panel shows the corresponding ratio distribution (with the β = 1
and β = 4 limits from reference [14]).

The ‘fake’ time-reversal operator T ∗ squares to +1, so each sector has an orthogonal time-
reversal symmetry.

The spin-independent hopping terms in the full Hamiltonian (2) break the supercell sym-
metry if two or more of the tα’s are nonzero. (If only a single tα �= 0 the symmetry Uα =

σαeiπ
∑

α′ �=αnα′ remains unbroken.) We would thus expect a β = 1 to β = 4 transition in the
level spacing distribution P(s) ∝ sβ when t becomes larger than the mean level spacing δ.

2.2. Nonzero magnetic field

A magnetic field B breaks time-reversal symmetry, driving both orthogonal (β = 1) and sym-
plectic (β = 4) level spacing distributions towards the unitary (β = 2) result. The degeneracy
of the β = 2 spectra is different in the two cases.

For B = 0 each energy level is twofold degenerate (Kramers degeneracy). In a magnetic field
the degeneracy is broken for a nonzero tα, but it remains when tx , ty, tz = 0 if the magnetic field
enters only via the substitution p→ p+ eA—so only as an orbital effect, no Zeeman effect on
the spin.

This persistent degeneracy is due to the fact that the supercell symmetry Uα is not broken
by the substitution p→ p+ eA. Starting from a Hamiltonian which commutes with Ux and
Uy and an energy eigenstate Ψ such that UyΨ = Ψ we can then construct another eigenstate
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Figure 3. Magnetic field dependence of the conductance mean δG = 〈G(B)〉 − 〈G(0)〉
(top panel) and conductance variance Var G = 〈G(B)2〉 − 〈G(B)〉2 (bottom panel), aver-
aged over disorder in a conducting wire (length L = 1000, width W = 200, disorder
strength V0 = 0.5v/a0, Fermi energy E = 0.2v/a0). The blue data points are in the pres-
ence of the supercell symmetry (t = 0), for the gold data points the symmetry is broken
(t = 0.1v/a0). The arrows and dashed lines indicate the analytical predictions (8) and
(9) in the limit N →∞.

Ψ′ = UxΨ at the same energy eigenvalue. The two states Ψ and Ψ′ are orthogonal,

〈Ψ|Ψ′〉 = 〈Ψ|Ux|Ψ〉 = 〈Ψ|U†
yUxUy|Ψ〉

= −〈Ψ|Ux|Ψ〉 = −〈Ψ|Ψ′〉 ⇒ 〈Ψ|Ψ′〉 = 0, (7)

so the energy eigenvalue is twofold degenerate.

3. Supercell symmetry effects on the conductance

The appearance of the supercell symmetry can be probed via the electrical conductance G. In a
magnetic field, the β = 1 → β = 2 transition gives an increase in G (weak localization), while
the β = 4 → β = 2 transition gives a decrease in G (weak antilocalization). The theoretical
prediction for this quantum correction δG = G(B) − G(0) is [10]

δG =
2e2

h
×

{
1/3 for β = 1 → 2

−1/6 for β = 4 → 2.
(8)

This result applies to the disorder-averaged conductance in a wire geometry (length L large
compared to the width W), with a large number N � 1 of propagating modes, in the diffusive
regime (L much larger than the mean free path l, but much smaller than the localization length
ξ = Nl).

An alternative way to probe the symmetry class is via the sample-to-sample fluctuations of
the conductance. According to the theory of universal conductance fluctuations [11, 12], the
variance Var G of the conductance is proportional to g2/β, where g is the level degeneracy
factor. In our case the β = 1 → β = 2 transition happens at fixed g = 2, while the β = 4 →
β = 2 transition is accompanied by g = 2 → g = 1, hence in both cases the magnetic field
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reduces the variance by a factor of two. The predicted values in a wire geometry are [10]

Var G =

(
2e2

h

)2

×
{

2/15 → 1/15 for β = 1 → 2

1/30 → 1/60 for β = 4 → 2.
(9)

For these quantum interference effects the crossover to β = 2 happens when the magnetic
flux through the wire becomes larger than a flux quantum h/e. Which of the two transi-
tions applies, β = 1 → β = 2 or β = 4 → β = 2, depends on whether the supercell symmetry
breaking term t is small or large compared to the Thouless energy ET = (h/e2)Gδ. In a dif-
fusive multimode wire G � e2/h ⇒ ET � δ, hence the range of t governed by the supercell
symmetry is much larger for the conductance, when we need t � ET, than it is for the level
repulsion, when the condition is t � δ.

4. Numerical results

We have studied the effect of the supercell symmetry numerically, using the Kwant tight-
binding package [13]. For computational efficiency we took a 2D square lattice, rather than
a 3D lattice, given by the Hamiltonian

H = v(σx sin a0 px + σy sin a0 py)

+ tσ0(cos a0 px + cos a0 py) + V(r)σ0. (10)

The random potential V was chosen independently on each site, uniformly in the interval
(−V0/2, V0/2).

For the level statistics we took a square geometry5, on a lattice of size 200a0 × 200a0. We
calculated the distribution of the nearest-neighbor spacings of the twofold degenerate levels in
the interval |E − 0.2v/a0| < 4 · 10−3v/a0 (mean level spacing δ = 3.56 · 10−4v/a0, approxi-
mately constant in this energy range), averaging over some 2000 disorder realizations. Note that
the disorder potential breaks chiral symmetry6, so there is no ±E symmetry in the spectrum.

As an extra check, we also calculated the ratio distribution [14], meaning the probability
distribution P(r) of the ratio rn = sn/sn−1 of two consecutive level spacings sn = En+1 − En.

For the conductance we took a disordered wire of width W = 200a0 and length L = 1000a0.
The end points are connected to heavily doped metal leads, modelled on the lattice by
breaking the transverse bonds. The transmission matrix t at Fermi energy E determines the
zero-temperature two-terminal conductance G = (e2/h)Tr tt†. We took E = 0.2v/a0, when the
number of propagating modes through the disordered region equals N = 52 (counting degen-
eracies). The mean free path for V0 = 0.5v/a0 is estimated at l = 150a0, from the Drude
formula G ≈ (Ne2/h)(1 + L/l)−1. The localization length ξ = Nl is then larger than L, so we
are in the diffusive regime.

Figure 2 shows the transition from the β = 1 to β = 4 level spacing and ratio distribu-
tions. The transition from weak localization to weak anti-localization is shown in figure 3, as
well as the transition from β = 1 to β = 4 conductance fluctuations. It is difficult to fully
reach the large-N regime where the analytical results (8) and (9) apply, so the agreement
analytics–numerics remains qualitative for the conductance.

5 In all our systems we truncate the lattice without applying periodic boundary conditions. The parity of the number
of lattice sites then does not matter.
6 Chiral symmetry means that the Hamiltonian σx sin px + σy sin py anticommutes with σz, enforcing a ±E symmetry
in the spectrum. This symmetry plays no role in our analysis, because it is broken by the Vσ0 disorder potential.
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Figure 4. Transition from β = 1 to β = 4 with increasing spin-independent hopping
energy t, as measured via the level spacing distribution (red data points, same parameters
as in figure 2) or via the variance of the conductance (blue data points, same parameters
as in figure 3, at B = 0). The transition is quantified by an effective parameter βeff . For
the conductance this is defined by βeff =

8
15 (e2/h)2(Var G)−1. For the level spacing we

fitted the data to the Wigner surmise interpolation [15] P(s) = csβeff exp(−c′s2), with
s = δE/δ and coefficients c, c′ such that the zeroth and first moments of P(s) are equal
to unity.

In figure 4 we show that the effect of the supercell symmetry is suppressed more rapidly
by the spin-independent hopping energy t if we consider the level spacings (when we need
t�δ) than it is if we consider the conductance (when we need t � ET). In the conductance
calculations G ≈ 7e2/h ⇒ ET/δ ≈ 7, so we expect about an order of magnitude difference in
the onset of the two transitions, in accord with figure 4.

5. Conclusion

In summary, we have identified a supercell symmetry and a resulting ‘fake’ time-reversal sym-
metry operation, squaring to +1 rather than −1, which explains the β = 1 spectral statistics
of the Kramers–Weyl Hamiltonian (1) in the absence of the spin-independent hopping term
∝ t cos p. The same symmetry is responsible for the appearance of weak localization in the
magnetoconductance.

The crossover from β = 1 to β = 4 level repulsion happens quickly, when t becomes larger
than the mean level spacing δ. The crossover from weak localization to weak antilocalization
happens at larger t, larger by a factor of conductance G × h/e2. This delayed crossover in the
magnetoconductance may make the effect of the supercell symmetry more easily observable.

A similar shift of symmetries has been observed when comparing two discretization
schemes of lattice Dirac operators on a torus [8, 9]. The Dirac Hamiltonian −i∇ · σ needs
a special ‘staggered’ discretization of the spatial derivative to make sure that the low-energy
states are only near p= 0. The ‘naive’ discretization ∂ f /∂x �→ (2a)−1[ f (x + a) − f (x − a)]
introduces an additional Dirac cone at p= π/a (fermion doubling [16, 17]).

If one then imposes periodic boundary conditions, the naive discretization obeys the super-
cell symmetry (5) if the number of lattice sites is even but not if it is odd. The way this works out
for the spectral statistics is different in references [8, 9] than it is here, because of the presence
of chiral symmetry, but the mechanism is the same.
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