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Abstract
This paper surveys the field of deep multiagent reinforcement learning (RL). The combi-
nation of deep neural networks with RL has gained increased traction in recent years and 
is slowly shifting the focus from single-agent to multiagent environments. Dealing with 
multiple agents is inherently more complex as (a) the future rewards depend on multiple 
players’ joint actions and (b) the computational complexity increases. We present the most 
common multiagent problem representations and their main challenges, and identify five 
research areas that address one or more of these challenges: centralised training and decen-
tralised execution, opponent modelling, communication, efficient coordination, and reward 
shaping. We find that many computational studies rely on unrealistic assumptions or are 
not generalisable to other settings; they struggle to overcome the curse of dimensionality 
or nonstationarity. Approaches from psychology and sociology capture promising relevant 
behaviours, such as communication and coordination, to help agents achieve better perfor-
mance in multiagent settings. We suggest that, for multiagent RL to be successful, future 
research should address these challenges with an interdisciplinary approach to open up new 
possibilities in multiagent RL.

Keywords Reinforcement learning · Deep learning · Multiagent systems · Evolutionary 
algorithms · Psychology · Survey

1 Introduction

Reinforcement learning (RL) is a machine-learning method in which one agent or a group 
of agents maximises its long-term return through repeated interaction with its environ-
ment. Agents are not told what actions to take and must learn their optimal behaviour via 
trial-and-error. Since rewards may be delayed, an agent has to make a trade-off between 
exploiting states with the current highest reward and exploring states that may potentially 
yield higher rewards (Bellman 1957). As agents learn by receiving rewards for desirable 
actions and penalties (negative rewards) for undesired actions, RL can automate learning 
and decision-making without supervision or having complete models of the environment. 
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However, one drawback of RL methods is that they suffer from the curse of dimensional-
ity (Bellman 1957): algorithms become less efficient as the dimensions of the state-action 
space increase (Sutton et al. 1998). In recent years the rise of deep reinforcement learning 
(DRL), a combination of RL and deep learning, has enabled artificial agents to surpass 
human-level performance in a wide range of complex decision-making tasks, such as in the 
board game Go (Silver et al. 2016) and the card game Poker (Brown and Sandholm 2018, 
2019; Bowling et al. 2015). While prior RL applications required carefully handcrafted fea-
tures based on human knowledge and experience (Sutton et al. 1998), deep neural networks 
can automatically find low-dimensional representations (features) of high-dimensional 
data (LeCun et al. 2015). This development has led to enormous growth in applying RL 
to more complicated problems. First in single-agent settings such as playing Atari (Mnih 
et al. 2015), resource management (Wen et al. 2015; Mao et al. 2016), indoor robot naviga-
tion (Zhu et al. 2017), cyber security (Huang et al. 2022), and trade execution (Nevmyvaka 
et  al. 2006), and more recently in multiagent settings such as bidding optimization (Jin 
et al. 2018), traffic-light control (Chu et al. 2020), autonomous driving (Sallab et al. 2017), 
financial market trading (Bao and Liu 2019), energy usage (Prasad and Dusparic 2019), 
fleet optimization (Lin et al. 2018) and strategy games like Dota 2 (Berner et al. 2019) and 
Starcraft (Vinyals et al. 2019).

It is challenging to translate the successes of DRL in single-agent settings to a multia-
gent setting. Multiagent reinforcement learning (MARL) differs from single-agent sys-
tems foremost in that the environment’s dynamics are determined by the joint actions of 
all agents in the environment, in addition to the uncertainty already inherent in the envi-
ronment. As the environment becomes nonstationary, each agent faces the moving-target 
problem: the best policy changes as the other agents’ policies change (Busoniu et al. 2008; 
Papoudakis et  al. 2019). The violation of the stationarity assumption required in most 
single-agent RL algorithms poses a challenge in solving multiagent learning problems. 
The curse of dimensionality is also worse in a multiagent setting as every additional agent 
increases the state-action space. At the same time, MARL introduces a new set of oppor-
tunities as agents may share knowledge and imitate or directly learn from other learning 
agents (Da  Silva and Costa 2019; Ilhan et  al. 2019), which may accelerate the learning 
process and subsequently result in more efficient ways of arriving at a goal.

Deep multiagent reinforcement learning (DMARL) constitutes a young field that is rap-
idly expanding. Many real-world problems can be modelled as a MARL problem, and the 
emergence of DRL has enabled researchers to move from simple representations to more 
realistic and complex environments. This survey examines current research areas within 
DMARL, addresses critical challenges, and presents future research directions. Earlier sur-
veys were driven by the theoretical difficulties in multiagent systems, including nonsta-
tionarity (Hernandez-Leal et al. 2019; Papoudakis et al. 2019), partial observability, and 
continuous state and action spaces (Nguyen et al. 2020). Others focus on how agents learn, 
such as transfer learning (Da Silva and Costa 2019), modelling other agents (Albrecht and 
Stone 2018), or a theoretical domain such as game theory (Yang and Wang 2021) and evo-
lutionary algorithms (Bloembergen et al. 2015). A number of studies have looked into the 
applications of MARL (Canese et al. 2021; Feriani and Hossain 2021; Du and Ding 2021). 
This paper complements a group of surveys that provides a general framework to classify 
the deep learning algorithms used in recent DMARL studies (Hernandez-Leal et al. 2019; 
Gronauer and Diepold 2021).

When working on this survey, Google Scholar was the leading search engine for find-
ing relevant papers containing keywords such as “multi-agent” or “multiagent”, “reinforce-
ment learning”, and “deep learning”. We cover works from leading journals, conference 



Deep multiagent reinforcement learning: challenges and…

1 3

proceedings, relevant arXiv papers, book chapters, and PhD theses. We carefully evaluated 
the studies that came to our attention and developed a taxonomy based on the prominent 
research directions in the field.

In contrast to prior surveys, we propose a taxonomy based on the challenges inherent 
in multiagent problem formalisations and their solutions. Modelling a multiagent problem 
differs from the single-agent setting due to the violation of the stationarity assumption and 
the difference in learning objectives. Hence, alternative problem formalisations and solu-
tions have been introduced. While other taxonomies also start from multiagent problem 
representations (Yang and Wang 2021; Zhang et  al. 2021), these studies only focus on 
Markov and extensive-form games. Recent MARL research has used additional representa-
tions to model multiagent problems, such as the decentralised partially observable Markov 
game and the partially observable Markov game, which we will also cover in this survey.

The remainder of this paper is organised as follows. In Sect. 2 the preliminaries of sin-
gle-agent RL are discussed. In Sect.  3 we present the most common DMARL problem 
frameworks. The taxonomy is introduced in Sect. 4. The discussion and recommendations 
for future research are given in Sect. 5. We end with the conclusion in Sect. 6.

2  Single‑agent reinforcement learning

2.1  Markov decision process

Most RL problems can be framed as a Markov decision process (MDP) (Bellman 1957): 
a model for sequential decision-making under uncertainty that defines the interac-
tion between a learning agent and its environment. Formally, it can be defined as a tuple 
⟨S,A,P,R, �⟩ where S is the set of states, A is the set of actions, P is the transition prob-
ability function, R is the reward function and � ∈ [0, 1] is the discount factor for future 
rewards. The learning agent interacts with the environment in discrete time steps. At each 
time step t, the agent is in some state st ∈ S and selects an action at ∈ A . At time step 
tt+1 the agent receives a reward rt+1 ∈ R and moves into a new state st+1 . Specifically, the 
state transition function is defined as P(s�, r|s, a) = Pr{St = s�,Rt = r|St−1 = s,At−1 = a} 
and describes the model dynamics. Each state in an MDP has the Markov property, which 
means that the future only depends on the current state and not on the history of earlier 
states and actions. MDPs further assume that the agent has full observability of the states 
and that the environment is stationary: the transition probabilities and rewards remain con-
stant over time. A setting where the agent does not have full observability of the state is 
called a partially observable Markov decision process (POMDP) (Åström 1965).

A policy � is a mapping from states to probabilities of selecting each action and can 
be deterministic or stochastic. The goal of the agent is to learn a policy that maximises 
its performance and is typically defined as the expected return, computed as the expected 
discounted sum of rewards, in a trajectory � = (s0, a0, s1, a1, ...) , a sequence of states and 
actions in the environment:

The discount factor � ∈ [0, 1] describes how rewards are valued. A � closer to 0 means that 
the agent places more value on immediate rewards, while a � closer to 1 indicates that the 

(1)��

[
T∑

t=0

� trt

]
.
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agent favours future rewards. A policy that maximises the function above is optimal and is 
denoted as �∗.

Most MDP solving algorithms can be divided into one of three groups: value-based, 
policy-based, and model-based methods. This distinction is based on the three primary 
functions to learn in RL (Graesser and Keng 2019). Hybrid forms of the three primary 
functions also exist. We present a brief overview of each of the three classes.

2.2  Value‑based methods

Value-based methods learn the value function and derive the optimal policy from the 
optimal value function. There are two kinds of value functions. The state-value function 
describes how good it is to be in a state, and it is the expected return from being in state s 
and then following policy � and is denoted as:

The action-value function or sometimes called the Q-function describes how good it is to 
perform action a in state s and is denoted as:

The optimal policy �∗ maximizes the state-value function such that v𝜋∗ (s) > v𝜋(s) for all 
s ∈ S and all policies � . If we have the optimal state-value function, the optimal policy can 
be extracted by choosing the action that gives the maximum action-value for state s. This 
relationship is given by �∗ = max

�
v�(s) = max

�
q�(s, a).

Deep Q-networks (DQN) (Mnih et  al. 2015) belong to the value-based methods that 
have become increasingly popular as studies achieved remarkable results in more com-
plicated environments such as Atari games. Recent developments in RL research show a 
preference for policy-based strategies, even though value-based methods can capture the 
underlying structure of the environment (Arulkumaran et al. 2017).

2.3  Policy‑based and combined methods

In contrast to value-based methods, policy-based methods search directly for the optimal 
policy and the output is represented as a probability distribution over actions. The opti-
mal policy is found by optimising a �-parameterized policy with respect to the objec-
tive via gradient ascent. The policy network weights are updated iteratively so that state-
action pairs that result in higher returns are more likely to be selected. The objective is the 
expected return over all completed trajectories and is defined as follows:

(2)v�(s) = �s0=s,�∼�

[
T∑

t=0

� trt

]
.

(3)q�(s, a) = �s0=s,a0=a,�∼�

[
T∑

t=0

� trt

]
.

(4)J(�) = ��∼��

[
T∑

t=0

� trt

]
.
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Many policy gradient methods build upon REINFORCE (Williams 1992), one of the first 
policy gradient implementations which used Monte Carlo sampling to estimate the policy 
gradient.

Policy gradient methods perform better in continuous and stochastic environments, 
learn specific probabilities for each action, and learn the appropriate level of exploration 
(Sutton and Barto 2018). The main limitation of policy gradient methods is the large vari-
ance in the gradient estimators (Greensmith et al. 2004) due to sparse rewards and the fact 
that only a finite set of states and actions are tried. Policy gradient methods are not very 
sample-efficient since new estimates of the gradients are learned independently from past 
estimates (Konda and Tsitsiklis 2003; Peters and Schaal 2008).

Actor-critic methods (Konda and Tsitsiklis 2003; Grondman et al. 2012; Bahdanau et al. 
2017) combine policy-based and value-based methods to address these limitations: Actor-
critic methods preserve the desirable convergence properties while maintaining stability 
during learning. Actor-critic methods consist of an actor that learns a policy and a critic 
that learns a value function to evaluate the state-action pair. The critic approximates and 
updates the value function parameters w for either the state-value v(s;  w) or the action-
value q(a|s; w), and the actor updates the policy parameters � for ��(a|s) in the direction 
suggested by the critic.

Popular actor-critic methods include Advantage Actor-Critic (A2C) (Wu et al. 2017a), 
Asynchronous Advantage Actor-Critic (A3C) (Mnih et  al. 2016), Proximal Policy Opti-
mization (PPO) (Schulman et  al. 2017), Soft Actor-Critic (SAC) (Haarnoja et  al. 2018) 
and Twin-Delayed Deep Deterministic Policy Gradient (TD3) (Dankwa and Zheng 2019). 
In A3C, multiple agents interact with a copy of the environment in parallel and update 
the global network parameters asynchronously (Mnih et  al. 2016). In contrast, A2C per-
forms the global network updates synchronously and is found to be more efficient on a 
GPU machine or when larger policies are trained (Wu et al. 2017b). PPO builds upon Trust 
Region Policy Optimization (TRPO) (Schulman et al. 2015), a method in which the gradi-
ent steps are constrained to prevent destructive policy updates. PPO uses first-order optimi-
sation to compute the updates, simplifying the algorithm’s tuning and implementation. In 
contrast to previous methods, SAC and TD3 are off-policy methods that efficiently reuse 
past experiences. SAC uses entropy maximization to encourage exploration, while TD3 is 
a combination of continuous Double Deep Q-Learning (Van Hasselt et  al. 2016), Policy 
Gradient (Silver et al. 2014) and Actor-Critic (Sutton et al. 1999).

2.4  Model‑based methods

Model-based approaches learn a model of the environment that captures the transition and 
reward function. The agent can then use planning, the construction of trajectories or expe-
riences using the model (Hamrick et al. 2021) to find the optimal policy. While model-free 
methods focus on learning, where the agent improves a policy or value function from direct 
experiences generated by the environment, model-based methods focus on planning (Sut-
ton and Barto 2018).

The environment model can either be given or learned. Games such as chess and Go 
belong to the first category. When there is no given model, the agent must learn it through 
repeated interaction with the environment using a base policy �0(at|st) . The experiences 
are stored in historical data D = (si

t
, ai

t
,si
t+1

) , which is then used to learn the dynamics 
model P(s, a) by minimizing 

∑
i ��P(sit, ait) − si

t+1
��2 . Given the current state s and action 

a, the next state st+1 is then given by st+1 = P(st, at) . Planning is then performed through 
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P(s, a) (Levine 2017; Chua et al. 2018). Planning methods generally compute value func-
tions via updates or backup operations to simulated experiences to find the optimal policy 
(Sutton and Barto 2018).

Examples of model-based algorithms include AlphaZero (Silver et  al. 2017) and 
MuZero (Schrittwieser et al. 2020) that achieved state-of-the-art performance in Atari, Go, 
chess and Shogi. For a recent overview of DRL in model-based games, see (Plaat 2020).

The main advantage of model-based approaches is better sample efficiency. Agents may 
use the model to simulate experiences to have fewer interactions with the environment, 
resulting in faster convergence. However, it is difficult to accurately represent the model, 
especially in real-world scenarios where the transition dynamics are unavailable. In addi-
tion, when bias and inaccuracies are present in the model, errors may accumulate for each 
step (Graesser and Keng 2019).

3  Multiagent problem representations

In MARL, a set of autonomous agents interact within the environment to learn how to 
achieve their objectives. While MDPs have proven helpful in modelling optimal decision-
making in single-agent stochastic environments, multiagent environments require a differ-
ent representation. The state dynamics and expected rewards change upon all agents’ joint 
action, violating the core stationarity assumption of an MDP.

MDPs can be fully or partly visible to the agent. In a multiagent setting, the problem 
representation is also dependent on the nature of the interaction between agents, which 
can be cooperative, competitive or mixed, and whether agents take actions sequentially or 
simultaneously. Figure 1 shows an overview of the most common theoretical frameworks 
used in the DMARL literature. When agents have full observability of the state, the prob-
lem is usually represented by a Markov game. A particular type is the team Markov game, 
where agents collaborate to maximise a common reward. If agents collaborate but execute 
actions decentrally, it is represented by a decentralised POMDP. The partially observable 
variant for the mixed and competitive setting is known as the partially observable Markov 
game. The extensive-form game representation is used when agents take turns sequentially 
instead of simultaneously. The following sections outline the theoretical frameworks perti-
nent to the DMARL literature, which are visually depicted in Fig. 2.

3.1  Markov games

Markov games (e.g. Littman 1994), or Stochastic games (Shapley 1953),1 provide a theo-
retical framework to study multiple interacting agents in a fully observable environment 
and can be applied to cooperative, collaborative and mixed settings. A Markov game is a 
collection of normal-form games (or matrix games) that the agents play repeatedly. Each 
state of the game can be viewed as a matrix representation with the payoffs for each joint 
action determined by the matrices.

In its general form, a Markov game is a tuple ⟨I, S,A,R, T⟩ where I is the set of 
N agents, S is a finite state space, A = A1 × A2 ×⋯ × AN is the joint action space of N 

1 The terms Markov game and stochastic game are used interchangeably in the literature. For consistency, 
we will continue using the term Markov game throughout the paper.
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Fig. 1  Diagram of problem representations and their main challenges. multiagent problem representations 
can be categorised along a number of axes. First, whether the environment is fully or partially observable. 
Second, whether the nature of the interaction is collaborative, mixed or competitive. Third, whether turns 
are taken sequentially or simultaneously. Different problem representations come with different challenges. 
The four main challenges include computational complexity, nonstationarity, partial observability and credit 
assignment. Computational complexity and nonstationarity are challenges found in all problem representa-
tions, while partial observability and credit assignment are specific to some.Illustrations are created with 
BioRender.com

Fig. 2  Visual depiction of the main problem representations in multiagent reinforcement learning. The 
MDP is the primary framework used in the single-agent setting. An agent is in some state S, performs 
action A, and receives a reward R from the environment. In partially observable environments, the agent 
cannot view the true state S and receives an observation O instead. For simplicity, all figures display the 
interaction between two agents i = 1, 2 but can be extended to more agents
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agents, R = (r1, r2,… , rN) where ri ∶ S × A → ℝ is each agent’s reward function and 
T ∶ S × A × S → [0, 1] is the transition function. In a team Markov game, agents work 
together to achieve a goal and share the rewards function r1 = r2 = ⋯ = rN . A competi-
tive Markov game is represented by a zero-sum game: the gains for one party automati-
cally result in equal losses for the other. A Markov game is a normal-form game, which 
means that the game is represented in a tabular form, and all agents take their actions 
simultaneously.

One way to solve Markov games is to learn equilibria by optimising over an agent’s 
reward function and ignoring others in the environment (Tan 1993; Littman 1994). Another 
approach involves best-response learners. Agents optimise their reward function while 
accounting for other agents’ changing policies. If these algorithms converge during the 
play, then it must be an equilibrium (Bowling and Veloso 2001, 2002). However, equi-
librium concepts either assume infinite computational resources or have been applied to 
smaller grid-word environments, as they do not scale well with the number of agents.

The majority of studies in DMARL focus on Markov games, such as Pong (Diallo et al. 
2017), predator games (Zheng et al. 2018a) and the iterated prisoner’s dilemma (Foerster 
et al. 2018a).

3.2  Extensive‑form games

When agents take turns sequentially, this is modelled as an extensive-form game (Kuhn 
and Tucker 1953). An extensive-form game specifies the sequential interaction between 
agents in the form of a game tree. The game tree shows the order of the agents’ moves and 
the possible actions at each point in time. Formally, an extensive-form game with finite and 
perfect information is given by the tuple ⟨P,A,H, Z,� , �, �, u⟩ where P is a set of players 
or agents, A is a single set of actions, H is a set of non-terminal choice nodes, Z is a set of 
terminal outcome nodes, � ∶ H → 2A is an action function, representing the set of possible 
actions at each node, � ∶ H → P is the player function, which assigns at each choice node a 
player i ∈ P who is to take action at a given non-terminal node, � ∶ H × A → H ∪ Z is the 
successor function that maps a choice node and an action to a new choice node or terminal 
node, and u is a set of utility functions (Shoham and Leyton-Brown 2008).

When agents have incomplete information or a partial view of the global state, this can 
be formalised as an imperfect information extensive-form game in which decision nodes 
are portioned into information sets. When the game reaches the information set, the agent 
whose turn it is cannot distinguish between nodes within the information set nor tell which 
node in the tree has been reached. Formally, an imperfect information extensive-form game 
is a tuple ⟨P,A,H, Z,� , �, �, u, I⟩ where ⟨P,A,H, Z,� , �, �, u⟩ is a perfect information 
extensive-form game and I = I1, ..., IN is the set of information partitions of all players.

A strategy maps each agent’s information sets to a probability distribution over pos-
sible actions. The exploitability is a mean score over all the positions against a worst-case 
adversary who uses at each turn a best-response. In a Nash equilibrium, the exploitability 
is equal to 0, and no agents have an incentive to change their strategies (Johanson et al. 
2013). Studies try to solve extensive-form games by approximating a Nash equilibrium, 
predominantly in the poker domain (Bowling et al. 2015; Heinrich et al. 2015; Moravčík 
et al. 2017; Heinrich and Silver 2016; Brown and Sandholm 2018, 2019) and board games 
such as Go (Silver et al. 2016, 2017) and Othello (Van Der Ree and Wiering 2013).
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3.3  Decentralized partially observable Markov decision process

In a decentralised partially observable Markov decision process (Dec-POMDP), all agents 
attempt to maximise the joint reward function while having different individual objectives 
(Bernstein et al. 2002).

A Dec-POMDP is defined by the tuple ⟨I, S,A,Ω,O, T ,R⟩ , where I is the set of N agents, 
S is the finite state space, A is the joint action set, Ω is the joint observations set, O is the 
observation probability function: O ∶ Ω × A × S → [0, 1] and O(o1, ..., oN|a1, ..., aN , s�) are 
observed by agents 1, ..., N, respectively, given that each action tuple ⟨a1, ..., aN⟩ was taken 
and led to state s′ . Each agent i has a set of actions Ai ∈ A for each observation Ωi ∈ Ω . T 
is the state transition probability function T ∶ S × A × S → [0, 1] that specify the transition 
probabilities P(s�|s, a1, ..., aN) . Finally, R is the reward function R(s, a1, ..., aN).

At every time step, each agent takes an action and receives a local observation that is 
correlated with the state and an immediate joint reward. A local policy maps local histories 
of observations to actions, and a joint policy is a tuple of local policies.

The computational complexity of Dec-POMDPs presents a big challenge for research-
ers. These problems are not solvable with polynomial-time algorithms, and searching 
directly for an optimal solution in the policy space is intractable (Bernstein et al. 2002). 
One approach is to transform the Dec-POMDP into a simpler model and solve it with plan-
ning algorithms (Amato and Oliehoek 2015; Ye et  al. 2017). For instance, using a cen-
tralised controller that receives all agents’ private information converts the model into a 
POMDP, and allowing communication that is free of costs and noise reduces it to a multia-
gent POMDP (MPOMDP) (Amato and Oliehoek 2015; Gupta et al. 2017). Recent solu-
tions also take advantage of the key assumption that planning can be centralised as long as 
execution is decentralised.

The Dec-POMDP has been used to represent riddles (Foerster et al. 2016), coordination 
of bipedal walkers (Gupta et al. 2017) and real-time strategy games such as Starcraft (Vin-
yals et al. 2019; Schroeder de Witt et al. 2019; Du et al. 2019), Dota 2 (Berner et al. 2019), 
and Capture the Flag (Jaderberg et al. 2019).

3.4  Partially observable Markov game

The partially observable Markov game (POMG) (Hansen et al. 2004), also known as the 
partially observable stochastic game (POSG), is the counterpart of the Dec-POMDP. 
Instead of a joint reward function, agents optimise their individual reward functions in a 
partially observable environment. The POMG implicitly models a distribution over other 
agents’ belief states. Formally, a POMG is a tuple ⟨I, S,A,O, b0,P,R⟩ where I is the set of 
N agents, S is the set of states, Ai is the action set of agent i and A = A1 × A2 ×⋯ × AN is 
the joint action set, Oi is a set of observations for agent i and O = O1 × O2 ×⋯ × ON is the 
joint observation set. The game’s initial state, also called the initial belief, is drawn from 
a probability distribution b0 over the states. P is a set of state transitions and observation 
probabilities, where P(s�, o|s, a) is the probability of moving into state s′ and joint observa-
tion o when taking joint action a in state s. Ri ∶ S × A → ℝ is the reward function for agent 
i where S refers to the joint state (s1, ..., sN) and A refers to the joint actions (a1, ..., aN) . The 
model can be reduced to a POMDP when |I| = 1.

Dynamic programming algorithms have been developed for POMG (Hansen et al. 2004; 
Kumar and Zilberstein 2009), in which agents maintain a belief over the actual state of the 
environment and other agents’ policies. However, applying it to high-dimensional problems 
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becomes intractable, and assumptions are often relaxed or applied to simpler problems. 
Complexities such as competing goals, nonstationarity and incomplete information make 
the problem even harder. Examples of POMG include autonomous driving (Palanisamy 
2020) and partially observable grid world games (Moreno et al. 2021).

4  Taxonomy of deep multiagent reinforcement learning algorithms

We will now introduce the taxonomy of this paper. We first discuss the four main chal-
lenges inherent in multiagent settings: (1) computational complexity, (2) nonstationarity, 
(3) partial observability and (4) credit assignment. We then provide an overview of current 
deep learning approaches and discuss how these algorithms address these challenges. The 
surveyed studies cover the whole learning process of an agent: starting from the training 
scheme, how it learns and interacts with the environment, to how an agent incorporates 
feedback, as shown in Figure 3. The reviewed algorithms have been categorised into one 
of the following groups: (1) centralised training and decentralised execution, (2) opponent 
modelling, (3) communication, (4) efficient coordination and (5) reward shaping. Figure 4 
shows the relationship between the reviewed studies and the challenges that they address. 
Finally, Table 1 presents examples of some of the major studies along with their main chal-
lenges and solutions.

4.1  Challenges

Reinforcement learning in a multiagent environment comes with numerous challenges. 
Addressing these challenges is a prerequisite for the development of effective learning 
approaches. Despite promising results in the literature, computational complexity, nonsta-
tionarity, partial observability, and credit assignment remain largely unsolved.

The four challenges do not occur in isolation. In contrast, a multiagent problem usually 
deals with one or more challenges simultaneously. All multiagent problems deal with high 
computational demands, and the higher the number of agents, the more demanding it is 
on computing power. The problem of nonstationarity can lead to an infinite loop of agents 

Fig. 3  Overview of taxonomy. This figure shows how the paper is organised. We start by discussing the 
main training scheme in DMARL: centralised training and decentralised execution. We then move to how 
agents learn through opponent modelling and interact with other agents via communication and coordina-
tion. Finally, we discuss how different reward shaping methods act as a feedback mechanism
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adapting to other agents (Papoudakis et al. 2019), and this problem is exacerbated when 
agents have only a partial view of the state, which means they have less information, and 
it is even harder to distinguish the effects of their actions from that of other agents. Conse-
quently, agents cannot distil the individual contribution to the team reward, also known as 
the credit assignment problem. We turn to each of these aspects next.

4.1.1  Computational complexity

A current limitation of RL algorithms is the low sample efficiency, which requires an agent 
to interact a vast amount of times with the environment to learn a useful policy (Yu 2018). 
For example, to teach an agent to play the game of Pong, at least ten thousand samples 

Fig. 4  Venn diagram of challenges and solutions. The taxonomy of DMARL algorithms comprises five 
groups: centralised training and decentralised execution, opponent modelling, communication, efficient 
coordination and reward shaping. Approaches may tackle one or more challenges: nonstationarity, partial 
observability, credit assignment and computational complexity. Computational complexity is a universal 
challenge for all approaches. This Venn diagram shows the relations between the surveyed groups of studies 
and the addressed challenges
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are needed, while humans, on average, can master the game in dozens of trials (Ding and 
Dong 2020). The sample complexity of reinforcement, or the amount of data an agent 
needs to collect to learn a successful policy (Kakade 2003), worsens when multiple inter-
acting agents are learning simultaneously. Computational complexity in RL is then how 
much computation, in terms of time and memory requirements, is required to collect suf-
ficient data samples to output an approximation to the target (Kakade 2003). A challenge of 
MARL research is to develop algorithms that can handle this high level of computational 
complexity. In particular, on complex or continuous-space problems, we face slow learning 
of new tasks and, in the worst-case, tasks even become infeasible to master. Hence, many 
studies focus on designing better sample efficiency and scalability of algorithms to deal 
with the computational complexity in RL.

4.1.2  Nonstationarity

In a multiagent environment, all agents learn and interact with the environment concur-
rently. The state transitions and rewards are no longer stationary for an agent since the new 
state of the environment is dependent on the joint action of all agents instead of the agent’s 
own behavior. Consequently, agents need to keep adapting to other agents’ changing poli-
cies. The Markov assumption is violated as the state of the environment no longer gives 
sufficient information for optimal decision-making (Van Otterlo and Wiering 2012), which 
is problematic since most RL algorithms assume a stationary environment to guarantee 
convergence.

Recent works have addressed nonstationarity differently, focusing on various variables: 
such as the setting, which can be cooperative (Son et al. 2019), competitive (Berner et al. 
2019) or mixed (Leibo et  al. 2017), whether and how opponents are modelled (Brown 
1951; Bowling et al. 2015), the availability of opponent information (Foerster et al. 2018b; 
He et al. 2016), and whether the execution of actions is centralised (Foerster et al. 2018b; 
Lowe et al. 2019) or decentralised (Tan 1993). There is also a wide range of sophistication 
across algorithms: some algorithms ignore that the environment is nonstationary, assuming 
that other agents are part of the environment, while more complex methods involve oppo-
nent modelling with recursive reasoning (Hernandez-Leal et al. 2019). One way to address 
nonstationarity is to learn as much as possible about the environment, for example, using 
centralised training with decentralised execution (Sect. 4.2), through opponent modelling 
(Sect. 4.3), and exchanging information between agents (Sect. 4.4). For a thorough over-
view of how algorithms model and cope with nonstationarity, we refer to recent surveys on 
nonstationarity (Papoudakis et al. 2019; Hernandez-Leal et al. 2019).

4.1.3  Partial observabilty

In a partially observable environment, agents cannot access the global state and must make 
decisions based on local observations. This results in incomplete and asymmetric informa-
tion across agents, which makes training difficult. Other agents’ rewards and actions are 
not always visible, making it difficult to attribute a change in the environment to an agent’s 
own action. Partial observability has been mainly studied in the setting where a group of 
agents maximises a team reward via a joint policy (e.g. in the Dec-POMDP setting). The 
two main approaches for dealing with partial observability are the centralised training 
and decentralised execution paradigm (Kraemer and Banerjee 2016; Mahajan et al. 2019; 
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Foerster et al. 2018b; Lowe et al. 2017) and using communication to exchange information 
about the environment (Foerster et al. 2016; Mao et al. 2017; Peng et al. 2017).

4.1.4  Credit assignment

Two credit assignment problems are inherent in multiagent settings. The first problem is 
that an agent cannot always determine its individual contribution to the joint reward sig-
nal due to other concurrently acting agents in the same environment (Minsky 1961). This 
makes learning a good policy more difficult as the agent cannot tell whether changes in the 
global reward were due to its own actions or others in the environment. An alternative to 
the global reward structure is to let agents learn based on a local reward: a reward based 
on the part of the environment that an agent can directly observe. However, while an agent 
may increase its local reward more quickly, this approach encourages selfish behaviour that 
may lower overall group performance. Hence, reward shaping methods, the practice of sup-
plying the agent with additional rewards beyond those given by the underlying environ-
ment to improve learning, have been introduced to deal with the credit assignment problem 
(Ng et al. 1999).

The second problem involves constructing a reward function to promote effective col-
laborative behaviour. This is especially difficult when mixed incentives exist in an environ-
ment, such as social dilemmas. The lazy agent problem is also undesirable (Sunehag et al. 
2018): when multiple agents interact simultaneously, and one agent learns a good policy, 
the second agent can hold back to avoid affecting the performance of the first agent.

4.2  Centralised training and decentralised execution

We will now turn to the approaches developed to address these challenges.
The main challenge in DMARL is to design a multiagent training scheme that is effi-

cient and that can deal with the nonstationarity and partial observability problem. Figure 5 
shows the three most common training schemes. One of the most simple multiagent train-
ing schemes is to train multiple collaborating agents with a centralised controller and to 
reduce it to a single-agent problem. All agents send their observations and policies to a 

Fig. 5  Overview of training schemes. The three main training schemes in multiagent settings are central-
ised training and decentralised execution, using a centralised controller and independent learning. The most 
popular approach is centralised training with decentralised execution, where agents can share information 
during training, but actions are executed decentrally based on local observations. Using a centralised con-
troller reduces the problem to a single-agent problem but is computationally infeasible. Finally, independent 
learners consider other agents part of the environment but ignore the nonstationarity problem
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central controller, and the central controller decides which action to take for each agent. 
This method mitigates the problem of partial observability when agents have incomplete 
information about the environment. However, using a centralised controller is computa-
tionally expensive in large environments and risky as it is a single point of failure. Con-
versely, all agents can learn an individual action-value function and view other agents as 
part of the environment (Tan 1993). This method does not allow agents to coordinate with 
each other and ignores the nonstationarity problem.

An approach combining centralised and decentralised processing is centralised training 
and decentralised execution (Kraemer and Banerjee 2016). The main idea is that agents can 
access extra information during training, such as other agents’ observations, rewards, gra-
dients and parameters. Agents then execute their policy based on local observations. Cen-
tralised training and decentralised execution mitigate nonstationarity and partial observ-
ability, as access to additional information during training stabilises agents’ learning, even 
when other agents’ policies are changing. Centralised training and decentralised execution 
methods can be divided into value-based and policy-based methods. Single-agent value-
based methods focus on learning and derive the optimal policy via the learned value func-
tion. In MARL, cooperating agents have to optimise a team value function, and studies 
investigate the best way to decompose and optimise this value function. On the other hand, 
traditional policy-based methods search directly for the optimal policy. In a multiagent 
setting, nonstationarity makes learning more challenging as all agents update their poli-
cies simultaneously. Hence, most policy-based methods use the actor-critic architecture, in 
which a centralised critic is used to exchange extra information during training.

Value-based methods focus on how to decouple centrally learned value functions and 
use them for decentralised execution. Value-function factorisation is one of the most popu-
lar methods in this category (Sunehag et al. 2018; Rashid et al. 2020b; Son et al. 2019; 
Mahajan et al. 2019; Rashid et al. 2020a; Yang et al. 2020a). Value Decomposition Net-
works (VDN) (Sunehag et al. 2018) decompose the team value function into a sum of lin-
ear, individual value functions. The optimal policy arises by acting greedily with respect 
to the Q-value, an estimate of how good it is to take an action in a particular state during 
execution. QMIX (Rashid et al. 2020b) improves VDN’s performance by treating the joint 
value function as a nonlinear combination of individual value functions and a monotonic 
constraint. However, this constraint limits the performance of collaborating agents that 
require significant coordination (Rashid et al. 2020a). QTRAN (Son et al. 2019) employs a 
different factorisation method that can escape the monotonicity and additivity constraints. 
However, it relies on regularisations to maintain tractable computations, which may impede 
performance in complex multiagent settings (Mahajan et al. 2019). Numerous algorithms 
build further upon QMIX. For instance, Weighted QMIX extends QMIX to nonmonotonic 
environments by placing more weight on joint actions with higher rewards (Rashid et al. 
2020a). Multiagent Variational Exploration (MAVEN) (Mahajan et al. 2019) addresses the 
inefficient exploration problem in QMIX via committed exploration: coordinated explora-
tory actions over extended time steps in dealing with environments that require long-term 
coordination. MAVEN uses a hybrid value and policy-based method approach by condi-
tioning value-based agents on the shared latent variable controlled by a hierarchical pol-
icy. Value-Decomposition Actor-Critic (VDAC) enforces the same monotonic relation-
ship between the global state-value and the local state-values as QMIX. However, unlike 
QMIX, VDAC is compatible with A2C, which makes sampling more efficient. In addition, 
the study demonstrates that following a simple gradient calculated from a temporal-differ-
ence advantage, the policy can converge to a local optimal (Su et al. 2021). Q-DPP (Yang 
et al. 2020b) do not rely on constraints to decompose the global value function. Instead, it 
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builds upon determinantal point processes: probabilistic models that capture both quality 
and diversity when a subset is sampled from a ground set, allowing for a natural factorisa-
tion of the global value function.

Policy-based methods mainly focus on the actor-critic architecture (see Sect. 2.3). These 
studies use a centralised critic to train decentralised actors. Counterfactual multiagent 
(COMA) (Foerster et  al. 2018b) uses a centralised critic to approximate the Q-function 
and decentralised actors to optimise policies. The centralised critic has access to the joint 
action and all available state information, while each agent’s policy only depends on its 
historical action-observation sequence. Along the same line, multiagent Deep Determin-
istic Policy Gradient (MADDPG) extends the Actor-Critic algorithm so that the critic has 
access to extra information during training and the actor only has access to local informa-
tion (Lowe et al. 2017). As opposed to COMA, which uses one centralised critic for all 
agents, MADDPG has a centralised critic for each agent to have different reward functions 
in competitive environments. MADDPG can learn continuous policies, whereas COMA 
focuses on discrete policies. Several studies build upon MADDPG. For instance, R-MAD-
DPG (Wang et al. 2019) extends the MADDPG algorithm to the partially observable envi-
ronment by having both a recurrent actor and critic that keep a history of previous obser-
vations, and M3DDPG (Li et al. 2019) incorporates minimax optimisation to learn robust 
policies against agents with changing strategies. Since these methods concatenate all the 
observations in the critic, the input dimension increases exponentially with each agent. 
Hence, several studies have devised more efficient methods to deal with this problem. For 
instance, Mean-Field Actor-Critic (Yang et al. 2018) factorises the Q-function using only 
the interaction with the neighbouring agents based on mean-field theory (Stanley 1971), 
and the idea of dropout2 can be extended to MADDPG to handle the large input space 
(Kim et al. 2019).

Centralised training and decentralised execution have been applied to solve complex 
strategy games such as StarCraft Micromanagement (Foerster et al. 2018b) and hide-and-
seek (Baker et al. 2019).

4.3  Opponent modelling

Opponent modelling belongs to the class of model-based methods (Markovitch and Reger 
2005) and refers to the construction of models of the beliefs, behaviours, and goals of 
other agents in the environment (Albrecht and Stone 2018). An agent can use these oppo-
nent models to guide decision-making. Opponent modelling algorithms generally take a 
sequence of interactions with the modelled opponent as input and predict action proba-
bilities as output. After generating the opponent’s model, an agent can derive its policy 
based on that model. This method helps an agent discover the competitor’s intentions and 
weaknesses. Learning the model is generally considered more data-efficient than model-
free approaches in which the policy is updated from direct observations (Markovitch and 
Reger 2005). Opponent modelling mitigates the nonstationarity and partially observability 
problem as agents collect historical observations to learn about the environment (i.e. oppo-
nents), allowing agents to track and switch between policies. This method is especially 
beneficial in the adversarial setting when the opponent has opposing interests, and other 
approaches, such as communication and centralised training that require the opponents’ 

2 Randomly dropping units in the neural network to avoid overfitting (Srivastava et al. 2014).
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information, are unlikely. For a comprehensive overview of opponent modelling, we refer 
to other work (Albrecht and Stone 2018).

Early opponent modelling methods assumed fixed play of opponents. Neural Fictitious 
Self-Play (NFSP) extends the idea of fictitious play (Brown 1951) with neural networks to 
approach a Nash equilibrium in imperfect information games such as Poker (Heinrich and 
Silver 2016). The main idea is to keep track of the opponents’ historical behaviours and to 
choose a best-response to the opponents’ average strategies.

While NFSP requires actual interaction with the opponent, other methods do not. For 
instance, counterfactual regret minimisation has achieved success in poker (Bowling et al. 
2015). AlphaZero achieved remarkable results in Go, chess, and Shogi, using a neural net-
work with self-play and Monte Carlo Tree Search (Silver et al. 2017). MuZero was able 
to achieve this without a given model. Instead of modelling the entire environment, it 
focused on the three core elements most relevant for planning: the value, policy and reward 
(Schrittwieser et al. 2020). Still, these studies assume that the opponent follows a station-
ary strategy.

Later approaches look at nonstationary environments in which an agent has to track, 
switch, and possibly predict behaviour. Several studies achieved superhuman performance 
using self-play in real-time strategy games characterised by long time horizons, nonstation-
ary environments, partially-observed states, and high dimensional state and action spaces. 
OpenAI Five employs a similar method to fictitious play in playing Dota 2, a video game in 
which two teams compete to conquer each other’s base, but the algorithm learns a distribu-
tion over opponents and uses the latest policy instead of the average policy (Berner et al. 
2019). This infrastructure has also been used to solve hide-and-seek, but hide-and-seek 
agents can act independently as the training scheme is centralised training and decentral-
ised execution (Baker et  al. 2019). In Capture-the-Flag and StarCraft II, a population of 
agents is trained to introduce variation. Policies are made more robust by letting agents 
play with sampled opponents and teammates from this population in a league (Jaderberg 
et al. 2019; Vinyals et al. 2019).

Some studies assume that the opponent switches between a set of stationary policies 
over time (He et al. 2016; Everett and Roberts 2018; Zheng et al. 2018b). These algorithms 
derive the optimal policy based on the learned opponent’s model and identify when the 
opponent changes the behaviour, and the agent has to relearn a new policy. Over time, the 
agent has a library of inferred opponent strategies and associated best-response policies. 
The two main challenges are designing a policy detection mechanism and learning a best-
response policy. Some studies use a variant of Bayes’ rule to learn opponent models and 
assign probabilities to the opponent’s available actions. An agent starts with a prior belief 
that is continually updated during interaction to make it more accurate. Switching Agent 
Model (SAM) learns opponent models from observed state-action trajectories in combina-
tion with a Bayesian neural network (Everett and Roberts 2018). A Deep Deterministic 
Policy Gradient algorithm (Lillicrap et  al. 2016) is used to learn the best-response. Dis-
tilled Policy Network-Bayesian Policy Reuse+ (DPN-BPR+) (Zheng et al. 2018b) extends 
the Bayesian Policy Reuse+ algorithm (BPR+) (Hernandez-Leal et al. 2016) with a neu-
ral network to detect the opponent’s policy via both its behaviour and the reward signal. 
The latter uses policy distillation (Rusu et al. 2016) to learn and reuse policies efficiently. 
Others use a form of deep Q-learning (Mnih et al. 2013). Deep Reinforcement Opponent 
Network (DRON) (He et  al. 2016) uses one network to learn the Q-values to derive an 
optimal policy and a second network to learn the opponent policy representation, in addi-
tion to expert networks that capture different types of opponent strategies. A drawback of 
DRON is that it relies on handcrafted opponent features. Previous methods assume that 
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the opponent remains stationary within an episode. Deep Policy Inference Q-Network 
(DPIQN) and Deep Recurrent Policy Inference Q-Network (DRPIQN) (Hong et al. 2018) 
incorporate policy features as a hidden vector into the deep Q-network to adapt itself to 
unfamiliar opponents. DRPIQN uses a Long Short Term Memory (LSTM) layer so agents 
can learn in partially observable environments. This LSTM layer utilises a recurrent neural 
network architecture that can take observations as input and allow agents to model time 
dependencies and capture the underlying state (Hausknecht and Stone 2015).

Previous approaches do not consider an intellectual and reasoning opponent. Accord-
ing to the theory of mind, people attribute mental states to others, such as beliefs, intents 
and emotions (Premack and Woodruff 1978). These models help to analyse and infer 
others’ behaviours and are essential in social interaction (Frith and Frith 2005). Learn-
ing with Opponent-Learning Awareness (LOLA) (Foerster et  al. 2018a) anticipates and 
shapes opponents’ behaviour. Specifically, it includes a term that considers the impact of 
an agent’s policy on the learning behaviour of opponents. One drawback is that LOLA 
assumes access to the opponent’s parameters, which is unlikely in an adversarial setting. 
Others focus on recursive reasoning by learning models over the belief states of other play-
ers, a nesting of beliefs that can be represented in the form: “I believe that you believe 
that I believe” (Wen et al. 2019; Tian et al. 2021). The Probabilistic Recursive Reasoning 
(PR2) framework (Wen et al. 2019) first reflects on the opponent’s perspective: what the 
opponents would do given that the opponents know the agent’s current state and action. 
Given the potential actions of the opponent, the agent selects a best-response. The recur-
sive reasoning process can be viewed as a hierarchical process with k-levels of reason-
ing. At level k = 0 , agents take random actions (Dai et al. 2020) or act based on historical 
interactions, the main assumption in traditional opponent modelling methods (Wen et al. 
2019). At k = 1 , an agent selects its best-response to the agents acting at lower levels. Stud-
ies show that it pays off to reason about an opponent’s intelligence levels (Tian et al. 2021) 
and that reasoning at a higher level is beneficial as it leads to faster convergence (Dai et al. 
2020) and better performance (Moreno et al. 2021).

4.4  Communication

Through communication, agents can pass information to reduce the complexity of find-
ing good policies. For instance, agents exploring different parts of the environment can 
share observations to mitigate partial observability and share their intents to anticipate each 
others’ actions to deal with nonstationarity. Communication can also be used for transfer 
learning so that more experienced agents can share their knowledge to accelerate the learn-
ing of inexperienced agents (Taylor and Stone 2009). One of the fundamental questions in 
communication is how language emerges between agents with no predefined communica-
tion protocol (Lazaridou et al. 2017) and, subsequently, how meaning and syntax evolve 
through interaction (Jaques et al. 2019). Learning this process will help researchers better 
understand human language evolution and contribute to more efficient problem-solving in 
a team of interacting agents (Lazaridou and Baroni 2020).

Several studies investigate how agents learn a successful communication protocol. A 
communication protocol should inform agents about which concepts to communicate and 
how to translate these concepts into messages (Hausknecht and Stone 2016). Many studies 
approach this problem as a referential game (Lazaridou et  al. 2017; Havrylov and Titov 
2017). A referential game involves two or more agents in which speakers and listeners 
must develop a communication protocol to refer to an object (Fig. 6). In the basic version 
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of this game with two agents, the speaker sends two images and a message from a fixed 
vocabulary to the receiver. One of the images is the target, which the listener has to iden-
tify based on the message. Both agents receive a reward when the classification is correct 
(Lazaridou et al. 2017). To succeed in this game, agents must understand the image content 
and express the content through a common language. The language can be discrete, where 
messages are a single symbol (Lazaridou et al. 2017) or a sequence of symbols (Havrylov 
and Titov 2017), or continuous, where messages are continuous vectors (Sukhbaatar et al. 
2016).

Using DRL, end-to-end policies can be learned in which agents receive image pixels as 
input and a corresponding message as output. For example, two agents represented as sim-
ple feed-forward networks can learn a communication protocol to solve the basic referential 
game (Lazaridou et al. 2017). Language also emerges in more complicated versions of the 
game that require dialogue (Jorge et al. 2017; Das et al. 2017; Kottur et al. 2017) or nego-
tiation (Cao et al. 2018) between agents. Agents trained with deep recurrent Q-networks 
(DRQN) (Jorge et  al. 2017) and REINFORCE (Das et  al. 2017; Kottur et  al. 2017) are 
able to learn a communication protocol from scratch. Since communication is not always 
meaningful, it is important to develop metrics for emergent communication. An example 
is when an agent sends a message that has no actual impact on the environment. Agents 
with the capacity to communicate should exhibit positive signalling and positive listening 
(Lowe et al. 2019). Positive signalling means that messages correlate with observations or 
actions, and positive listening refers to updating beliefs or behaviour after receiving a mes-
sage. Most studies focus solely on positive signalling metrics. However, positive signalling 
may occur without positive listening (Lowe et al. 2019), which indicates that there was no 
actual communication.

In contrast to earlier works that consider communication as the primary learning goal, 
other works consider communication an instrument for learning a specific task. Most of 
these studies focus on coordination in collaborative environments and show that commu-
nication improves overall performance. Differentiable Interagent Learning (DIAL) (Foer-
ster et al. 2016) uses centralised training and decentralised execution. Communication is 
continuous during training and discrete during the execution of the task. Continuous com-
munication during training is particularly effective as it enables the exchange of gradients 
between agents, which improves performance. CommNet shows that the exchange of dis-
crete symbols is less efficient than continuous communication, as the latter enables the use 

Fig. 6  Basic referential game. In this basic referential game example, two agents have to develop a commu-
nication protocol so that the speaker can translate the target into a message and the listener can understand 
which one is the target. The game works as follows. The speaker receives as input three images. One is 
the target, and the other two are distractions. The speaker has to use the symbols in the vocabulary, which 
consists of the symbols “B”, “C”, “X” and “Z”, to send a message to the listener. The listener sees the mes-
sages and has to guess the target message. If the target is correct, both agents receive a reward
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of backpropagation to train agents efficiently (Sukhbaatar et  al. 2016). While DIAL and 
CommNet base their approach on DQRN, later studies propose the Actor-Critic architec-
ture, including Actor-Coordinator-Critic Net (ACCNet) (Mao et al. 2017), Bidirectionally 
Coordinated Network (BiCNet) (Peng et al. 2017) and MADDPG (Lowe et al. 2017). This 
architecture can solve more complex problems than previous approaches and works for 
continuous actions. In addition, when critics are individually learned (Jiang and Lu 2018) 
instead of centrally computed (Iqbal and Sha 2019), agents have different reward functions, 
which is suitable for competitive settings.

Communication also allows peer-to-peer teaching. More experienced agents communi-
cate their knowledge to learning agents, accelerating the learning of a new task (Da Silva 
et al. 2017; Omidshafiei et al. 2019; Ilhan et al. 2019; Amir et al. 2016). However, having 
agents send messages to all agents is costly and inefficient. Thus, an important question is 
how to filter the most important messages and to whom to send them. One approach is to 
limit communication bandwidth (Foerster et al. 2016; Kim et al. 2020) or use a commu-
nication budget (Ilhan et al. 2019; Omidshafiei et al. 2019). Others use metrics to identify 
relevant messages, such as attention mechanisms. In its simplest form, this is a vector of 
importance weights (Peng et al. 2018; Gu et al. 2021; Mao et al. 2020). An alternative is to 
keep confidence scores about states (Da Silva et al. 2017). However, communication comes 
at a cost and increased complexity. Negative transfer can also happen, for example, when 
the message contains inaccurate or noisy information so that performance may become 
worse (Taylor and Stone 2009). Therefore, it is essential to trade off benefits and costs or 
find a better way to filter valuable information.

4.5  Efficient coordination

Another group of studies investigate agents’ emergent behaviours and look at how cooper-
ating agents can coordinate actions most efficiently. These studies are conducted in mixed 
environments with elements of both cooperation and competition.

A key question is how to design reward functions so that agents adapt to each others’ 
actions, avoid conflicting behaviour and achieve efficient coordination. By engineering the 
reward function, competitive or cooperative behaviours can be stimulated (Tampuu et al. 
2017). While early studies look at how agents can maximise external rewards, recent works 
assume that agents are intrinsically motivated.

Most studies look at multiagent behaviour in social dilemmas (Eccles et al. 2019; Lerer 
and Peysakhovich 2018; Leibo et al. 2017; McKee et al. 2020; Jaques et al. 2019; Peysak-
hovich and Lerer 2018). Earlier studies, mainly influenced by game theory, have looked at 
social dilemmas as a matrix game in which agents choose pure cooperation or pure defect. 
Recent studies generalise these social dilemmas to temporally and spatially extended 
Markov games, also known as a sequential social dilemma (Leibo et al. 2017). This set-
ting is more realistic as people can adapt and change their strategies. One notable example 
is the repeated prisoner’s dilemma. In each turn, each agent decides whether to cooperate 
or defect. When both agents cooperate, both agents get good rewards. Contrary, defection 
improves one agent’s reward at the expense of the other agent. Thus, an agent can decide to 
retaliate or trust the opponent, dependent on the actions in the previous round.

One of the first sequential social dilemma studies examined how policies change due 
to environmental factors or agent properties (Leibo et  al. 2017). They found that agents 
learn more aggressive policies when resources are limited. In addition, manipulating the 
discount rate over the rewards, batch size, and the number of hidden units in the network 
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affected emerging social behaviour. While this study took a descriptive approach to under-
stand how behaviours change to different rules and conditions, others took a prescriptive 
approach in which agents learn to cooperate without being exploited (Lerer and Peysak-
hovich 2018; Wang et al. 2018). The general approach comprises two steps: first, detect the 
level of cooperation of the opponent, and then mimic or reciprocate with a slightly higher-
level cooperation policy to induce cooperation without getting exploited. This approach 
is based on the Tit-for-Tat principle (Axelrod and Hamilton 1981): the strategy suggests 
cooperation in the first round and copies the opponent’s behaviour afterwards.

Previous approaches assume that the only incentive for cooperation is the external 
reward. However, there is a rapidly growing literature where cooperation occurs from 
social behaviour and intrinsic motivation (McKee et al. 2020; Jaques et al. 2019; Peysak-
hovich and Lerer 2018; Hughes et al. 2018).

Psychology research has shown that people do not always seek to maximise utility 
(Dovidio 1984). In addition, an intrinsic reward may be a good alternative in sparse envi-
ronments. Several attempts have been made to design these internal rewards. For instance, 
inequity aversion, which refers to the preference for fairness and resistance against inequi-
table outcomes (Fehr and Schmidt 1999), has improved coordination in social dilemmas 
(Hughes et  al. 2018). The main idea is to punish agents that deviate too much from the 
average behaviour. Underperforming and overperforming agents are both undesirable, as 
the first may exhibit free-riding behaviour while the latter may be operating a defective 
policy. Another approach is to make agents care about the rewards of teammates (Peysak-
hovich and Lerer 2018; Jaques et al. 2019).

Pro-social behaviour improves the convergence probabilities of policy gradient-based 
agents, even if only one of the two players displays social behaviour (Peysakhovich and 
Lerer 2018). In addition, rewarding actions that lead to a relatively more significant change 
in the other agent’s behaviour may lead to increased cooperation (Jaques et  al. 2019). 
Another study introduces heterogeneity in intrinsic motivation (McKee et al. 2020). Spe-
cifically, the study compares a team of homogeneous agents, who share the same degree of 
social value orientation, to a heterogeneous group of agents with different degrees of social 
value orientation. The results show that homogeneous altruistic agents earn relatively high 
rewards, yet it appears that they adopt a lazy agent approach and produce highly special-
ised agents. This problem is not evident in heterogeneous groups. Hence, it shows that the 
widely adopted joint return approach may be undesirable as it masks high levels of inequal-
ity amongst agents.

While studies show that shaping reward functions can lead to better coordination (Dev-
lin et  al. 2011; Holmesparker et  al. 2016; Peysakhovich and Lerer 2018; Tampuu et  al. 
2017; Jaques et  al. 2019; Liu et  al. 2019), it is very challenging to tune the trade-off 
between the intrinsic and external reward, and whether it gives rise to cooperative behav-
iour may depend on the actual task and environment.

4.6  Reward shaping

The credit assignment problem refers to the situation when individual agents cannot view 
their contribution to the joint team reward due to a partially observable environment. 
Researchers have introduced implicit and explicit reward shaping methods to deal with this 
problem. Table 2 gives an overview of the reviewed reward shaping methods.

The general solution to this problem is reward shaping, with difference rewards and 
potential-based reward shaping as the two main classes. Difference rewards consider 



 A. Wong et al.

1 3

both the individual and the global reward (Foerster et al. 2018b; Proper and Tumer 2012; 
Nguyen et  al. 2018; Castellini et  al. 2021) and help an agent understand its impact on 
the environment by removing the noise created by other acting agents. Specifically, it is 
defined as Di(z) = G(z) − G(z − zi) where Di is the difference reward of agent i, G(z) is the 
global reward considering the joint state-action z, and G(z − zi) is a modified version of the 
state-action vector z in which agent i takes a default action, or more intuitively, the global 
reward without the contribution of agent i (Yliniemi and Tumer 2014). COMA (Foerster 
et al. 2018b) takes inspiration from difference rewards. The centralised critic uses a coun-
terfactual baseline to reason about counterfactuals or alternatives to the state when only 
that agent’s actions change. To marginalise out the action of an agent, an expected value 
is calculated over all the actions of an agent while keeping other agents’ actions constant. 
Potential-based reward shaping has also received attention lately (Suay et al. 2016; Devlin 
et al. 2014). Formally, it is defined as F(s, s�) = �Φ(s�) − Φ(s) (Ng et al. 1999) where Φ(s) 
is a potential function which returns the potential for state s and � is the discount factor. 
It is a method to incorporate additional information into the reward function to accelerate 
learning. This approach has been proven not to alter the set of Nash equilibria in a Markov 
game (Devlin and Kudenko 2011), even when the potential function changes dynamically 
during learning (Devlin and Kudenko 2012), and combining the two approaches allows 
agents to converge significantly faster than using difference rewards alone (Devlin et  al. 
2014). However, these reward shaping methods require manual tuning for each environ-
ment, which is inefficient. Some studies have therefore started looking into the automatic 
generation of reward shaping, for example, through abstractions derived from an agent’s 
experience (Burden 2020) or via meta-learning on a distribution of tasks (Zou et al. 2021).

Previous approaches evaluate an agent’s action against a baseline to extract its individ-
ual effect and belong to the class of explicit credit assignment. In contrast, implicit meth-
ods do not work with baselines. Value-based methods decompose the global value func-
tion into individual state-action values, also known as value mixing methods, such as VDN 

Table 2  Overview of solutions to the credit assignment problem

Study Implicit/
explicit

Approach Algorithm

Foerster et al. 
(2018a)

Explicit Difference 
rewards

COMA: uses a counterfactual baseline to marginal-
ise out the action of an agent

Yu et al. (2019) Explicit Potential-
based 
rewards

MA-AIRL: extends maximum entropy inverse rein-
forcement learning to Markov games. A potential-
based function is used to deal with reward shaping 
ambiguity

Devlin et al. (2014) Explicit Difference 
rewards 
and poten-
tial-based 
rewards

DriP: uses potential based reward shaping to 
improve difference rewards

Sunehag et al. 
(2018)

Implicit Value-based: 
deep 
Q-learning

VDN: decomposes the team value function into a 
sum of linear, individual value functions

Zhou et al. (2020) Implicit Policy-based: 
actor-critic

LICA: a centralized critic maps current state infor-
mation into a set of weights, and in turn, mixes 
individual action vectors into the joint action value 
estimate
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(Sunehag et al. 2018), QMIX (Rashid et al. 2020b) and QTRAN (Son et al. 2019) to filter 
out agent’s individual contribution. However, these methods may not handle continuous 
action spaces effectively. Policy-based algorithms include Learning Implicit Credit Assign-
ment (LICA) (Zhou et al. 2020) and Decomposed multiagent Deep Deterministic Policy 
Gradient (DE-MADDPG) (Sheikh and Bölöni 2020). LICA extends the idea of value mix-
ing to policy-based methods. Under the centralised training and decentralised execution 
framework, a centralised critic is represented by a hypernetwork that maps state informa-
tion into a set of weights that mixes individual action values into the joint action value. 
DE-MADDPG extends previous deterministic policy gradient methods using a dual-critic 
framework. The global critic takes as input all agents’ observations and actions and esti-
mates the global reward. The local critic receives as input only the local observation and 
action of an agent and estimates the local reward. This framework achieves better and more 
stable performance than earlier deterministic policy gradient methods.

5  Discussion

We have surveyed a range of studies in DMARL. While integrating deep neural networks 
in RL has dramatically improved agents’ learning in more complex and larger environ-
ments, we wish to highlight current limitations and open challenges in the field.

– In the development from single-agent reinforcement learning to multiagent reinforce-
ment learning, most earlier studies used a game-theoretic lens to study interactive deci-
sion-making, assuming perfectly rational agents who maximise their behaviour through 
a deliberate optimisation process. However, while game theory’s strength lies in its 
generalizability and mathematical precision, experiments have shown that it is often a 
poor representation of actual human behaviour (Colman 2003). Researchers must con-
sider irrational and altruistic decision-making, especially if we wish to extend artificial 
intelligence (AI) to more realistic environments or design applications for human-AI 
interaction in larger and more complex problems. We have seen that pro-social agents 
can achieve better group outcomes (Peysakhovich and Lerer 2018; Hughes et al. 2018). 
However, studies are still limited, and we encourage fellow researchers to deepen our 
understanding in this field.

– We also want to bring attention to the design and assumptions in current research. Many 
studies assume homogeneous agents; from a practical viewpoint, this may accelerate 
learning since agents can share policies and parameters. Agents thus only need to learn 
one policy and may better anticipate the behaviour of other agents. However, whether 
this also leads to better performance in the final task is an open question. For instance, 
a soccer team usually consists of forwards, midfielders, defenders and a goalkeeper. 
The team’s success is partly determined by how well each fulfils these different roles. 
Thus, an interesting question is whether letting each agent learn its own policy and have 
heterogeneous teams pays off. While homogeneous agents can still act differently due to 
different observations input, the observation space must be the same size. This assump-
tion does not always hold. For instance, agents have different observation spaces in soc-
cer as individuals occupy different positions on the field. Preliminary results show that 
despite making the learning slower at the beginning, heterogeneous teams perform bet-
ter at the final task (Kurek and Jaśkowski 2016). Another study provides formal proof 



 A. Wong et al.

1 3

for parameter sharing between heterogeneous agents (Terry et  al. 2021), which may 
mitigate the slow start problem.

– Studies may also rely on unrealistic assumptions. For instance, multiple studies require 
access to opponents’ information, such as trajectories or parameters, while their prob-
lem domain actually gives an incentive to hide information. Others assume fixed behav-
iours of agents or that agents can view the global state.

– Another issue is the generalizability of studies. For example, many studies require 
handcrafted features or rewards specific to the environment. In addition, a majority 
of the studies are evaluated in two-player games. As a result, a danger exists that the 
agent’s policy overfits to the behaviour of the second agent (i.e. the lazy agent problem) 
and does not generalise to other settings. Future research should integrate more realistic 
assumptions and work on the generalizability of studies to settings with more players or 
different environments.

While DMARL has seen a significant improvement in the types and complexities of chal-
lenges it can address, several hurdles remain. For example, problems associated with large 
search spaces, partially observable environments, nonstationarity, sparse rewards and 
the exploration-exploitation trade-off remain challenging. These issues are partly due to 
computational constraints, such that assumptions are often relaxed. We want to point out 
two other research areas, namely evolutionary algorithms and psychology, that may help 
researchers address some of the open questions.

5.1  Evolutionary algorithms

Evolutionary algorithms (EAs) are inspired by nature’s creativity and simulate the process 
of organic evolution to solve optimisation problems. In simple terms, a randomly initialised 
population of individual solutions evolves toward better regions of the search space via 
selection, mutation and recombination operators. A fitness function evaluates the quality 
of the individuals and favours the reproduction of those with a higher fitness score, while 
mutation maintains diversity in the population (Bäck and Schwefel 1993). An early study 
sheds light on how EAs deal with RL problems (Moriarty et al. 1999) and has been con-
firmed by recent studies (Bloembergen et al. 2015; Drugan 2019; Arulkumaran et al. 2019; 
Lehman et al. 2018a, b, c; Such et al. 2018; Zhang et al. 2017). EAs offer a novel perspec-
tive to scaling RL multiagent systems as it is highly parallelisable, and there is no need for 
backpropagation (Such et al. 2018; Majumdar et al. 2020).

EAs have been compared with popular value-based and policy-gradient algorithms 
such as DQN and A3C (Such et al. 2018). Novelty search (Such et al. 2018; Lehman et al. 
2018c) is a promising area (Lehman and Stanley 2008) since it encourages exploration on 
tasks with sparse rewards and deceptive local optima—problems that remain an issue with 
conventional reward-maximising methods. EAs have been shown to work well with nonsta-
tionarity and partial observability, as it continually uses and evolves a population of agents 
instead of a single agent (Moriarty et al. 1999; Liu et al. 2020). EAs can evolve agents with 
different policies (Gomes et  al. 2017, 2014; Nitschke et  al. 2012), such that heterogene-
ity can be introduced in team-based learning. Population-based training has proven pow-
erful in achieving superhuman behaviour in Capture the Flag (Jaderberg et al. 2019), and 
StarCraft (Vinyals et al. 2019).
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5.2  Psychology

Many key ideas in RL, such as operant conditioning and trial-and-error, originated in psy-
chology and cognitive science research (Sutton et al. 1998). Interestingly, recent DMARL 
studies started moving towards more human-like agents, showing that characteristics like 
reciprocity and intrinsic motivation pay off.

We believe psychology may provide more valuable insights into current problems in 
DMARL. For instance, bounded rationality models (Simon 1990, 1957) describe how indi-
viduals make decisions under a finite amount of knowledge, time and attention. To deal 
with bounded rationality, people use heuristics, or mental shortcuts, to solve problems 
quickly and efficiently (Gigerenzer and Goldstein 1996). While RL research already uses 
heuristics to deal with large and complex problems (Cheng et al. 2021; Ma et al. 2021), 
selecting suitable heuristics is still insufficiently explored. Psychology has a long tradition 
of investigating heuristics and may offer new perspectives. In addition, heuristics aid in 
filtering relevant information in a complex world, which may benefit agents in partially 
observable environments or counter negative knowledge transfer (Marewski et al. 2010). 
However, intuitive judgement can also lead to biases and suboptimal decision-making 
(Gilovich et al. 2002).

Humans are also capable of creative problem-solving, a prerequisite for innovation. 
Likewise, agents need to explore the environment to find more optimal solutions. A first 
approach of combining creativity with RL shows that creativity offers the potential to 
explore promising solution spaces, whereas traditional methods fail (Colin et al. 2016).

Lastly, psychology can play an essential role in helping researchers understand how 
agents make decisions and tackle the black-box problem of deep neural networks. Cogni-
tive psychologists have developed robust models of human behaviour, such as decision-
making, attention and language, without observing these processes directly but through 
controlled behavioural experiments in which cognitive functions can be isolated (Taylor 
and Taylor 2021). Open-source platforms are now also available (Leibo et al. 2018) that 
allow researchers to use methods from cognitive psychology to study the behaviours of 
artificial agents in a controlled environment. We encourage researchers to draw from psy-
chology research and its methodologies to analyse agents’ complex interactions and better 
understand and improve their decision-making.

6  Conclusion

The current survey has presented an overview of the challenges inherent in multiagent rep-
resentations. We have identified five different research areas in DMARL that aim to miti-
gate one or multiple of these challenges: (1) centralised training and decentralised execu-
tion, (2) opponent modelling, (3) communication, (4) efficient coordination, and (5) reward 
shaping. While early studies drew inspiration from game theory and were evaluated on 
grid-based games, the field is moving towards more sophisticated and realistic representa-
tions. Nevertheless, dealing with large problem spaces and sparse rewards in nonstationary 
and partially observable settings remains an open issue.

Existing research has approached this problem mainly from traditional, computational, 
RL perspectives. While combining deep learning with value-based and policy-based meth-
ods has been shown to mitigate the problem, they seem to be only part of the answer. We 
encourage researchers to take an interdisciplinary perspective on developing new solutions 
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and benefit from the knowledge of other research domains. Specifically, evolutionary 
algorithms offer insights into dealing with larger, nonstationary and partially observable 
environments. At the same time, sociology and psychology increase our understanding of 
agents’ reasoning patterns and offer us alternatives for dealing with sparse rewards, such as 
intrinsic motivation. Finally, we believe that integrating multiple research disciplines leads 
to more realistic scenarios humans encounter in practice, so the findings may eventually be 
fruitful in real-world applications.
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