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Abstract
Optimization problems with multiple objectives and many input variables inherit challenges from both large-scale opti-

mization and multi-objective optimization. To solve the problems, decomposition and transformation methods are fre-

quently used. In this study, an improved control variable analysis is proposed based on dominance and diversity in Pareto

optimization. Further, the decomposition method is used in a cooperative coevolution framework with orthogonal sampling

mutation. The algorithm’s performances are compared against the weighted optimization framework. The results show that

the proposed decomposition method has much better accuracy compared to the traditional method. The results also show

that the cooperative coevolution framework with a good grouping is very competitive. Additionally, the number of search

directions in orthogonal sampling can be easily configured. A small number of search directions will reduce the search

space greatly while also restricting the area that can be explored and vice versa.

Keywords Evolutionary algorithms � Large-scale � Multi-objective � Grouping � Decomposition � Cooperative coevolution

1 Introduction

Large-scale optimization problems are often solved by

decomposing them into several subproblems or by using

dimensionality reduction methods. The cooperative

coevolution (CC) framework (Potter and De Jong (1994) is

the most common framework used to decompose the

problems. As for dimensionality reduction, Yang

et al. introduced EACC-G No definition in the paper,

simply they want to call the algorithm with this namein

(Yang et al. 2008). The EACC-G framework is based on

the CC framework but instead of optimizing the subprob-

lems created by grouping, the EACC-G optimizes weights

that are associated with the groups. The framework effec-

tively reduces the dimensionality to the number of groups

created which is less than or equal to the number of

variables.

These techniques for large-scale optimization are also

used when there are several objectives to be optimized

simultaneously, i.e., in a large-scale multi-objective

(LSMO) optimization problem. Some examples are the

cooperative coevolution with generalized differential evo-

lution (CCGDE3) (Antonio and Coello 2013) and the

weighted optimization framework (WOF) (Zille et al.

2017) which are based on the CC framework and EACC-G,

respectively. In addition to those, new frameworks

designed for LSMO optimization problems are also avail-

able, such as the multiobjective evolutionary algorithm

based on decision variable analysis (MOEA/DVA) (Ma

et al. 2016) as well as algorithms that utilize machine

learning techniques such as the SVM ? NSGA-II (Zhang

et al. 2019) and PCA-MOEA (Liu et al. 2020).
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In most of the mentioned frameworks and algorithms,

variable decomposition/grouping plays a major role. In

regards to grouping, there are many ways of specifying

groups for the framework/algorithm. There are simple

methods like random grouping which allocate variables to

groups randomly to a fixed size, but there also exist more

sophisticated methods. As an example, the random

dynamic grouping (Liu et al. 2020) uses varying group

sizes at each iteration which is determined by a roulette

wheel selection based on the quality of the groups. Com-

bined with the WOF and using MMOPSO as the optimizer,

the random dynamic grouping shows good performance on

WFG (Huband et al. 2006) and UF (Zhang et al. 2009) test

problems.

Other common methods used to group variables are

based on variable interactions or separability. A problem is

called partially separable iff:

arg min
x

f ðxÞ ¼ ð arg min
x1

f ðxÞ; . . .; arg min
xn

f ðxÞÞ ð1Þ

Further, a function is additively separable iff:

f ðxÞ ¼
XjSj

s¼1

fsðxsÞ ; jSj[ 1 ð2Þ

The variables are grouped together when they do not

fulfill the above criteria for separability, i.e., they are non-

separable. This ensures that variables that affect each other

are optimized together. The differential grouping (DG)

family (Omidvar et al. 2014, 2017; Sun et al. 2019) focu-

ses on grouping based on this additive separability.

Another method that has been used to group variables is

differential analysis (DA). These methods will be discussed

further in Sect. 3.

In LSMO problems, such variable interactions must be

checked for each objective function. Variables that are

separable with respect to one objective can be non-sepa-

rable on other objectives and it is non-trivial on how to

process such variables. To define how such variables are

being considered separable or non-separable, the so-called

transfer strategies are used (Sander et al. 2018).

As an alternative to grouping based on interaction,

variables can be grouped based on whether they affect

convergence or diversity of solutions in the objective

space. Some examples of such grouping methods are the

control variable analysis (CVA) (Ma et al. 2016), and

decision variable clustering (Zhang et al. 2018). The

advantage of these methods is that no transfer strategies are

needed. To summarize, the different grouping methods are

listed in Table 1.

This paper provides studies on extensions and modifi-

cations to existing methods for solving LSMO problems.

The topics covered are:

• an improvement on the CVA grouping method;

• implementing the improved CVA in a cooperative

coevolution framework;

• implementing the novel mirrored orthogonal sampling

method introduced in Wang et al. (2019) to solve

LSMO problems.

This paper is organized as follows: Sect. 2 introduces

several existing frameworks for large scale optimization

that use grouping in their routine, Sect. 3 discusses existing

grouping methods that have been used to solve LS opti-

mization problems, Sect. 4 introduces a modification to the

CVA grouping method to improve its accuracy, Sect. 5

discusses the implementation of the CVA and orthogonal

sampling in a CC framework, and lastly, Sect. 6 summa-

rizes the work.

2 Large-scale optimization frameworks

In this section, existing frameworks for solving large-scale

problems are described. The frameworks discussed in this

section are based on decomposition. Discussion on the

decomposition methods is available in Sect. 3.

2.1 Cooperative coevolution

The challenge with large-scale optimization problems is

that common solver’s performances deteriorate rapidly as

the number of variables increases due to the exponential

expansion of the search space (Li et al. 2013). The coop-

erative coevolution (CC) framework (Potter and De Jong

1994) is intended to scale up these solvers by decomposing

the large-scale problem into several smaller subproblems

that are solved cooperatively.

The first step of the CC framework is the grouping of the

variables. The grouping methods will be discussed further

in Sect. 3.

After grouping, the second step is the optimization itself.

The variables in different groups are optimized separately,

while variables in the same group will be optimized toge-

ther in one subproblem. Each subproblem optimizes a

subvector xS from the large-scale problem, with S being

the index set defining the subproblem, S � f1; . . .; ng.

The optimization subproblems are constructed as opti-

mizing xS while all other variables xS are filled with the so-

called context vector (CV) and kept constant (with S the

complement of the index set S). The subproblems’ for-

mulation can be seen in Eq. 3.

min
xS

f ðx0Þ ; x0i ¼
xi if i 2 S

x
ðcvÞ
i otherwise

�
ð3Þ
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In Eq. 3, the CV denoted as xðcvÞ and variable whose index

is in S are substituted with xS . The CV is built from the

representative individuals of each subproblem, e.g. the best

individuals of each subvector (Trunfio 2015).

After xS is optimized with respect to the current CV, the

CV is updated with the optimized xS . This concept is

illustrated in Fig. 1. The process is then repeated for sev-

eral iterations (known as cycles) until a stopping criterion

is triggered.

2.2 MOEA/DVA

The difficulties of solving LSMO problems are two-fold.

There are challenges related to the multi-objectivity and

also challenges related to the large number of variables

involved. Common solvers for multi-objective optimiza-

tion problems (MOPs) struggle due to these challenges.

Similar to the CC framework, the MOEA/DVA is intended

to scale up these solvers (Ma et al. 2016).

The MOEA/DVA also uses grouping in its routine.

There are two stages of grouping, first, it groups variables

using control variable analysis (CVA, see Sect. 3.3), and

then it creates subgroups on the convergence and mixed

variables based on interaction using differential grouping

(DG, see Sect. 3.1). Decomposing large scale optimization

problems using several grouping methods are common to

control group sizes and interaction sensitivity (e.g., Zhenyu

et al. 2008; Yue and Sun 2021), or increase grouping

efficiency (e.g., Irawan et al. 2020). The two-stage group-

ing in MOEA/DVA differs in that the first stage is to

address the multi-objective nature of the problem. Addi-

tionally, as mentioned in Sect. 1, when dealing with LSMO

problems, non-separability can happen differently in each

objective. In MOEA/DVA, variables interacting indirectly

on different objectives must be grouped together. In

MOEA/DVA, the optimization is divided into two big

phases. In the first phase, several points are sampled uni-

formly on the diversity variables subspace and will be kept

static during this phase. During this phase, optimization

effort is focused on convergence and mixed variable

groups to push the solution closer to the Pareto front.

After a certain stopping criterion is fulfilled, the second

phase of MOEA/DVA is to optimize all variables together.

The primary aim of this last phase is to uniformly spread

solutions in the objective space. Ma et al. (2016) tested

MOEA/DVA on various large-scale test problems with

good results although the number of function evaluations is

very high, mainly due to the DG.

2.3 Weighted optimization framework

The weighted optimization framework (WOF) reduces the

problem’s dimensionality by changing the values of a

group of decision variables simultaneously. This is

Table 1 Commonly used grouping/decomposition methods

Grouping

method

# groups #

objective

Grouping principle Prominent application

Differential

grouping

Problem

dependent

1 Separability CC framework Sun et al. (2019), Omidvar et al. (2014)

Differential

analysis

Problem

dependent

1 Contributions CC framework, MOFBVE Mahdavi et al. (2017)

Random User defined � 1 Random CC framework Liu et al. (2020), Yang et al. (2008),

WOF Zille et al. (2017)

Linear User defined � 1 Variable index CC framework, WOF Zille et al. (2017)

SVM User defined � 1 Clustering SVM?NSGA-II Zhang et al. (2019)

CVA 3 � 2 Dominance levels MOEA/DVA Ma et al. (2016)

Decision var.

clustering

2 � 2 Cluster of angles relative to the normal

of (f1; f2; . . .; fm)

LMEA Zhang et al. (2018), PCA-MOEA Liu et al.

(2020)

Fig. 1 Optimization and update of the context vector. In each cycle,

each subproblem is optimized consecutively. In the example above, a

4-variable problem is decomposed into two subproblems. Subproblem

1 optimizes the first two variables, while the other two variables are

taken from the context vector. Solving subproblem 1 yields optimized

x1 and x2 which are used to update the context vector. Subsequently,

subproblem 2 will optimize x3 and x4 while the value for x1 and x2 are

taken from the updated context vector

Dominance-based variable analysis for large-scale multi-objective problems
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achieved by utilizing the transformation function, w which

specifies a search direction for a group of variables. The

offspring are generated along this search direction from an

individual xðkÞ in the population by varying a weight vector

W. The optimization problem is then transformed into

finding a weight vector that produces good objective val-

ues, i.e.

min
W

fkðWÞ ¼ min
W

fðwðW; xðkÞÞÞ

wðW; xðkÞÞ ¼ fW1x
ðkÞ
1 ; . . .;W1x

ðkÞ
l ; . . .;

Wcx
ðkÞ
n�lþ1; . . .;Wcx

ðkÞ
n g

ð4Þ

In Eq. 4 it is assumed that the variables are grouped into

c groups with the same size l ¼ n=c. The transformed

problem is created with the hope that the search directions

intersect with the Pareto set. The transformed problem and

the original problem are solved in a loop, one after the

other.

To summarize, in the WOF, the problem is transformed

into optimizing weights to a specific search direction where

each group of variables is represented with a straight line.

These search directions are defined by a good candidate

solution position and random grouping of variables. Other

algorithms have also emerged based on this concept. He

et al. (2019) used a similar method with two search

directions. Qin et al. (2021) further increased the number of

search directions for the directed sampling in their

LMOEA-DS to increase the chance for the direction vec-

tors to intersect with the Pareto set in the decision space.

The search directions in LMOEA-DS are generated based

on the solutions closest to the ideal point of the objective

space.

3 Grouping methods

As mentioned before, in solving large-scale problems, the

use of grouping to decompose the large-scale problem is

prominent. This section will discuss several well-known

grouping methods in more detail.

3.1 Differential grouping

Recall that one of the most common methods used to group

variables is based on separability. Detecting additive sep-

arability in a function is possible by evaluating the second-

order differentials of the function. The second-order dif-

ferential is computed following Eq. 5.

Di ¼ f ð. . .; x0i; . . .Þ � f ð. . .; xi; . . .Þ

Di;j ¼ f ð. . .; x0i; . . .; x0j; . . .Þ � f ð. . .; xi; . . .; x0j; . . .Þ

Hi;j ¼
1 Di 6¼ Di;j

0 Di ¼ Di;j

(

i; j 2 ð1; . . .; nÞ

ð5Þ

In Eq. 5, Di is the effect of perturbation on xi while Di;j

is the effect of perturbation on xi after an initial perturba-

tion on xj. The Hi;j is a binary matrix which indicates

whether the variables interact with each other. A complete

Hi;j with i and j spanning all variables yields what is called

a Design Structure Matrix (DSM) (Omidvar et al. 2017).

Two variables xi and xj are additively separable when

Hi;j ¼ 0. A full DSM can be constructed using the so-

called DG2 method, consuming n2�n
2

function evaluations

(Omidvar et al. 2017).

For multi-objective problems, the DG must be con-

ducted on each objective function. The computational cost

is then multiplied by the number of objectives. Variables

may be separable on one objective, but not on other

objectives. Care should be taken as indirect interactions

across different objectives are possible. As an example,

suppose that x1 interacts with x2 on the first objective, and

x2 interacts with x3 on the second objective. This implies x1

is indirectly interacting with x3.

3.2 Differential analysis

While the DG uses second-order differentials, another

method, known as differential analysis (DA) (Morris 1991;

Campolongo et al. 2005), uses the first-order differential.

In DA, multiple samples of the first-order differentials are

drawn and the mean and variance of the differences are

taken as scores (known as sensitivity indices) for each

variable. It is important to note that the DA by itself does

not produce groups. The groups are created separately after

the analysis. In Mahdavi et al. (2017), the groups are cre-

ated based on the scores using a clustering method, while

in Irawan et al. (2020) the groups are created based on the

ranking of one of the scores.

For DA, each variable in the search space is divided into

p intervals. The scores are then calculated based on the

D. Irawan et al.
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elementary effects (EE). The elementary effect of variable

xj is calculated according to Eq. 6.

EEiðxÞ ¼
f ð. . .; xi þ D; . . .Þ � f ðxÞ

D
; i ¼ 1; . . .; n ð6Þ

D[ 0 is a grid jump which is chosen from a multiple of

1=ðp� 1Þ, x is a random point in the search space such that

xþ D is still within the search space which we refer to as

base points. Several samples of EEi are collected. If r

samples are desired for each variable then N ¼ rðnþ 1Þ
function evaluations are required. The mean li and vari-

ance ri of EEi are used in Mahdavi et al. (2017) for

grouping, while Irawan et al. (2020) used the mean of

absolute values of EEi, i.e. the l� as defined in Campo-

longo et al. (2005).

3.3 Control variable analysis

In MOPs, several objectives need to be considered simul-

taneously. The control variable analysis (CVA) is used in

MOEA/DVA (Ma et al. 2016) to detect whether the vari-

ables affect convergence or diversity (or both) with respect

to the Pareto front. CVA is based on the first-order effects

of the variables.

For CVA, a base solution x is evaluated. Afterwards,

one variable xi, i 2 f1; . . .; ng, is shifted and new objective

values are evaluated at the shifted position, thus

x0 ¼ ð. . .; xi þ d; . . .Þ. Several d values are used such that

the whole range of xi is filled uniformly. The sampling is

then followed by non-dominated sorting to identify the

order of non-domination levels (see Deb 2001 for further

details on dominance and non-dominated sorting). The

variable is then classified based on 3 possible results of

non-dominated sorting on the set of objective vectors

obtained from shifting xi several times:

1. If all solutions belong to the same non-dominated

front, then xi is affecting diversity (will be referred to

as diversity variable).

2. If each non-dominated front only contains one objec-

tive vector then xi is affecting convergence (will be

referred to as convergence variable).

3. If none of the previous two criteria is fulfilled, then xi is

affecting both diversity and convergence (will be

referred to as mixed variable).

The CVA as proposed by Ma et al. (2016) was tested on

WFG problems. The WFG problems have a parameter

k which specifies the number of diversity variables; how-

ever, these variables can act as mixed variables instead of

only affecting diversity.

In Fig. 2 we show that the traditional CVA is incon-

sistent. Figure 2 shows how solutions for two-dimensional

WFG2 are distributed over the objective space when only

the diversity variables are varied. Based on the function

definition in Huband et al. (2006), the objective values are

determined by the average of the diversity variables. The

CVA samples around the lower bound of the variables

which means that it will only sample the left side of Fig. 2.

When the number of variables is low, the effect of each

diversity variable on their average is high and solutions

will spread over a large part of the objective space and

most likely will be identified as a mixed variable. However,

when the number of diversity variables is high, each

variable has only a minuscule effect on the average and the

CVA will only identify a small portion of Fig. 2. By adding

a shift to the first sampled point, the variables may be

identified as any of the three possible types irrespective of

how many samples are being taken. This can happen on

any problem with mixed variables.

3.4 Decision variable clustering

The decision variable clustering (DVC) takes off from the

same idea as the CVA, it attempts to identify which vari-

ables affect diversity and which variables affect conver-

gence. Zhang, et al. (2018) identified some optimization

problems where the diversity variables should be consid-

ered as convergence variables to guarantee convergence to

the Pareto set. An example of such a problem is as follows:

f1ðx1; x2Þ ¼ x1x2

f2ðx1; x2Þ ¼
ð1 � x1x2Þ þ 1 � x2

2

0� x1 � 1; 0� x2 � 1

ð7Þ

Fig. 2 Distribution of solutions in the objective space of 2 objective

WFG2 by changing only the diversity variables. Depending on where

diversity variables are being sampled, the variables can be identified

as diversity, convergence, or even mixed variables

Dominance-based variable analysis for large-scale multi-objective problems
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If CVA is used in the problem in Eq. 7, both x1 and x2

will be considered diversity variables. Perturbing x1 while

keeping x2 generates points that do not dominate each other

in the objective space, under CVA, x1 is a diversity variable

(see Fig. 3). The same also applies to x2. However, it

should be noted that as x2 approaches 1, the objectives

actually get closer to the Pareto front. In fact, the Pareto

front can only be achieved if x2 is equal to 1, therefore, x2

is a variable that affects convergence.

To take such a case into account, the DVC starts simi-

larly to CVA where it perturbs the value of a variable while

keeping all other variables constant. It then follows up by

creating a line fit on the sampled points, one line for each

variable. Finally, the angle between the normal vector of

the (normalized) hyperplane f1 þ f2 þ � � � þ fm ¼ 1 and the

fitted lines are measured and a k-means clustering method

is used to determine which variables have small angles

(convergence variables) and which variables have large

angles (diversity variables).

4 Proposed grouping method: CVA–DA

4.1 Method description

Let us recall the inconsistency issue on CVA. The incon-

sistency occurs because the CVA only samples a small

portion of the search space, around the lower bound. This

issue was addressed in DVC (Zhang et al. 2018) by taking

several base points in the search space and perturbing the

variables around these base points, similar to how the DA is

performed. In this work, we propose to improve the CVA in a

similar way to DVC; however, we keep the usage of domi-

nation levels as the base for grouping. Domination levels

must be checked separately for each base point because the

control variables are different. The modified CVA is pre-

sented in Algorithm 1 and referred to as CVA–DA.

The CVA–DA differs from the DVC firstly by having an

additional third category, similar to the traditional CVA:

the mixed variables. In DVC, this category is deemed not

informative and forced to fall into either diversity or con-

vergence category through the clustering. However, we

would argue that there are indeed variables that should be

regarded as mixed variables as seen in Fig. 2. Secondly, the

CVA–DA relies on domination levels using non-dominated

sorting. The domination level is chosen here because the k-

means clustering used in DVC has several weaknesses,

such as the implicit assumption that the clusters have equal

radii and the sensitivity to outliers (Raykov et al. 2016).

For example, let us modify and generalize the problem in

Eq. 7 into the following:

f1ðx1; x2; x3Þ ¼ x1x2 � x3 þ 1

f2ðx1; x2; x3Þ ¼ að�x1x2Þ � bx2 � cx3 þ aþ bþ c

0� x1 � 1;

0� x2 � 1;

0� x3 � 1;

a; b; c[ 0

ð8Þ

In Eq. 8, variable x1 will only affect diversity, while

variable x2 and x3 is important for convergence to the

Pareto front as the front can only be achieved if both x2 and

x3 are equal to 1. However, using the DVC, the measured

angle used for clustering the variables will depend on the

values of a, b, and c thus the k-means clustering will

produce different results. This means that the identified

roles of the variables can change despite no change to their

actual role. In the end, the DVC does not perfectly solve

the issue of misclassification.

In terms of time complexity, the DVC and CVA–DA use

the same amount of resources for sampling the points;

however, they differ in the classification phase. The non-

dominated sorting used in CVA–DA depends more on the

number of objectives and the number of points being sorted,

N, typically in the order ofOðmN2Þ in most implementations

(Roy et al. 2016). However, there exist some fast algorithms

which have OðNlogm�1NÞ time complexity (Buzdalov and

Shalyto 2014). On the other hand, the time complexity for

DVC scales with the number of variables as it uses OðnÞ in

the typical implementation of k-means clustering.

Fig. 3 The objective values obtained by using various x1 and x2 on

the problem described in Eq. 7. Objective vectors obtained by varying

x1 while keeping x2 at 0.2, 0.5, or 1 are depicted with solid circles

where each value of x2 forms the top, middle, and bottom row of

circles, respectively. Similarly, objective vectors obtained by varying

x2 while keeping x1 at 0.2, 0.5, or 1 are depicted with empty circles

making the left, middle, and right column of circles, respectively. The

solid line is the Pareto front, while the dashed line is the normal of the

line f1 þ f2 ¼ 1

D. Irawan et al.
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In CVA–DA, samples are taken for each base point,

therefore the cost will be multiplied by the number of base

points. The main improvement in using this CVA–DA is

that mixed variables are more likely to be correctly clas-

sified (recall Fig. 2). However, because we are only taking

samples, it is still possible to obtain the wrong classifica-

tions. In a many-objective optimization problem, this

sampling poses a greater challenge because non-dominated

solutions are easier to obtain. This means the variables are

more likely to be classified as distribution variables.

4.2 Numerical experiment

The performance of CVA–DA is compared against the

original CVA. The algorithms are tested on the WFG test

suite (Huband et al. 2006) with 3 different settings. The

first setting follows Ma et al. (2016) where 24 input vari-

ables are used with the number of diversity variables, k, set

to 4. The other settings test the algorithms’ performances

on larger input size, at 100 input variables, with k ¼ 20 and

k ¼ 80.

For both algorithms, the number of samples taken is

varied with a multiplier r and scaled with respect to the

number of objectives, m 2 f2; 3; 5g. The rationale for

scaling it with m is that the domination can expand in any

direction in the objective space, so it should be scaled by

2m2. The total number of samples used is therefore 2rm2,

with r 2 f2; 5; 10g. The correct classification is determined

from all samples in the experiment. If one method classifies

a variable as one type while other methods classify it as

another type, then the classification for the variable is

’’mixed’’. The accuracy is measured as the number of

correct classifications by the CVA or CVA–DA divided by

the number of variables. The results are presented in

Figs. 4, 5, and 6, where results for those test problems on

which not all algorithms consistently obtained an accuracy

of 1.0.

The test results show that the number of samples does

not affect the accuracy of the original CVA because the

randomness in the sampling only causes a small, local

perturbation. Therefore, for CVA, only a single value is

reported for each setting of the test problems. The CVA–

DA, on the other hand, is sensitive to the number of

samples as the randomness affects both the base points and

the size of the perturbation. Despite the sensitivity to the

number of samples, the CVA–DA always outperforms

CVA on all WFG functions, except WFG1.

In all figures, it can be seen that the CVA always

struggles in WFG7, WFG8, and WFG9. These are prob-

lems where parameter-dependent biases are used. This

means that in these problems, the diversity variables may

interact with the convergence variables and change the type

of the variables from either diversity- or convergence-re-

lated to mixed variables. In CVA, the parameter-dependent

biases are not properly recognized and they are left to be

detected in the second phase grouping by the interaction

analysis (DG). In CVA–DA, the type-switch can be prop-

erly detected provided that enough samples are taken.

The CVA fails to correctly classify variables in the

WFG2 problems with 100 variables and k ¼ 80. These are

the cases discussed in Sect. 3.3 where the CVA struggles to

detect mixed variables. The CVA–DA, on the other hand,

correctly classifies the variables because it takes samples
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around several base points and easily recognizes the mixed

variables. With the performance improvement confirmed,

we can move forward to apply CVA–DA in an MOEA

based on the cooperative coevolution framework.

5 Cooperative coevolution SMS-EMOA

In our study, we further use the CVA–DA in an MOEA

using the same grouping rule as MOEA/DVA, i.e. CVA–

DA followed by DG. The DG used will be the recursive

variant (RDG3 Sun et al. 2019) because it is very efficient

as it only costs Oðn log nÞ function evaluations. The

framework used here is the CC framework. This means that

the diversity variables are included and are optimized from

the start as opposed to being kept constant as in MOEA/

DVA. The variable groups are generated exclusively for

each class (diversity, convergence, or mixed).

The solver is based on SMS-EMOA (Beume et al. 2007)

where one offspring is added to the population, and the

least contributor to the hypervolume is removed (see

Algorithm 2) to keep the population size at 100. The

algorithms are also compared against a basic SMS-EMOA

algorithm without any grouping. In all experiments, the

maximum number of function evaluations is set at 100,000

and ncv is set at 3.

For all algorithms, a minimum group size is also

imposed. If the group size is below the minimum, it will be

merged with another group. The minimum group size is set

to 100 variables. This is used because currently, no

Fig. 4 Accuracy on WFG test problems with 24 variables and k ¼ 4. Results are only presented for those test problems on which not all

algorithms consistently obtained an accuracy of 1.0

Fig. 5 Accuracy on WFG test problems with 100 variables and k ¼ 20. Results are only presented for those test problems on which not all

algorithms consistently obtained an accuracy of 1.0

Fig. 6 Accuracy on WFG test problems with 100 variables and k ¼ 80. Results are only presented for those test problems on which not all

algorithms consistently obtained an accuracy of 1.0
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budget allocation methods are implemented and each group

is set to use the same number of function evaluations (20)

in each cycle. The minimum group size will then limit the

number of groups generated so each cycle will not take too

much resources.

To generate offspring, the genetic operator used is only

a mutation based on the mirrored orthogonal sampling

(Wang et al. 2019). Similar to search directions in WOF,

the search directions for orthogonal sampling used here are

also defined based on the variable groups; however, the

number of search directions can be varied from one up to

the number of variables in the group. If the upper limit is

used, then the problem size is not reduced. By using the

orthogonal sampling, the problems are not explicitly

transformed into a weight optimization problem; however,

as we are generating offspring only in the subspace

spanned by the search directions, it is effectively equiva-

lent to weight optimization. The samples are generated

around a parent using truncated normal distribution so that

the offspring always stays within the box constraint. For a

truncated normal distribution, if the standard deviation is

too large, the distribution will be more flat; if the standard

deviation is too small, the probability that the offspring will

be generated near the boundary will be minuscule, limiting

the search to very close proximity around the parent. By

setting the standard deviation to 0.3 multiplied by the

possible range, we found that the offspring have a rea-

sonable chance to be generated near the boundaries while

also maintaining the bell-shaped curve in the probability

distribution.
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The orthogonal sampling is more flexible as more than

one search direction can be generated for each group. So,

instead of line search along different directions as done in

WOF, LMOEA-DS, and other similar algorithms, the

orthogonal sampling allows us to search on hyperplanes in

each of the subproblems. With respect to the WOF algo-

rithm, we can think of each additional search direction as

an additional weight to be optimized and it is guaranteed

that the search directions are orthogonal to each other. This

also means that the extent of dimensionality reduction in

each group can be controlled. The search directions are

generated following Algorithms 4 and 5.

In this section, two numerical experiments are con-

ducted. The first numerical experiment is to assess the

algorithm sensitivity to the number of samples used in

CVA–DA. The purpose of these experiments is to check

whether CVA–DA grouping is beneficial for the

optimization. The grouping itself has some associated costs

and may deteriorate performance when the budget is lim-

ited. After all, the final goal is obtaining the Pareto front,

not the grouping. To assess this, the groups obtained from

CVA–DA are used in a CC framework and compared

against the same algorithm with random grouping.

The second set of numerical experiments is focused on

the EA instead of the grouping. In these experiments, we

evaluate the algorithm performance with different numbers

of search directions for the mirrored orthogonal sampling.

The performances from this set of experiments are also

compared against the performances of the WOF algorithm.

The WFG Huband et al. (2006) and UF Zhang et al.

(2009) test problems are used for benchmarking. The

problems are chosen because they represent problems with

different diversity types (Hong et al. 2019). The UF

problems also represent problems with complex Pareto set
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topology. Additionally, the problems are also chosen

because the performance data for WOF is available in Zille

et al. (2017) for these particular problems.

5.1 Sensitivity to the Number of Samples
for CVA–DA

Recall that the number of samples and the number of base

points affect the accuracy of CVA–DA (see Sect. 4.2).

However, these numbers also affect how many function

evaluations will be used for the CVA–DA. While more

samples and bases improve the grouping accuracy, more

resources are also required for CVA–DA and the opti-

mization phase will have a more limited budget. As an

example, using a total number of samples 2rm2d, with

r ¼ 5, 1000-variable problems will require 90,000 function

evaluations (90% of the budget) for 3-objective problems

and 250.000 function evaluations (not feasible) for 5-ob-

jective problems only for classifying variables. If instead

we set r ¼ 1, the CVA–DA will only consume 18,000 and

50,000 function evaluations for 3- and 5-objective prob-

lems, respectively.

To check how the budget for CVA–DA affects opti-

mization performance, the algorithms are tested using

various values of r, including testing against random

grouping and SMS-EMOA without grouping which can be

considered as the cases where r ¼ 0. In this set of exper-

iments, only a single search direction is used. The results

are shown in Table 2. It can be seen that the base SMS-

EMOA never performed best in all tests which implies that

grouping/decomposition is crucial and improves perfor-

mance on LSMO problems.

Table 2 shows that the CVA–DA dominates the best

median performances. This indicates that the grouping

using CVA–DA and RDG3 is better than random grouping.

However, it can also be seen that CVA–DA with r ¼ 5

does not perform well on 3 objective problems. This is

because the grouping consumes more than 90% of the

budget so it may be better to sacrifice grouping accuracy to

allow more iterations for the solver. A potential solution to

reduce the CVA–DA cost is to stop the analysis of a

variable when it is found that the variable should be clas-

sified as a mixed variable. In cases where there are mixed

variables, this can significantly reduce the CVA–DA cost

and in the worst-case scenario, where there are no mixed

variables, there will be no extra cost.

Table 2 also shows that the random grouping performs

best on UF1, UF2, UF6, UF7, UF8, and UF9. In UF1-UF7,

all variables interact with the first variable but not with

others. On UF1–UF7, both the algorithms based on CVA–

DA and random grouping behave very similarly. The main

difference is that in the algorithm based on random

grouping the search directions are repeatedly changed. This

indicates a potential strength of dynamic grouping on these

types of problems.

In UF8-UF10, only the first two variables interact with

other variables. This means the problems are separable

except for one or two variables so there are no disadvan-

tages for random grouping. On these problems, both CVA–

DA and random grouping behave differently. The CVA–

DA detected interactions between the first two variables

with each other, as well as the interactions between them

with other variables. This results in the RDG3 assigning all

variables into a single big group; in other words: no

decomposition even after some computation budget is used

for grouping. Random grouping, on the other hand, keeps

on doing decomposition with no cost which leads to

superior performance.

5.2 Sensitivity to the number of search
directions

As mentioned before, the orthogonal sampling is more

flexible because the number of search directions can be

configured. However, more search directions will lead to a

more complex search space and may reduce convergence

rate.

In this section, the performances of CC-SMS-EMOA

with different numbers of search directions are compared

against the best results from the WOF. For these experi-

ments, r is set to 1 following the best results obtained in the

previous section. In addition to that, the directed sampling

method from Qin et al. (2021) is also implemented on CC-

SMS-EMOA to see how multiple line search fares against

orthogonal search directions. The directed sampling is set

similar to how it was used in Qin et al. (2021). First, 10 þ
m clusters are generated in the objective space and a rep-

resentative solution is taken from each cluster as the basis

for search directions. For each representative solution, two

search directions are generated, one pointing to the lower

bound, the other pointing to the upper bound, creating

2ð10 þ mÞ search directions. In each search direction, 30

points are sampled.

The data for WOF are not generated from our own tests

but rather taken directly from the table in Zille et al.

(2017).

The results of the experiments are presented in Table 3.

These show that the proposed CC-SMS-EMOA can out-

perform the WOF on some test problems. Despite having

less budget for the optimization due to the grouping steps,

the CC-SMS-EMOA is competitive on most test problems.

This further shows how good grouping can improve per-

formance as opposed to random grouping.

Table 3 also shows an interesting pattern. It can be seen

that on WFG test problems the median performances drop
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significantly as the number of search directions increases.

On the UF test problems, on the other hand, there are cases

where the performances improve as the number of

orthogonal search directions increases. This may be

attributed to the fact that some of the UF problems are

designed to have complicated Pareto set structures as

opposed to the straight lines for each diversity variable in

the WFG test problems. A single search direction may

struggle to get close to this Pareto set. With more search

directions, larger parts of the search space can be explored.

The orthogonal sampling method allows for flexibility in

this regard. However, it is difficult to determine the opti-

mum number of search directions beforehand because the

shape of the Pareto set is unknown before optimization. It

may be beneficial to tune/adapt the number of search

directions as the search space is being explored.

Another observed result is that in most test problems in

the experiments, directed sampling is outperformed by

orthogonal sampling. Multiple line search is inferior to

using orthogonal sampling in CC-SMS-EMOA.

6 Conclusion and future work

In this paper, an improved control variable analysis is

proposed resembling the decision variable clustering and

differential analysis which is referred to as CVA–DA. The

method has higher accuracy than CVA, but it is also sen-

sitive to the number of samples drawn.

Table 2 Sensitivity of CC-

SMS-EMOA to the number of

samples taken for grouping

2 Objectives

Function r = 5 r = 2 r = 1 Random SMS-

EMOA

WFG1 0.4326 0.4327 0.4407* 0.2971 0.3495

WFG2 0.9998 0.9999* 0.9999 � 0.6709 0.5061

WFG3 0.9854 0.9863 0.9865 � 0.7665 0.6521

WFG4 0.9975 0.9979 � 0.9979* 0.7375 0.7217

WFG5 0.9634* 0.9536 0.9570 0.6722 0.7084

WFG6 0.9968 0.9953 0.9975* 0.8885 0.7403

WFG7 0.9976 0.9980* 0.9507 0.6835 0.5670

WFG8 0.9021 0.9034 0.9076* 0.5158 0.5728

WFG9 0.9601* 0.95462 0.9589 0.8511 0.7244

UF1 0.7125 0.7124 0.6673 0.7839* 0.6478

UF2 0.6147 0.6148 0.6166 0.6658 � 0.5683

UF3 0.9568 0.9829* 0.9810 0.6650 0.5543

UF4 0.9056 0.9075 0.9076* 0.8568 0.7980

UF5 0.6720 0.6987* 0.6778 0.4249 0.0719

UF6 0.6789 0.6804 0.6791 0.7673* 0.6117

UF7 0.6695 0.6786 0.5892 0.7405* 0.6214

3 objectives

WFG1 0.3516 0.4273 0.4437* 0.2670 0.34112

WFG2 0.7023 1.0146 1.0147 � 0.6343 0.56223

WFG3 0.8773 0.9497 0.9514* 0.6131 0.46927

WFG4 0.8479 0.8745 0.8746* 0.6437 0.62027

WFG5 0.8101 0.8420 0.8441* 0.6016 0.60233

WFG6 0.8426 0.8743* 0.8734 0.7854 0.63809

WFG7 0.8573 0.8754* 0.8679 0.5903 0.44978

WFG8 0.7460 0.8096 0.8118 � 0.4256 0.45603

WFG9 0.7797 0.8703* 0.8208 0.7804 0.62808

UF8 0.2795 0.1957 0.1957 0.8531* 0.51010

UF9 0.4905 0.5005 0.2814 0.5605 � 0.46815

UF10 0.0000 0.0000 0.0000 0.0000 0.00000

The medians of relative hypervolume with respect to a target hypervolume are presented. Each algorithm is

repeated 20 times on each problem. Asterisks (*) indicate best performances and bold text indicates a non-

significant difference compared to the best
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It is also shown that, in a cooperative coevolution

framework, the CVA–DA combined with the RDG3 can

achieve higher performance than random grouping when

the variables are strongly interacting. As the computational

costs for the grouping methods are low, the weighted

optimization framework may also benefit from using the

proposed method, as opposed to random grouping, in

problems with strong variable interactions.

For orthogonal sampling, in problems with a simple

Pareto set, a single search direction is sufficient. However,

in problems with a more complicated Pareto set, the opti-

mal number of search directions cannot be determined

easily. An adaptive scheme can potentially be applied to

determine this. Additionally, the step size of the mutation

can also be adapted to balance the exploration and

exploitation of the search space.

For future work, Ma et al. (2021) mentioned that the

decision variable clustering (and similarly, CVA–DA)

cannot discern how much each variable affects conver-

gence and/or diversity. It should be noted that the samples

used in decision variable clustering and CVA–DA are

suitable for DA and the purpose of doing DA is exactly to

measure how much each variable affects the objectives.

The only issue is that the DA normally can only process

scalar functions. For a vectorial output, pre-processing is

needed. An example of how DA is used on vectorial output

Table 3 Sensitivity of CC-

SMS-EMOA to the number of

orthogonal search directions

2 Objective

Function WOF Dir. sampling 1 direction 2 directions 5 directions 10 directions

WFG1 0.6525 0.3810 0.4407* 0.3403 0.3227 0.3174

WFG2 0.9834 0.7874 0.9999 �þ 0.9205 0.8937 0.8809

WFG3 0.8558 0.8264 0.9865 �þ 0.95382? 0.91835? 0.90702?

WFG4 0.9754 0.9372 0.9979 �þ 0.9635 0.9532 0.9504

WFG5 0.9465 0.8562 0.9570 �þ 0.9177 0.8867 0.8514

WFG6 0.9989 0.8200 0.9975 � 0.9949 0.9921 0.9937

WFG7 0.9625 0.9084 0.9507 � 0.9207 0.8897 0.8793

WFG8 0.8850 0.7298 0.9076 �þ 0.8119 0.7857 0.7765

WFG9 0.9628 0.7927 0.9589 � 0.9519 0.9337 0.9202

UF1 0.9015 0.6382 0.6673 0.7839 0.8049 0.8218 �
UF2 0.9320 0.5431 0.6166 0.8491 0.8681 � 0.8659

UF3 0.9892 0.6627 0.9810 � 0.8690 0.8203 0.7942

UF4 0.9152 0.8350 0.9076 � 0.9041 0.8916 0.8901

UF5 0.1999 0.6999 �þ 0.6778 þ 0.6860 þ 0.66621? 0.65929?

UF6 0.7019 0.7217 0.6791 0.8561? 0.8812 �þ 0.8800 þ
UF7 0.8990 0.5707 0.5892 0.7006 0.7117 0.7152 �
3 Objective

WFG1 0.6042 0.3805 0.4437 � 0.3307 0.3084 0.3152

WFG2 0.9564 0.6715 1.0147 �þ 0.8942 0.8683 0.8534

WFG3 0.9486 0.8301 0.9514 �þ 0.8987 0.8383 0.8284

WFG4 0.8857 0.8260 0.8746 � 0.8487 0.8452 0.8437

WFG5 0.8360 0.6961 0.8441 �þ 0.8075 0.7564 0.7241

WFG6 0.9676 0.6966 0.8734 0.8745 � 0.8729 0.8700

WFG7 0.8568 0.8341 0.8679 �þ 0.8453 0.8165 0.7989

WFG8 0.8121 0.7189 0.8118 �þ 0.7638 0.7346 0.7156

WFG9 0.9036 0.7243 0.8208 0.8852 � 0.8413 0.8229

UF8 0.8580 0.1948 0.1957 0.7363 � 0.6093 0.4889

UF9 0.6946 0.2803 0.2814 0.5145 � 0.4543 0.3964

UF10 0.8552 0.0000 0.0000 0.0000 0.0000 0.0000

The medians of relative hypervolume with respect to a target hypervolume are presented. Each algorithm is

repeated 20 times on each problem. Asterisks (*) indicate best performances and bold text indicates a non-

significant difference compared to the best (excluding WOF). Additional plus (?) signs indicate that the

corresponding median is better than the best median result obtained by the WOF framework
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is available in Strachan et al. (2015), Monari and Strachan

(2017) where principal component analysis (PCA) is used

to summarize the output. By using these techniques, the

sensitivity indices can be exploited, e.g., as a basis for

budget allocation.

It would also be compelling to implement mirrored

orthogonal sampling in other frameworks such as the

LMOEA-DS. The orthogonal sampling samples the off-

spring on sub-hyperplanes of the original problem instead

of one-dimensional search directions as in LMOEA-DS

and WOF. Such experiments would allow us to determine

on which problems multiple line search directions are

preferred and on which problems the orthogonal sampling

is performing better.

Acknowledgements Dani Irawan and Boris Naujoks acknowledge the

European Commission’s H2020 programme, H2020-MSCA-ITN-

2016 UTOPIAE (grant agreement No. 722734). Boris Naujoks also

acknowledges the DAAD (German Academic Exchange Service),

Project-ID: 57515062.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as

long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons licence, and indicate

if changes were made. The images or other third party material in this

article are included in the article’s Creative Commons licence, unless

indicated otherwise in a credit line to the material. If material is not

included in the article’s Creative Commons licence and your intended

use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright

holder. To view a copy of this licence, visit http://creativecommons.

org/licenses/by/4.0/.

Author contributions DI: Conceptualization, Methodology, Software,

Analysis, Writing - original draft. BN: Conceptualization, Analysis,

Resources, Funding acquisition, Review and Editing, Supervision.

TB: Analysis, Resources, Review, Editing, and General Supervision.

ME: Conceptualization, Analysis, Review and Editing, Supervision.

References

Antonio LM, Coello CAC (2013) Use of cooperative coevolution for

solving large scale multiobjective optimization problems. In:

IEEE congress on evolutionary computation, pp. 2758–2765.

https://doi.org/10.1109/CEC.2013.6557903

Beume N, Naujoks B, Emmerich M (2007) SMS-EMOA: multiob-

jective selection based on dominated hypervolume. Eur J Oper

Res 181(3):1653–1669

Buzdalov M, Shalyto A (2014) A provably asymptotically fast

version of the generalized Jensen algorithm for non-dominated

sorting. In: Bartz-Beielstein T, Branke J, Filipič B, Smith J (eds)
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