
Speeding up neural network robustness verification
via algorithm configuration and an optimised mixed
integer linear programming solver portfolio
König, H.M.T.; Hoos, H.H.; Rijn, J.N. van

Citation
König, H. M. T., Hoos, H. H., & Rijn, J. N. van. (2022). Speeding up
neural network robustness verification via algorithm configuration
and an optimised mixed integer linear programming solver portfolio.
Machine Learning. doi:10.1007/s10994-022-06212-w

Version: Publisher's Version
License: Creative Commons CC BY 4.0 license
Downloaded from: https://hdl.handle.net/1887/3484755

Note: To cite this publication please use the final published version
(if applicable).

https://creativecommons.org/licenses/by/4.0/
https://hdl.handle.net/1887/3484755

Vol.:(0123456789)

Machine Learning
https://doi.org/10.1007/s10994-022-06212-w

1 3

Speeding up neural network robustness verification
via algorithm configuration and an optimised mixed integer
linear programming solver portfolio

Matthias König1 · Holger H. Hoos1,2 · Jan N. van Rijn1

Received: 14 October 2021 / Revised: 11 April 2022 / Accepted: 8 June 2022
© The Author(s) 2022

Abstract
Despite their great success in recent years, neural networks have been found to be vulner-
able to adversarial attacks. These attacks are often based on slight perturbations of given
inputs that cause them to be misclassified. Several methods have been proposed to for-
mally prove robustness of a given network against such attacks. However, these methods
typically give rise to high computational demands, which severely limit their scalability.
Recent state-of-the-art approaches state the verification task as a minimisation problem,
which is formulated and solved as a mixed-integer linear programming (MIP) problem.
We extend this approach by leveraging automated algorithm configuration techniques and,
more specifically, construct a portfolio of MIP solver configurations optimised for the neu-
ral network verification task. We test this approach on two recent, state-of-the-art MIP-
based verification engines, MIPVerify and Venus , and achieve substantial improvements in
CPU time by average factors of up to 4.7 and 10.3, respectively.

Keywords Neural network verification · Mixed integer programming · Automated
algorithm configuration · Algorithm selection

Editors: Krzysztof Dembczynski and Emilie Devijver.

 * Matthias König
 h.m.t.konig@liacs.leidenuniv.nl

 Holger H. Hoos
 hh@liacs.nl

 Jan N. van Rijn
 j.n.van.rijn@liacs.leidenuniv.nl

1 Leiden Institute of Advanced Computer Science, Leiden University, Leiden, The Netherlands
2 University of British Columbia, Vancouver, Canada

http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-022-06212-w&domain=pdf

 Machine Learning

1 3

1 Introduction

In recent years, deep learning algorithms have become increasingly important tools
within various application domains and use contexts, ranging from object recognition
systems in autonomous cars to face recognition systems in mobile phones. At the same
time, it is now well known that neural networks are vulnerable to adversarial attacks
(Szegedy et al., 2014), in which a given input is transformed in such a way that it is mis-
classified by the network. In the case of image recognition tasks, the required perturba-
tion can be so small that it remains virtually undetectable to the human eye.

Various methods have been proposed to establish robustness of neural networks
against adversarial attacks. Some of these methods perform heuristic attacks (Goodfel-
low et al., 2014; Kurakin et al., 2016; Carlini & Wagner, 2017); however, these do not
paint a full picture of a given network’s robustness to adversarial attacks, as one defense
mechanism might still be circumvented by another, possibly new class of attacks. In
light of this, approaches have been developed to more thoroughly verify neural networks
(Scheibler et al., 2015; Bastani et al., 2016; Ehlers, 2017; Katz et al., 2017; Dvijotham
et al., 2018; Gehr et al., 2018; Xiang et al., 2018; Bunel et al., 2018; Tjeng et al., 2019;
Botoeva et al., 2020). These formal verification methods can assess the robustness of
a given network in a principled fashion, which means that they yield provable guaran-
tees on certain properties of input-output combinations. However, this class of network
verification methods tends to be computationally expensive, making it difficult to verify
networks with a large number of units and/or on a large number of inputs.

Recent work by Tjeng et al. (2019) addressed this challenge and presented a verifica-
tion tool, called MIPVerify , that, for the first time, was able to evaluate the robustness
of larger neural networks on the full MNIST dataset. In their study, Tjeng et al. (2019)
formulate the verification task as a minimisation problem, which is then solved through
mixed-integer linear programming (MIP). More specifically, the optimisation task is to
apply a perturbation to the original sample that maximises model error, while staying
close to the initial example, i.e., keeping the distance at a minimum. In other words,
the verifier takes an image and a trained neural network as inputs and produces either
an adversarial example or, if the optimisation problem cannot be solved, a certificate of
local robustness. While MIPVerify can verify a larger number of instances than previ-
ous methods, such as those from the works of Wong and Kolter (2018), Dvijotham et al.
(2018) or Raghunathan et al. (2018), it is computationally costly (in terms of CPU time
required per verification query). Specifically, depending on the classifier to be verified,
we found that some instances required several thousand CPU seconds of running time
of the MIP solver, while a sizeable fraction of instances could not be solved at all, even
within a rather generous time limit of 38 400 CPU seconds per sample.

The same holds for other MIP-based verification systems, such as Venus by Botoeva
et al. (2020), which has been demonstrated to be faster than many other state-of-the-art
verification tools, including the MIP-based verifier NSVerify Akintunde et al. (2018).
Here, our experiments showed that, depending on the classifier to be verified, the com-
putational cost per query remains subject to great variance as outlined above, with many
instances resulting in timeouts.

We note that, to date, the performance of MIPVerify and Venus has not been com-
pared directly, which motivates our decision to consider both as contributors to the state
of the art in MIP-based neural network verification.

Machine Learning

1 3

Previous work has demonstrated that automated configuration of MIP solvers can
yield substantial improvements (Hutter et al., 2009, 2010, 2011; Lopez-Ibanez & Stüt-
zle, 2014). Building on these findings, we seek to improve the performance of MIP-
based neural network verification tools by leveraging automated algorithm configu-
ration techniques to optimise the hyperparameters of the solver at the heart of these
verifiers. As such, the proposed method can be used regardless of the underlying MIP
problem formulation, and its improvements are orthogonal to any advances made in this
regard. Put differently, we argue that automated algorithm configuration can benefit any
verification approach relying on MIP solving or similar techniques.

Automated algorithm configuration of neural network verification engines is a non-
trivial task and comes with its own challenges. Most prominently, the high running
times and heterogeneity/diversity of instances pose problems that are not easily solved
by standard configuration approaches, such as SMAC (Hutter et al., 2011). More pre-
cisely, we consistently found in our experiments that a single configuration could not
significantly improve mean CPU time over the default. In fact, we observed that a single
configuration could achieve a 500-fold speedup on a given instance over the default, but
then time out on another, which the default, in turn, could solve.

Therefore, we decided to adapt Hydra (Xu et al., 2010), an advanced approach that
combines algorithm configuration and per-instance algorithm selection, to automatically
construct a parallel portfolio of MIP solver configurations optimised for solving neural
network verification problems.

We demonstrate the effectiveness of our approach for both aforementioned verifica-
tion tools. These systems both rely on MIP solving, yet they are conceptually different
enough to show the generalisability of our method. This study can be seen as an exten-
sion of our recent workshop publication on the same topic (König et al., 2021), in which
we reported preliminary results for MIPVerify on a single benchmark. To the best of our
knowledge, ours is the first study to pursue this direction. In brief, the main contribu-
tions are as follows:

• A framework for automatically constructing a parallel portfolio of MIP solver con-
figurations optimised for neural network verification, which can be applied to any
MIP-based verification method.

• An extensive evaluation of this framework on two the state-of-the-art verification
engines, namely Venus (Botoeva et al., 2020) and MIPVerify , improving their per-
formance on (i) SDPdMLPA - an MNIST classifier designed for robustness (Raghu-
nathan et al., 2018), (ii) mnistnet - an MNIST classifier from the neural network veri-
fication literature (Botoeva et al., 2020) and (iii) the ACAS Xu benchmark (Julian
et al., 2016; Katz et al., 2017).

On the SDPdMLPA benchmark, we achieve substantial improvements in CPU time
by average factors of 4.7 and 10.3 for MIPVerify and Venus , respectively, over the
state of the art on a solvable subset of instances from the MNIST dataset. This sub-
set excludes all instances that cannot be solved by any of the baseline approaches we
consider. Beyond that, the number of timeouts was reduced by a factor of 1.42 and 1.6,
respectively.

On the mnistnet benchmark, we again achieved substantial improvements in CPU time,
this time by average factors of 1.61 and 7.26 for MIPVerify and Venus , respectively, over
the state of the art on solvable instances. We furthermore reduced timeouts on this bench-
mark by average factors of 1.14 and 2.81, respectively.

 Machine Learning

1 3

Finally, we strongly improved the performance of the Venus verifier on the ACAS Xu
benchmark, attaining a 2.97-fold reduction in average CPU time. We note that on this
benchmark, we found MIPVerify to be unable to solve most of the instances within the
kinds of computational budgets considered in our experiments.

2 Background

The following section provides an overview of adversarial examples and methods to verify
neural networks against them. It further puts focus on the limitations of current state-of-
the-art approaches and introduces the concepts behind automated algorithm configuration
and portfolio construction.

2.1 Adversarial examples

Adversarial examples or negatives are network inputs that are indistinguishable from reg-
ular inputs, but cause the network to produce misclassifications (Szegedy et al., 2014).
These adversarial examples can be produced by applying a hardly perceptible perturba-
tion to the original instance that maximises model error while staying close to the initial
example. The most prevalent distance metrics used to evaluate adversarial distortion are l1
(Carlini et al,. 2017; Chen et al. 2018), l2 (Szegedy et al., .,2014) and l∞ (Goodfellow et al.,
2014; Papernot et al., 2016) norm.

2.2 Network verification

Several methods have been produced to evaluate neural networks through heuristic attacks
(Goodfellow et al., 2014; Kurakin et al., 2016; Carlini & Wagner, 2017). However, these
algorithms cannot accurately assess network robustness. That is, a classifier trained to be
robust against one class of attacks can still be vulnerable to another (Carlini et al., 2017).

To tackle this problem, more advanced techniques have been introduced for the formal
verification of neural networks (Scheibler et al., 2015; Bastani et al., 2016; Ehlers, 2017;
Katz et al., 2017; Dvijotham et al., 2018; Gehr et al., 2018; Xiang et al., 2018; Bunel et al.,
2018; Tjeng et al., 2019; Botoeva et al., 2020). These methods verify whether a particu-
lar network satisfies certain input-output properties or provide an example for which the
property is violated. For a classifier, a property can be that instances, which are in close
distance to a certain input x, belong to the same class as x.

In general, formal verification algorithms can be characterised by three criteria: sound-
ness, completeness and computational cost. A sound algorithm will only report that a prop-
erty holds if the property actually holds. An algorithm that is complete will correctly state
that a property holds whenever it holds. While it is favourable to produce verifiers that
can certify every given instance in a dataset, there is a trade-off between completeness of
a verification algorithm and its scalability in terms of computational complexity. Neural
network verification is highly complex, and even simple properties about them have been
proven to be NP-complete problems (Katz et al., 2017). This makes it intractable to apply
complete verification techniques to large networks and/or instance sets.

Consequently, some verification algorithms forego completeness to improve computa-
tional efficiency by making approximations (Bastani et al., 2016; Dvijotham et al., 2018;
Gehr et al., 2018; Xiang et al., 2018; Bunel et al., 2018). These approximations, however,

Machine Learning

1 3

do not always return the actual solution to a given verification problem but can result in
mismatches or cases, where the solution remains unknown. Other incomplete methods seek
to add random noise to smooth a neural network classifier and then derive the certified
robustness for this smoothed classifier (Lecuyer et al., 2019; Cohen et al., 2019). While
these approaches scale to larger network architectures, their robustness guarantees remain
probabilistic. Furthermore, randomised smoothing has been found to come at the cost of
classifier accuracy (Mohapatra et al., 2021). As can be seen from this example, increased
scalability of a verification method usually comes at the cost of performance loss in other
areas.

Recent work by Tjeng et al. (2019) seeks to overcome this trade-off by presenting a
verifier that is complete and scalable to larger neural networks. Their verifier, MIPVerify ,
combines and extends existing approaches to MIP-based robustness verification (Cheng
et al., 2017; Lomuscio & Maganti, 2017; Dutta et al., 2018; Fischetti & Jo, 2018) and pre-
sents a verifier that encodes the network as a set of mixed-integer linear constraints. Fol-
lowing Tjeng et al. (2019), a valid adversarial example x′ for input x with true class label
�(x) (encoded as integer) corresponds to the solution to the problem where we minimize:

subject to

where d(⋅, ⋅) denotes a distance metric (e.g., the l∞-norm), fi(⋅) is the i-th network
output (i.e., indicating whether it predicts the input to belong to the i-th class) and
G(x) = {x� ∣ ∀i ∶ −� ≤ (x − x�)i ≤ �} . Intuitively, G(x) denotes the region around an input x
corresponding to all allowable perturbations within a pre-defined radius � . Xvalid represents
the domain of valid inputs (e.g., the pixel value range of a normalised image, in case of
image classification). Note that this formulation assumes that the network predicts a single
class label for each observation (i.e., the arg max operator in Eq. 2 returns a single ele-
ment); other behaviour is undefined.

MIPVerify achieves speed-ups through optimised MIP formulations or, more specifi-
cally, tight formulations for non-linearities and a pre-solving algorithm that reduces the
number of binary variables, i.e., the number of unstable ReLU nodes. More specifically,
the information provided by G(x) is used to reduce the interval of the input domain propa-
gated through the network during the calculation of the pre-activation bounds. This is com-
bined with progressive bounds tightening, which represents a method for choosing proce-
dures to determine pre-activation bounds, i.e., interval arithmetic or linear programming,
based on the potential improvement to the problem formulation.

The MIP-based verifier Venus (Botoeva et al., 2020) achieves performance gains over
previous methods, such as NSVerify (Akintunde et al., 2018), through dependency-based
pruning to reduce the search space during branch-and-bound and combines this depend-
ency analysis approach with symbolic interval arithmetic and domain splitting techniques.

Moreover, both Tjeng et al. (2019) and Botoeva et al. (2020) report state-of-the-art
performance on various network architectures and datasets but their tools consume very
substantial amounts of CPU time. Depending on the classifier to be verified, we observed
that finding a solution can easily take up to several hours of computation time for a sin-
gle instance. Network verification can therefore turn into an extremely time-consuming

(1)d(x�, x)

(2)argmaxi(fi(x
�)) ≠ �(x)

(3)x� ∈ (G(x) ∩ Xvalid)

 Machine Learning

1 3

endeavour, even for a relatively small dataset, such as MNIST. At the same time, a veri-
fier fails to maintain the premise of completeness, meaning that it can certify every input
example it is presented with if many instances are subject to timeouts, which we also found
to be the case for the verification methods considered in this study.

2.3 Automated algorithm configuration

Commercial tools for combinatorial problem solving usually come with many (hyper-)
parameters, whose settings may have strong effects on the running time required for solv-
ing given problem instances. Deviating from the default and manually setting these perfor-
mance parameters is a complex task that requires extensive domain knowledge and experi-
mentation, and can be automated using algorithm configuration techniques.

In general, the algorithm configuration problem can be described as follows: Given an
algorithm A (also referred to as the target algorithm) with parameter configuration space
Θ , a set of problem instances Π and a cost metric c ∶ Θ × Π → ℝ , find a configuration
�
∗ ∈ Θ that minimises cost c across the instances in Π:

The general workflow of the algorithm configuration procedure starts with picking a con-
figuration � ∈ Θ and an instance � ∈ Π . Next, the configurator initialises a run of algo-
rithm A with configuration � on instance � with a maximal CPU time cutoff k and measures
the resulting cost c(�,�) . The configurator uses this information about the target algo-
rithm’s performance to find a configuration that performs well on the training instances.
Once its configuration budget (e.g., time budget) is exhausted, it returns its current incum-
bent �∗ , i.e., the best configuration found so far. Finally, when running the target algorithm
with configuration �∗ , it should result in lower cost (such as average running time) across
the benchmark set.

Automated algorithm configuration has been shown to work effectively in the context of
SAT solving (Hutter et al., 2007, 2017), scheduling (Chiarandini et al., 2008), mixed-inte-
ger programming (Hutter et al., 2010; Lopez-Ibanez & Stützle, 2014), evolutionary algo-
rithms (Bezerra et al., 2015), answer set solving (Gebser et al., 2011), AI planning (Vallati
et al., 2013) and machine learning (Thornton et al., 2013; Feurer et al., 2015).

In this study, we use SMAC (Hutter et al., 2011), a widely known, freely available,
state-of-the-art configurator based on sequential model-based optimisation (also known as
Bayesian optimisation). The main idea of SMAC is to construct and iteratively update a
statistical model of target algorithm performance (specifically: a random forest regressor;
Breiman, 2001) to guide the search for good configurations. The random forest regressor
allows SMAC to handle categorical parameters and therefore makes it suitable for MIP
solvers, which have many configurable categorical parameters; SMAC has been shown to
improve the performance of the commercial CPLEX solver over previous configuration
approaches on several widely studied benchmarks (Hutter et al., 2011).

2.4 Portfolio construction

For the configuration procedure to work effectively, the problem instances of interest have
to be sufficiently similar, such that a configuration that performs well on a subset of them
also performs well on others. In other words, the instance set should be homogeneous. If a

(4)�
∗ ∈ argmin

�∈Θ

∑

�∈Π

c(�,�)

Machine Learning

1 3

given instance set does not satisfy this homogeneity assumption, automated configuration
likely results in performance improvements on some instances, while performance on oth-
ers might suffer, making it difficult to achieve overall performance improvements.

This problem can be addressed through automatic portfolio construction (Xu et al.,
2010; Kadioglu et al., 2011; Malitsky et al., 2012; Lindauer et al., 2015). The general con-
cept behind automatic portfolio construction techniques is to create a set of algorithm con-
figurations that are chosen such that they complement each other’s strengths and weak-
nesses. This portfolio should then be able to exploit per-instance variation much more
effectively than a single algorithm configuration, which is designed to achieve high overall
performance but may perform badly on certain types or subsets of instances.

More specifically, Hydra (Xu et al., 2010) automatically constructs portfolios contain-
ing multiple instances of the target algorithm with different configurations. The key idea
behind Hydra is that a new candidate configuration is scored with its actual performance
only in cases where it works better than any of the configurations in the existing portfolio,
but with the portfolio’s performance in cases where it performs worse. Thereby, a configu-
ration is only rewarded to the extent that it improves overall portfolio performance and is
not penalised for performing poorly on instances for which it should not be run anyway.

The portfolio construction procedure works as follows. Hydra starts with an initially
empty portfolio P ∶= {} and executes several runs of target algorithm A. The configurator
executes target algorithm A with different parameter configurations, searching for the algo-
rithm configuration �i that yields the largest improvement in performance over P across
the benchmark instances. Hydra evaluates the incumbent configurations returned from the
configurator { �1 , �2 , ..., �n } and adds the k best to the portfolio: P ∶= P ∪ { �1 , �2 , ..., �k }.
Hydra then follows the same process in an iterative fashion, where the configurator finds
new configurations to add to the portfolio at each iteration. The procedure terminates after
a predefined set of iterations or after performance stagnates.

Once a portfolio has been constructed, there are essentially two ways to leverage the
performance complementarity of the configurations contained in the portfolio. The first
option is to extract instance-specific features and use those to train a statistical model that
predicts the performance of each configuration in the portfolio individually. These predic-
tions can then be used to select the configuration with the best-predicted performance (see,
e.g., Xu et al, 2011). Alternatively, all configurations can be run in parallel on a given
problem instance, which implicitly ensures that we always benefit from the best-perform-
ing configuration in the portfolio, at the cost of increased use of parallel resources. An
empirical comparison between both approaches has been presented by Kashgarani and
Kotthoff (2021).

3 Network verification with parallel MIP solver portfolios

In order to reduce complexity, Tjeng et al. (2019) mainly focused on reducing the number
of variables in the verification problem. On the other hand, Botoeva et al. (2020) rely on
pruning the search space during the branch-and-bound procedure. However, the embedded
MIP solver and its numerous parameters were left untouched in both cases. More specifi-
cally, both methods employed a commercial MIP solver with default settings. This deci-
sion, along with their problem formulation, forms the starting point for our work.

More concretely, we seek to improve the performance of MIP-based neural network ver-
ification through configuring the MIP solver embedded in these systems, and constructing

 Machine Learning

1 3

a portfolio of solver configurations optimised for the benchmark set at hand; Fig. 1 pro-
vides an overview of the framework we propose. In brief, for a given network-example
pair, we employ the verifier with several, differently configured instances of the embedded
MIP solver. This portfolio of solvers is run in parallel and finishes once one solver has
returned a solution or a global time limit has been reached.

In the following sections, we describe details of the configuration procedure as well as
the MIP solver we configured.

3.1 Configuration procedure

In this work, we configure the commercial MIP solver Gurobi ; see Sect. 3.2 for further
details. Though it should be noted that, in principle, our approach works for any MIP
solver.

The configuration procedure employs running Hydra over a predefined set of iterations
to construct a portfolio of solver configurations with complementary strengths. The num-
ber of iterations is a hyper-parameter of the Hydra algorithm and has to be specified by the
user. Since we cannot know the optimal portfolio size for a given benchmark in advance,
we run Hydra over a reasonably larger number of iterations and, once the procedure has
finished, discard configurations that did not improve portfolio performance on the valida-
tion set, i.e. that led to stagnation or reduction in total CPU time compared to the previous
iteration. Note that the portfolio can contain the default configuration of the MIP solver.

Interestingly enough, we consistently observed strong heterogeneity among the
instances in our benchmarks sets, making the use of a single configuration, i.e., a portfolio
of size 1, ineffective. This is illustrated in Figure 2: Employing two different configurations
individually on the same benchmark set shows that none of them outperforms the other,
i.e., consistently achieves better performance across the entire set of instances. Combining
both configurations into a portfolio, however, makes use of the complementary strengths of
the configurations, and thereby achieves the highest overall performance, which motivates
our choice of the portfolio approach.

Leveraging standard multi-core CPU architectures, we run the configurations in the
portfolio in parallel until one of them returned a solution or until an overall limit on CPU
time was exceeded. We note that, in principle, automated algorithm selection (see, e.g.,

Fig. 1 Schematic diagram of the proposed framework

Machine Learning

1 3

Kotthoff, 2016) could be used to determine from this portfolio the configuration likely to
solve any given instance most efficiently, though this requires substantial amounts of train-
ing data and creates uncertainty from sub-optimal choices made by the machine learning
technique at the heart of such selection approaches.

3.2 MIP solver

Following Tjeng et al. (2019) and Botoeva et al. (2020), we used the Gurobi MIP solver
with a free academic license. Using the online documentation on Gurobi ’s parameters, we
selected 62 performance-relevant parameters for configuration. These parameters can be
categorical, e.g., the simplex variable pricing strategy parameter can take the values {Auto-
matic (-1), Partial Pricing (0), Steepest Edge (1), Devex (2), and Quick-Start Steepest Edge
(3)}, or continuous, e.g., the parameter controlling the magnitude of the simplex perturba-
tion can take any value in the range {0, ∞}.

To control and limit the computational resources given to the solver, we fixed the num-
ber of CPU cores, i.e., the parameter Threads, to the value of 1. Thereby, we also ensure
that the solver is optimised in such a way that it uses minimal computational resources,
which, in turn, allows for more efficient parallelisation. In contrast, the default value of this
parameter is an automatic setting, which means that the solver will generally use all avail-
able cores in a machine. There are further parameters that have an automatic setting as one
of their values. In those cases, we allowed for the “automatic” value to be selected, but also
other values.

While configuring the MIP solver embedded in MIPVerify is a rather straightforward
task, additional considerations arise when configuring the solver embedded in Venus .

(a) (b)

Fig. 2 Performance comparison of the configurations in the portfolios constructed for (a) MIPVerify and
(b) Venus on the mnistnet benchmark. The plots show, that each configuration outperforms the other on
some instances, while none of the configurations is dominating in performance across the entire bench-
mark set. This illustrates the complementary strengths of the configurations, which are exploited through
portfolio construction. Note that there are also several instances on which one of the configurations reaches
the time limit, but which are solved by the other. These are not shown in the figure due to the scaling of the
axes. The diagonal line indicates equal performance of the two configurations

 Machine Learning

1 3

Essentially, Venus can run two modes, which lead to changes in the configuration space
of the MIP solver: (i) Venus with ideal cuts and dependency cuts activated (default mode),
in which case several cutting parameters are deactivated in Gurobi and therefore should be
left untouched during the configuration procedure; (ii) Venus with its cutting mechanism
deactivated, which allows for Gurobi ’s full parameter space to be optimised upon. Along
with other, previously mentioned challenges, these considerations illustrate the complexity
of adapting automated algorithm configuration techniques to the domain of neural network
verification.

In order to maximally exploit the potential of automated hyperparameter optimisation,
we decided to provide the configurator with full access to the configuration space and,
thus, employ Venus with ideal cuts and dependency cuts deactivated and Gurobi’s cutting
parameters activated during portfolio construction.

4 Experimental setup

We test our method on several benchmarks, which will be introduced in the following,
along with the objective of our configuration approach and the computational environment
in which experiments were carried out.

4.1 Configuration objective

The objective of our configuration experiments is to minimise mean CPU time over all
instances from the benchmark set. This choice deviates from the commonly used perfor-
mance metric in the neural network verification literature, where evaluation is typically
performed by operating on a fixed number of CPU cores while measuring wall-clock time.
However, we do not consider wall-clock time a sensible performance measure when the
evaluated methods use different numbers of cores. Instead, we decide to capture perfor-
mance by means of CPU time, as it compensates for the possible difference in utilised
cores. In other words, by choosing CPU time over wall-clock time, we ensure a more rigor-
ous performance evaluation of our method as well as the baseline approaches, as one could
easily gain performance in terms of wall-clock time through parallelisation, while heavily
compromising in CPU time. Furthermore, we consider CPU time to be the more sensible
performance measure, due to the cost associated with computational efforts. In fact, the
rates for cloud services increase with the number of cores in a machine.

Generally, if the cost metric is running time, configurators typically optimise penal-
ised average running time (PAR), notably PARk, as the metric of interest, which penalises
unsuccessful runs by counting runs exceeding the cutoff time tc as tc × k . In line with com-
mon practice in the algorithm configuration literature, we use k = 10 and refer to the cost
metric as PAR10.

4.2 Details of the configuration procedure

The parameters for the configuration procedure were set as follows. Hydra ran over a
predefined set of four iterations, during which it performed two independent runs of
SMAC with a time budget of 24 hours each. Thus, running Hydra took 4 × 2 × 24 = 192
hours for training, in addition to a variable amount of time spent on validation. In the-
ory, the number of iterations could be set to a larger value; however, we refrained from

Machine Learning

1 3

this to keep our experiments within reasonable time frames. Lastly, we set k = 1 , which
means that after every run, Hydra added one configuration to the portfolio, i.e., the con-
figuration that yielded the largest gain in overall training performance. The final output,
therefore, is a portfolio containing a minimum number of 1 and a maximum number of
4 solver configurations.

4.3 Data

Our benchmark sets were comprised of randomly chosen verification problem instances
created by MIPVerify and Venus , respectively, using the network weights of two MNIST
classifiers as well as the property-network pairs from the ACAS Xu repository (Julian
et al., 2016; Katz et al., 2017). ACAS Xu contains an array of neural networks trained
for horizontal manoeuvre advisory in unmanned aircraft. The MNIST classifiers were
taken from the works of Tjeng et al. (2019) and Botoeva et al. (2020), respectively, and
used to cross-test each verifier on both networks. The ACAS Xu benchmark was chosen
to find out whether a high diversity in networks (the ACAS Xu repository contains 45
different neural networks) poses any challenges to the configuration procedure.

MNIST Firstly, we created problem instances using the network weights of the robust
classifier SDPdMLPA from Raghunathan et al. (2018). Among the networks considered
in the work of Tjeng et al. (2019), we regard this one as the most difficult to verify,
since it shows the largest average solving times and optimality gaps for many examples,
even compared to classifiers trained on the typically more challenging CIFAR-10 bench-
mark. Secondly, we used the weights of the network mnistnet from the Venus repository
(Botoeva et al., 2020), which is the only MNIST classifier considered in their study. In
both cases, we created 184 instances, which were split 50-50 into disjoint training and
validation sets. The training and validation sets were used during the configuration pro-
cedure, whereas the remaining 9 816 instances form the test set and were used to evalu-
ate the final portfolio.

ACAS Xu For this benchmark, we only considered verification problem instances
created by Venus , as MIPVerify at default reached the time limit of 38 400 CPU seconds
for more than 80% of the instances. This makes automated configuration infeasible,
as these instances do not only cause the default solver to time out but also any solver
configuration tried by SMAC . Thereby, the configurator can hardly identify promising
regions of the hyperparameter space and, consequently, not exploit them. Using Venus ,
we created 20 instances for different property-network pairs and, again, split them into
disjoint training and validation sets. The remaining 152 instances are used for testing
the final portfolio. Note that ACAS-Xu shows the highest average solving time among
all benchmarks considered in the work of Botoeva et al. (2020).

4.4 Execution environment and software used

Our experiments were carried out on Intel Xeon E5-2683 CPUs with 32 cores, 40 MB
cache size and 94 GB RAM, running CentOS Linux 7. We used MIPVerify version
0.2.3, Venus version 1.01, SMAC version 2.10.03, Hydra version 1.1 and the Gurobi
solver version 9.0.1.

 Machine Learning

1 3

5 Results

We report empirical results for our new approach and each baseline in the form of (i) the
fraction of timeouts; and (ii) bounds on adversarial error (the fraction of the dataset for
which a valid adversarial example can be found), complement to adversarial accuracy
(the fraction of the dataset known to be robust); (iii) CPU time (i.e., PAR10 scores) on
solvable instances, i.e., instances that were solved by our portfolio or any of the baselines
within the given cutoff time. Aggregated performance numbers are presented in Table 1 for
MIPVerify and Table 2 for Venus , whereas Figs. 3 and 4 visualise penalised running time
of our portfolio approach against the baselines on an instance level. Generally, we deter-
mined statistical significance using a binomial test with � = 0.05 for timeouts and error
bounds, and a permutation test with the number of permutations set at 10 000 and signifi-
cance threshold of 0.05 for PAR10 scores.

5.1 MIPVerify

The results from our configuration experiments on the SDPdMLPA classifier are compared
against multiple baselines. Firstly, we evaluated our portfolio approach against Gurobi , as
used by Tjeng et al. (2019), using all 32 cores per CPU available on our compute cluster,
with the cutoff time set to 1 200 × 32 = 38 400 CPU seconds (i.e., 1 200 seconds wall-clock
time on a CPU without any additional load). In addition, since our parallel portfolio used
1 core for each of its 4 component configurations, we gathered additional baseline results
from running the default configuration of Gurobi on the same number of cores and with
the same cutoff as our portfolio, i.e., 9 600 × 4 = 38 400 CPU seconds. Lastly, to maximise
the number of instances processed in parallel, we considered Gurobi in its default con-
figuration limited to a single CPU core, with cutoff time of 38 400 seconds. In short, we

Table 1 Timeouts, adversarial error and PAR10 scores for different solver configurations of the MIP solver
embedded in the MIPVerify engine on the MNIST dataset. Note that all approaches were given the same
budget in terms of CPU time (the number of cores times the cutoff time)

Using our portfolio, we achieved better performance than the state-of-the-art (SOTA) method of Tjeng et al.
(2019) as well as the default configuration of Gurobi using different numbers of cores. Boldfaced values
indicate statistically significant improvements according to a binomial test with � = 0.05 for timeouts and
error bounds, and a permutation test with the number of permutations set at 10 000 and significance thresh-
old of 0.05 for PAR10 scores

Configuration Cores Cutoff Timeouts Adversarial error PAR10

[Seconds] Lower Upper [CPU s]

Bound Bound

SDPdMLPA classifier (Raghunathan et al., 2018)
 Default [SOTA] 32 1 200 21.29% 14.37% 30.67% 39 772
 Default 4 9 600 17.74% 14.40% 27.49% 22 065
 Default 1 38 400 17.66% 14.36% 27.58% 20 117
 Portfolio [Ours] 4 9 600 14.96% 14.43% 23.86% 8 478
mnistnet classifier (Botoeva et al., 2020)
 Default 1 38 400 1.57% 69.96% 70.16% 2 969
 Portfolio [Ours] 2 19 200 1.38% 70.13% 70.14% 1 844

Machine Learning

1 3

compared our approach against baselines with a variable number of cores and a constant
budget in terms of CPU time. From these approaches, we considered only the best-per-
forming one as the baseline for our configuration experiments on the mnistnet classifier.

As seen in Table 1, our portfolio was able to certify a statistically significantly
larger fraction of instances, while reducing CPU time by an average factor of 4.7 on the

(a) (b)

(c) (d)

Fig. 3 Evaluation of our parallel portfolio approach for MIPVerify on the MNIST dataset (n=10 000) using
weights from the SDPdMLPa and mnistnet classifiers, respectively. Each dot represents a problem instance
and the penalised running time for that instance achieved by the baseline approach (x-axis) vs our portfolio
(y-axis). For SDPdMLPa , the baselines we considered are (a) the default solver running on all available, i.e.,
32 cores, as in the work of Tjeng et al. (2019), (b) the default solver running on 4 cores and (c) the default
solver running on 1 core. Our parallel portfolio, using 4 cores, achieved substantially fewer timeouts than
any of the baselines and lower CPU times (in terms of PAR10 scores). Points grouped at the top and right
border represent instances for which the solver reached the time limit, and are measured according to their
penalised running time values

 Machine Learning

1 3

solvable instances (8 478 vs 39 772 CPU seconds). Furthermore, the portfolio strongly
outperformed this baseline in terms of timeouts (14.96% vs 21.29%). More concretely,
694 instances solved by the portfolio timed out in the default setup with 32 cores; see
Fig 3a for more details. 1 435 instances were neither solved by the default nor the port-
folio within the given time limit. 61 instances on which the portfolio timed out were
solved by the default solver.

Table 2 Timeouts, adversarial error and PAR10 scores for different configurations of the MIP solver
embedded in the Venus engine on the MNIST and ACAS Xu datasets

Note that all approaches were given the same budget in terms of CPU time (the number of cores times the
cutoff time). Using our portfolio, we achieved better performance than the state-of-the-art (SOTA) method
of Botoeva et al. (2020). Boldfaced values indicate statistically significant improvements according to a
binomial test with � = 0.05 for timeouts and error bounds, and a permutation test with the number of per-
mutations set at 10 000 and significance threshold of 0.05 for PAR10 scores. The asterisk marks Venus runs
using the hyperparameter settings suggested by Botoeva et al. (2020), yet with Gurobi at default

Configuration Cores Cutoff Timeouts Adversarial error PAR10

[Seconds] Lower Upper [CPU s]

Bound Bound

mnistnet classifier (Botoeva et al., 2020)
 Default∗ [SOTA] 2 7 200 1.63% 70.33% 71.96% 1 975
 Portfolio [Ours] 2 7 200 0.58% 70.61% 71.19% 272
SDPdMLPA classifier (Raghunathan et al., 2018)
 Default 1 14 400 9.76% 14.36% 24.12% 6 534
 Portfolio [Ours] 2 7 200 6.10% 14.31% 20.41% 636

ACAS Xu (Julian et al., 2016; Katz et al., 2017)
 Default∗ [SOTA] 2 7 200 1.75% 20.34% 22.09% 1 314
 Portfolio [Ours] 2 7 200 1.17% 20.34% 21.21% 443

(a) (b) (c)

Fig. 4 Evaluation of our parallel portfolio approach for Venus on the MNIST dataset (n=10 000) using
weights from the SDPdMLPa and mnistnet classifiers, respectively, and on the 172 property-network pairs
from the ACAS Xu benchmark. Each dot represents a problem instance and the penalised running time
for that instance achieved by the verifier with the embedded MIP solver at default (x-axis) vs our portfolio
(y-axis). Overall, our parallel portfolio achieved fewer timeouts than the baseline and lower CPU times (in
terms of PAR10 scores)

Machine Learning

1 3

The default configuration of Gurobi running on 4 cores was also clearly outperformed
by our portfolio in terms of CPU time (8 478 vs 22 065 CPU seconds). Furthermore, the
portfolio was able to reduce the number of timeouts (14.96% vs 17.74%), while improv-
ing on the upper bound (23.86% vs 27.49%). In other words, the portfolio certified more
instances using fewer computational resources, although it was provided with the same
number of cores and overall time budget. Figure 3b shows per-instance results for this set
of experiments. Here, the default solver timed out on 378 instances, which were solved by
the portfolio. On 109 instances, only the portfolio timed out. On 1 374 instances, both set-
ups resulted in timeouts.

Lastly, we compared the portfolio against the default configuration of Gurobi running
on a single-core. Here, our portfolio showed improved performance in terms of PAR10
(8 478 vs 20 117 CPU seconds) as well as the fraction of timeouts (14.96% vs 17.66%) and
the upper bound (23.86% vs 27.58%). More specifically, the single-core default timed out
on 378 instances that could be solved by the portfolio. On 108 instances, only the portfolio
timed out. On 1 388 instances, both setups resulted in timeouts; see Fig 3c for more details.

On the mnistnet classifier, our portfolio also outperformed the single-core baseline in
terms of PAR10 (1 844 vs 2 969 CPU seconds) as well as the fraction of timeouts (1.38%
vs 1.57%), although to a smaller extent. To be precise, the default baseline timed out on 44
instances that the portfolio was able to solve (Fig 3d). On 25 instances, only the portfolio
reached the time limit. 113 instances were neither solved by the default nor the portfolio.
The default baseline timed out on 44 instances that the portfolio was able to solve. On 25
instances, only the portfolio reached the time limit. 113 instances were neither solved by
the default nor the portfolio. These results could be explained by the mnistnet network
being comparatively smaller and, thus, easier to verify than the SDPdMLPA classifier, as
the latter results in a much larger number of timeouts when verified with equal settings.

5.2 Venus

The results from our configuration experiments are compared against two baseline
approaches. Firstly, we evaluated our portfolio against Venus as employed by Botoeva
et al. (2020), i.e., using the same hyperparameter settings for the verifier. We refer to this
setup as default∗ , as the MIP solver is left in its default configuration, while the verifica-
tion engine is deployed with optimised hyperparameter settings. We note that the number
of cores is equivalent to the number of parallel workers, which is set as a hyperparameter
of the verifier. More precisely, we were running Venus using 2 workers, i.e., 2 cores per
CPU available on our compute cluster, with the cutoff time set to 7 200 × 2 = 14 400 CPU
seconds. In this setup, Venus employs 2 instances of the MIP solver in parallel, while we
ensured that each solver is using exactly 1 CPU core. This way, we are giving the same
amount of resources to the verifier and the portfolio. It should be noted that for the ACAS
Xu benchmark, we also ran Venus with the hyperparameter settings reported by Botoeva
et al. (2020), however with different numbers of workers. That is, we ran the verifier using
4 workers, 2 workers, and 1 worker, i.e., CPU core(s), to assess the effects of parallelism,
and found CPU time to be constant with regards to the number of workers running in par-
allel. We, therefore, consider each of these baselines to be equally competitive and only
report results for Venus running with 2 active workers, i.e., on 2 CPU cores and, thus, simi-
lar to the number of cores utilised by the portfolio.

As there is no optimal setting of Venus hyperparameters provided for the SDPdMLPA
classifier, we used Venus with default settings as the baseline for our configuration

 Machine Learning

1 3

experiments on this benchmark. In this setup, Venus is running with 1 active worker, which
uses the same overall time budget of 14 400 CPU seconds.

As Table 2 shows, the portfolio strongly outperformed Venus with default settings. On
the mnistnet benchmark, it was able to certify a statistically significantly larger fraction of
instances, while reducing CPU time by an average factor of 7.26 on the solvable instances
(272 vs 1 975 CPU seconds). Furthermore, the portfolio strongly reduced the number of
timeouts (1.63% vs 0.58%) on this benchmark. More specifically, the verifier timed out for
115 instances that were solved by the portfolio. On the other hand, the portfolio reached
the time limit on 10 instances, which could be solved by the default. On 48 instances, both
approaches resulted in timeouts; see Fig. 4a for more details.

This baseline was also used to evaluate our portfolio approach on the ACAS Xu bench-
mark and, as previously mentioned, employed the verifier using the same hyperparameter
settings as reported by Botoeva et al. (2020), although with the number of workers or CPU
cores fixed at 2. Essentially, the portfolio was able to slightly improve the number of time-
outs and statistically significantly reduce CPU time by an average factor of 2.97 on the
solvable instances (443 vs 1 314 CPU seconds). In concrete terms, the portfolio could solve
1 instance on which the default solver reached the time limit; see Fig. 4c. For clarification,
we achieved comparable performance gains over Venus running with 4 workers in parallel
(443 vs 1 337 CPU seconds) as well as Venus running with 1 worker (443 vs 1 306 CPU
seconds).

On the SDPdMLPA benchmark, the default baseline, i.e., Venus with default settings,
was outperformed by the portfolio in terms of PAR10 (636 vs 6 534 CPU seconds) as well
as the fraction of timeouts (6.10% vs 9.76%). In this setup, the default timed out on 379
instances solved by the portfolio (Fig. 4b). On 15 instances, only the portfolio reached the
time limit. 597 instances were neither solved by the default nor the portfolio. Lastly, the
portfolio strongly improved on the upper bound (20.41% vs 24.12%), which overall clearly
demonstrates the strength of the portfolio approach.

6 Conclusions and future work

In this study, we have, for the first time, demonstrated the effectiveness of automated algo-
rithm configuration and portfolio construction in the context of neural network verification.
Applying these techniques to neural network verification is by no means a trivial extension,
due to the high running times and heterogeneity of the problem instances to be solved. In
order to address this heterogeneity, we constructed a parallel portfolio of optimised MIP
solver configurations with complementary strengths. Our method advises on the ideal num-
ber of configurations in the portfolio and can be used in combination with any MIP-based
neural network verification system. We empirically evaluated our method on two recent,
state-of-the-art MIP-based verification systems, MIPVerify and Venus.

Our results show that the portfolio approach can significantly reduce the CPU time
required by these systems on various verification benchmarks, while reducing the number
of timeouts and, thus, certifying a larger fraction of instances.

In more concrete terms, we strongly improved the performance of MIPVerify via
speed-ups in CPU time by an average factor of 4.7 on the MNIST classifier SDPdMLPA
from Raghunathan et al. (2018) and 1.61 on the MNIST classifier mnistnet from Boto-
eva et al. (2020). At the same time, we were able to lower the number of timeouts for
both benchmarks and tighten previously reported bounds on adversarial error. For the

Machine Learning

1 3

Venus verifier, we achieved even larger improvements, i.e., 10.3- and 7.26-fold reduc-
tions in average CPU time on the SDPdMLPA and mnistnet networks, respectively.
Beyond that, we strengthened the performance of Venus on the ACAS Xu benchmark,
attaining a 2.97-fold speedup in average CPU time. Overall, our results highlight the
potential of employing MIP-based neural network verification systems with optimised
solver configurations and demonstrate how our method can consistently improve neu-
ral network verifiers that make use of MIP solvers. At the same time, we note that our
method is inherently dependent on the default performance of the verifier at hand. In
other words, we acknowledge that this work alone cannot scale existing methods to net-
work sizes that are completely beyond the capabilities of these methods. However, our
approach can significantly improve the running time of the verifier on the benchmarks
it is able to certify, and thus moves the boundary of network/input combinations acces-
sible to the verifier.

We see several fruitful directions for future work. Firstly, we plan to explore the use
of per-instance algorithm configuration techniques to further reduce the computational
cost of our approach. While our parallel portfolio approach is robust and makes good
use of parallel computing resources, judicious use of per-instance algorithm selection
techniques could potentially save some computational costs. We note that this will
require the development of grounded descriptive attributes (so-called meta-features) for
neural network verification, which we consider an interesting research project in its own
right.

The neural network verification systems we considered in this work have additional
hyperparameters. While our current approach focuses on the hyperparameters of the
internal MIP solver, in future work, we will also configure the hyperparameters at the
verification level. Due to the potential impact that this has on the MIP formulation and
therefore on the running time of a given instance, this poses specific challenges for the
algorithm configuration methods we use.

Finally, the portfolios we construct consist of multiple configurations of the same
verification engine. In principle, we could also consider heterogeneous portfolios that
contain configurations of different verification engines, which could lead to further
improvements in the state of the art in neural network verification, and ultimately make
it possible to verify networks far beyond the sizes that can be handled by the methods
we have introduced here.

Author Contributions MK has conducted the research presented in this manuscript. HH and JvR have regu-
larly provided feedback on the work, contributed towards the interpretation of results, and have critically
revised the whole. All authors approve the current version to be published and agree to be accountable for
all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work
are appropriately investigated and resolved.

Funding This research was partially supported by TAILOR, a project funded by EU Horizon 2020 research
and innovation program under GA No. 952215.

Data Availability The data (i.e., MIP instances) used in our experiments was generated using the verifiers
by Tjeng et al. (2019) and Botoeva et al. (2020), and and is available under https:// github. com/ marti- mcfly/
nn- verifi cati on.

Code availability All code that was used for this research is available under https:// github. com/ marti- mcfly/
nn- verifi cati on.

https://github.com/marti-mcfly/nn-verification
https://github.com/marti-mcfly/nn-verification
https://github.com/marti-mcfly/nn-verification
https://github.com/marti-mcfly/nn-verification

 Machine Learning

1 3

Declarations

Competing interests All authors certify that they have no affiliations with or involvement in any organization
or entity with any financial interest or non-financial interest in the subject matter or materials discussed in
this manuscript.

Employment All authors declare that there is no recent, present, or anticipated employment by any organiza-
tion that may gain or lose financially through publication of this manuscript.

Research involving human participants Not applicable: this research did not involve human participants, nor
did it involve animals.

 Consent for publication Not applicable: this research does not involve personal data, and publishing of this
manuscript will not result in the disruption of any individual’s privacy.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

Akintunde, M., Lomuscio, A., Maganti, L., & Pirovano, E. (2018) Reachability analysis for neural agent-
environment systems. In Proceedings of The Sixteenth International Conference on Principles of
Knowledge Representation and Reasoning (KR2018)

Bastani, O., Ioannou, Y., Lampropoulos, L., Vytiniotis, D., Nori, A., & Criminisi, A. (2016). Measuring
neural net robustness with constraints. In Proceedings of the 30th Conference on Neural Information
Processing Systems (NeurIPS 2016), pp 2613–2621

Bezerra, L. C., López-Ibánez, M., & Stützle, T. (2015). Automatic component-wise design of multiobjective
evolutionary algorithms. IEEE Transactions on Evolutionary Computation, 20(3), 403–417.

Botoeva, E., Kouvaros, P., Kronqvist, J., Lomuscio, A., & Misener, R. (2020). Efficient verification of
ReLU-based neural networks via dependency analysis. In Proceedings of The Thirty-Fourth AAAI
Conference on Artificial Intelligence (AAAI20) (pp. 3291–3299)

Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32.
Bunel, R .R ., Turkaslan, I., Torr, P., Kohli, P., & Mudigonda, P. K. (2018). A unified view of piecewise

linear neural network verification. In Proceedings of the 32nd Conference on Neural Information Pro-
cessing Systems (NeurIPS 2018), pp. 4790–4799

Carlini, N., & Wagner, D. (2017). Towards evaluating the robustness of neural networks. In Proceedings of
the 38th IEEE Symposium on Security and Privacy (IEEE S &P 2017), pp. 39–57

Carlini, N., Katz, G., Barrett, C., & Dill, D. L. (2017) Provably Minimally-Distorted Adversarial Examples.
arXiv preprint arXiv: 1709. 10207

Chen, P. Y., Sharma, Y., Zhang, H., Yi, J., & Hsieh, C. J. (2018). Ead: Elastic-net attacks to deep neural net-
works via adversarial examples. In Proceedings of The Thirty-Second AAAI Conference on Artificial
Intelligence (AAAI18)

Cheng, C. H., Nührenberg, G., & Ruess , H. (2017). Maximum resilience of artificial neural networks. In
Proceedings of The 15th International Symposium on Automated Technology for Verification and
Analysis (ATVA2017), pp. 251–268.

Chiarandini, M., Fawcett, C., & Hoos, H. H. (2008). A Modular Multiphase Heuristic Solver for Post Enrol-
ment Course Timetabling. In Proceedings of the 7th International Conference on the Practice and
Theory of Automated Timetabling (PATAT 2008).

http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1709.10207

Machine Learning

1 3

Cohen, J., Rosenfeld, E., & Kolter, Z. (2019). Certified adversarial robustness via randomized smoothing.
In Proceedings of the Thirty-Sixth International Conference on Machine Learning (ICML2019), pp
1310–1320.

Dutta, S., Jha, S., Sankaranarayanan, S., & Tiwari, A. (2018) Output range analysis for deep neural net-
works. In Proceedings of The Tenth NASA Formal Methods Symposium (NFM 2018), pp. 121–138.

Dvijotham, K., Stanforth, R., Gowal, S., Mann, T. A., & Kohli, P. (2018). A Dual Approach to Scalable
Verification of Deep Networks. In Proceedings of the 38th Conference on Uncertainty in Artificial
Intelligence (UAI 2018), pp. 550–559.

Ehlers, R. (2017). Formal verification of piece-wise linear feed-forward neural networks. In Proceedings
of the 15th International Symposium on Automated Technology for Verification and Analysis (ATVA
2017), pp. 269–286.

Feurer, M., Springenberg, J. T., & Hutter, F. (2015). Initializing Bayesian hyperparameter optimization
via meta-learning. In Proceedings of The Twenty-Ninth AAAI Conference on Artificial Intelligence
(AAAI15)

Fischetti, M., & Jo, J. (2018). Deep neural networks and mixed integer linear optimization. Constraints,
23(3), 296–309.

Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T., Schneider, M. T., & Ziller, S. (2011). A portfolio
solver for answer set programming: Preliminary report. In Proceedings of The Tenth International
Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR2019), pp. 352–357.

Gehr, T., Mirman, M., Drachsler-Cohen, D., Tsankov, P., Chaudhuri, S., & Vechev, M. (2018). AI2:
Safety and robustness certification of neural networks with abstract interpretation. In Proceedings
of the 39th IEEE Symposium on Security and Privacy (IEEE S &P 2018), pp. 3–18.

Goodfellow, I. J., Shlens, J., & Szegedy, C. (2014). Explaining and harnessing adversarial examples.
arXiv preprint arXiv: 1412. 6572

Hutter, F., Babic, D., Hoos, H. H., & Hu, A. J. (2007). Boosting verification by automatic tuning of deci-
sion procedures. In Formal Methods in Computer Aided Design (FMCAD’07), pp. 27–34

Hutter, F., Hoos, H. H., Leyton-Brown, K., & Stützle, T. (2009). ParamILS: An automatic algorithm
configuration framework. Journal of Artificial Intelligence Research, 36, 267–306.

Hutter, F., Hoos, H. H., & Leyton-Brown, K. (2010). Automated Configuration of Mixed Integer Pro-
gramming Solvers. In Proceedings of the 7th International Conference on Integration of Artificial
Intelligence (AI) and Operations Research (OR) Techniques in Constraint Programming (CPAIOR
2010), pp. 186–202

Hutter, F., Hoos, H. H., Leyton-Brown, K. (2011). Sequential model-based optimization for general
algorithm configuration. In Proceedings of the 5th International Conference on Learning and Intel-
ligent Optimization (LION 5), pp. 507–523

Hutter, F., Lindauer, M., Balint, A., Bayless, S., Hoos, H., & Leyton-Brown, K. (2017). The configurable
SAT solver challenge (CSSC). Artificial Intelligence, 243, 1–25.

Julian, K. D., Lopez, J., Brush, J. S., Owen, M. P., & Kochenderfer, M. J. (2016). Policy compression
for aircraft collision avoidance systems. In Proceedings of the Thirty-Fifth Digital Avionics Systems
Conference (DASC2016), pp. 1–10

Kadioglu, S., Malitsky, Y., Sabharwal, A., Samulowitz, H., & Sellmann, M. (2011). Algorithm selec-
tion and scheduling. In Proceedings of the Seventeenth International Conference on Principles and
Practice of Constraint Programming (CP2011), pp. 454–469

Kashgarani, H., & Kotthoff, L. (2021). Is algorithm selection worth it? Comparing selecting single
algorithms and parallel execution. In AAAI Workshop on Meta-Learning and MetaDL Challenge,
pp. 58–64.

Katz, G., Barrett, C., Dill, D. L., Julian, K., & Kochenderfer, M. J. (2017). Reluplex: An efficient SMT
solver for verifying deep neural networks. In Proceedings of the 29th International Conference on
Computer Aided Verification(CAV 2017), pp. 97–117

König, M., Hoos, H. H., van Rijn, J. N. (2021). Speeding up neural network verification via automated
algorithm configuration. In ICLR Workshop on Security and Safety in Machine Learning Systems.

Kotthoff, L. (2016). Algorithm selection for combinatorial search problems: A survey. In Data Mining
and Constraint Programming. Springer, pp. 149–190.

Kurakin, A., Goodfellow, I., & Bengio, S. (2016). Adversarial examples in the physical world. arXiv
preprint arXiv: 1607. 02533

Lecuyer, M., Atlidakis, V., Geambasu, R., Hsu, D., & Jana S (2019) Certified robustness to adversarial
examples with differential privacy. In Proceedings of The Fortieth IEEE Symposium on Security
and Privacy (SP2019), IEEE, pp 656–672.

Lindauer, M., Hoos, H. H., Hutter, F., & Schaub, T. (2015). AutoFolio: An automatically configured
algorithm selector. Journal of Artificial Intelligence Research, 53, 745–778.

http://arxiv.org/abs/1412.6572
http://arxiv.org/abs/1607.02533

 Machine Learning

1 3

Lomuscio, A., & Maganti, L. (2017). An approach to reachability analysis for feed-forward ReLU neural
networks. arXiv preprint arXiv: 1706. 07351

Lopez-Ibanez, M., & Stützle, T. (2014). Automatically improving the anytime behaviour of optimisation
algorithms. European Journal of Operational Research, 235(3), 569–582.

Malitsky, Y., Sabharwal, A., Samulowitz, H., & Sellmann, M. (2012). Parallel SAT Solver Selection and
Scheduling. In Proceedings of the Eighteenth International Conference on Principles and Practice
of Constraint Programming (CP2012), pp. 512–526

Mohapatra, J., Ko, C. Y., Weng, L., Chen, P. Y., Liu, S., & Daniel, L. (2021). Hidden cost of randomized
smoothing. In Proceedings of The 24th International Conference on Artificial Intelligence and Sta-
tistics (AISTATS2021), pp 4033–4041.

Papernot, N., McDaniel, P., Wu, X., Jha, S., & Swami, A. (2016). Distillation as a defense to adversarial
perturbations against deep neural networks. In Proceedings of the 37th IEEE Symposium on Security
and Privacy (IEEE S &P 2016), pp. 582–597.

Raghunathan, A., Steinhardt, J., & Liang, P. (2018). Certified defenses against adversarial examples. arXiv
preprint arXiv: 1801. 09344

Scheibler, K., Winterer, L., Wimmer, R., & Becker, B. (2015). Towards verification of artificial neural net-
works. In Proceedings of the 18th Workshop on Methoden und Beschreibungssprachen zur Model-
lierung und Verifikation von Schaltungen und Systemen (MBMV 2015), pp. 30–40.

Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I., \& Fergus, R. (2014). Intrigu-
ing properties of neural networks. arXiv preprint arXiv: 1312. 6199

Thornton, C., Hutter, F., Hoos, H. H., \& Leyton-Brown, K. (2013). Auto-WEKA: Combined selection and
hyperparameter optimization of classification algorithms. In Proceedings of the 19th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (KDD2013), pp. 847–855

Tjeng, V., Xiao, .K, & Tedrake, R. (2019). Evaluating robustness of neural networks with mixed integer
programming. In Proceedings of the 7th International Conference on Learning Representations (ICLR
2019)

Vallati, M., Fawcett, C., Gerevini, A. E., Hoos, H., \& Saetti, A. (2013). Automatic generation of efficient
domain-specific planners from generic parametrized planners. In Proceedings of the 6th Annual Sym-
posium on Combinatorial Search (SOCS), pp. 184–192.

Wong, E., & Kolter, Z. (2018.) Provable defenses against adversarial examples via the convex outer adver-
sarial polytope. In Proceedings of The Thirty-Fifth International Conference on Machine Learning
(ICML2018), pp 5286–5295.

Xiang, W., Tran, H. D., & Johnson, T. T. (2018). Output Reachable Set Estimation and Verification for
Multilayer Neural Networks. IEEE Transactions on Neural Networks and Learning Systems, 29(11),
5777–5783.

Xu L, Hoos H, Leyton-Brown K (2010) Hydra: Automatically Configuring Algorithms for Portfolio-
Based Selection. In: Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence
(AAAI10)

Xu, L., Hutter, F., Hoos, H. H., Leyton-Brown, K. (2011). Hydra-MIP: Automated algorithm configuration
and selection for mixed integer programming. In RCRA Workshop on Experimental evaluation of Algo-
rithms for Solving Problems with Combinatorial Explosion, pp. 16–30

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

http://arxiv.org/abs/1706.07351
http://arxiv.org/abs/1801.09344
http://arxiv.org/abs/1312.6199

	Speeding up neural network robustness verification via algorithm configuration and an optimised mixed integer linear programming solver portfolio
	Abstract
	1 Introduction
	2 Background
	2.1 Adversarial examples
	2.2 Network verification
	2.3 Automated algorithm configuration
	2.4 Portfolio construction

	3 Network verification with parallel MIP solver portfolios
	3.1 Configuration procedure
	3.2 MIP solver

	4 Experimental setup
	4.1 Configuration objective
	4.2 Details of the configuration procedure
	4.3 Data
	4.4 Execution environment and software used

	5 Results
	5.1 MIPVerify
	5.2 Venus

	6 Conclusions and future work
	References

