
Model-based translation of DNA damage signaling dynamics across cell
types
Heldring, M.M.; Wijaya, L.S.; Niemeijer, M.C.; Yang, H.; Lakhal, T.; Le Dévédec, S.E.; ... ;
Beltman, J.B.

Citation
Heldring, M. M., Wijaya, L. S., Niemeijer, M. C., Yang, H., Lakhal, T., Le Dévédec, S. E., …
Beltman, J. B. (2022). Model-based translation of DNA damage signaling dynamics across cell
types. Plos Computational Biology, 18(7). doi:10.1371/journal.pcbi.1010264
 
Version: Publisher's Version
License: Creative Commons CC BY 4.0 license
Downloaded from: https://hdl.handle.net/1887/3485490
 
Note: To cite this publication please use the final published version (if applicable).

https://creativecommons.org/licenses/by/4.0/
https://hdl.handle.net/1887/3485490


RESEARCH ARTICLE

Model-based translation of DNA damage

signaling dynamics across cell types

Muriel M. HeldringID, Lukas S. Wijaya, Marije NiemeijerID, Huan YangID, Talel Lakhal,
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Abstract

Interindividual variability in DNA damage response (DDR) dynamics may evoke differences

in susceptibility to cancer. However, pathway dynamics are often studied in cell lines as

alternative to primary cells, disregarding variability. To compare DDR dynamics in the cell

line HepG2 with primary human hepatocytes (PHHs), we developed a HepG2-based

computational model that describes the dynamics of DDR regulator p53 and targets MDM2,

p21 and BTG2. We used this model to generate simulations of virtual PHHs and compared

the results to those for PHH donor samples. Correlations between baseline p53 and p21 or

BTG2 mRNA expression in the absence and presence of DNA damage for HepG2-derived

virtual samples matched the moderately positive correlations observed for 50 PHH donor

samples, but not the negative correlations between p53 and its inhibitor MDM2. Model

parameter manipulation that affected p53 or MDM2 dynamics was not sufficient to accu-

rately explain the negative correlation between these genes. Thus, extrapolation from

HepG2 to PHH can be done for some DDR elements, yet our analysis also reveals a knowl-

edge gap within p53 pathway regulation, which makes such extrapolation inaccurate for the

regulator MDM2. This illustrates the relevance of studying pathway dynamics in addition to

gene expression comparisons to allow reliable translation of cellular responses from cell

lines to primary cells. Overall, with our approach we show that dynamical modeling can be

used to improve our understanding of the sources of interindividual variability of pathway

dynamics.

Author summary

Susceptibility to develop cancer varies among people, partially due to differences in

genetic background. Ideally, healthy human-derived cells are used to investigate intracel-

lular signaling pathways and their interindividual variability contributing to cancer sus-

ceptibility. Because cells from healthy human tissue are difficult to obtain and culture for

periods longer than a few days, cell lines are often used as substitute. However, it is unclear

to what extent signaling dynamics in cell lines represent dynamics in healthy human tis-

sue. We asked whether we could reproduce interindividual variability in DNA damage
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response gene expression in a set of 50 human liver cell donors. Therefore, we built a

mathematical model that simulates temporal expression dynamics of the DNA damage

response in the HepG2 liver cell line upon chemical activation and used the simulations to

create virtual donors. Our virtual donors displayed similar relations between genes as the

samples from human donors, provided that we adjusted the strength of specific molecular

interactions. Thus, our approach can be used to examine the applicability of widely used

cell systems to healthy human tissue in terms of their dynamic responses.

Introduction

An effective cellular response to DNA damage after exposure to genotoxic chemicals is critical

to prevent cancer development [1–3]. However, the response to chemicals and susceptibility to

chemical-induced carcinogenesis is highly variable across the human population [4]. This vari-

ability is in part caused by well-studied factors such as interindividual genomic variation and

differences in gene and protein expression levels that influence processes such as drug metabo-

lism [5,6], detoxification [7] and DNA repair [8,9]. To understand how gene and protein

expression patterns determine these processes, insight into the underlying DNA damage path-

way dynamics is needed. However, time-resolved protein expression data in human primary

cells cannot be easily obtained due to technical limitations, such as their limited availability

[10–13]. Therefore, cell lines are often used as experimental model systems representative for

healthy human tissue. However, it is unclear whether experiments performed using cell lines

are sufficient to quantitatively predict dynamics in primary human cells.

Examining DDR pathway dynamics in liver tissue is of special interest, because the liver is

the primary site for drug metabolism [14,15] and is therefore often a target for carcinogenesis

[16,17]. A frequently used experimental model system for primary human hepatocytes

(PHHs) is the hepatocellular carcinoma cell line HepG2. Wink et al. (2017) created a

HepG2-GFP (green fluorescent protein) reporter assay that monitors the expression dynamics

of transcription factor p53 and its downstream targets MDM2, p21 and BTG2, four essential

proteins in the DDR pathway [18–20]. The central regulator of the DDR, tumor suppressor

protein TP53/p53, is phosphorylated by DNA damage sensing kinases ataxia-telangiectasia

mutated (ATM), ATM and Rad3-related (ATR) and DNA-dependent protein kinase catalytic

subunit (DNA-PKcs), and their downstream Checkpoint kinases 1 and 2 (CHEK1 and

CHEK2) in reaction to DNA insults [21–25]. Phosphorylated p53 (p53-p) activates DNA

repair mechanisms such as nucleotide excision repair (NER) that removes adducts and

restores DNA [26]. In addition, activated p53 translocates to the nucleus and is likely responsi-

ble for the transcriptional activation of hundreds of downstream targets [27,28]. Among the

verified p53-regulated proteins is MDM2/MDM2, that negatively regulates p53 by ubiquitina-

tion of its carboxy terminus [29]. In addition, p53 induces several proteins that play key roles

in DNA damage repair, cell cycle arrest, senescence and apoptosis. Among these proteins are

CDKN1A/p21 and BTG2/BTG2, that are both involved in the regulation of cell cycle arrest

[30–33]. In case of severe DNA damage, cell cycle arrest through p53-dependent activation is

essential to prevent proliferation of damaged cells and to provide time for repair and recovery.

Thus, p53 and its downstream targets fulfill an essential role in the recovery of the instability

created by DNA damage.

Here, we used previously established protein expression data obtained by employing

HepG2 p53-GFP, MDM2-GFP, p21-GFP and BTG2-GFP reporter cells [34] and gene expres-

sion data in HepG2 cells and PHHs from 50 donors [35] to study the similarity between these
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cell types in their response to the DNA damaging compound cisplatin. Specifically, we exam-

ined the predictive capacity of TP53 expression levels on MDM2, CDKN1A and BTG2 down-

stream target expression to investigate whether interindividual variability in basal p53 gene

expression is predictive for the response to cisplatin. To this purpose, we calibrated a newly

developed dynamic computational model to the protein expression data. Considering this

model to be representative for PHHs, we generated virtual donor samples and compared the

model-predicted correlations between basal TP53 expression and its downstream targets

MDM2, CDKN1A and BTG2 in virtual samples with the correlations observed in 50 PHH

donor samples. The HepG2-based virtual donors could well explain the moderately positive

correlations observed among PHHs, but not the negative TP53-MDM2 correlation. We show

that parameter alterations that affect p53 and MDM2 dynamics are not sufficient to explain

the observed TP53-MDM2 relationship. Because our model does accurately describe HepG2

protein expression, this implies there is a knowledge gap in the TP53-MDM2 relation for

quantitative extrapolation of HepG2-based data to responses of primary liver cells. With the

presented approach, we provide a new way to investigate the applicability of cell line responses

to those of primary cells, while taking the interindividual variability among primary cell

donors into account.

Methods

Experimental details

Cell culture. Human hepatoma (HepG2) cells were purchased from ATCC (clone

HB8065) and maintained in DMEM high glucose (Fisher Scientific) supplemented with 10%

(v/v) FBS (Fisher Scientific), 250 U/ml penicillin and 25 μg/ml streptomycin (Fisher Scientific)

in humidified atmosphere at 37 degrees Celsius and 5% CO2/air mixture. All the BAC-GFP

HepG2 reporter cell lines (p53-GFP, MDM2-GFP, and p21-GFP) were previously established

and characterized [18]. The cells were used between passage 14 and 20 and seeded in Greiner

black μ-clear 384 well plates, at 8000 cells per well.

Immunostaining. HepG2-WT cells were plated in 96 well plates with a micro clear bot-

tom with a density of 32,000 cells/well and exposed to 2.5, 5, 10 and 25 μM cisplatin (Ebewe).

Following an exposure of 1, 2, 3, 6, 8, 16 or 24 hours, we fixed the cells with 1% formaldehyde/

0.1% Triton X100 (Sigma-Aldrich) incubation for 15 minutes. Next, we incubated the cells for

48 hours at 4˚C with a Phospho-Histone H2A.X (Ser139) Antibody (Cell Signalling Technol-

ogy, 9718T) with a 1:800 dilution in 0.5% BSA (Sigma-Aldrich) in PBS (Sigma-Aldrich) and

subsequently for 1 hour with an Alexa Fluor 647-conjugated AffiniPure Goat Anti-Rabbit IgG

(Jackson ImmunoResearch) with a dilution factor of 1: 250 in 0.5% BSA in PBS. The nuclei

were stained with a Hoechst solution with a dilution factor of 1:1000 in PBS for 15 minutes.

The imaging was done with 20x magnification objective.

Western blot. HepG2-WT cells were plated in 6 well plates with a density of 1,250,000

cells/well and exposed to 1, 2.5, 5, 10, 15, 20, 25 and 50 μM cisplatin (Ebewe). After exposure,

we lysed the cells with RIPA buffer, containing a Protease Inhibitor Cocktail and sodium fluo-

ride (Sigma-Aldrich), which both had a dilution factor of 100. Subsequently, the lysate was

sonicated and mixed with a loading buffer, containing 2-Mercaptoethanol (Acros Organics),

in a ratio of 6:1. A 10% acrylamide running gel was used for p53, p53-S15 and p53-S46 separa-

tion and a 15% acrylamide running gel for p21 separation. The gel electrophoresis was per-

formed under a voltage set at 55 V for 30 minutes, after which the voltage was increased to 110

V for an additional 60 minutes. We performed blotting at a voltage of 100 V for 2 hours with

PVDF membranes which we blocked in 5% BSA in Triss-Buffered Saline with 0.005% Tween

20 (TBS-T) for 1 hour at room temperature. We incubated the membranes overnight with
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primary antibodies (Cell Signalling Technology) for total p53 (9282), p53-S15 (9284), p53-S46

(2521) and p21 (2947) with a dilution factor of 1000 in TBS-T at 4˚C, and the next day we

incubated them with a Peroxidase-conjugated AffiniPure Goat Anti-Rabbit IgG secondary

antibody (Jackson ImmunoResearch) with a dilution factor of 3000 in TBS-T for 1 hour at

room temperature. The tubulin bands were identified with a Monoclonal Anti-α-Tubulin anti-

body (Sigma-Aldrich) and an Alexa Fluor 647-conjugated AffiniPure Goat Anti-Mouse IgG

(Jackson ImmunoResearch) for respectively 1 hour and 30 minutes at room temperature. We

assessed protein formation with the Amersham Imager 600 (GE Healthcare Bio-Sciences AB).

TempO-Seq analysis. To evaluate variability in p53 signaling, available TempO-seq data

of a panel of 54 different PHHs and wild type HepG2 (HepG2-WT) cells exposed to a wide

concentration range of cisplatin for 8 and 24 h was used [35]. In short, plateable cryopreserved

PHHs from 54 individuals (KaLy-Cell, Plobsheim, France) and HepG2-WT cells were plated

at a density of 70.000 cells per well in 96 wells BioCoat Collagen I Cellware plates (Corning,

Wiesbaden, Germany). This procedure was repeated three times to capture technical variabil-

ity. After 24h attachment, PHHs were exposed with cisplatin (Ebewe) for 8 and 24 h and lysed

with 1x TempO-seq lysis buffer (BioSpyder). Lysates were stored at -80˚C and shipped for

TempO-seq analysis using the S1500+ gene set [36] at BioSpyder (Carlsbad, CA, USA).

Preprocessing and analysis of TempO-Seq data. We excluded four PHH donor samples

from analysis due to non-confluency, leaving 50 donor samples for analysis. The gene counts

for each individual sample were added to obtain library sizes. Samples with a library size

smaller than 100,000 were excluded from further analysis (S1A Fig). Genes with zero counts in

more than 10% of all samples were removed from the data set. Raw gene counts were normal-

ized through scaling by size factors [37] with the DESeq2 counts function by specifying

normalized = TRUE from the DESeq2 package [38] in R version 4.0 [39]. The normalized

counts were subsequently log2 transformed using an offset of 1, i.e., log2 (count + 1). We

checked for outlying donor samples and differences in gene expression of the entire S1500

+ gene set by performing dimensionality reduction with PCA analysis and subsequently t-dis-

tributed Stochastic Neighbor Embedding (t-SNE) analysis [40] on the first 32 principal com-

ponents and with the perplexity set at 22. Gene expression heatmaps for all concentrations and

time points were generated based on the mean of the log2 normalized data for three biological

replicates. We used the mean of the three available MDM2 probes to get a single count per

sample for MDM2. Thereafter, hierarchical clustering was performed on the Euclidean dis-

tance matrix using complete linkage. We fitted dose-response curves through the expression

data up to and including the 10 μM dosage per cell type using a Hill equation with a 4-parame-

ter log-logistic model using the drc library in R.

Differential gene expression and functional enrichment analysis. Differentially

expressed genes analysis was performed with DESeq2. A design classifier specifying the combi-

nation of compound, concentration and timepoint was used as design formula in the DESeq-

DataSet object. DESeq2 results, performed separately for PHH and HepG2 samples, were

extracted per design classifier using the result function with alpha = 0.05, and

uploaded to the PHH TXG-MAPr [41]. This method arranges genes in predefined modules of

co-regulated genes and calculates eigengene scores (EGSs) for modules that represent their

(de)activation. We analysed the resulting modules with the 20 highest positive EGSs for over-

lap between HepG2 cells and PHHs with a Venn diagram. Besides the TXG-MAPr analysis,

genes with an adjusted p-value< 0.01 and log2 fold change> 0.1 were used for functional

enrichment analysis. Since the adjusted p-values are set to NA when rows have low mean nor-

malized counts, these genes were excluded. Functional enrichment was done using the gost
function from g:Profiler [42] with a custom background set of all genes in the S1500+ gene set

[36]. The false discovery rate method was used to correct for multiple testing. We manually
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selected cytotoxicity and cell health Gene Ontology (GO) terms of interest to study the func-

tional enrichment for these terms. Moreover, we selected the 10 most significantly enriched

terms per concentration at the 8-hour time point.

Live-cell imaging of HepG2 BAC-GFP reporters. We used protein expression data from

a previously established data set [34]. To obtain the data utilized in our analysis, the nuclei of

HepG2 BAC-GFP reporter cells were stained with 100 ng/ml live Hoechst 33342 (1:10000 dilu-

tion) in complete DMEM high glucose for 2 hours. Thereafter, the medium/Hoechst mixture

was refreshed with complete DMEM containing 0.2 μM propidium iodide (PI) and Annexin-

V-Alexa633 (AnV), and cisplatin (Ebewe) at 1, 2.5, 5, 10, 15, 20, 25 and 50 μM was added. This

procedure was repeated three to four times to capture biological variability. We imaged the

plates starting within one hour after cisplatin exposure up to 65–72 hours using a Nikon

TiE2000 confocal laser microscope (laser excitation wavelengths: 647 nm, 540 nm, 488 nm,

and 408 nm), equipped with automated stage and perfect focus system. During imaging, the

plates were maintained in humidified atmosphere at 37 degrees Celsius and 5% CO2/air mix-

ture. Imaging was done with 20x magnification objective and performed every 1.5 hours.

MDM2 feedback disruption with Nutlin. We used the same procedure as described

above to generate new live-cell imaging data of HepG2 BAC-GFP reporters, aiming to examine

the effect of MDM2 feedback disruption. For the condition with MDM2 inhibition, we added

Nutlin (Sigma, N6287; final concentration 10 μM) to complete DMEM and started imaging

within one hour after exposure. We imaged in the same manner as previously explained, and

we monitored p53- and MDM2-GFP abundance with a 1.5-hour interval for 72 hours.

Cisplatin re-exposure. Following 72 hours of imaging in a HepG2 BAC-GFP reporter

experiment as described above, we extracted the medium containing remaining cisplatin from

each well and we used this medium to expose fresh HepG2 p53-GFP cells that were seeded 3

days prior to this exposure in new 384 well plates. The seeding procedure and timing were

identical as in the original exposure, thus resulting in similar cell counts at the day of exposure.

Moreover, we imaged in the same manner as previously explained, and we monitored

p53-GFP dynamics with a 2-hour interval for 24 hours as an indicator for the activity of

remaining cisplatin after several days of previous exposure.

Image and data analysis. We used quantified single cell data sets from Wijaya et al.

(2021) as starting point. To quantify the GFP intensity of the new live-cell imaging data, we

used the in-house WMC Segment plug-in [43] in ImageJ to perform segmentation of cell

nuclei in the images. Foci segmentation for γ-H2AX was done using ImageJ with the Subtract

Background process (rolling ball radius = 6), a Gaussian Blur (sigma = 1) and the FociPick-

er3D plugin [44]. We set the minISetting to 0.55, the ToleranceSetting to 1000, the minimum

pixels for foci to 4 and the FociShapeR to 6, whereas all other settings were kept at their default

values. The resulting binary images were loaded into CellProfiler version 3.1.9 together with

the raw images. To quantify GFP intensity (representative for protein expression) within seg-

mented nuclei and associated cytoplasmic compartments, we used the IdentifyPrimaryObjects,

IdentifySecondaryObjects, IdentifyTertiaryObjects and OverlayOutlines modules. Modules

MeasureObjectSizeShape and MeasureObjectIntensity subsequently measured the integrated

intensity in those regions. Since the GFP expression in single cells was not normally distrib-

uted, the geometric mean over all cells per image was calculated to obtain population level

measurements. Images that exhibited a clear deviation from the general trend because of

extremely low cell density based on visual inspection were excluded from the analysis. Thereaf-

ter, we calculated the average of the two technical replicates, i.e., two images from the same

well. To prepare the data from Wijaya et al. (2021) for model fitting, we performed back-

ground correction per plate by subtracting the average of the GFP signal in the DMEM control

condition per timepoint from the average GFP value per timepoint in the cisplatin conditions.
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In addition, we applied min-max normalization per plate to rescale the intensities between 0

and 1, with function x!0 ¼
xi � min x!ð Þ

max x!ð Þ� min x!ð Þ, where xi with i 2 {1,2,3,. . ., n} represents each single

GFP measurement and x! represents all n GFP measurements within one imaging experiment.

The timepoints of measurements were not identical across individual biological replicates,

since the time between exposure and imaging differed slightly between experiments. To align

the measurement time points among biological replicates, we interpolated the data with the B-

spline function bs in R using 6 degrees of freedom and a third-degree polynomial. Subse-

quently, we determined the interpolated GFP expression starting at the 1-hour and ending at

the 65-hour timepoints with an interval of 1.5 hours. We determined maximum values of the

interpolated data for all four proteins and defined the peak delay as the difference in the time-

point of maximum GFP expression of downstream targets and the mean of the timepoints at

which maximal p53-GFP values were reached. The response latency per time-response curve

was determined by taking the first timepoint at which the mean protein expression across rep-

licates was higher than 1.5 times the mean expression in control condition. For the proportion

of PI- and AnV-positive cells, we used the PI/nuclei and AnV/nuclei overlap readout and con-

sidered a cell positive if this fraction was larger than 0.1.

Computational modeling

Modeling. We built a mathematical model to describe the experimentally observed pro-

tein dynamics. We used a set of ten ordinary differential equations (ODEs) to simulate the

dynamics of the state variables DNA damage, p53 mRNA, p53, phosphorylated p53, MDM2

mRNA and protein, p21 mRNA and protein, and BTG2 mRNA and protein, respectively

denoted by DD, P53RNA, P53, P53p, MDM2RNA, MDM2, P21RNA, P21, BTG2RNA and BTG2. All

ODEs were based on commonly used mathematical terms for biochemical reactions, such as

mass-action and Hill kinetics [45,46]. We modeled the cisplatin concentration S that leads to

DNA damage as an explicit function of time t by:

S tð Þ ¼ ECi � e
� τ�t: Eq 1

Here, ECi is the effective cisplatin concentration causing DNA damage at applied concen-

tration 1 (i = 1), 2.5 (i = 2) and 5 μM (i = 3), and τ is the cisplatin decay rate caused by the com-

bined effect of cellular metabolism, chemical interactions with intra- and extracellular

components and plastic binding. The EC1 parameter describing the effective concentration

originating from 1 μM applied cisplatin concentration was fixed to 1. The rate of change in

DNA damage over time depends on the constitutive DNA damage occurrence rate (ksDD), the

cisplatin concentration (S), and the repair rate (kdDD) stimulated by P53p:

dDD
dt
¼ ksDD � kdDD � DD � P53p þ S: Eq 2

The dynamics of p53 mRNA, the two p53 protein species and the downstream targets are

denoted in Eqs 3–11. We describe P53RNA and P53 by basal synthesis and degradation rates

(ksp53 RNA, ksp53, kdp53 RNA, and kdp53 respectively). The equations for the p53 protein species

describe additional dephosphorylation and DNA damage-dependent phosphorylation pro-

cesses with rate parameters kdp and kp, and MDM2-dependent degradation at rates kdp53 mdm2

and kdp53p mdm2 for P53 and P53P respectively. The ODEs describing the mRNA and protein

dynamics of MDM2, p21, BTG2 all have the same form, with basal synthesis (ksmdm2 RNA,

ksmdm2, ksp21 RNA, ksp21, ksbtg2 RNA, ksbtg2) and degradation rates (kdmdm2 RNA, kdmdm2, kdp21
RNA, kdp21, kdbtg2 RNA, kdbtg2), and a phosphorylated p53-dependent mRNA induction. The
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latter is modelled as Hill equation with power 4, since phosphorylated p53 binds to the DNA

as tetramer. Note that we also attempted replacing the power of 4 in the Hill equations of the

ODEs for MDM2, p21 and BTG2 mRNA to power 1 to investigate how this model change

affected the expected dynamics. Parameters ksmdm2 p53p, ksp21 p53p, ksbtg2 p53p describe the maxi-

mal p53-p dependent protein synthesis rates and Kmmdm2, Kmp21, Kmbtg2 are the p53-p con-

centrations at which the reaction rates are half-maximal. The remaining ODEs thus become:

dP53RNA

dt
¼ ksp53 RNA � kdp53 RNA � P53RNA; Eq 3

dP53

dt
¼ ksp53 � P53RNA þ kdp � P53p � kp � P53 � DD � kdp53 � P53 � kdp53 mdm2 � P53

�MDM2; Eq 4

dP53p
dt
¼ kp � P53 � DD � kdp � P53p � kdp53p � P53p � kdp53p mdm2 � P53p �MDM2; Eq 5

dMDM2RNA

dt
¼ ksmdm2 RNA þ

ksmdm2 p53p � P53p
4

Km4

mdm2
þ P53p

4
� kdmdm2 RNA �MDM2RNA; Eq 6

dMDM2

dt
¼ ksmdm2 �MDM2RNA � kdmdm2 �MDM2; Eq 7

dP21RNA

dt
¼ ksp21 RNA þ

ksp21 p53p � P53p
4

Km4

p21
þ P53p

4
� kdp21 RNA � P21RNA; Eq 8

dP21

dt
¼ ksp21 � P21RNA � kdp21 � P21; Eq 9

dBTG2RNA

dt
¼ ksbtg2 RNA þ

ksbtg2 p53p � P53p
4

Km4
btg2 þ P53p

4
� kdbtg2 RNA � BTG2RNA; and Eq 10

dBTG2

dt
¼ ksbtg2 � BTG2RNA � kdbtg2 � BTG2: Eq 11

In addition to Eqs 1–11, we used observable functions to map the state variables to the

experimental observables, according to the method described in [47]. Since the GFP-tag

should be equally present on both p53 species, the sum of p53 and its phosphorylated form

represents the observed p53-GFP intensity in the cells and is therefore described by:

P53O ¼ scalingp53
� P53þ P53p

� �
þ offsetp53: Eq:12

MDM2, p21 and BTG2 model states were mapped to the observables with:

YO ¼ scalingY � Yþ offsetY; Eq:13

where Y 2 {MDM2, P21, BTG2}. Besides the above described DDR model, we also investigated

a model with a non-linear p53-MDM2 feedback, and an alternative DDR model that included

binding of phosphorylated MDM2 to p53 mRNA (see S1 Methods).
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Model parameterization. To perform minimization of the cost function we used the trust

region approach within the nonlinear least-squares solver of the scipy package in Python ver-

sion 3.7.2. The efficiency of minimization was improved by providing sensitivity equations

and steady state constraints as proposed by [48]. To circumvent unidentifiability issues, several

parameters (denoted with an asterisk in S1 and S2 Tables) were fixed prior to parameter esti-

mation. The model was initialized 100 times with random parameter sets to find the system’s

local optima. To ensure sufficient variability between these initial parameter sets, we systemati-

cally sampled the parameter space with Latin hypercube sampling [49]. Best-fitting model

parameter values are provided in S1 (default DDR model) and S2 (alternative DDR model)

Tables. We tested the biological relevance of the fit by exploring the behavior of the model

upon MDM2-p53 feedback disruption. We simulated this disruption by multiplying the kdp53
mdm2 and kdp53p mdm2 parameters with 0.2 or 0.5 for respectively 20% or 50% feedback effi-

ciency. From the 38 estimated parameter sets with minimal cost, each corresponding to this

optimal fit, a random set was selected as a base for virtual sample generation.

Virtual samples. One thousand sets of 50 virtual samples per set were generated based on

the best-fitting parameter set. To simulate these virtual samples, we considered variability

across samples from different PHH donors to primarily originate from differences in the reac-

tion rates within the underlying network, which could for instance be due to differences in

expression levels of non-modeled proteins. First, we introduced variability in the value of

parameters p by adding a value x to each parameter, where x is drawn from a normal distribu-

tion N(μ = 0, σp = c � p), with c 2 {0.001, 0.01, 0.1, 0.2}. Second, we analytically determined the

steady states of all model species per modified parameter set with the fsolve function of the

scipy package in Python version 3.7.2. Third, we simulated the response of the virtual PHH

samples to cisplatin treatment by starting from steady state at t = 0 and applying a stress level

S, after which we determined the expression of TP53 and MDM2, CDKN1A and BTG2 at the

8- and 24-hour timepoint (without applying the observable functions). The value for S at nom-

inal concentration 3.3 μM (as utilized in the experiments with PHHs) was estimated by linear

interpolation. Furthermore, we examined the role of several reactions on the TP53-MDM2
correlations by changing the strength of p53 dephosphorylation rate kdp, MDM2 synthesis rate

ksmdm2 p53p, or MDM2-p53 feedback kdp53 mdm2 and kdp53p mdm2. To this end, we increased or

decreased these parameters by multiplying them with factor r, where r 2 {0.01, 0.1, 1, 10, 100},

and repeated the procedure to create 1000 virtual PHH donor sets per r-factor, while setting

c = 0.2. The parameter sets that gave negative steady state values, which occurred in less than

0.75% of the sets, were removed. We introduced measurement noise y’ for each expression

value y in our model simulations by drawing ln(y’) from a normal distribution N(μ = ln(y), σ =

0.125), which led to a good match between PHH donors and virtual donors with respect to the

correlation for control versus cisplatin-treated TP53 expression correlation at variation c = 0.2.

We used one thousand bootstrapping replicates by randomly selecting 50 PHH donor samples

with replacement to obtain the 95% confidence interval around the observed correlations.

Results

DNA damage-related gene activation upon cisplatin treatment is similar in

HepG2 cells and PHHs

To obtain insight in the extent of variability among PHH donor samples and how the hepato-

cellular carcinoma cell line HepG2 relates to PHHs in terms of their response to DNA damage,

we exposed both cell types to cisplatin at concentrations ranging from 0.1 to 100 μM. Cisplatin

induced DNA damage in HepG2 cells after exposure, indicated by an increase in the number

of γ-H2AX foci evident at 16 and 24h post exposure (S1A Fig). As expected, p53 became active
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in a dose dependent manner, as evident from its phosphorylation at two distinct sites and the

induced expression of p21 (S1B Fig).

We evaluated gene expression profiles by TempO-Seq analysis in combination with the tar-

geted S1500+ gene set [36] for PHH samples derived from 50 donors and for HepG2 cells

exposed to cisplatin (S1C Fig). Dimensionality reduction based on the normalized expression

of all genes in the transcriptomics data set neither revealed outlying donors nor clearly distin-

guishable subgroups of donor samples, except for the HepG2 cells that had clearly different

gene expression patterns (S1D Fig). We further explored the similarity in differential gene

expression profiles of HepG2 cells and PHHs in response to cisplatin-induced DNA damage

by comparing the activated genes based on PHH TXG-MAPr gene sets termed ‘modules’ [41].

Modules 83, 59 and 391, associated to p53 signaling and DNA damage, were among the twenty

modules with the highest eigengene scores in HepG2 cells or PHHs exposed for 8 or 24 hours

to 3.3 μM cisplatin (S1E Fig) and in the top 20 activated modules in response to the DNA dam-

aging compound etoposide in the PHH TXG-MAPr. Thus, the cell types demonstrated a simi-

lar induction of the DDR, although there were also differences in other upregulated modules,

even within cell types.

Following this observation of similar DDR induction in HepG2 cells and PHHs, we zoomed

in on specific genes within the DDR. Specifically, we selected the genes TP53, MDM2,

CDKN1A and BTG2 (Fig 1A) for further analysis, because we had access to HepG2 reporter

cell lines in which protein expression resulting from these genes could be measured over time.

After normalization of the TempO-Seq data, we applied hierarchical clustering on TP53
expression profiles for all concentrations and two time points. Based on this clustering, we

divided the donor samples into three groups having low, intermediate or high TP53 expression

across all cisplatin concentrations (Fig 1B). The HepG2 cell line clustered with one PHH

donor with lowest TP53 expression levels. HepG2 and PHH sample clustering based on

MDM2, CDKN1A or BTG2 expression resulted in different clusters, where the HepG2 cell line

clustered with PHH donors in the low (for CDKN1A), intermediate (for BTG2) or high (for

MDM2) expression clusters (S2A–S2D Fig). Interestingly, the difference in TP53 expression

between the clusters was also observed when only considering control conditions, i.e., the

basal expression (Fig 1C). In addition, HepG2 cells had considerably lower basal expressions

than the average levels of the PHHs it clustered with for all genes except MDM2 (Fig 1D–1F),

whereas the expression after cisplatin exposure was generally higher in HepG2 cells than in

PHHs (S2E–S2H Fig).

To further characterize the similarity between HepG2 cells and PHHs from an ‘average’

donor, we specifically investigated the dose-response relationship for cisplatin exposure to

both cell types. TP53 expression showed only a limited increase with cisplatin concentration in

HepG2 cells (Figs 2A and S3A, left panel). In contrast, there was no concentration-dependency

of TP53 expression in PHHs when considering all donors together (Figs 2A and S3A, compare

left and right panel). Compared to the weak concentration-dependency in TP53, the expres-

sion of downstream target genes MDM2, CDKN1A and BTG2 in HepG2 cells and PHHs

exhibited considerably stronger dose-response relationships (Figs 2B–2D and S3B–S3D, com-

pare left and right panels). Although the EC50 determined through dose-response curve fitting

was somewhat variable among cell types and time points, the difference between cell types was

typically less than 10-fold (S3E–S3H Fig). Note that there was substantial measurement noise,

which was visible as weak correlations between technical replicates especially for CDKN1A
(S3I–S3L Fig). This likely results from the relatively low expression of this gene, because we

observed similarly weak correlations for the 10 lowest expressed genes (S3M Fig), but this find-

ing does weaken a conclusion about the potential dose-response effect in the CDKN1A gene.

Gene expression of all four DNA damage-related genes in both HepG2 cells and PHHs
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decreased for cisplatin concentrations higher than 10 μM. Functional enrichment analysis

indicated differential gene expression for cell death- and cell cycle-associated terms at concen-

trations of 10 μM and higher (S4A and S4B Fig). In addition, protective mechanisms such as

positive regulation of p21 and negative regulation of apoptosis were among the highest

enriched GO terms at 0.1 and 3.3 μM, whereas apoptosis-related GO terms were significantly

enriched at 10 and 100 μM (S4C–S4G Fig). To prevent interference of cell death events with

gene and protein expression, concentrations of 10 μM and higher were excluded from subse-

quent analysis. Taken together, the DNA damage related expression patterns of TP53, MDM2,

CDKN1A and BTG2 in HepG2 cells are similar to those in PHHs, although there are notable

Fig 1. Variability in basal and cisplatin-induced gene expression in HepG2 cells compared to PHHs from donor samples. (A) Graphical representation of

DNA damage-induced protein signaling upon cisplatin exposure. Kinases ATM, ATR, CHEK1 and CHEK2 are activated upon DNA damage and

phosphorylate transcription factor p53. Phosphorylated p53 enters the nucleus and induces transcription of downstream targets, among which are MDM2, p21

and BTG2. (B) TP53 expression in HepG2 and 50 PHH donor samples without and after cisplatin exposure. HepG2 cells cluster with one low TP53-expression

PHH donor sample. (C-F) Basal expression of TP53 (C), MDM2 (D), CDKN1A (E) and BTG2 (F) in PHHs and the HepG2 cell line within their corresponding

low-, intermediate- and high-expression clusters. HepG2 cell line has lower basal expression levels for TP53, CDKN1A and BTG2, but not for MDM2,

compared to average expression in PHHs within the same cluster. Contour lines are violin plots with individual samples marked by small grey dots, and large

colored dots are cluster means.

https://doi.org/10.1371/journal.pcbi.1010264.g001
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differences in the relation between TP53 expression and the expression of the downstream tar-

gets. Therefore, we continued to study the relations between TP53 and its downstream targets.

Basal TP53 expression levels correlate weakly with downstream targets

after cisplatin treatment in PHHs

Due to the extent of variability in expression of all four DNA damage associated genes among

PHH donor samples, the question arose whether differences in donors’ sensitivity to DNA

damage could be predicted based on the TP53 expression in a donor. To this end, we per-

formed Pearson correlation analysis of basal TP53 expression in PHHs and the three down-

stream targets before and after cisplatin exposure. Since the increase in p53 protein expression

upon DNA damage is primarily caused by enhanced translation and posttranslational pro-

cesses rather than increased transcription [50], p53 mRNA should not be greatly affected by

increasing exposure to chemicals and should not radically change over time in control

Fig 2. Expression patterns and correlations between TP53 and its downstream targets in HepG2 cells and 50 PHHs at increasing cisplatin levels.

(A-D) TP53 (A), MDM2 (B), CDKN1A (C) and BTG2 (D) gene expression patterns as a function of cisplatin concentration in HepG2 cells (3 replicates

(dots) and their mean (line segments), left panels) and PHHs (right panels) at the 8-hour time point. Note that at high cisplatin concentrations, gene

expression declines, which is likely explained by cytotoxicity onset. (E) Basal downstream target correlations with basal TP53 expression at the 8-hour

timepoint. (F-G) Correlation strengths between TP53 and the downstream targets MDM2, CDKN1A and BTG2 after exposure to 0, 0.1, 1 and 3.3 μM

cisplatin at 8 (F) and 24 (G) hours. � p-value< 0.1, �� p-value< 0.01, ��� p-value< 0.001.

https://doi.org/10.1371/journal.pcbi.1010264.g002
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conditions. Correlations between PHH basal TP53 expression and the expression in PHHs

exposed to cisplatin for 8 and 24 hours were indeed strong and there was no concentration-

dependency (S5A Fig). Moreover, there was only a limited increase in TP53 expression over

time for PHHs with low TP53 expression (S5B Fig). Next, we examined the relation between

the basal expression of transcription factor TP53 and the expression of the three TP53-regu-

lated genes MDM2, CDKN1A and BTG2. In the non-treated conditions, basal TP53 levels cor-

related weakly (albeit not significantly) with the basal expression of its downstream targets at

the 8-hour timepoint (Fig 2E and 2F, bottom row). The correlations with basal TP53 were

slightly stronger after exposure to cisplatin, in particular for BTG2 (Fig 2G). The correlations

at the 24-hour timepoint were weaker than those at the 8-hour timepoint, except for the corre-

lation between TP53 and MDM2 expression that became stronger (Fig 2G). Overall, correla-

tions between TP53 and target gene expression were low and barely significant. Interestingly,

basal TP53 expression negatively correlated with MDM2, both in absence and presence of cis-

platin, although the strength of these negative correlations differed among the three MDM2
probes used for sequencing (S5C Fig). Moreover, application of the same correlation analysis

stratified by TP53 expression group demonstrated that the strongest correlation occurred for

the high-expression group (S5D Fig). In summary, our findings suggest a limited predictive

capacity of basal TP53 expression to PHH sensitivity for DNA damage.

An ODE model describes p53 pathway activation upon cisplatin-induced

DNA damage in HepG2 cells

Since availability of PHHs is limited and long-term usage of PHHs is compromised by their in
vitro functional instability [10], hepatocellular cell lines such as HepG2 cells are often used as a

biological model system instead. To translate between findings in HepG2 cells and PHHs, we

asked whether the HepG2 cell line could be used to predict the response in PHH samples. To

assess the applicability of HepG2-based predictions to PHHs, we aimed to generate virtual

PHH donor samples derived from a deterministic ODE model that describes p53, MDM2, p21

and BTG2 mRNA and protein dynamics in HepG2 cells after cisplatin-induced DNA damage

(Fig 3A). First, we utilized the protein expression data from Wijaya et al. (2021) obtained by

measuring intracellular GFP intensity over time with live-cell microscopy of earlier generated

HepG2 p53-GFP, MDM2-GFP, p21-GFP and BTG2-GFP reporter cell lines [18–20] (Fig 3B).

This high throughput imaging method was used to measure protein levels up to 72 hours in

hundreds of cells simultaneously on a single cell level, and to obtain population average pro-

tein expression over time (normalized data with background subtraction in Fig 3C, colored

points; raw data in S6A Fig). We selected the data for conditions with 1, 2.5 and 5 μM cisplatin,

since concentrations of 10 μM and higher caused decreased cell viability (S6B and S6C Fig),

which is in correspondence to the functional enrichment analysis results for cell death in

PHHs (S4 Fig). Upon cisplatin exposure, p53 levels peaked between 35 and 42 hours, depend-

ing on the cisplatin concentration. As expected, MDM2, p21 and BTG2 reached their maxi-

mum expression levels later than p53 (Fig 3D). In addition, we determined the initial response

latency, defined as the time point of the first considerable increase in downstream target

expression relative to this time point measured for the p53 protein. An increase in p53 protein

expression could be distinguished around 5 hours after cisplatin treatment, whereas the initial

response in MDM2, p21 and BTG2 proteins was delayed with at least two hours (Fig 3E).

Interestingly, the response to cisplatin-induced DNA damage consisted of sustained p53

expression, which is opposed to the more widely documented oscillatory behavior elicited by

stressors such as radiation [51–55]. Therefore, we construct a new ODE model that could be

used to simulate the time-resolved protein dynamics of p53, MDM2, p21 and BTG2 (Fig 3A,
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Fig 3. ODE modeling of cisplatin-induced p53 signaling in HepG2 cells calibrated on live cell confocal imaging data. (A) Graphical

representation of the model. Cisplatin causes DNA damage, which triggers phosphorylation of p53. Phosphorylated p53 induces

expression of its downstream targets MDM2, p21 and BTG2. (B) Example images of nuclear GFP expression in p53, and cytoplasmic

GFP expression in BTG2 HepG2 BAC-GFP reporter cells at 1 and 48 hours. Blue, Hoechst-stained nuclei; green, GFP signal. (C) Mean

of single-cell protein expression data measured over a 65-hour period after 1, 2.5 and 5 μM cisplatin exposure. Experimental replicates
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Methods) and fit it to the imaging data (Fig 3C, black lines). To accurately describe effects on

the protein dynamics, we included upstream cisplatin availability and the ensuing DNA dam-

age stress in the model. We considered the reactive cisplatin concentration to decay exponen-

tially (Fig 3F). To investigate whether cisplatin indeed disappears relatively quickly at low

concentrations as predicted by the model fit, we indirectly determined the residual active cis-

platin in medium after 72 hours of cell exposure by exposing fresh reporter cells to the super-

natant. Consistent with model predictions, after 72 hours of 1, 2.5 and 5 μM cisplatin

exposure, there was only a negligible amount of reactive cisplatin left in the medium, as evi-

dent from the absence of p53 response to the re-used medium. In contrast, residual reactive

cisplatin for applied concentrations of 15 μM and higher still induced a stress response in p53

reporter cells following exposure of fresh reporter cells to supernatant, and this response

increased with applied concentration (Fig 3G). Thus, our model fit correctly describes the rela-

tively fast cisplatin decay at low concentrations.

Beyond the kinetics of cisplatin, the ODE model further includes cisplatin-induced DNA

damage, which results in p53 activation by post-translational modifications such as phosphor-

ylation (S1B Fig), acetylation and deubiquitination, causing cellular accumulation of p53-p

[56–58]. In the model, the DNA repair rate depends on the amount of phosphorylated p53

because of its known regulatory role in nucleotide excision repair [26], which generates a nega-

tive feedback between p53-p and DNA damage. A second negative feedback between p53-p-

dependent transcriptional activation of MDM2 and MDM2-induced degradation of p53 and

p53-p was required for downregulation of the total amount of p53 at later time points. We

added mRNA species for all four considered genes to the model, with the constraint that for

p53 the protein accumulation does not rely on increased p53 mRNA production [50,59], i.e.,

the modeled p53 mRNA is considered to remain constant after exposure to cisplatin. In con-

trast, MDM2, p21 and BTG2 are primarily regulated on a transcriptional level, thus in the

model the mRNA species for these genes change dynamically. The transcriptional activation of

p21 and BTG2 by p53-p was modeled in a similar manner as for MDM2, using a Hill equation

with exponent 4 to reflect p53-p binding to the DNA as a tetramer. Note that a model in which

this is changed to a Hill exponent of 1 (neglecting p53-p tetramer formation) could also

describe the protein expression data reasonably well, but predicted unrealistic behavior at late

time points for MDM2, BTG2 and p21 (S7A and S7B Fig). To prevent overfitting, we did not

include additional model components for which we have no experimental information.

Parameter optimization resulted in a fit that provided a good description of the GFP

reporter imaging data (Fig 3C, black lines and S1 Table), with parameter uncertainty as shown

in S8 Fig. To examine whether this optimal model parameterization correctly reflects the regu-

lation of p53 degradation by MDM2 in HepG2 cells, we performed in silico disruptions of the

MDM2 inhibitory effect on p53. A reduction of the MDM2-dependent p53 degradation had a

clear effect on total p53 levels (Fig 4A). Next, we experimentally examined the effect of MDM2

on p53 degradation in HepG2 cells by inhibiting the MDM2-p53 interaction with Nutlin. The

imaging data resulting from this experiment exhibited a profound suppressive effect of MDM2

on total p53 levels, which was evident from both the control case without cisplatin and the case

with cisplatin (Fig 4B). The MDM2 response itself also increased strongly upon Nutlin treat-

ment (Fig 4C), presumably because of the strong p53 induction. In conclusion, with the

(exp. 1–4) are shown in different colors. The model simulation after parameter calibration is shown as a black solid line. (D) Delay in

peak MDM2, p21 and BTG2 expression levels with respect to maximum p53 expression. (E) Response latency of MDM2, p21 and BTG2

for different cisplatin concentrations. (F) Model-predicted effective cisplatin concentrations (ECi) over time. Corresponding applied

concentrations are 1, 2.5 and 5 μM for EC1, EC2 and EC3, respectively. (G) Induction of p53-GFP in three replicates (Exp. 1–3) after

exposure of non-treated HepG2 cells to conditioned medium collected from cells previously exposed to cisplatin for 72 hours.

https://doi.org/10.1371/journal.pcbi.1010264.g003
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developed model we accurately describe the protein dynamics observed in HepG2 cells, while

the inner model states corresponded qualitatively to the experimental data on cisplatin activity

over time and the MDM2 negative feedback on p53 in our assays.

Approximation of PHH with model-derived virtual donor samples

Having a mathematical model in place to describe the response of liver cells to cisplatin, we next

examined the potential of our HepG2-based model in explaining the experimentally observed

variability with respect to the studied DNA damage components in the 50 PHH donors. We

therefore used the model to generate groups of 50 virtual donors that could be compared to the

PHH expression data. Since the estimated parameter values were optimized to describe the pro-

tein dynamics in HepG2 cells, these values are specific for this system. Although reaction rates

in PHHs are likely to differ from those in HepG2 cells and to be variable among PHH samples,

the HepG2 based parameters may still form a good foundation to base expected parameter vari-

ability on. To simulate virtual donors (Fig 5A), we therefore introduced parameter variability

proportional to the HepG2-based parameter values and ran simulations with each randomly

chosen parameter set to determine the expected correlations between basal TP53 levels and

downstream target expression. Since we have no data on the actual parameter values underlying

the variability between individual PHHs, we included a variability factor c that quantified the

extent of differences between HepG2 and PHH samples, and we chose this from a range

between 0.001 and 0.2, covering very little to high amounts of variability. Moreover, because

measurement noise must also have affected the experimentally observed correlations, we added

a small amount of such noise to the virtual donor data (see Methods).

Fig 4. Reduced p53-MDM2 feedback promotes p53 and MDM2 expression. (A) Model simulations upon disruption of the MDM2-p53 feedback

by weakening the feedback strength of MDM2 on p53 degradation to 50% (dashed green) or 20% (dashed yellow) of the original strength;

simulations without disruption are shown as solid purple lines. (B-C) p53-GFP (B) and MDM2-GFP (C) expression in HepG2 cells after exposure to

increasing concentrations of cisplatin (purple) and to cisplatin in combination with 5 (green) or 10 (yellow) μM Nutlin, both administered at t = 0

hours.

https://doi.org/10.1371/journal.pcbi.1010264.g004
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Fig 5. Comparison between correlations for virtual donor samples and PHHs. (A) Graphical explanation of the creation of virtual donor

samples. For all fitted parameters Pi, we added a value, drawn from a normal distribution with mean 0 and standard deviation pi � c, to the

parameter value. We executed this 50 times to generate one set of 50 virtual donor samples and repeated this 1000 times to obtain 1000 sets of

50 virtual donor samples. (B) Correlations between basal TP53 expression and the downstream targets MDM2, CDKN1A and BTG2 at 8 hours

for HepG2-derived virtual samples (colored boxes) and PHHs (grey shaded areas) in basal expression conditions (left) and after 3.3 μM

cisplatin exposure (right) with variability factor c = 0.2 and a small amount of measurement noise, chosen such that the correlation of basal

TP53 with itself after cisplatin exposure under variability factor c = 0.2 decreased to the experimentally observed correlations in PHHs. The

grey solid lines represent the observed correlations in PHHs and the grey shaded areas represent the 95% confidence interval of correlations

found for alternative PHH donor sets acquired with 1000 times bootstrapping. (C) Effect of changes in MDM2 feedback strength (top),

dephosphorylation rate (middle) and p53-dependent MDM2 synthesis rate (bottom) on correlation of basal TP53 expression with basal MDM2
expression (medium) or after 3.3 μM cisplatin exposure (cisplatin) at the 8-hour timepoint and with measurement noise. A value r = 1 implies

no adjustment in parameter value with respect to the fitted values, r> 1 implies stronger feedback and r< 1 implies weaker feedback. Grey

solid lines and shaded areas are the same as in (B). (D) Adjustments in steady state values of p53 and MDM2 upon changes in factor r.

https://doi.org/10.1371/journal.pcbi.1010264.g005
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Utilizing these ODE model simulations of 50 virtual PHH donors (S9 Fig), we obtained the

TP53, MDM2, CDKN1A and BTG2 mRNA levels at 8 hours to determine the correlation

between these components among a set of virtual donors. Furthermore, we simulated 1000 vir-

tual donor groups to determine the expected variability in the correlations. We compared

these in silico correlations to the in vitro correlations, considering the uncertainty in the exper-

imental estimate by bootstrapping, i.e., rendering an estimate for what would be found in

other sets of 50 PHH samples. For c = 0.2 and a small amount of measurement noise, the corre-

lations between basal TP53 and the downstream targets CDKN1A and BTG2 within virtual

patient groups closely matched those observed in the PHHs both without and after cisplatin

treatment (Fig 5B). Note that without addition of measurement noise, the measured correla-

tions in PHHs remained somewhat weaker than the median of the correlations in virtual

HepG2-derived samples, even at high introduced parameter variability factor c (S10A Fig).

In contrast to the close correspondence between measured and predicted correlations of

TP53 to CDKN1A and to BTG2, there was a mismatch for the TP53-MDM2 correlations that

was most profound in the condition with cisplatin exposure. Therefore, we investigated

whether a change in parameters that influence p53 or MDM2 levels altered the correlation

strength. For this purpose, we increased and decreased the MDM2-dependent p53 and p53-p

degradation rate, the p53-p dephosphorylation rate and the p53-dependent MDM2 synthesis

rate by multiplying these parameters with factor r before introducing variability of this param-

eter with factor c = 0.2. Strong (r = 10, r = 100) or weak (r = 0.01, r = 0.1) MDM2 feedback

strength led to a decrease in the TP53-MDM2 correlation (Fig 5C, top panel and S10B Fig).

Similarly, changes in the p53 dephosphorylation rate and p53-dependent MDM2 synthesis

rate changed the correlation between TP53 and MDM2 (Fig 5C, middle and bottom panel, and

S10C and S10D Fig), but did not lead to a negative correlation. In our model, the steady state

expression levels of p53 and MDM2 simultaneously increased or decreased upon changes in

MDM2 feedback strength, which explains the preservation of their positive correlation (Figs

5D and 4B and 4C). We investigated two additional model changes for their ability to explain

negative correlations between TP53 and MDM2 across PHH donors. The first change involved

implementation of a non-linear rather than linear MDM2 feedback on p53, but this did not

lead to a negative correlation (S11A Fig). The second change consisted of an alternative model,

in which MDM2 is phosphorylated and binds to p53 mRNA to induce p53 translation [60,61]

(S11B and S11C Fig). Also this model could not explain the negative TP53-MDM2 correlation

(S11D Fig). In summary, although we found good correspondence between correlations of

TP53 with its downstream targets CDKN1A and BTG2 in PHHs and HepG2-derived virtual

donor samples, our model could not explain the negative correlation between TP53 and

MDM2 observed for PHHs.

Discussion

There is a need to understand the overall relevance and uncertainty of cell line usage as model

system for healthy human tissue, which requires detailed understanding of how intracellular

network dynamics translate between cell types from different genetic backgrounds. Here, we

used correlations between protein and gene expression levels to infer the similarity of DNA

damage response dynamics in the HepG2 cell line with the response of PHHs. We showed that

our mechanistic ODE model calibrated on HepG2 protein expression data could reproduce

the relation between the expression of TP53 and its downstream targets CDKN1A and BTG2
in PHHs, but not the negative correlation between TP53 and MDM2. Our method allowed us

to explore the applicability of a HepG2-derived model to explain heterogeneity in PHHs and

identify knowledge gaps in pathway regulation. Ultimately, this approach can be used to
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provide new insights in the applicability of results obtained from routine, high throughput cell

line test systems for the responses of primary human cells.

For reliable extrapolation of the DNA damage response dynamics in HepG2 cells to PHHs,

the genetic differences among liver tissue samples should be considered. Firstly, various studies

reveal cisplatin-induced DNA damage in PHHs and HepG2 cells, but the extent of damage

varies between these cell types, which may in part be due to differences in assay sensitivity

among cell types [62–64]. Secondly, the extent of DNA damage [63] and consequent gene

expression varies among PHH donors (S2 Fig), which is in line with previous findings [65,66]

and more extensively studied in the here utilized data of Niemeijer et al. (2021).

Furthermore, the HepG2 samples were clearly separated from the PHH samples based on

their gene expression profile, although HepG2 will likely be much more similar to PHHs com-

pared to unrelated reference cell lines. The function of p53 in cell cycle regulation and apopto-

sis complicates the comparison of the proliferating HepG2 cell line with quiescent PHHs. We

found a moderate temporal effect on TP53 expression in PHHs, but not in HepG2 (Figs 1B

and S5B), which could be due to the necessity of relatively high p53 expression in PHHs to

maintain their quiescent phenotype [67]. There is indeed considerable genetic dissimilarity

between unexposed PHHs and HepG2 cells, although this difference is less pronounced after

cisplatin exposure [68]. In our analysis, hierarchical clustering based on individual gene

expression patterns showed that HepG2 cells respond somewhat differently than any other

PHH donor sample in this panel. For example, the HepG2 cell line clustered with PHH donor

samples having low TP53 expression, but clustering based on MDM2 expression grouped the

HepG2 cell line with PHHs that had high MDM2 expression (Figs 1B and S2A–S2D). Indeed,

overexpression of MDM2 has been previously found in many cancer types including hepato-

cellular carcinoma [69–71], and MDM2 protein levels are also elevated in HepG2 cells [72].

Since HepG2 clustered with the PHH donor sample with lowest TP53 expression, HepG2 cells

could very well behave similar to PHHs with low basal TP53 expression. If possible, extrapola-

tion of simulated dynamics to PHHs should therefore be adjusted based on PHH characteris-

tics. For experimental purposes, forced overexpression of the TP53 gene in HepG2 cells might

improve the resemblance to ‘average’ PHHs. Although gene expression was somewhat differ-

ent between HepG2 cells and PHHs, we further investigated whether their pathway dynamics

were nevertheless similar.

To this end, we sought to compare the dynamics of the p53 signaling pathway in these cell

types by studying the correlations between TP53 and its downstream targets at two time

points. These correlations were rather weak, yet we found that similarly weak correlation

strengths would be expected based on the virtual samples generated with our ODE model.

Consistent with these findings, Spearman correlation coefficients ranging from 0.2 to 0.4

between p53, p21 and MDM2 protein expression have been reported for hepatocellular carci-

noma tissue and surrounding hepatocytes [73]. The comparison of correlations in HepG2 vir-

tual donors and PHHs suggested that our model captures the essence of the relationship

between the expression of gene TP53 and its downstream targets CDKN1A and BTG2. How-

ever, we found that adjusting the parameters that determine p53 or MDM2 expression was not

sufficient to deliver HepG2-based virtual samples that reproduced the negative TP53-MDM2
correlation observed for PHH donor samples. An alternative model that incorporates dynam-

ics of TP53 expression and a positive feedback of MDM2 on p53 production, could neither

reproduce this negative correlation. Therefore, time-resolved mRNA expression data for TP53
and MDM2 to constrain their dynamics will be required to further elucidate the relation

between p53 and MDM2 on transcriptional and translational level in HepG2 cells, and how

this might differ from PHHs. Considering the architecture of our models and our findings that

parameter manipulations were not sufficient to obtain a negative TP53-MDM2 correlation,
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additional factors that influence the dependency of MDM2 mRNA on p53 are likely also

needed to accurately capture their relation. The MDM2-homologue MDMX, that modulates

the p53-MDM2 autoregulatory feedback by enhancing MDM2-dependent p53 repression and

inhibiting the transcriptional activity of p53 [74,75], could be a candidate for subsequent stud-

ies. Acquisition of mRNA and protein expression data of MDMX in HepG2 cells and PHHs,

which is not available in the here utilized data sets, combined with inclusion of MDMX in our

model might improve our understanding of the mechanisms that determines the MDM2-p53

relation and thereby the translation of the MDM2 protein dynamics from HepG2 to PHHs.

Former comparisons between in vitro biological test systems and PHHs have focused on

highlighting similarities and differences in gene expression patterns. In this context, genes

involved in metabolism have often gained special attention, since a better understanding of

differences in pharmacokinetics between cell types can be used to interpret differences in gen-

otoxic responses [76–78]. Here, we provided a method to investigate similarities between

DNA damage response pathway activity among cell types on a mechanistic level, aiming to

ultimately infer DDR pathway dynamics in PHHs. We showed that relations between mRNA

expression in model-based virtual samples are comparable to these relations in PHH samples.

Although the presented ODE model cannot yet fully explain the TP53-MDM2 correlation

within PHHs, our study has uncovered the MDM2-p53 feedback as critical factor for the trans-

lation of p53 pathway dynamics between cell types.

It is currently unclear what DDR-related protein expression levels are associated with good

prognostic outcome e.g., for cancer patients treated with chemotherapy. For example, we do

not know whether a high cisplatin-induced p21 expression is only associated with a good prog-

nostic outcome for a patient, because high p21 expression is likely also associated with an

increased probability for adverse effects in liver or kidney. Ultimately, advancements in our

understanding on the relation between gene and protein expression dynamics and cell fate, will

move us towards understanding the origin of interindividual differences in susceptibility to can-

cer development and will provide opportunities for the creation of patient-specific risk profiles.

Supporting information

S1 Fig. Response of HepG2 cells and PHHs to cisplatin-induced DNA damage stress. (A)

Mean number of γ-H2AX foci in HepG2 cells over time after cisplatin exposure (n = 1). (B)

Expression of p53, p53-S15, p53-S46 and p21 at 24 (left) or 48 (right) hours after cisplatin

exposure, as measured by Western blot (n = 1). (C) TempO-Seq library sizes per measurement

and sample. Conditions with less than 100,000 reads (solid black line) are discarded from the

analysis. CDDP, cisplatin. (D) Distribution of samples based on the expression of all genes in

the S1500+ gene set after dimensionality reduction with PCA followed by t-SNE. (E) Overlap

in the 20 TXG-MAPr modules with the highest Eigengene score per cell type at 8 and 24 hours

after exposure to 3.3 μM cisplatin.

(TIF)

S2 Fig. Variability in basal and cisplatin-induced gene expression in HepG2 cells compared

to PHHs from donor samples. (A-C) Gene expression heatmaps for MDM2 (A), CDKN1A
(B) and BTG2 (C). (D) Gene expression cluster assignment for HepG2 cells and PHH donor

samples based on hierarchical clustering. Note that clusters are not conserved among genes.

(E-H) Basal expression of TP53 (E), MDM2 (F), CDKN1A (G) and BTG2 (H) in PHHs and the

HepG2 cell line within their corresponding low-, intermediate- and high-expression clusters.

Contour lines are violin plots with individual samples marked by small grey dots, and means

per cluster by large colored dots.

(TIF)
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S3 Fig. Expression patterns of TP53 and its downstream targets in HepG2 cells and 50

PHHs at increasing cisplatin levels. (A-D) TP53 (A), MDM2 (B), CDKN1A (C) and BTG2
(D) gene expression patterns as a function of cisplatin concentration in HepG2 cells (three rep-

licates (dots) and their mean (line segments), left panels) and PHHs (right panels) at the

24-hour time point. Note that at high cisplatin concentrations, gene expression declines,

which is likely explained by cytotoxicity onset. (E-G) Dose-response curve fits based on a Hill

equation for MDM2 (E), CDKN1A (F) and BTG2 (G), with data means per condition (empty

colored markers) and EC50 values (solid colored dots). (H) Fold change differences between

EC50 values per gene. (I-L) Correlation plots between technical replicates of PHH measure-

ments for TP53 (I), MDM2 (J), CDKN1A (K) and BTG2 (L). (M) Correlation coefficient

between technical replicates (mean ± sd) of the 10 lowest (purple) and 10 highest (yellow)

expressed genes.

(TIF)

S4 Fig. Functional enrichment analysis for cytotoxicity related Gene Ontology (GO) terms

based on transcriptomics measurements in PHH samples. (A-B) Enrichment of selected GO

terms for cell death (A) and cell health (B) terms at increasing cisplatin concentrations at the

8-hour time point. (C-G) The 10 most significant enrichment terms at 0.1 (C), 3.3 (D), 10 (E),

33 (F) and 100 (G) μM cisplatin. Note that the 1 μM condition is not included, due to the lim-

ited number of genes that passed the criteria for differentially expressed genes and the conse-

quent absence of functional enrichment.

(TIF)

S5 Fig. Gene expression correlations amongst PHHs from different donors. (A) Correla-

tions of basal TP53 with TP53 expression after 0.1, 1 and 3.3 μM cisplatin exposure at 8 (left)

and 24 (right) hours. (B) Correlation between TP53 expression at 8- and 24-hour timepoint.

Dashed grey lines in (A-B), y = x. (C) Correlations of basal TP53 with the three probes of

MDM2 (p1, p2 and p3) at 8 (left) and 24 (right) hours. (D) Correlations of basal TP53 with

MDM2 (mean of the three probes) at 8 (left) and 24 (right) hours split per TP53-expression

cluster. Grey dashed lines represent the overall correlation for all clusters together.

(TIF)

S6 Fig. GFP, PI and AnV readouts of live-cell imaging data. (A) Unnormalised GFP intensi-

ties for proteins and biological replicates separately. (B-C) Maximal proportion of PI-positive

(B) and AnV-positive (C) cells at increasing cisplatin concentrations. Mean ± sd of all 13

experiments with the 3 to 4 replicates per BAC-GFP reporter.

(TIF)

S7 Fig. Model dynamics at late time points differs due to a different Hill coefficient. (A-B)

Dynamics of the model species for a model with p53-dependent activation of transcriptional

regulation with Hill parameter 4 (A) or 1 (B). DD, DNA damage.

(TIF)

S8 Fig. Illustration of parameter estimate uncertainties across parameter calibration runs

with the same cost function value. A) Estimates of the ODE model parameters and initial

states on a log10 scale. B) Estimates of the scaling and offset parameters used in the observable

function on a linear scale.

(TIF)

S9 Fig. Examples of expression pattern simulations in virtual donor samples.

(TIF)
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S10 Fig. Impact of parameter manipulations on correlation strengths without measure-

ment noise. (A) Correlations between basal TP53 expression and the downstream targets

MDM2, CDKN1A and BTG2 at 8 hours for HepG2-derived virtual samples (colored boxes)

and PHHs (grey shaded areas) in basal expression conditions (left) and after 3.3 μM cisplatin

exposure (right). Increasing variability in parameter values, i.e., increasing factor c, improves

the match between the correlations in the HepG2-derived virtual samples and the PHH donor

samples. (B-D) Effect of changes in MDM2 feedback strength (B), dephosphorylation rate (C)

and p53-dependent MDM2 synthesis rate (D) on correlation between TP53 and MDM2 after 8

(left) and 24 (right) hours. Correlations are shown for basal TP53 expression with MDM2
expression in medium or after 3.3 μM cisplatin exposure at varying parameter multiplication

factors r. A value r = 1 implies no adjustment of the parameter value with respect to the fitted

values, r> 1 implies stronger feedback and r< 1 implies weaker feedback. Colored boxes are

the correlations found for HepG2-derived virtual samples. Grey horizontal lines represent the

measured correlation for the 50 PHH donor samples. Grey shaded areas represent the 95%

confidence interval of the correlation measurements acquired with 1000 times bootstrapping.

(TIF)

S11 Fig. Correlation analysis with alternative DDR models. (A) Correlations between basal

TP53 expression and the downstream targets MDM2, CDKN1A and BTG2 at 8 hours for

HepG2-derived virtual samples (colored boxes), created with a model with a non-linear

p53-MDM2 feedback. (B) Alternative model in which p53 mRNA binds to phosphorylated

MDM2 and induces expression of p53 mRNA. (C) Simulation of the alternative model (as in B)

after parameter estimation. (D) Correlations between basal TP53 expression and the down-

stream targets MDM2, CDKN1A and BTG2 at 8 hours for HepG2-derived virtual samples (col-

ored boxes), created with the alternative model (as in B). Correlations in B and D are shown for

basal expression conditions (left) and after 3.3 μM cisplatin exposure (right) with variability fac-

tor c = 0.1 and a small amount of measurement noise for B, and variability factor c = 0.2 without

measurement noise for D. Moreover, in B and D the grey solid lines represent the observed cor-

relations in PHHs and the grey shaded areas represent the 95% confidence interval of correla-

tions found for alternative PHH donor sets acquired with 1000 times bootstrapping.

(TIF)

S1 Table. Parameter description and estimated values of the model as described in the

Methods section of the main text. Fixed parameter values are indicated with a diamond (�)

and parameters that are determined with steady state constraint calculations with a star (?).

(DOCX)

S2 Table. Parameter description and estimated values for the alternative DDR model

described in S1 Methods. Fixed parameter values are indicated with a diamond (�) and

parameters that are determined with steady state constraint calculations with a star (?).

(DOCX)

S1 Methods. Methods for the model with a non-linear p53-MDM2 feedback and the alter-

native DDR model.

(DOCX)
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