
Massless dirac fermions on a space‐time lattice with a topologically
protected dirac cone
Donís Vela, A.; Pacholski, M.J.; Lemut, G.; Tworzydlo, J.; Beenakker, C.W.J.

Citation
Donís Vela, A., Pacholski, M. J., Lemut, G., Tworzydlo, J., & Beenakker, C. W. J. (2022).
Massless dirac fermions on a space‐time lattice with a topologically protected dirac cone.
Annalen Der Physik. doi:10.1002/andp.202200206
 
Version: Publisher's Version
License: Creative Commons CC BY 4.0 license
Downloaded from: https://hdl.handle.net/1887/3485486
 
Note: To cite this publication please use the final published version (if applicable).

https://creativecommons.org/licenses/by/4.0/
https://hdl.handle.net/1887/3485486


RESEARCH ARTICLE
www.ann-phys.org

Massless Dirac Fermions on a Space-Time Lattice with a
Topologically Protected Dirac Cone

A. Donís Vela,* M. J. Pacholski,* G. Lemut,* J. Tworzydło,* and C. W. J. Beenakker*

The symmetries that protect massless Dirac fermions from a gap opening
may become ineffective if the Dirac equation is discretized in space and time,
either because of scattering between multiple Dirac cones in the Brillouin
zone (fermion doubling) or because of singularities at zone boundaries. Here
an implementation of Dirac fermions on a space-time lattice that removes
both obstructions is introduced. The quasi-energy band structure has a
tangent dispersion with a single Dirac cone that cannot be gapped without
breaking both time-reversal and chiral symmetries. It is shown that this
topological protection is absent in the familiar single-cone discretization with
a linear sawtooth dispersion, as a consequence of the fact that there the
time-evolution operator is discontinuous at Brillouin zone boundaries.

1. Introduction

1.1. Objective

A 3D topological insulator has gapless surface states with a con-
ical dispersion.[1,2] This Dirac cone is protected by Kramers de-
generacy, no perturbation that preserves time-reversal symmetry
can gap it out—provided that the top and bottom surfaces remain
uncoupled, to prevent Dirac cones from annihilating pairwise.[3]

To study the dynamics of Dirac fermions on a computer, one
needs to discretize the Dirac equation

iℏ
(
𝜕

𝜕t
+ v𝝈 ⋅

𝜕

𝜕r

)
Ψ(r, t) = V(r)Ψ(r, t) (1.1)
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for the two-component spinor Ψ(r, t)
(with velocity v and Pauli spin matri-
ces 𝜎𝛼). The electrostatic potential V pre-
serves time-reversal symmetry, so one
would expect the Dirac cone to re-
main gapless for any time-reversal in-
variant discretization scheme that avoids
fermion doubling[4] (only zero-energy
states at momentum k = 0).
The objective of our paper is, first, to

demonstrate that this expectation is in-
correct, it does not apply to the split-
operator technique[5] for the discretiza-
tion of the time-evolution operator, which
is commonly used[6–8] because of its
computational efficiency. Then, second,

we will show how a “drop-in” modification of the algorithm can
restore a gapless Dirac cone — without reducing the compu-
tational efficiency (scaling as N lnN in the number of lattice
sites).
We consider a 2+1-dimensional space-time lattice with lat-

tice constants a0 in space and 𝛿t in time. In the split-operator
technique the derivative operator d∕dx is evaluated in momen-
tum representation as the linear function k in the first Bril-
louin zone |k| < 𝜋∕a0 — periodically repeated as a sawtooth for
larger momenta. The drop-in modification that we propose is
to replace k by (2∕a0) tan(a0k∕2). The computational efficiency
of the algorithm is not compromised, but the effect on the
quasi-energy–momentum band structure is crucially important:
While the linear sawtooth dispersion introduces discontinuous
derivatives at Brillouin zone boundaries, the tangent dispersion
produces a smooth band structure, see Figure 1. As we will
show, a potential that varies rapidly on the scale of a0 is able
to gap out the Dirac cone in the former case but not in the
latter case.
By way of introduction, before we embark on the space-time

discretization, we first discuss the simpler time-independent
problem, when only space is discretized.

1.2. Time-Independent Problem

Consider a 1D lattice along the x-axis, and first take V ≡ 0. Dif-
ferent ways to discretize the derivative d∕dx will produce dif-
ferent energy-momentum dispersion relations ±E(k). (The ±
sign distinguishes the chirality of the massless Dirac fermions,
left-movers versus right-movers.) What all dispersions have
in common is that they are periodic with period 2𝜋∕a0 and
vanish linearly at k = 0. We compare three alternatives, see
Figure 2.
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Figure 1. Quasi-energy bandstructure 𝜀(kx , ky) for the linear sawtooth dis-
persion (red) and for the tangent dispersion (yellow). The surfaces are
computed, respectively, from the two equations (𝜀𝛿t + 2𝜋n)2 = (a0kx)

2 +
(a0ky)

2, n ∈ ℤ, and tan2(𝜀𝛿t∕2) = tan2(a0kx∕2) + tan2(a0ky∕2). Only the
first Brillouin zone is shown, the full bandstructure is periodic in momen-
tum k𝛼 with period 2𝜋∕a0 and periodic in quasi-energy 𝜀with period 2𝜋∕𝛿t.
Near k = 0 both discretizations have theDirac cone 𝜀2 = v2(k2x + k2y ) of the
continuum limit, with velocity v = a0∕𝛿t. A potential that varies rapidly on
the scale of the lattice constant can gap out the Dirac cone for the linear
sawtooth dispersion, but not for the tangent dispersion.

Figure 2. Three 1D dispersion relations, corresponding to a local dis-
cretization of the derivative operator d∕dx (black curve) and to two alter-
native nonlocal discretizations (red and blue curves).

The local discretization df ∕dx → [f (x + a0) − f (x − a0)]∕(2a0)
gives a sine dispersion

Elocal(k) =
ℏv
a0

sin(a0k) (1.2)

which vanishes also at the boundary |k| = 𝜋∕a0 of the first Bril-
louin zone (fermion doubling). A nonlocal discretization, which
couples f (x) to distant lattice points, can remove the spuri-
ous Dirac cone at nonzero momentum. The so called “slac
discretization”[9,10] produces a dispersion relation that is strictly
linear within the first Brillouin zone |k| < 𝜋∕a0. The dispersion
has the 2𝜋-periodic sawtooth form[11]

ESLAC(k) =
ℏv
a0

mod (a0k, 2𝜋,−𝜋) (1.3)

Now apply the staggered potential V(x) = V cos(𝜋x∕a0),
switching from +V to −V between even and odd-numbered lat-
tice sites. This potential couples the states at k and k + 𝜋∕a0, as
described by the Hamiltonian

HV (k) =
(
E(k) V∕2
V∕2 E(k + 𝜋∕a0)

)
(1.4)

The Brillouin zone is halved to |k| < 𝜋∕2a0, with the band struc-
ture

EV (k) =
1
2
E(k) + 1

2
E(k + 𝜋∕a0) ±

1
2

√
V2 + [E(k) − E(k + 𝜋∕a0)]2

(1.5)

A gap opens in the Dirac cone for both the local and slac dis-
cretizations, of size

𝛿Elocal = V, 𝛿ESLAC =
V2a0
2𝜋ℏv

+ (V4) (1.6)

What we learn from this simple calculation is that removing
the second cone at |k| = 𝜋∕a0 is not enough to protect the Dirac
cone at k = 0 frombecoming gapped if the potential varies rapidly
on the scale of the lattice constant. What happens is that the large
gap Δ in the dispersion at k = 𝜋∕a0 is folded onto k = 0 by the
staggered potential, resulting in a minigap 𝛿E = V2∕Δ for V ≪

Δ. To avoid the gap opening we thus need a pole Δ → ∞ in the
dispersion at the Brillouin zone boundary.
An alternative discretization due to Stacey[12] gives the disper-

sion

E(k) = (2ℏv∕a0) tan(a0k∕2) (1.7)

with a pole at k = 𝜋∕a0. And indeed, substitution of Equa-
tion (1.7) into Equation (1.5) shows that no gap opens at k = 0
(see Figure 3).
The merits of the Stacey discretization for the time-

independent problem were studied in ref. [13] (at the level of the
scattering matrix) and in ref. [14] (at the level of the Hamilto-
nian). It was shown that the eigenvalue equation HΨ = EΨ can
be discretized into a generalized eigenvalue problemΨ = EΨ
with local Hermitian tight-binding operators on both sides of
the equation.[4,15] Basically, a local formulation of the generalized
eigenvalue problem is possible because tangent is the ratio of sine
and cosine, which represent local tight-binding operators on a lat-
tice. If all one would care about would be the presence of a pole
in the dispersion at k = 𝜋∕a0, one could work with other func-
tions than the tangent, but the tangent dispersion combines this
property with the possibility of a local algorithm.

1.3. Outline

Somuch for the introduction to the time-independent discretiza-
tion. In what follows we turn to the dynamical problem, by gener-
alizing the approach of refs. [12–14] to the discretization of space
and time. In the next Section 2 we show that the time discretiza-
tion removes the pole in the tangent dispersion, which becomes
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Figure 3. Band structure for three different spatial discretizations of the
1D Dirac Hamiltonian, with a staggered potential equal to ±2ℏv∕a0 on
even and odd-numbered lattice sites. The curves are computed from Equa-
tion (1.5), with E(k) given by Equations (1.2), (1.3), and (1.7) for the three
discretizations. A gap opens at k = 0 for the local discretization and for the
slac discretization, but not for the Stacey discretization.

a smooth function of momentum k and quasi-energy 𝜀 (yellow
bands in Figure 1). In Section 3we then prove that theDirac point
remains gapless for any perturbation that preserves either time-
reversal symmetry or chiral symmetry—even if it varies rapidly
on the scale of the lattice constant.
In contrast, the quasi-energy bandstructure of the linear saw-

tooth dispersion has discontinuous derivatives at the Brillouin
zone boundaries (red bands in Figure 1). These spoil the protec-
tion of the Dirac cone, which is gapped by a staggered potential.
A key feature of the approach presented in Section 2 is that

it requires only a small modification of the usual split-operator
technique, involving the replacement of the linear momentum
operator appearing in the time-evolution operator by its tangent.
Since this operator is evaluated in momentum representation,
the replacement is immediate. It does not degrade the compu-
tational efficiency of the algorithm, which retains the favorable
N lnN scaling in the number of lattice sites (limited only by the
efficiency of the fast Fourier transform).
An alternative implementation which is fully in real space is

possible, taking the form of an implicit finite-difference equa-
tion AΨ(t + 𝛿) = BΨ(t) with sparse matrices A and B. This for-
mulation is a bit more cumbersome to explain, we present it in
Appendix.

2. Space-Time Discretization without Zone
Boundary Discontinuities

2.1. Split-Operator Technique

The Dirac Hamiltonian

 = vk ⋅ 𝝈 + V(r) (2.1)

Figure 4. Momentum dependence of the quasi-energy for the free evolu-
tion operatorU, given by Equation (2.2) with V = 0, computed from Equa-
tion (2.4) in the 2+1 dimensional case. The space and time discretization
units are related by a0 = v𝛿t. Only the first Brillouin zone (Equation (2.5))
is shown.

is the sum of a kinetic term that depends on momentum k and
a potential term that depends on position r. (We set ℏ to unity.)
The split-operator technique[5] separates these two terms in the
time-evolution operator,

Ψ(t + 𝛿t) = e−i𝛿tΨ(t), e−i𝛿t = U + (𝛿t)3
U = e−iV(r)𝛿t∕2e−iv𝛿t k⋅𝝈e−iV(r)𝛿t∕2

(2.2)

with an error term that is of third order in the time slice 𝛿t.[16]

Space is discretized on a square or cubic lattice (lattice con-
stant a0 in each direction). The periodicity of the Brillouin zone
is enforced by the substitution

k ⋅ 𝝈 → a−10
∑
𝛼

𝜎𝛼mod (a0k𝛼 , 2𝜋,−𝜋) (2.3)

In 1D this is the linear sawtooth dispersion of Figure 2, red curve.
A discrete fast Fourier transform is inserted between the kinetic
and potential terms, so that each is evaluated in the basis where
the operators k and r are diagonal. The computational cost scales
as N lnN for N lattice sites.
The eigenvalues ei𝜀𝛿t of the unitary operatorU define the quasi-

energies 𝜀modulo 2𝜋∕𝛿t. For free motion, V = 0, these are given
by

(𝜀 + 2𝜋n∕𝛿t)2 = v2
∑
𝛼

k2
𝛼
, n ∈ ℤ, |k𝛼| < 𝜋∕a0 (2.4)

The 2+1 dimensional band structure in the first Brillouin zone

 = {kx, ky, 𝜀| − 𝜋 < 𝜀𝛿t, kxa0, kya0 < 𝜋} (2.5)

is plotted in Figure 4 for v = a0∕𝛿t, when the dispersion is strictly
linear along the kx and ky-axes. (Alternatively, for v = 2−1∕2 a0∕𝛿t

Ann. Phys. (Berlin) 2022, 2200206 2200206 (3 of 9) © 2022 The Authors. Annalen der Physik published by Wiley-VCH GmbH

 15213889, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/andp.202200206 by L

eiden U
niversity L

ibraries M
etadata Services &

 A
cquisitions, W

iley O
nline L

ibrary on [02/11/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.advancedsciencenews.com
http://www.ann-phys.org


www.advancedsciencenews.com www.ann-phys.org

Figure 5. Cut through the bandstructure of Figure 4 along the line kx =
ky ≡ k (left panel) and along the kx -axis (right panel). In the former direc-
tion the dispersion has a discontinuous slope at the Brillouin zone bound-
aries (dotted lines).

the dispersion is strictly linear along the diagonal lines kx = ±ky,
the corresponding plots are in Appendix A.)
The band structure repeats periodically upon translation by

±2𝜋∕a0 in the kx, ky directions and by ±2𝜋∕𝛿t in the 𝜀 direction.
Upon crossing a zone boundary the dispersion has a discontinu-
ous derivative, see Figure 5.

2.2. Smooth Zone Boundary Crossings

To remove the discontinuity at the Brillouin zone boundary we
modify the kinetic term in the evolution operator (Equation (2.2))
in twoways: First we approximate the exponent by a rational func-
tion (Cayley transform[17,18]),

e−iv𝛿t k⋅𝝈 =
1 − 1

2
iv𝛿t k ⋅ 𝝈

1 + 1
2
iv𝛿t k ⋅ 𝝈

+ (𝛿t3) (2.6)

The error of third order in the time slice is of the same order as
the error in the operator splitting, Equation (2.2).
Second we replace k𝛼 by (2∕a0) tan(a0k𝛼∕2), defining the mod-

ified evolution operator

Ũ = e−iV(r)𝛿t∕2
1 − i(v𝛿t∕a0)

∑
𝛼
𝜎𝛼 tan(a0k𝛼∕2)

1 + i(v𝛿t∕a0)
∑

𝛼
𝜎𝛼 tan(a0k𝛼∕2)

e−iV(r)𝛿t∕2 (2.7a)

The inverse of the sum of Pauli matrices can be worked out, re-
sulting in

Ũ = e−iV(r)𝛿t∕2
[1 −

∑
𝛼
𝜒2(k𝛼)]𝜎0 − 2i

∑
𝛼
𝜎𝛼𝜒(k𝛼)

1 +
∑

𝛼
𝜒2(k𝛼)

e−iV(r)𝛿t∕2 (2.7b)

We abbreviated 𝜒(k) = (v𝛿t∕a0) tan(a0k∕2) and 𝜎0 is the 2 × 2 unit
matrix. This looks more complicated than Equation (2.2), but it
can be computed equally efficiently since in both equations each
operator is evaluated in the basis where it is diagonal.
The required periodicity when k𝛼 → k𝛼 + 2𝜋∕a0 is automati-

cally ensured by the replacement of the linear momentum by
the tangent, it does not need to be enforced by hand as in Equa-
tion (2.3). Although tan(a0k𝛼∕2) has a pole when k𝛼 = 𝜋∕a0, this
pole is removed in the evolution operator (2.7)—which has no
singularity at the Brillouin zone boundaries.

Figure 6. Same as Figure 4, but now for the modified evolution operator
(Equation (2.7)) (with v𝛿t∕a0 = 1).

Figure 7. Cut through the bandstructure of Figure 6 along the line kx =
ky ≡ k (left panel) and along the kx -axis (right panel). In all directions the
dispersion smoothly crosses the Brillouin zone boundaries (dotted lines).

The eigenvalues ei𝜀𝛿t of Ũ for free motion, V = 0, are given by

tan2(𝜀𝛿t∕2) = (v𝛿t∕a0)2
∑
𝛼

tan2(a0k𝛼∕2) (2.8)

plotted in Figures 6 and 7. Comparisonwith Figures 4 and 5 show
that the zone boundaries are now joined smoothly. The disper-
sion is approximately linear near k = 0 and exactly linear along
the lines kx = 0 and ky = 0 if we choose the discretization units
such that v = a0∕𝛿t. (See Appendix A for the case v = 2−1∕2 a0∕𝛿t,
when the linear dispersion is along kx = ±ky.)

3. Stability of the Dirac Point

3.1. Protection by Time-Reversal Symmetry

The condition of time-reversal symmetry for the unitary evolu-
tion operator U reads

𝜎yU
∗𝜎y = U−1 (3.1)

Ann. Phys. (Berlin) 2022, 2200206 2200206 (4 of 9) © 2022 The Authors. Annalen der Physik published by Wiley-VCH GmbH
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Figure 8. Top row: Dirac point in the quasi-energy dispersion 𝜀(k). Bottom
row: Three topologically distinct modifications of the dispersion by the
checkerboard potential. Only the Dirac point preserving modification T0 is
allowed for an evolution operator that depends smoothly on momentum.

where the complex conjugation should be taken in the real space
representation, when k = −i∇ changes sign. The time-reversal
operator, 𝜎y × complex conjugation, squares to −1, so Kramers
theorem applies: In the presence of a periodic potential V , when
momentum k remains a good quantum number, the eigenvalues
at k = 0 should be at least doubly degenerate.[19]

Kramers degeneracy implies a band crossing at k = 0 — pro-
vided that the bands depend smoothly on k—hence this applies
to the evolution operator Ũ for the tangent dispersion, but not to
the operator U for the linear sawtooth dispersion. We conclude

that the Dirac point of Ũ is protected by time-reversal symmetry,
while the Dirac point of U is not.
We demonstrate this difference for the checkerboard potential

V(x, y) = V cos[(𝜋∕a0)(x + y)] (3.2)

(The calculation is described in Appendix B.) In Figure 8we show
the three ways in which this potential can affect the Dirac point.
The evolution operator Ũ shows the modification T0, while U
shows T−, see Figure 9. The other option T+ appears in Figure 3
and in Appendix A.

3.2. Protection by Chiral Symmetry

Chiral symmetry of the evolution operator is expressed by

𝜎zU𝜎z = U−1 (3.3)

Since U−1 = U†, this implies that U can be decomposed in the
block form

U =
(

A B
−B† C

)
, A = A†, C = C† (3.4)

We consider a 2D periodic potential, so that momentum k =
(kx, ky) is a good quantum number. The band structure has wind-
ing number[20]

W = 1
2𝜋

Im ∮Γ
dk ⋅ 𝜕k ln detB(k) ∈ ℤ (3.5)

Figure 9. Quasi-energy bandstructure for the evolution operators a,c) U and b,d) Ũ, in the presence of the 2D checkerboard potential (Equation (3.2))
(for V = 2∕𝛿t = 2 v∕a0). Panels c,d show a cut through the bandstructure for kx = ky ≡ k.

Ann. Phys. (Berlin) 2022, 2200206 2200206 (5 of 9) © 2022 The Authors. Annalen der Physik published by Wiley-VCH GmbH
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Figure 10. Quasi-energy bandstructure for the evolution operators a) U and b) Ũ , in the presence of the checkerboard magnetization (Equation (3.9))
(for 𝜇 = 2∕𝛿t = 2 v∕a0).

along a contour Γ in the Brillouin zone on which detB does not
vanish.[20,21] This is a topological invariant, it cannot change in
response to a continuous perturbation.[22] A Dirac point within
the contour is signaled by W = ±1. While pairs of Dirac points
of opposite winding number can annihilate, a single Dirac point
is protected by chiral symmetry—provided that the evolution op-
erator is continuous.
The 2D Dirac Hamiltonian has chiral symmetry when V ≡ 0.

An in-plane magnetization

M(x, y) = 𝜇x(x, y)𝜎x + 𝜇y(x, y)𝜎y (3.6)

preserves the chiral symmetry. We are thus led to compare the
two evolution operators

U = e−iM(x,y)𝛿t∕2e−i(v𝛿t∕a0)
∑
𝛼=x,y 𝜎𝛼 mod (a0k𝛼 ,2𝜋,−𝜋)e−iM(x,y)𝛿t∕2 (3.7)

Ũ = e−iM(x,y)𝛿t∕2
1 − i(v𝛿t∕a0)

∑
𝛼=x,y 𝜎𝛼 tan(a0k𝛼∕2)

1 + i(v𝛿t∕a0)
∑

𝛼=x,y 𝜎𝛼 tan(a0k𝛼∕2)
e−iM(x,y)𝛿t∕2

(3.8)

Both satisfy the chiral symmetry relation, Equation (3.3), Ũ is a
continuous function of k while U is not.
The implication for the stability of the Dirac point is shown in

Figure 10, where we compare the bandstructure in the presence
of the checkerboard magnetization

M(x, y) = 𝜇𝜎x cos[(𝜋∕a0)(x + y)] (3.9)

(see Appendix B). A gap opens forU (linear sawtooth dispersion),
while the Dirac point for Ũ (tangent dispersion) remains unaf-
fected.

4. Conclusion

In conclusion, we have presented a method to cure a fundamen-
tal deficiency of the split-operator technique for the space-time

discretization of the Dirac equation.[5] The linear sawtooth repre-
sentation of the momentum operator preserves the time-reversal
and chiral symmetries of the continuum limit, but it breaks the
topological protection of the Dirac cone that these symmetries
should provide. The deficiency originates from the discontinu-
ity of the discretized time-evolution operator at the boundaries
of the Brillouin zone. We have demonstrated the breakdown of
the topological protection for a simple model: a periodic poten-
tial (or magnetization) on a 2D square lattice (lattice constant a0)
which couples the Dirac point at k = 0 to the zone boundaries at
k = 𝜋∕a0.
To restore the topological protection we modify the split-

operator technique without compromising its computational ef-
ficiency, basically by replacing a0k in the evolution operator by
2 tan(a0k∕2). Since themomentum operators are evaluated in the
basis where they are diagonal, this is a “drop-in” replacement —
it does not degrade the N lnN efficiency of the split-operator al-
gorithm.
One open problem of the split-operator technique that is not

addressed by our modification is the difficulty to incorporate the
vector potential in a gauge invariant way.[23] For that purpose it
would be useful to formulate the split-operator technique fully in
real space. This is done in ref. [8] for the original approach with
the linear sawtoothmomentumoperator. In Appendix Cwe show
that our tangent modification also allows for a real space formu-
lation.
The availability of a single-cone discretization scheme which

is efficient and which does not break the topological protec-
tion is a powerful tool for dynamical studies of massless Dirac
fermions. One application to Klein tunneling has been published
recently.[24]

Appendix A: Bandstructures for v = 2−1∕2 a0∕𝜹t

The bandstructures in the main text are for space-time discretization
units such that v = a0∕𝛿t, when the dispersion is strictly linear along
the lines kx = 0 and ky = 0. Alternatively, one can have a strictly linear
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dispersion along the diagonals kx = ±ky, by choosing v = 2−1∕2 a0∕𝛿t. The
bandstructures of U and Ũ for free evolution are shown in Figure A1.

For v = 2−1∕2 a0∕𝛿t the checkerboard potential in the main text varies
along the diagonals where U is continuous, so it does not affect the
Dirac point. Instead we choose here a staggered potential V(x, y) =
V cos(𝜋x∕a0) that varies along the x-axis. (In Equation (B2) we thus replace
(kx + 𝜋, ky + 𝜋) by (kx + 𝜋, ky).) The effect on U is the T+ gap-opening pro-
cess of Figure 8, while the Dirac point of Ũ is unaffected, see Figure A2.
We can also take the staggered magnetizationM(x, y) = 𝜇𝜎x cos[(𝜋∕a0)x],
with bandstructures very similar to those in Figure A2.

Appendix B: Bandstructure in the Checkerboard
Potential

In this appendix we choose v = a0∕𝛿t and set the discretization units
a0, 𝛿t to unity. We compute the eigenvalues of the evolution operators
U and Ũ in the presence of the 2D checkerboard potential V(x, y) =
V cos[𝜋(x + y)]. This potential couples states at (kx , ky) and (kx + 𝜋, ky + 𝜋)
with amplitude V∕2.

We denote by U0(k) and Ũ0(k) the free evolution operators, for V = 0,
given by

U0(k) = exp
(
−i
∑
𝛼𝜎𝛼 mod (k𝛼 , 2𝜋,−𝜋)

)
(B1a)

Ũ0(k) =
1 − i

∑
𝛼 𝜎𝛼 tan(k𝛼∕2)

1 + i
∑
𝛼 𝜎𝛼 tan(k𝛼∕2)

(B1b)

The quasi-energies ei𝜀 are the eigenvalues of the 4 × 4 matrices

 = 
(
U0(kx , ky) 0

0 U0(kx + 𝜋, ky + 𝜋)

)
 (B2a)

̃ = 
(
Ũ0(kx , ky) 0

0 Ũ0(kx + 𝜋, ky + 𝜋)

)
 (B2b)

The 2 × 2 blocks at (kx , ky) and (kx + 𝜋, ky + 𝜋) are coupled by the matrix

 = exp
[
− i
2

(
0 V∕2

V∕2 0

)]
=
(

cos(V∕4) −i sin(V∕4)
−i sin(V∕4) cos(V∕4)

)
(B3)

Results for V = 2 are plotted in Figure 9.

Figure A1. Free evolution (V = 0) bandstructures of U (left panel) and of Ũ (right panel), for v = 2−1∕2 a0∕𝛿t.

Figure A2. Same as Figure A1, but now in the presence of the potential V(x, y) = V cos(𝜋x∕a0) with V = 2 𝛿t. The bandstructures for the staggered
magnetizationM(x, y) = 𝜇𝜎x cos[(𝜋∕a0)x] look very similar.
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For ̃ the Dirac point at k = 0 is not affected by the checkerboard po-
tential. In contrast, for the T− modification of Figure 8 replaces the band
crossing at k = 0 by four band crossings at ±(q, q) and ±(q,−q), with

cos

(
𝜋 − 2q√

2

)
= cos

(
𝜋√
2

)
cos(V∕2) ⇒ q = 0.067V2 + (V4) (B4)

The calculation for a checkerboard magnetization M(x, y) = (𝜇x𝜎x +
𝜇y𝜎y) cos[𝜋(x + y)] proceeds entirely similar, upon replacement of  by

 = exp
[
− i
4

(
0 𝜇x − i𝜇y

𝜇x + i𝜇y 0

)]
(B5)

The bandstructure for 𝜇x = 2, 𝜇y = 0 is shown in Figure 10. For evolution
operator  the spectrum acquires a gap Δ𝜖 = 0.095𝜇2x + (𝜇4x ). For Ũ
the Dirac cone remains gapless.

Appendix C: Real-Space Formulation of the
Split-Operator Discretized Evolution Operator

C.1. Implicit Finite-Difference Equation

The discretized Dirac equation for the tangent dispersion, Ψ(t + 𝛿t) =
ŨΨ(t) with Ũ given by Equation (2.7), can be rewritten as a local implicit
finite-difference equation in real space—without requiring a Fourier trans-
form to momentum space.

We introduce the translation operator r𝛼 → r𝛼 + a0 on a square or cubic
lattice, given by T𝛼 = ea0𝜕𝛼 , with 𝜕𝛼 = 𝜕∕𝜕r𝛼 = ik𝛼 . We note the identity

i tan(a0k𝛼∕2) =
T𝛼 − 1
T𝛼 + 1

(C1)

The product operators

D0 =
1
4

∏
𝛼

(T𝛼 + 1), D𝛼 = 1
2
(T𝛼 − 1)

∏
𝛼′≠𝛼

(T𝛼′ + 1) (C2)

couple nearby sites on the lattice.

The split-operator evolution equation

Ψ(t + 𝛿t) = e−iV(r)𝛿t∕2
1 − i(v𝛿t∕a0)

∑
𝛼 𝜎𝛼 tan(a0k𝛼∕2)

1 + i(v𝛿t∕a0)
∑
𝛼 𝜎𝛼 tan(a0k𝛼∕2)

e−iV(r)𝛿t∕2Ψ(t)

(C3)

can be rewritten identically in terms of these local operators,(
D0 +

v𝛿t
2a0

∑
𝛼

𝜎𝛼D𝛼

)
eiV(r)𝛿t∕2Ψ(t + 𝛿t)

=

(
D0 −

v𝛿t
2a0

∑
𝛼

𝜎𝛼D𝛼

)
e−iV(r)𝛿t∕2Ψ(t) (C4)

The finite-difference equation (C4) of the form AΨ(t + 𝛿t) = BΨ(t) is
called “implicit,” because one needs to solve for the unknown Ψ(t + 𝛿t)
given the knownΨ(t). The matrices A and B are both sparse, each of theN
sites on the 2D square lattice is only coupled to its four nearest neighbors.
Themethod of nested dissection then allows for an efficient solution of the
finite difference equation[25–27]: There is an initial N3∕2 overhead from the
LU decomposition of the matrix A, but subsequently the computational
cost per time step scales as N lnN with the number of lattice sites, which
is the same scaling as the split-operator algorithm.

C.2. Computational Efficiency

To check the efficiency of the discretization schemes we have calculated[28]

the spreading of a wave packet in a 2D disordered lattice (of M ×M
sites, with periodic boundary conditions in x- and y-directions). We take a
random potential V(x, y) which varies independently on each of the N =
M2 sites, uniformly in the interval (−0.5, 0.5) × ℏv∕a0. The initial state is

Ψ(x, y, 0) = (4𝜋w2)−1∕2eik0xe−(x
2+y2)∕2w2

(
1
1

)
(C5)

with parameters k0 = 0.5∕a0, w = 30 a0. We follow the time evolution for
T = 103 time steps 𝛿t = 2−1∕2a0∕v.

Figure C1. Demonstration of the favorable N lnN scaling with the number N of lattice points of the single-cone discretization scheme with the tangent
dispersion. The plot at the left shows the run time tevolution per time step for the evolution of the wave packet (Equation (C5)) through a disordered 2D
system: red symbols for the split-operator approach, blue symbols for the implicit finite-difference approach. The latter approach has an initial overhead
tinitial ∝ N3∕2 from the LU decomposition, shown in the right plot.
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We compare the run time of the finite-difference code for a range of
values of N, distinguishing the time tinitial spent on the initial LU decom-
position from the run time tevolution per time step needed for the sub-
sequent evolution of the wave packet. (The full run time of the code is
tinitial + Ttevolution.)

The data shown in Figure C1 is consistent with the expected scaling
tinitial ∝ N3∕2 and tevolution ∝ N lnN. The storage requirements also scale
as N lnN, governed by the number of nonzero matrix elements in the
LU decomposition.

We also show in the same plot the run time per time step for the split-
operator algorithm. There is no initialization overhead in that case, the full
run time is set by the N lnN cost of the fast Fourier transform.
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