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Abstract

Since their first appearance in 1997 in the prestigious journal Science, algorithm portfolios have become
a popular approach to solve static problems. Nevertheless and despite that success, they have not received
much attention in Dynamic Optimization Problems (DOPs). In this work, we aim at showing these meth-
ods as a powerful tool to solve combinatorial DOPs. To this end, we propose a new algorithm portfolio
for this type of problems that incorporates a learning scheme to select, among the metaheuristics that
compose it, the most appropriate solver or solvers for each problem, configuration and search stage. This
method was tested over 5 binary-coded problems (dynamic variants of OneMax, Plateau, RoyalRoad,
Deceptive and Knapsack) and compared versus two reference algorithms for these problems (Adaptive
Hill Climbing Memetic Algorithm and Self Organized Random Immigrants Genetic Algorithm). The
results showed the importance of a good design of the learning scheme, the superiority of the algorithm
portfolio against the isolated version of the metaheuristics that integrate it, and the competitiveness of its
performance versus the reference algorithms.
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1. Introduction

An optimization problem can be considered as “dy-
namic” when any of its components, namely ob-
jective function, constraints, size, variables domain,
etc., change with time. Dynamic optimization prob-
lems (DOPs) are as follows:

DOPs = {optimize f(x,t);x € F(t) C S;t € T}
where:

« S is the search space
e t represents time

e f: ST — R is the objective or cost function
whose definition depends on .

o F(t), is the set of feasible solutions at time ¢,
F(t)CS.

Most of the academic research in DOPs has been
done using artificial problems, because they allow
to properly studying several factors related with
the changes, as severity, frequency or dynamism
type. Examples of artificial problems are the well-
known moving peaks benchmark [28,29]; dynamic
versions of static continuous functions like Sphere,
Griewank, Rastrigin, Ackley, etc. [23]; or dynamic
versions of combinatorial problems as knapsack
problem [3, 21, 35], moving parabola [1], bitwise
comparison problems [10,41], and planning prob-
lems [8,11,26,37,38].

When dealing with DOPs, some aspects are as-
sumed: the changes are gradual; it is not possible to
solve the problem from scratch after a change; and
the current information should be useful to produce
a faster adaptation to the change.

The last years showed an increasing interest on
solving them using metaheuristic methods [2,7, 30,
49,51]. One can find evolutionary algorithms [50],
multiswarm techniques [2], ant colony optimization
[19,27], cooperative strategies [17,18,25] and so on.

When solving static problems with metaheuris-
tics, parameter setting is not a trivial task. As a con-
sequence, researchers enhance their methods with
some learning features to change the parameters dur-
ing the run. This is also being done in the con-
text of DOPs, where there is a growing tendency

on using learning mechanism to change the parame-
ters, operators, etc. of the method during the search
[17,18,24,27,46,51].

Another non trivial aspect is the selection of the
metaheuristic to solve the problem at hand. In the
context of static problems, one of the most com-
mon approaches for this issue is the algorithm port-
folio [20,31,32]. It consists in a set of algorithms
that are executed iteratively or in parallel, in order to
solve the problem. A learning scheme is used to se-
lect the most suitable algorithm at every stage of the
search or to distribute the available execution time
among them. This decision is typically based on
the algorithm’s performance. This type of methods
have shown to be very competitive in problems as
supply chain optimization [48], numerical optimiza-
tion [32], vehicle routing [39] or satisfiability [47],
among others.

Despite this success in static problems, algo-
rithm portfolios have not received much attention in
DOPs. For this reason, in this paper we intend to
deepen in this topic, to show algorithm portfolios as
a powerful alternative to solve DOPs. Concretely,
we propose a new algorithm portfolio for combi-
natorial DOPs emphasizing the role of the learning
scheme.

First, we will analyze if learning makes sense,
what learning scheme is the most appropriate and
how the learning works along the search process.
Then we will study if the portfolio obtains better re-
sults than their composing algorithms, and finally,
we will compare the best portfolio variant against
two reference algorithms: Adaptive Hill Climbing
Memetic Algorithm and Self Organized Random
Immigrants Genetic Algorithm. The computational
experiments are done over five combinatorial opti-
mization problems and the results are analyzed us-
ing statistical testing. It is important to remark that
we will consider DOPs with dynamism only in the
fitness function.

The article is organized as follows. Section 2 dis-
cusses the literature related to our proposal. The al-
gorithm portfolio, its learning scheme and the dif-
ferent learning variants considered are presented in
Section 3. In Section 4, experimental framework,
we show the combinatorial DOPs used to test the
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method, the details of the experimentation, the ref-
erence algorithms with which our proposal is com-
pared, the composition of the portfolio, the perfor-
mance measures and the non-parametric tests em-
ployed for the statistical assessment of the results.
The next part of the paper is devoted to analyze the
results of the experimentation and the comparison
versus the reference algorithms. Finally, we provide
the conclusions of this work in Section 6.

2. Related Work

The idea of algorithm portfolios was proposed by
Huberman and coauthors in 1997 [20]. Inspired by
basic economic concepts of risk management, these
authors presented an approach to allocate a limited
amount of resources (CPU time) among a set of al-
gorithms according to its expected “benefit” (aver-
age fitness) and “risk” (fitness variance). The allo-
cation is done in such a way that the benefit is max-
imized and the risk minimized.

The original concept has evolved along these
years and nowadays, one of the most accepted def-
initions is the next one [16]: a collection of dif-
ferent algorithms and/or copies of the same algo-
rithm that are run in one or more CPUs. We can
classify algorithm portfolios in different categories
depending on: 1) how the algorithms are run and
2) when the available running time is distributed
among them [16, 33]. Regarding the first criterion,
there are three classes [16]: parallel, where all the
algorithms are run concurrently in different proces-
sors [32]; interleaved on a single processor, where
the algorithms are run alternatively, simulating par-
allelism in one processor [14]; and sequential with
restart, where at each iteration, a randomly selected
algorithm is executed for a fixed amount of time (ev-
ery run of the same algorithm uses a different ran-
dom seed) [14]. Respect to the second criterion, the
algorithm portfolios can be classified in two cate-
gories [14,33]: static, if the distribution of the avail-
able CPU time among the algorithms is fixed before
the run [32,48], or dynamic, if it is done along the
search process [14].

We can find in the literature some references
about the application of algorithm portfolios to solve

Algorithm portfolio based scheme for dynamic optimization problems

DOPs. For example, in [40], the authors propose a
static portfolio to solve the Inventory Routing Prob-
lem with stochastic demands. In this case, the algo-
rithms are run in parallel without information feed-
back, and the portfolio is composed by variants of
the genetic algorithm. Another work on this topic
is found in [39], where an algorithm portfolio is
used to solve the Dynamic Vehicle Routing Prob-
lem with stochastic demands. The paper presents a
static algorithm portfolio that combines trajectory-
based and population-based algorithms that are run
in parallel with no information exchange.

A similar approach to algorithm portfolios that
has been used in DOPs are the hyperheuristics [5].
They can be defined as search methods or learn-
ing mechanisms for the selection and generation of
heuristics in order to solve a particular optimization
problem. They can also be seen as high-level meth-
ods that given a set of low-levels heuristics for a par-
ticular problem, are able to automatically produce a
proper combination of these low-level heuristics to
solve the instance at hand. Among the high-level
methods for the selection/generation/combination of
heuristics we can find tabu search, variable neigh-
borhood search, genetic algorithms or data mining
techniques [5]. In the context of static problems,
these methods have been applied to graph coloring,
production planning, work-force scheduling, con-
straint satisfaction or vehicle routing [5, 6].

Regarding DOPs, its application is fairly recent.
In [45], Gonul et al. proposed a framework for
DOPs that hybridizes hyperheuristics and Popula-
tion Based Incremental Learning. The selection of
low-level heuristics is done through a scoring sys-
tem and reinforcement learning. They tested two
variants of their proposal on dynamic binary func-
tions with successful results. Topcuoglu and coau-
thors present a hyperheuristic to solve DOPs in [43]
whose high-level heuristic selection method is an
evolutionary technique known as memory/search al-
gorithm. The experimentation done over the Dy-
namic Generalized Assignment Problem and the
Moving Peaks Benchmark showed the better per-
formance of this method versus the canonical mem-
ory/search algorithm. In [22], the authors test, us-
ing also the Moving Peaks Benchmark, several hy-
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perheuristics that combine five high-level heuristic
selection methods (simple random, greedy, choice
function, reinforcement learning, random permuta-
tion descent) with seven move acceptance criteria
(all moves, only improving, improving and equal,
exponential Monte Carlo with counter, great deluge,
simulated annealing, simulated annealing with re-
heating). The best performing variant (choice func-
tion - improving and equal) improved the results ob-
tained by state-of-the-art algorithms for this prob-
lem.

As we have seen, the use of algorithm portfo-
lios and hyperheuristics is becoming more popular
in DOPs. In this sense, although algorithm port-
folios and hyperheuristics share a similar approach
(they combine a set of heuristics), it is important
to highlight that they present two important differ-
ences. On one hand, hyperheuristics usually work
with low-level heuristics whereas algorithm portfo-
lios do it with higher-level methods as metaheuris-
tics. On the other hand, and in our opinion the main
difference, hyperheuristics works over a single solu-
tion of the problem (they can be seen as trajectory-
based methods) while algorithm portfolios works
over a set of independent solutions at the same time.
Taking into account these two aspects, the charac-
teristics of our proposal, which we describe in the
next section, fits better to the category of algorithm
portfolios, since our method deals with metaheuris-
tics that works over their own and independent solu-
tions.

3. Algorithm Portfolio

The main motivation to build an algorithm portfolio
is to avoid deciding on a single algorithm to solve
the problem at hand [20]. In this contribution, our
portfolio is made of a set of metaheuristics. Using
a credit based approach, the portfolio selects which
metaheuristic to run at every stage of the search.
Then, a credit assignment is done based on the per-
formance of the selected metaheuristic. According
to the categories of algorithm portfolios showed in
the last section, our proposal can be classified as a
dynamic algorithm portfolio that interleaves the run
of the metaheuristics on a single processor.

Algorithm 1: Portfolio Scheme Pseudocode
1 n = size of the portfolio;

2 for(j=1; j<n j++)do

3 ‘ initialize a; ;

4 end

5 while (not stop-condition) do

6 if change is detected then

7 for(j=1;j<n j++)do

8 re-evaluate xg,, OF Perr:

9 recalculate xpe;
10 end
11 end
12 a; < select an algorithm from A with

probability P, ;

13 X < run a; for one iteration;
14 if f(xc) > f(xbest) then
15 Xpest € Xcs
16 for(j=1;j<n j++)do
17 ‘ update Xegyr OF Pesrr With Xpess:
18 end
19 end
20 perform credit assignment to a;;
21 for(j=1;j<n; j++)do
22 ‘ update selection probability P:eﬁec;
23 end
24 end

More formally, our portfolio is composed by a
set of metaheuristics A = {ay,...,a,}, being each q;
a trajectory or population-based metaheuristic. Ev-
ery a; has a single current solution x% .. (if we con-
sider a trajectory-based method) or a current popu-
lation p% .. (in population-based metaheuristics).

Algorithm 1 shows the inner working of the port-
folio. After the initialization of the algorithms, the
method goes into the main loop. Firstly, if a change
is detected, x% .. or p%  are re-evaluated, and the
new global best solution (xp,y) is calculated.

Subsequently, an qg; is selected and run for one
iteration (the definition of what we consider by an
iteration is given at the end of this section). The
selection strategy employed in this step is the well-
known roulette-wheel method, where the portion or
selection probability of each g; is assigned according
to its credit w;. This probability is calculated as:

. Wi
;i _ i
Byelec T yn
J:

D

Wi
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Table 1. Details of the steps the algorithm portfolio accomplishes in a different way depending on
whether the selected algorithm is trajectory-based or population-based.

Step (Pseudocode line in Algorithm 1)

Trajectory-based

Population-based

Algorithm initialization (3)

random generation of a single solution
following a uniform distribution

random generation of the population
following a uniform distribution

Re-evaluation (8)

re-evaluate x%

CUrr

reevaluate the whole population p&, ..

One iteration (13)

application of the neighborhood opera-

perform a sequence of applications of

a
tor to x% ..

and evaluation of the accep-

the corresponding operators

tance criterion for the move

xe (13)

solution resulting from applying the
neighborhood operator to x

individual generated in the sequence of

o applications of the operators

ai

Xf‘litrr/p?itrr update with Xpest(17) replace X,

Curr

by Xbest

Xpes Teplace the worst individual in the
a;

population p& .

The solution generated by the algorithm selected
in one iteration, x., is then compared versus the cur-
rent global best xp.s. If x. is better than xp.g, the
algorithm portfolio refreshes it and then, it updates
the current solution or population of the rest of al-
gorithms (a; # a;) with the new xp, (the details of
the obtaining of x, and the updates of the current so-
lutions and populations are also described at the end
of the section).

In the last stage of the main loop, the method
assigns a certain credit to @; and recalculates the se-
lections probabilities of the algorithms according to
Equation 1. The amount of credit assigned to a; de-
pends on the quality of the solution x, and the credit
scheme employed. The details of this part of the al-
gorithm portfolio will be described in the next sub-
section.

Some of the steps mentioned above are accom-
plished in a different way depending on whether
the considered algorithm is trajectory-based or
population-based. Table 1 shows how the algorithm
portfolio carries out these steps in each case. The
most important differences appears in how an iter-
ation is performed, how x. is obtained and how the
current solution or population is updated. Regard-
ing the iteration process and the obtaining of x.,
in trajectory-based algorithms, one iteration corre-
sponds to one application of the neighborhood op-
erator to x{, . and the evaluation of the acceptance
criterion for the move (e.g., tabu and aspiration cri-
teria in Tabu Search, acceptance probability in Sim-
ulated Annealing, etc.). x. represents the solution
resulting from the application of the neighborhood

operator. In population-based methods, one iteration
corresponds to the sequential application of their
operators (e.g., selection — crossover — mutation
— replacement, in Genetic Algorithms). When a
crossover operator is applied, only one of the two in-
dividuals obtained (randomly selected according to a
uniform distribution) is considered for the next step
of the sequence of operator applications. In case the
method considers replacement, the individual gener-
ated replaces the worst parent. x, corresponds to the
individual generated in this process.

The update of x% .. for trajectory-based algo-
rithms, performed in the step 17 of Algorithm 1,
consists on replacing x% . by xp.. Regarding
population-based algorithms, in this step, xpes re-

places the worst individual of the population.

3.1. Learning scheme

The credit assignment mechanism implemented by
the portfolio is, in fact, a learning scheme whose
objective is to learn which the best performance
method/s for the problem at hand is/are. For this
reason, we will also refer to the credit assignment
mechanism as learning scheme.

The credit assigned to a metaheuristic a; at time
t+ 1 is calculated as:

w,-(t+1):wi(t)—i-r,-(t)—l,-(t) 2)
where:

o t1s the current time.
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o w;(t+1) is the credit obtained by «; at time step
r+1.
o w;(t) is the current credit of ;.

o ri(t) is the reward assigned to a;. It is a value
greater or equal to zero that is determined as a
function of the quality of the solution generated
by a; (x.) and the quality of xpe.

o [;(t) is the penalization assigned to g; if the gener-
ated solution (x.) is worse than xp.. It is defined
as follows:

l,‘(l) = W,‘(I) *Q

where: Q is a penalty term and Q € [0, 1].

We assume here that every possible definition or
variant for the reward, penalization and credit up-
date, lead to a different learning scheme.

3)

3.2. Learning scheme variants

When facing dynamic optimization problems, it is
critical to decide what to do with the learning gained
(credit assigned) by the portfolio. The potential
definitions of the three components of the learning
scheme, namely w;(t), r;(t) and /;(¢), lead to vari-
ations that will be analyzed next in order to detect
the best alternatives. The potential definitions are
described next:

Current credit (w;(t)):

o Restart (RS): current credit is set to zero when a
change is detected. The rationale behind this idea
is that we need to face a new problem and we need
to detect from scratch which are the good meth-
ods for the new situations (we forget everything
we learnt).

« Keep it or no-restart (NRS): we assume that the
new situation is similar to the previous one and if
a method was good in the past, it will be good in
the future.

Penalization (I;(1)):

« Active Penalization (AP): Q = 0.9 if a; generates
worse solutions than xp.s, and Q = 0 otherwise.
In this way, we lower the credit of a method if it
is not allowing the improvement of the best found

solution. The value Q = 0.9 was chosen after em-
pirical observations.

« Inactive Penalization (IP): Q = 0 during the whole
run.

Reward (r(1)):

« Better (RB): r;(t) = 1 if the fitness of the gener-
ated solution (x,) is strictly better than f(xpes)-

« Equal or Better (REB): r;(t) = 1 if the fitness of
the generated solution (x.) is equal or better than

f(xbest) .

We analyze the eight possible variants derived
from the combination of the previous alternatives
(shown in Table 2). As we stated above, every com-
bination can be considered as a “learning scheme”.

Table 2. Learning scheme variants

Variant wi(t)  Li(t)  ri(r)
RS-AP-RB RS AP RB
RS-AP-REB RS AP REB
RS-IP-RB RS 1P RB
RS-IP-REB RS IP  REB
NRS-AP-RB NRS AP RB
NRS-AP-REB NRS AP REB
NRS-IP-RB NRS IP RB
NRS-IP-REB NRS IP REB

4. Experimental Framework

We describe here the problems, performance mea-
sure, comparison techniques and the details of the
experimentation we will follow to evaluate our pro-
posal.

4.1. Problems

The portfolio will be tested on dynamic versions
of static binary-coded problems constructed using
the XOR-DOP generator [51]. The generator op-
erates generating masks that are applied to the so-
lution using a bitwise XOR operator. The objective
function is changed every 7 evaluations of the fitness
function. In the k”* change, a new XOR mask M (k)
is generated as follows:
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M(k)=M(k—1)®T (k) 4)

where @ is the XOR operator (a b =1 <= a#b,
and a ® b = 0 otherwise) and 7 (k) is an intermediate
binary mask randomly generated with p x m values
set to 1 at change k (being m the dimension of the
problem). When k = 1, M(1) = {0...0}. The cost
of a solution x at evaluation e is done as follows:

flxe) = fxeM(k)) (5)

where k = [e/7] is the current change and [] is the
integer part operator.

Figure 1 shows an example of the evaluation pro-
cess. Through changes in the mask, the generator
produces changes in the optimum position, and us-
ing different values for T y p, we can control the
frequency and severity of the changes, respectively.
High values of p imply more severe changes, while
low values of T mean more frequent changes.

As stated before, using this idea of masking, any
binary encoded static problem can be converted to
its dynamic version. In what follows, the base static
problems used here are described.

»  DENERCN

M(k)
MR RN
R Of 1 (0111000}

Fig. 1. Given the current mask M (k) and a solution x, the
objective function is applied to f(x@® M (k)), where & is the
XOR (exclusive OR) operator.

4.1.1. Knapsack problem

The knapsack problem is a well-known NP-Hard
combinatorial optimization problem [21]. Given a
set of m elements the knapsack problem is described
as follows:

Algorithm portfolio based scheme for dynamic optimization problems

max f(x) = Z DiXi (6)
i=1

m
subjectto ) wix; <C  x;€{0,1}i=1...m (7)

i=1

where x = (x1, ...,x,,) and x; = 1 if object i is selected
or x; = 0, otherwise. Values p; and w; represent
the profit and weight of object i, respectively, and
C is the capacity of the knapsack. It is believed that
knapsack is one of the easiest NP-Hard problems.
Several exact algorithms are available and for them,
the hardness of random instances, increases with the
correlation between weights and profits [34].

Our test instance has m = 100 objects, and the
weights, benefits and capacity are defined as:

wi = U(1,50) (®)
pi=wi+U(1,5) )
C=06+Y w (10)

i=1

where U (a,b) is a function returning a uniformly
distributed random value in the [a,b] interval. The
definition for w; y p; led to an instance with strong
correlation between both values. As stated in [34]:

The strongly correlated instances are hard to
solve for two reasons: (a) The instances are ill-
conditioned in the sense that there is a large gap
between the continuous and integer solution of the
problem; (b) Sorting the items according to decreas-
ing efficiencies correspond to a sorting according to
the weights. Thus, for any small interval of the or-
dered items (i.e. a “core”) there is a limited varia-
tion in the weights, making it difficult to satisfy the
capacity constraint with equality.

Possible unfeasible solutions arising in the
search are penalized as in [51]:

Y7 pixi ifC'<C
flx) = (11
10719 (X7, w;) —C')  otherwise

being C' = Y7 | wix;
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Fig. 2. Fitness contribution of every 4-bits block with re-
spect to the number of correctly matched bits.

4.1.2. Problems using base binary functions

We use four additional problems and all of them
consist on finding solutions that match all the bits
of a target optimal solution. This target solution is
initially considered to be the solution where all its
bits are set to 1. To evaluate a solution, we consider
blocks of 4 bits where each block contributes a given
amount to the final objective value. The contribution
of every block of 4 bits depends on the considered
functions that are described below:

o OneMax: Each matched bit adds 1 to the fitness.

o Plateau: Three matched bits add 2 to the fit-
ness while four matched bits add 4 and any other
amount of bits matched leads to a O contribution.

« RoyalRoad: Each perfectly matched block adds
4 to the fitness. Partially matched blocks have fit-
ness 0.

o Deceptive: Fitness is 4 if all the 4 bits are
matched. If not, the fitness for the block is 3 mi-
nus the number of matched bits.

Figure 2 shows the contribution of every 4-bits
block to every function in terms of the number of
correctly matched bits.

4.1.3. Additional information

The dimension of all the problems was defined as
100 (25 blocks of 4-bits for functions described in
Section 4.1.2). We considered five different change
frequencies (t € {1200,3000,6000,9000, 12000}
fitness function evaluations) , and four different
severities (p € {0.1, 0.2, 0.5, 0.9}). The selected
(7) should be understood as the number of fitness
function evaluations allowed between consecutive
changes, in other words, it accounts for the num-
ber of evaluations that the algorithm has in order to
“catch” the optimum until the next movement.

We performed 30 independent runs for every
algorithm, problem and combination of 7 and p,
where every run consisted of 100 changes of the fit-
ness function.

4.2. Reference algorithms

To better assess the performance of our portfolio,
we will perform comparisons against some refer-
ence algorithms. In a recent review [7], two algo-
rithms are shown to be competitive in the DOPs con-
sidered here: Adaptive Hill Climbing Memetic Al-
gorithm (AHMA) [46] and Self Organized Random
Immigrants Genetic Algorithm (SORIGA) [42]. Al-
though there exist more recent methods for the same
problems used in this work [13, 44], AHMA and
SORIGA are still used in comparisons [9, 25, 44],
there is a general agreement on their quality, they are
easy to understand and more important, their source
code is available, thus running them on our bench-
marks is much easier. We consider that in this way
the comparison is fairer than taking values from pub-
lished tables.

4.2.1. Adaptive Hill Climbing Memetic Algorithm
(AHMA)

AHMA, firstly proposed in [46], is essentially a
genetic algorithm coupled with a local search that
has two neighborhood operators available: Greedy
Crossover Hill Climbing (GCHC) and Steepest Mu-
tation Hill Climbing (SMHC). GCHC applies a
crossover operator using the elite solution and an in-
dividual from the population (chosen by the roulette
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wheel selection). It returns the best child obtained.
SMHC operator flips a number of bits in the elite so-
lution (a sort of macro-mutation). The original solu-
tion is replaced if the new one is better.

These operators are selected with a probability
distribution that is adjusted during the run. After
a change, the probability values are kept. AHMA
also includes two mechanisms to manage population
diversity during the run: Adaptable Dual Mapping
(ADM) and Triggered Random Immigrants (TRI).

4.2.2. SORIGA

SORIGA (Self Organized Random Immigrants Ge-
netic Algorithm), proposed in [42], is a Genetic Al-
gorithm in which, after the initialization, its popula-
tion is split into two sub-populations: the main and
the secondary one. The best individuals are moved
to the main subpopulation whereas the worst indi-
viduals are replaced by randomly generated ones
(“Random Immigrants”) and moved to the sec-
ondary subpopulation. Both sub-populations are
co-evolved independently until the worst individual
considering the two sub-populations belongs to the
main one. In this moment, both sub-populations are
joined again, evolved for one generation and split
in the same way explained before. This process is
repeated iteratively until the stopping condition is
reached.

4.2.3.  Porfolio Composition

To implement the algorithms that compose the port-
folio we use the Java library BiCIAM [12] which
contains standard versions of the most common
metaheuristics. For the evaluation of the algo-
rithm portfolio we selected the next methods: Best-
First Hill Climbing, Random Search, Simulated An-
nealing, Tabu Search, Genetic Algorithm, Evolu-
tionary Strategy and Univariate Marginal Distri-
bution Algorithm. It is important to note that
we chose the methods basing just on theirs fea-
tures (trajectory/population based, search pattern,
evolutionary/non-evolutionary method, etc.) and
without knowing a priori their performance in the
DOPs showed above. We aimed at having a di-
verse set of algorithm with heterogeneous searching
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behaviors. Table 3 displays the parameter settings
of the methods that integrate the algorithm portfo-
lio. The current version of the Java library BiCIAM,
which includes the metaheuristics mentioned above
and the implementation of the algorithm portfolio
presented in this paper, is available in the next link:
http://modo.ugr.es/algorithmportfolio/
index.html

Table 3. Methods that integrate the algorithm portfolio and
their parameter settings

Method Parameter Setting
Hill hill climbing type Best-first
Climbing neighborhood operator  one-bit flip mutation
Simulated initial temperature £ 20
Annealing final temperature f, 0
number of iterations T 50
o 0.93
annealing scheme t, = O * 1y
neighborhood operator  one-bit flip mutation
Tabu tabu list size 20
Search tabu list content solutions
neighborhood operator  one-bit flip mutation
Evolutionary population size 50
Strategy mutation probability 0.9
selection operator truncation (20)
mutation operator uniform
Genetic population size 50
Algorithm mutation probability 0.5
crossover probability 0.9
selection operator truncation (20)
crossover operator uniform
mutation operator uniform
Estimation of population size 50
Distribution selection operator truncation (20)
UMDA probability distribution UMDA [36]

4.3. Performance measure

The algorithms will be evaluated using the “offline
performance” [4] which is defined as follows:

1 i 1 &
Fpe = = 2 I (12)
NZ\C=Z
where N is the number of runs; in the original defini-
tion, G stands for the number of generations (which
has perfect sense when talking about evolutionary
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algorithms) but here, G = 100 - T is the number of
fitness function evaluations allowed for the portfolio
in one run; the value k = [e/7], k € {0...100} is the
current change period; and Fé‘[e is the fitness of the
best solution found in the k-th change period of the
i-th run up to the e-th evaluation (or (e — (k— 1)7)-th
evaluation of the k-th change period).

4.4. Statistical assessment of results

Nowadays, it is widely assumed that any compari-
son among a set of algorithms over a set of prob-
lems should be supported by statistical testing. In
this article we follow the guidelines proposed in [15]
where non-parametric statistical testing is suggested
in situations like the one faced in this contribution
(several problems, algorithms and configurations).

Firstly, we will apply Friedman’s test to check
if significant differences exist among a set of algo-
rithms. Besides this, Friedman’s average rank al-
lows to sort the algorithms in terms of performance.
Secondly, if such significant differences are de-
tected, we use Wilcoxon’s test for pairwise compar-
isons of algorithms, and Holm’s and Finner’s post-
hoc tests for one-to-many comparisons between the
best algorithm (as indicated by Friedman’s rank out-
put) and the rest.

Commercial software SPSS was used for Fried-
man’s and Wilcoxon’s tests and KEEL tool [15] for
Holm’s and Finner’s post-hoc tests.

5. Results

The computational experiments are oriented to ana-
lyze the following questions:

« Does the portfolio obtain better results when using
a learning scheme than when not? Which vari-
ant of the learning scheme leads to better results?
How does the learning scheme influence the se-
lection of the algorithms?

« Does the best portfolio learning variant obtain bet-
ter results than the individual components when
they are run isolated?

o How the performance of the algorithm portfolio
is with respect to good reference algorithms (i.e.
SORIGA and AHMA)?

Every algorithm in this contribution is analyzed
over 5 problems (One-Max, Plateau, Royal-Road,
Deceptive and Knapsack), 4 levels of severity (p)
and 5 different change frequency (7), that is, it is
tested over a total of 100 problem configurations.
For the sake of simplicity and understanding, the of-
fline performance obtained by the different methods,
in each problem configuration considered in this ex-
perimentation, is not displayed during the analysis
of the results. The interested reader can refer to Ap-
pendix 1 to check this information.

5.1. Analysis of the learning scheme

In this subsection we will analyze the learning
schemes presented in Section 3.1 to check if their
use makes sense (if they lead to better results than an
algorithm portfolio without learning scheme), which
of them obtains the best performance and how the
learning scheme influences the selection of the algo-
rithms.

5.1.1. Learning vs No Learning

The aim of this first analysis is to verify whether or
not, the learning schemes proposed lead the portfo-
lio to obtain better results than a strategy without
learning (AP-NoLearn), i.e. a portfolio where the
constituent methods have the same selection proba-
bility along the whole run.

In first place we compare, using Wilcoxon’s
test at a significance level @ = 0.05, every learn-
ing scheme against AP-NoLearn and the results are
shown in Table 4. The first column indicates the
learning scheme under consideration. The second
column “Global” states the result of the comparison
over all the problems and configurations. The rest of
the columns correspond to the results in every prob-
lem. The ‘>’ sign states that the considered scheme
is statistically better than AP-NoLearn, ‘<’ means
the opposite, and ‘—’ indicates the difference in per-
formance is not significant.

Considering the “Global” column, just half of the
learning schemes tested lead to significantly better
performance against AP-NoLearn, thus making rele-
vant the need of a careful design of the learning strat-
egy. In other words, a bad learning strategy may lead
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Table 4. Learning vs. no learning. Results of the pairwise comparisons, using the Wilcoxon’s non-
parametric test at a significance level of & = 0.05, between the learning schemes proposed and the
variant of the algorithm portfolio without learning scheme (AP-NoLearn). The first column indi-
cates the credit assignment scheme under consideration. The second column states the result of the
comparison over all the problems and configurations. The rest of the columns correspond to the
results in every problem. The ‘>’ sign states that the considered scheme is statistically better than

AP-NoLearn, ‘<’ means the opposite, and ‘—’ indicates that the difference in performance is not
significant.
Learning scheme | Global | OneMax | Plateau | RoyalRoad | Deceptive | Knapsack
RS-AP-RB > > > > > >
RS-AP-REB - > > > - -
RS-IP-RB > > > > - >
RS-IP-REB < — < < >
NRS-AP-RB < < < — - -
NRS-AP-REB > > > > - <
NRS-IP-RB > > > > - >
NRS-IP-REB < < < < < >

to worse results than having no learning. It is not
clear which component of the learning scheme have
a higher impact on the performance, although those
schemes using ‘RB’ (giving reward when the gener-
ated solution is strictly better than the reference one)
provide better results.

Considering the results disaggregated by prob-
lem, the cases for OneMax, Plateau and RoyalRoad
are quite similar to those in the Global case. Besides,
the signs in the table are almost equal among the
three problems, probably meaning that the portfo-
lio behaves similarly on them. Deceptive is perhaps
the most complex problem and its intrinsic struc-
ture “confuses” the learning scheme. Only RS-AP-
RB is able to obtain better results than AP-NoLearn.
When considering the Knapsack problem, perhaps
the one closer to real life problems, the learning
feature starts to be very relevant. Just in one case
out of eight (NRS-AP-REB) the use of learning re-
turned worst results than no learning. The other
seven cases allowed obtaining better or equal results
than AP-NoLearn. It has to be noted that RS-AP-
RB is the only variant that consistently outperforms
AP-NoLearn over all the cases considered.

5.1.2. Analysis of learning schemes

We will compare here the different learning schemes
proposed to determine what it is the best one. We

have analyzed the best scheme both globally (over
all problems) and on each specific problem. Firstly,
and using the Friedman test, we compared all learn-
ing strategies over all problems and on each prob-
lem separately. In all cases the test returned a
p — value = 0, thus indicating that there are signif-
icant differences among the portfolios when using
different learning schemes.

As we stated before, Friedman’s test also out-
puts a mean ranking for each compared method.
These results are shown in Figure 3 where each se-
ries represents the mean raking for a specific learn-
ing scheme on each of the cases mentioned before
(Global, OneMax, Plateau, RoyalRoad, Deceptive
and Knapsack). In order to assess whether the best
learning strategy on each case has a performance
significantly different to the others, we applied the
Holm’s and Finner’s post-hoc tests at a significance
level of v = 0.05. Table 5 shows the results of these
tests, where the symbol ‘*’ indicates the learning
scheme considered as control method (the method
with the best mean ranking according to Friedman’s
test), whereas ‘>’ and ‘-’ indicates the existence or
not, respectively, of significant differences between
the control method and the corresponding learning
scheme. In case both tests do not provide the same
result (e.g., Holm’s test does not rejects the hull hy-
pothesis and Finner’s does), the result of the Finner’s
post-hoc test is displayed within parenthesis.
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Fig. 3. Mean ranking provided by the Friedman’s non-
parametric test when all learning schemes are compared.
Each series represents the mean raking (Y axis) for a spe-
cific learning scheme when all problems are considered
(Global) and for each problem (OneMax, Plateau, Royal-

Road, Deceptive and Knapsack).

Figure 3 shows that the best ranked scheme glob-
ally is RS-AP-RB (credit is restarted after a change,
penalization is active and credit is gained if the new
solution is strictly better than the best one available).
Furthermore, the difference in performance with re-
spect to all the other schemes is significant (Table 5).
Therefore, RS-AP-RB is statistically the best learn-
ing scheme over all problems.

If we consider each problem separately, RS-AP-
RB is the best portfolio variant in four out of the
five problems, that is, all but the Knapsack problem.
Looking at Table 5, it improves significantly the rest
of methods in three of these four problems (One-
Max, Plateu and RoyalRoad), whereas in Deceptive
the null hypothesis cannot be rejected for two learn-
ing schemes, RS-AP-RB and NRS-IP-REB (or only
NRS-IP-REB if we consider the Finner’s post-hoc
test). In the Knapsack problem, despite not being
the best learning scheme, RS-AP-RB is not signifi-
cantly worse than RS-IP-RB, the control method in
this case. In short, the performance of RS-AP-RB
is better or similar to the other learning schemes, so
we can conclude that it is the best portfolio variant.

5.1.3. Analyzing the influence of the learning
scheme in the selection of the algorithms

So far, we have focused on the performance of the
different learning schemes. In this section we aim at
studying how the learning scheme influences the be-
havior of the algorithm portfolio. More specifically,
we want to analyze how the selection of the algo-
rithms varies from one learning scheme to another
by studying the evolution of the selection probabil-
ities P, of the algorithms that compose the port-
folio: Hill Climbing (HC), Random Search (RndS),
Simulated Annealing (SA), Tabu Search (TS), Ge-
netic Algorithm (GA), Evolutionary Strategy (ES)
and Estimation of Distribution Algorithm (EDA).
For the sake of the simplicity and space, we have
limited our analysis to two representative learning
schemes and problem configurations. Concretely,
we have chosen the best learning scheme, RS-AP-
RB, and its non-restarting counterpart, NRS-AP-
RB, in order to have a clear view of the effects of
restarting the credit after each change. Regarding
the problem configurations, we considered the two
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Table 5. Results returned by the Holm’s and Finner’s post-hoc tests at a significance level of & = 0.05
when the best learning scheme globally (over all problems) and on each specific problem is compared
against the others. The symbol ‘*’ indicates the learning scheme considered as control method (the
method with the best mean ranking); ‘>’ means that the control method improves significantly the
corresponding learning scheme; and ‘-’ indicates no significant differences between the two learning
schemes. In case both tests do not provide the same result (e.g., Holm’s test does not rejects the hull
hypothesis and Finner’s does), Finner’s post-hoc test result is displayed within parenthesis.

Learning scheme | Global | OneMax | Plateau | RoyalRoad | Deceptive | Knapsack
RS-AP-RB * * * * * —
RS-AP-REB > > > > > >
RS-IP-RB > > > > —(>) *
RS-IP-REB > > > > > >
NRS-AP-RB > > > > > >
NRS-AP-REB > > > > > >
NRS-IP-RB > > > > — —
NRS-IP-REB > > > > > —

most representative problems from a practical point
of view, RoyalRoad and Knapsack, with intermedi-
ate values for severity and frequency of change, con-
cretely, 0.5 and 6000, respectively.

Figure 4 displays the evolution of the mean se-
lection probability for each algorithm, measured ev-
ery 600 evaluations and aggregated over 30 runs, in
the first five changes of the objective function. Rows
and columns corresponds to learning schemes (RS-
AP-RB and NRS-AP-RB) and problem configura-
tions (RoyalRoad and Knapsack), respectively. In
each plot, the horizontal line marks the probability
value for a uniform distribution where all individ-
ual algorithms have the same selection probability,
whereas the vertical lines show when the changes
take place.

First, we focus our analysis on the Royal Road
configuration. For a better understanding of the
analysis, it is important to highlight that in this
problem configuration, RS-AP-RB is significantly
better than NRS-AP-RB (Mann-Whitney’s U non-
parametric test & < 0.05) and the performance of
the isolated algorithms in descent order (better —
worse) according to their offline performance is
HC, ES, GA, SA, RS, TS and EDA. Looking at
the plot we can clearly observe the differences be-
tween restarting or not the credit after changes. In
the NRS-AP-RB scheme, the probabilities converge
after the first change to a virtually uniform dis-
tribution, where all the algorithms have the same
chances of being selected. However, in the RS-

AP-RB scheme, the probabilities vary right after
each change and converge approximately after 3000
evaluations, that is, at half of the period between
changes. Focusing on the individual methods, in the
period before the first change, HC presents the high-
est probability for both credit assignment schemes.
In the next stages, we observe very interesting be-
haviors in RS-AP-RB. The selection probability for
HC becomes closer to the uniform distribution value
but experiences abrupt changes for ES, SA and
EDA, with high values at similar moments of the sta-
tionary periods of the function. Taking into account
that SA and EDA are not among the best perform-
ing methods for this problem configuration when
run individually, this behavior shows that although
a solver may not have a good isolate performance,
it can be very useful in some moments of the search
when it is combined with other methods. This also
explains why “forgetting” the learning gained after
each change (by restarting the credit) is beneficial in
this case. It allows taking advantage of those algo-
rithms that only have a good performance in specific
parts of the search but bad in the others.

The evolution of the selection probabilities for
the Knapsack configuration is different but it keeps
some similarities. In this case, RS-AP-RB is
also significantly better than NRS-AP-RB (Mann-
Whitney’s U non-parametric test @ < 0.05), and the
performance of the algorithms in descent order ac-
cording to their offline performance is SA, HC, RS,
TS, GA, EDA y ES. The first issue to highlight here
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Fig. 4. Evolution of the mean selection probability for
each individual algorithm, measured every 600 evaluations
and aggregated over 30 runs, in the first five changes of
the objective function. Rows and columns corresponds to
learning schemes (RS-AP-RB and NRS-AP-RB) and prob-
lem configurations ([RoyalRoad (severity 0.5, frequency
of change 6000) and Knapsack (severity 0.5, frequency of
change 6000)), respectively. In each plot, the horizontal line
marks the probability value for a uniform distribution where
all individual algorithms have the same selection probabil-
ity, whereas the vertical lines show when the changes take
place.
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Fig. 5. Mean ranking provided by the Friedman’s non-
parametric test when the best portfolio variant (RS-AP-RB)
is compared against the individual metaheuristics. Each se-
ries represent the mean raking (Y axis) for a method when
all problems are considered (Global) and for each problem
(OneMax, Plateau, RoyalRoad, Deceptive and Knapsack).

is the higher variation of the selection probabilities
along the whole stationary periods, unlike in Royal
Road where probabilities tended to converged. This
is due to the greater difficulty of the Knapsack prob-
lem, which slows the convergence of the methods
and spread the improvements, and thus the credit
rewards, along the whole search process. Analyz-
ing the individual methods, we observe that TS and
SA are the algorithms that present a higher selec-
tion probability for both learning schemes. Again, it
is interesting to see that TS is one of the two algo-
rithms with the highest selection probability despite
being the fourth best performing method when it is
run individually. This suggests again that bad indi-
vidual methods could be useful in some part of the
search when combined with other algorithms.

5.2. Comparisons with isolated methods

In last section we determined the best learning
scheme (RS-AP-RB). Here, we will check if the
portfolio is able to obtain better results than their in-

dividual metaheuristics separately. To this end, we
compare RS-AP-RB against the methods that com-
pose the portfolio.

We will follow the same methodology employed
in the former section. Figure 5 displays the mean
ranking returned by the Friedman’s non-parametric
test for all methods both globally and on each prob-
lem. The p — value obtained in all cases was equal
to 0 so we can reject the null hypothesis. We also
applied Holm’s and Finner’s post-hoc tests, at a sig-
nificance level of o¢ = 0.05, in order to check if the
difference in performance between the best method
against the remaining algorithms is significant or
not. These results are shown in Table 6 (the nota-
tion is the same explained above).

Globally over all problems, RS-AP-RB improves
significantly all the isolated methods except HC (see
Figure 5 and Table 6). Analyzing the problems sep-
arately, the first issue to highlight is the performance
variability of the isolated metaheuristics, especially
when the difficulty of the problems increases. Three
good examples are HC, RndS and SA, the only
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Table 6. Results returned by the Holm’s and Finner’s post-hoc tests at a significance level of & = 0.05
when the best learning scheme (RS-AP-RB) and the individual metaheuristics are compared globally
and on each specific problem. The symbol ‘*’ indicates the learning scheme considered as control
method (the method with the best mean ranking); ‘>’ means that the control method improves sig-
nificantly the corresponding learning scheme; and ‘-’ indicates no significant differences between
the two learning schemes. In case both tests do not provide the same result (e.g., Holm’s test does
not rejects the hull hypothesis and Finner’s does), Finner’s post-hoc test result is displayed within

parenthesis.

Method Global | OneMax

Plateau

RoyalRoad | Deceptive | Knapsack

HC

*

* > —

RndS

- >

SA

TS

GA

ES

VIVIVIVI|VIV]*

EDA

VIVIV|IV|V|V

VIVIVIV]|V]|V

* I V|V|IVIV|IV]|V

RS-AP-RB

*|VIVIV|V|IV
*VIV|V|V

methods that are not significantly worse than RS-
AP-RB in all problems. HC and RndS have an oppo-
site performance. While HC offers good results for
OneMax, Plateau, RoyalRoad and Knapsack, and
poor for Deceptive, RndS performs very well in De-
ceptive and poorly in the other four problems. As
for SA, it shows a high performance for Knapsack
and Deceptive but low for OneMax, Plateu and Roy-
alRoad. On the contrary, the portfolio presents very
robust results along all problems. Particularly for the
two hardest ones (Knapsack and Deceptive) where it
improves all the individual metaheuristics in terms
of mean ranking, although the null hypothesis can-
not be rejected for RndS in Deceptive, and for HC
and SA in Knapsack. In the end, although HC has
a better performance than RS-AP-RB in OneMax,
Plateau and RoyalRoad, we can affirm that the best
variant of the portfolio obtains similar or signifi-
cantly better results (in at least one problem) than
the isolated versions of the metaheuristics that inte-
grate it.

5.3. Comparisons against SORIGA and AHMA

To finish the analysis of the results, we will compare
RS-AP-RB against SORIGA and AHMA (both de-
scribed in Section 4.2), to check whether its results
are competitive with high-performance algorithms
for these problems. We used the same benchmarks
as before and the parameter setting of both methods

was done according to the guidelines given in their
original works ( [42] and [46], respectively).

We will follow the same comparison scheme
used in the two former sections, that is, we will
use the mean ranking provided by the Friedman’s
non-parametric test, which rejects the null hypoth-
esis in all cases (p — value = 0), and the Holm’s
and Finner’s post-hoc tests at a confidence level of
o = 0.95 to check the significance of the difference
in performance among the three methods. These re-
sults are displayed in Figure 6 and Table 7, respec-
tively.

When considering all the problems and configu-
rations (Global), the portfolio coupled with the RS-
AP-RB learning scheme achieves significantly bet-
ter performance than AHMA and SORIGA. Sepa-
rating the results by problem, we observe that RS-
AP-RB is the best alternative in OneMax, Plateau
and RoyalRoad, as shown in Figure 6. Further-
more, the null hypothesis of similar performance
can be rejected for both AHMA and SORIGA in
the three cases (Table 7). For Deceptive, AHMA
is significantly the best method, whereas for Knap-
sack, AHMA and RS-AP-RB achieved similar per-
formance. Overall, (and setting apart Deceptive,
maybe the one most distant to real problems), it be-
comes clear that RS-AP-RB is better or equal than
the reference algorithms considered.
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Fig. 6. Mean ranking provided by the Friedman’s non-
parametric test when the best portfolio variant (RS-AP-RB)
is compared against SORIGA and AHMA. Each series rep-
resent the mean raking (Y axis) for a specific method when
all problems are considered (Global) and for each problem
(OneMax, Plateau, RoyalRoad, Deceptive and Knapsack).

Table 7. Results returned by the Holm’s and Finner’s post-hoc tests at a significance level of a = 0.05
when the best learning scheme (RS-AP-RB), SORIGA and AHMA are compared globally and on
each specific problem. The symbol “*’ indicates the learning scheme considered as control method
(the method with the best mean ranking); ‘>’ means that the control method improves significantly
the corresponding learning scheme; and ‘-’ indicates no significant differences between the two learn-
ing schemes. In case both tests do not provide the same result (e.g., Holm’s test does not rejects the
hull hypothesis and Finner’s does), Finner’s post-hoc test result is displayed within parenthesis.

Method | Global | OneMax | Plateau | RoyalRoad | Deceptive | Knapsack
RS-AP-RB * * * * > -
AHMA > > > > * *
SORIGA > > > > >
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6. Conclusions

In this work we have presented an Algorithm Port-
folio to solve combinatorial Dynamic Optimization
Problems. This method consists of a set of meta-
heuristics that are run iteratively. At each stage of
the search, the portfolio selects which metaheuristic
to apply using a credit based approach that acts as a
learning scheme.

The algorithm portfolio was tested over five test
problems (OneMax, Plateau, RoyalRoad, Deceptive
and Knapsack) to which we induced dynamism by
means of XOR-DOP generator. For each problem
we considered 4 and 5 different severities and fre-
quencies of change, respectively. To compare the
methods, we employed the offline performance, as
performance measure, and paired non-parametric
tests to check the significance of the differences
among algorithms.

The experimentation was oriented to check:
whether the algorithm portfolio obtained better re-
sults when using a learning scheme than when not;
what learning scheme provided better results; how
the learning scheme influenced the selection of algo-
rithms; if the portfolio with the best learning scheme
improved the performance of the individual meta-
heuristics that compose it; and how the performance
of the portfolio was with respect to two reference
methods in the literature, AHMA and SORIGA.

After analyzing the results of the experimenta-
tion we can draw the next conclusions:

« The right design of the learning scheme for the al-
gorithm portfolio is a crucial task in DOPs, since
only 4 out of 8 learning schemes provided better
result than the non-learning version of the algo-
rithm portfolio.

« Different learning schemes lead to different pat-
terns of algorithm selection.

o Algorithms with bad performance when run indi-
vidually may be useful in specific moments of the
search when combined with other methods.

« RS-AP-RB was the only learning scheme that
consistently outperformed the non-learning ver-
sion of the algorithm portfolio in the five problems
considered.

« RS-AP-RB was significantly the best credit as-
signment scheme both globally and in the major-
ity of the problems, except for Knapsack. We
understand the lower performance of RS-AP-RB
in knapsack problem, as an indication that the
structure of the problem may influence the perfor-
mance of the learning scheme, making some fea-
tures more appropriate than others (e.g., penaliza-
tion performs better for OneMax, Plateau, Royal-
Road and Deceptive, while worse for the Knap-
sack problem).

« When considering the results over all problems,
RS-AP-RB improved all the individual meta-
heuristics that integrate it, with all the difference
in performance significant but one, Hill Climb-
ing. Hill Climbing is the best standalone method
for OneMax, Plateau and RoyalRoad. As a con-
sequence, RS-AP-RB selects this method with a
higher frequency, making it, at the end, to reach
a Hill Climbing-like behavior. The situation is
different in Deceptive and Knapsack problems,
where the differences in performance are lower
among the individual methods. Thus RS-AP-RB
shows a behavior that can be understood as a “hy-
brid” among its constituent methods, taking the
“best” of each one.

« RS-AP-RB offered very robust results in all prob-
lems, in contrast to the performance variability of
the individual metaheuristics.

o Over all problems, RS-AP-RB obtained signifi-
cantly better results than AHMA and SORIGA.

In general terms, the results showed that the old
idea of the portfolio of algorithms can also pro-
vide good results in DOPs. An important aspect to
highlight it is the extreme simplicity of the learn-
ing scheme of the portfolio and the metaheuristics
that integrate it. We have seen how very general and
basic versions of common metaheuristics working
together under a simple learning scheme can pro-
vide competitive results with respect to ad-hoc high-
performance methods for DOPs. In our opinion,
these results show that algorithm portfolios could be
a good paradigm for designing solvers not only for
static problems but also for dynamic ones and there-
fore, they deserve a greater attention in this field.
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Table A.1. Offline performance obtained in 30 runs by each learning schemes considered in the
experimentation for each problem, severity and frequency of change.
OneMax Plateau RoyalRoad Deceptive Knapsack
severity severity severity severity severity

change 0.1 0.2 0.5 0.9 0.1 0.2 0.5 0.9 0.1 0.2 0.5 0.9 0.1 0.2 0.5 0.9 0.1 0.2 0.5 0.9
RS-IP-REB 1200 | 96.697 | 93.627 | 88.183 | 88.009 | 92.951 | 85.863 | 73.776 | 73.967 | 75.169 | 59.801 | 44.084 | 40.929 | 18.201 | 17.282 | 16.710 | 16.893 | 1674.750 | 1668.979 | 1665.183 | 1674.889
3000 | 98.650 | 97.330 | 94.934 | 94.932 | 96.861 | 93.046 | 86.141 | 86.149 | 83.193 | 71.834 | 56.033 | 51.294 | 20.123 | 19.249 | 18.599 | 18.599 | 1679.836 | 1674.244 | 1670.331 | 1679.611
6000 | 99.326 | 98.674 | 97.472 | 97.461 | 98.274 | 95.740 | 91.089 | 91.197 | 87.647 | 77.650 | 63.426 | 58.637 | 21.726 | 20.413 | 19.931 | 19.707 | 1684.083 | 1677.994 | 1674.314 | 1683.923
9000 | 99.540 | 99.117 | 98.311 | 98.300 | 98.789 | 96.696 | 92.894 | 92.975 | 89.458 | 80.805 | 67.657 | 63.931 | 22.679 | 21.388 | 20.829 | 20.702 | 1687.852 | 1680.461 | 1676.542 | 1687.469
12000 | 99.662 | 99.339 | 98.731 | 98.724 | 99.023 | 97.227 | 93.892 | 94.069 | 90.199 | 81.972 | 70.500 | 67.099 | 23.729 | 22.160 | 21.690 | 21.353 | 1689.696 | 1682.967 | 1678.778 | 1689.932
RS-IP-RB 1200 | 97.363 | 94.564 | 87.864 | 87.637 | 94.402 | 87.784 | 71.548 | 71.467 | 77.185 | 60.925 | 43.184 | 40.244 | 19.714 | 18.985 | 18.339 | 18.346 | 1675.406 | 1669.828 | 1664.828 | 1675.449
3000 | 98.942 | 97.811 | 95.086 | 95.024 | 97.736 | 94.774 | 86.920 | 86.983 | 87.960 | 75.308 | 56.465 | 52.667 | 22.491 | 21.438 | 20.995 | 20.737 | 1681.025 | 1675.253 | 1671.222 | 1681.000
6000 | 99.473 | 98.907 | 97.564 | 97.510 | 98.841 | 97.207 | 92.955 | 93.053 | 92.340 | 82.820 | 66.147 | 63.261 | 24.206 | 23.468 | 22.815 | 22.562 | 1686.174 | 1680.274 | 1676.124 | 1687.073
9000 | 99.649 | 99.271 | 98.370 | 98.328 | 99.203 | 98.074 | 95.131 | 95.151 | 94.125 | 86.425 | 71.761 | 70.069 | 25.510 | 24.476 | 23.928 | 23.675 | 1690.165 | 1682.660 | 1678.850 | 1689.953
12000 | 99.737 | 99.455 | 98.778 | 98.752 | 99.395 | 98.541 | 96.299 | 96.277 | 94.902 | 88.690 | 75.223 | 74.054 | 26.851 | 25.399 | 24.765 | 24.664 | 1692.488 | 1685.421 | 1681.317 | 1692.558
RS-AP-REB 1200 | 97.321 | 94.353 | 87.360 | 87.149 | 94.250 | 87.546 | 71.518 | 71.416 | 77.925 | 61.276 | 43.467 | 40.495 | 19.762 | 18.644 | 17.992 | 17.596 | 1672.132 | 1667.715 | 1663.481 | 1672.086
3000 | 98.924 | 97.731 | 94.904 | 94.810 | 97.624 | 94.602 | 86.541 | 86.573 | 87.756 | 75.211 | 56.438 | 51.641 | 22.002 | 21.181 | 20.400 | 20.214 | 1674.764 | 1670.086 | 1666.705 | 1675.079
6000 | 99.462 | 98.865 | 97.441 | 97.404 | 98.792 | 97.109 | 92.653 | 92.698 | 92.218 | 82.934 | 66.019 | 62.806 | 23.953 | 22.899 | 22.351 | 22.221 | 1675.907 | 1671.159 | 1668.374 | 1675.161
9000 | 99.640 | 99.238 | 98.296 | 98.273 | 99.177 | 97.968 | 94.724 | 94.865 | 94.030 | 86.067 | 70.856 | 68.555 | 25.454 | 24.058 | 23.503 | 23.210 | 1676.288 | 1671.747 | 1668.235 | 1676.354
12000 | 99.728 | 99.429 | 98.721 | 98.706 | 99.353 | 98.417 | 95.928 | 95.922 | 94.946 | 88.001 | 74.934 | 72.949 | 26.417 | 24.717 | 24.434 | 24.067 | 1676.373 | 1671.604 | 1668.943 | 1676.417
RS-AP-RB 1200 | 99.532 | 99.266 | 99.617 | 99.544 | 98.739 | 95.148 | 86.702 | 85.823 | 92.048 | 92.452 | 84.869 | 82.448 | 20.195 | 18.998 | 18.431 | 18.367 | 1675.046 | 1669.866 | 1665.136 | 1675.534
3000 | 99.007 | 98.096 | 96.215 | 98.167 | 98.839 | 95.425 | 89.887 | 89.925 | 89.058 | 77.949 | 61.739 | 79.613 | 22.407 | 21.855 | 21.060 | 20.933 | 1682.253 | 1675.598 | 1671.495 | 1681.525
6000 | 99.507 | 99.047 | 98.105 | 98.091 | 98.878 | 97.591 | 94.667 | 94.770 | 92.914 | 85.540 | 73.682 | 73.129 | 24.589 | 23.488 | 23.006 | 22.973 | 1686.111 | 1680.050 | 1676.114 | 1685.967
9000 | 99.670 | 99.363 | 98.740 | 98.725 | 99.228 | 98.314 | 96.345 | 96.384 | 94.455 | 88.680 | 79.680 | 79.797 | 25.917 | 25.024 | 24.265 | 24.001 | 1689.472 | 1682.749 | 1678.951 | 1689.532
12000 | 99.750 | 99.523 | 99.056 | 99.042 | 99.429 | 98.720 | 97.231 | 97.194 | 95.329 | 90.588 | 93.004 | 93.013 | 27.272 | 25.686 | 25.304 | 24.927 | 1691.908 | 1684.759 | 1681.273 | 1691.020
NRS-IP-REB 1200 | 95.195 | 90.859 | 86.096 | 87.285 | 89.885 | 82.284 | 71.610 | 73.837 | 74.705 | 60.427 | 40.266 | 37.505 | 15.349 | 14.593 | 13.986 | 14.462 | 1675.527 | 1669.410 | 1664.945 | 1675.560
3000 | 98.042 | 95.894 | 92.528 | 93.357 | 95.506 | 90.181 | 83.431 | 84.105 | 82.838 | 71.478 | 52.451 | 43.020 | 17.284 | 16.034 | 15.224 | 15.753 | 1681.742 | 1675.308 | 1671.148 | 1681.524
6000 | 99.008 | 97.885 | 95.590 | 95.696 | 97.134 | 93.402 | 87.985 | 90.382 | 86.181 | 77.351 | 60.528 | 47.917 | 19.355 | 17.585 | 16.564 | 17.183 | 1686.731 | 1679.761 | 1675.553 | 1686.680
9000 | 99.337 | 98.576 | 96.656 | 97.160 | 98.128 | 94.737 | 89.811 | 91.811 | 87.860 | 80.065 | 65.131 | 49.795 | 21.020 | 18.957 | 17.636 | 18.274 | 1689.568 | 1682.132 | 1678.363 | 1689.815
12000 | 99.511 | 98.932 | 97.172 | 97.301 | 98.518 | 95.368 | 90.601 | 92.256 | 88.372 | 81.515 | 68.120 | 51.566 | 22.070 | 19.566 | 17.852 | 18.747 | 1692.428 | 1684.379 | 1680.528 | 1692.290
NRS-IP-RB 1200 | 97.496 | 94.488 | 86.434 | 86.146 | 94.653 | 87.671 | 69.833 | 69.350 | 78.607 | 60.814 | 43.116 | 40.024 | 20.012 | 19.111 | 18.463 | 18.476 | 1675.520 | 1669.685 | 1664.952 | 1675.860
3000 | 98.972 | 97.791 | 94.466 | 94.332 | 97.785 | 94.686 | 85.306 | 85.377 | 88.181 | 75.075 | 55.933 | 51.808 | 22.428 | 21.499 | 21.073 | 20.852 | 1681.993 | 1675.298 | 1671.091 | 1681.263
6000 | 99.486 | 98.891 | 97.210 | 97.182 | 98.860 | 97.179 | 92.118 | 92.074 | 92.402 | 83.072 | 65.364 | 61.482 | 24.632 | 23.363 | 22.801 | 22.625 | 1686.723 | 1679.341 | 1675.554 | 1686.996
9000 | 99.659 | 99.259 | 98.147 | 98.120 | 99.228 | 98.062 | 94.443 | 94.403 | 94.110 | 86.124 | 70.421 | 68.465 | 25.682 | 24.400 | 24.133 | 23.792 | 1689.640 | 1682.575 | 1678.596 | 1689.953
12000 | 99.745 | 99.449 | 98.607 | 98.590 | 99.379 | 98.481 | 95.600 | 95.649 | 94.944 | 88.181 | 74.229 | 72.275 | 26.574 | 25.345 | 24.723 | 24.686 | 1692.360 | 1684.905 | 1680.654 | 1692.137
NRS-AP-REB 1200 | 97.441 | 94.457 | 86.258 | 86.063 | 94.616 | 87.441 | 69.535 | 69.256 | 78.241 | 60.636 | 42.639 | 39.959 | 19.879 | 19.164 | 18.190 | 18.326 | 1659.158 | 1647.679 | 1630.299 | 1660.947
3000 | 98.973 | 97.743 | 94.377 | 94.268 | 97.784 | 94.672 | 85.390 | 85.327 | 88.111 | 74.814 | 55.847 | 51.629 | 22.233 | 21.337 | 20.791 | 20.626 | 1671.098 | 1654.507 | 1641.605 | 1673.837
6000 | 99.486 | 98.879 | 97.211 | 97.146 | 98.833 | 97.122 | 92.024 | 91.999 | 92.415 | 82.778 | 65.419 | 61.875 | 24.344 | 23.263 | 22.818 | 22.360 | 1676.858 | 1660.464 | 1648.235 | 1671.442
9000 | 99.657 | 99.257 | 98.133 | 98.103 | 99.191 | 98.000 | 94.389 | 94.394 | 93.932 | 86.067 | 70.303 | 68.329 | 25.527 | 24.556 | 23.758 | 23.814 | 1678.867 | 1670.334 | 1657.083 | 1678.964
12000 | 99.743 | 99.446 | 98.603 | 98.584 | 99.408 | 98.479 | 95.608 | 95.591 | 94.793 | 88.177 | 74.102 | 72.589 | 26.556 | 25.123 | 24.606 | 24.433 | 1678.505 | 1669.627 | 1637.374 | 1678.866
NRS-AP-RB 1200 89.827 | 86.918 | 73.941 | 76.055 | 81.079 | 73.119 | 51.658 | 53.481 | 69.108 | 60.407 | 54.910 | 51.738 | 17.710 | 16.308 | 16.101 | 15.808 | 1662.259 | 1656.879 | 1650.774 | 1661.837
3000 | 85.416 | 81.313 | 81.423 | 79.265 | 75.669 | 64.629 | 62.475 | 61.077 | 76.467 | 64.109 | 50.036 | 50.735 | 21.173 | 19.783 | 18.875 | 19.068 | 1670.644 | 1666.472 | 1661.524 | 1671.387
6000 | 97.360 | 89.784 | 89.206 | 90.113 | 94.805 | 87.656 | 80.108 | 79.627 | 88.007 | 78.186 | 64.692 | 63.529 | 24.386 | 23.318 | 22.556 | 22.506 | 1677.665 | 1674.624 | 1670.708 | 1679.441
9000 | 98.261 | 96.288 | 93.037 | 93.369 | 96.596 | 92.771 | 86.053 | 86.608 | 91.951 | 83.735 | 71.930 | 72.178 | 26.382 | 25.237 | 24.296 | 24.495 | 1683.665 | 1678.657 | 1674.753 | 1684.315
12000 | 98.700 | 97.442 | 95.130 | 95.303 | 97.428 | 94.571 | 88.966 | 90.208 | 93.423 | 87.068 | 77.265 | 77.509 | 27.652 | 26.108 | 25.800 | 25.670 | 1686.898 | 1682.265 | 1679.556 | 1686.938
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Table A.2. Offline performance obtained in 30 runs by the isolated versions of algorithms that com-
pose the portfolio for each problem, severity and frequency of change.

OneMax Plateau RoyalRoad Deceptive Knapsack
severity severity severity severity severity
change | 0.1 0.2 0.5 0.9 0.1 0.2 0.5 0.9 0.1 0.2 0.5 0.9 0.1 0.2 0.5 0.9 0.1 0.2 0.5 0.9
HC 1200 | 99.197 | 98.384 | 95.920 | 92.639 | 98.258 | 96.182 | 89.746 | 83.748 | 89.268 | 80.940 | 66.838 | 60.687 | 11.972 | 11.915 | 11.980 | 13.516 | 1676.305 | 1671.407 | 1665.839 | 1675.655
3000 | 99.682 | 99.348 | 98.369 | 97.043 | 99.298 | 98.459 | 95.909 | 93.519 | 95.719 | 92.163 | 85.759 | 82.872 | 11.988 | 11.972 | 16.766 | 17.594 | 1677.620 | 1672.574 | 1668.479 | 1677.862
6000 | 99.840 | 99.673 | 99.183 | 98.523 | 99.656 | 99.234 | 97.953 | 96.769 | 97.838 | 96.089 | 92.901 | 91.411 | 11.996 | 11.990 | 18.077 | 18.922 | 1678.150 | 1673.188 | 1668.759 | 1679.739
9000 | 99.893 | 99.783 | 99.453 | 99.015 | 99.768 | 99.491 | 98.636 | 97.844 | 98.566 | 97.411 | 95307 | 94.281 | 11.997 | 11.992 | 18.665 | 19.271 | 1678.829 | 1673.836 | 1669.775 | 1679.033
12000 | 99.920 | 99.837 | 99.592 | 99.259 | 99.829 | 99.619 | 98.981 | 98.372 | 98.926 | 98.041 | 96.461 | 95.708 | 11.999 | 11.995 | 19.137 | 19.456 | 1679.537 | 1673.282 | 1669.751 | 1679.821
RS 1200 | 65.550 | 64.894 | 64.653 | 64.644 | 39.346 | 38.548 | 38.245 | 38.138 | 24.437 | 24.000 | 23.727 | 23.767 | 18.818 | 18.652 | 18.622 | 18.610 | 1657.082 | 1656.955 | 1656.826 | 1656.963
3000 | 66.721 | 66.219 | 65.969 | 65.915 | 41.268 | 40.469 | 40.118 | 40.183 | 26.914 | 26.475 | 26.415 | 26.413 | 19.598 | 19.559 | 19.519 | 19.497 | 1663.341 | 1663.146 | 1663.080 | 1663.413
6000 | 67.521 | 67.052 | 66.919 | 66.874 | 42.285 | 41.784 | 41.551 | 41.618 | 27.889 | 27.630 | 27.553 | 27.496 | 19.976 | 19.933 | 19.917 | 19.910 | 1667.171 | 1666.993 | 1667.124 | 1667.158
9000 | 67.998 | 67.614 | 67.467 | 67.482 | 43.038 | 42.582 | 42.492 | 42.430 | 28.397 | 28.066 | 27.939 | 27.978 | 21.872 | 21.490 | 21.574 | 21.573 | 1669.207 | 1669.229 | 1669.017 | 1669.082
12000 | 68.340 | 67.948 | 67.844 | 67.790 | 43.645 | 43.104 | 43.062 | 43.055 | 29.526 | 29.162 | 29.075 | 29.063 | 23.233 | 23.210 | 23.229 | 23.021 | 1670.454 | 1670.362 | 1670.198 | 1670.487
TS 1200 | 60.265 | 60.183 | 60.115 | 60.193 | 32.217 | 32.151 | 32.168 | 32.149 | 18.503 | 18.537 | 18.528 | 18.537 | 13.490 | 13.578 | 13.217 | 13.469 | 1636.800 | 1636.055 | 1636.392 | 1636.426
3000 | 62.245 | 62.365 | 62.213 | 62.273 | 35.168 | 35.219 | 35.153 | 35.154 | 21.287 | 21.459 | 21.283 | 21.305 | 17.035 | 16.904 | 16.990 | 16.921 | 1652.397 | 1652.123 | 1652.610 | 1652.826
6000 | 63.770 | 63.690 | 63.727 | 63.708 | 37.205 | 37.125 | 37.131 | 37.252 | 23.180 | 23.288 | 23.174 | 23.209 | 18.344 | 18.347 | 18.371 | 18.348 | 1660.527 | 1660.413 | 1660.311 | 1660.419
9000 | 64.481 | 64.473 | 64.564 | 64.546 | 38.274 | 38.352 | 38.126 | 38.254 | 24.129 | 24.000 | 24.275 | 24.110 | 18.830 | 18.852 | 18.868 | 18.871 | 1663.741 | 1664.157 | 1663.850 | 1663.749
12000 | 65.027 | 65.013 | 65.054 | 65.026 | 39.143 | 39.101 | 39.105 | 39.043 | 25.207 | 25.186 | 25.370 | 25.161 | 19.257 | 19.194 | 19.223 | 19.232 | 1666.039 | 1666.021 | 1666.035 | 1666.191
SA 1200 | 62.523 | 62.610 | 62.322 | 62.088 | 36.643 | 36.493 | 36.154 | 35.933 | 22.105 | 21.875 | 21.890 | 21.650 | 13.051 | 12.865 | 12.857 | 12.782 | 1669.539 | 1668.425 | 1666.993 | 1669.549
3000 | 64.930 | 64.937 | 64.810 | 64.634 | 40.244 | 40.158 | 40.034 | 39.757 | 25.947 | 25.917 | 25.698 | 25.610 | 17.069 | 17.074 | 17.122 | 16.818 | 1674.405 | 1673.263 | 1673.662 | 1674.654
6000 | 66.615 | 66.581 | 66.627 | 66.554 | 42.911 | 42.938 | 42.775 | 42.768 | 28.652 | 28.683 | 28.343 | 28.352 | 18.615 | 18.584 | 18.684 | 18.539 | 1677.910 | 1676.437 | 1677.128 | 1678.012
9000 | 67.532 | 67.480 | 67.480 | 67.423 | 44.438 | 44.394 | 44.227 | 44.257 | 30.340 | 30.245 | 30.233 | 30.081 | 19.247 | 19.240 | 19.273 | 19.219 | 1680.058 | 1678.683 | 1678.785 | 1679.600
12000 | 68.189 | 68.087 | 68.016 | 67.969 | 45.469 | 45.418 | 45.232 | 45.269 | 31.251 | 31.259 | 31.109 | 31.153 | 19.641 | 19.587 | 19.591 | 19.617 | 1681.037 | 1679.657 | 1679.558 | 1680.794
GA 1200 | 96.216 | 91.330 | 74.958 | 58.341 | 91.788 | 80.084 | 50.348 | 44.777 | 64.647 | 43.782 | 24.990 | 33.893 | 11.803 | 11.000 | 10.701 | 11.000 | 1662.625 | 1649.844 | 1614.986 | 1662.139
3000 | 98.518 | 96.503 | 88.401 | 74.220 | 96.815 | 90.894 | 67.155 | 49.101 | 75.416 | 54.964 | 31.542 | 38.823 | 11.998 | 11.760 | 11.091 | 11.801 | 1671.867 | 1661.739 | 1642.618 | 1672.269
6000 | 99.262 | 98.264 | 94.202 | 86.971 | 98.416 | 94.917 | 75.969 | 51.863 | 79.464 | 60.332 | 35.031 | 41.308 | 12.000 | 11.936 | 11.664 | 11.946 | 1676.324 | 1666.720 | 1652.077 | 1676.947
9000 | 99.511 | 98.844 | 96.142 | 91.297 | 98.960 | 96.482 | 79.285 | 53.469 | 82.451 | 62.888 | 37.404 | 42.410 | 12.000 | 11.947 | 11.790 | 11.973 | 1677.934 | 1669.617 | 1656.146 | 1677.686
12000 | 99.631 | 99.132 | 97.098 | 93.479 | 99.216 | 97.615 | 81.024 | 54.213 | 82.912 | 64.791 | 38.573 | 42.848 | 12.000 | 11.970 | 11.851 | 11.982 | 1678.553 | 1669.102 | 1657.887 | 1678.778
EE 1200 | 95.793 | 88.685 | 70.493 | 56.554 | 91.008 | 75.659 | 46.331 | 42.389 | 66.570 | 45.620 | 26.410 | 33.078 | 11.887 | 11.274 | 11.000 | 11.649 | 1662.833 | 1649.219 | 1630.740 | 1662.719
3000 | 98.399 | 95.677 | 84.508 | 67.933 | 96.647 | 89.959 | 65.792 | 48.535 | 76.919 | 57.889 | 34.027 | 38.150 | 11.976 | 11.859 | 11.566 | 11.860 | 1671.422 | 1660.911 | 1642.799 | 1672.319
6000 | 99.201 | 97.833 | 92.211 | 82.942 | 98.342 | 94.761 | 78.203 | 54.035 | 81.406 | 64.034 | 38.173 | 41.213 | 11.992 | 11.943 | 11.774 | 11.958 | 1676.044 | 1666.298 | 1652.384 | 1675.258
9000 | 99.468 | 98.549 | 94.830 | 88.621 | 98.891 | 96.589 | 83.001 | 58.020 | 83.211 | 66.209 | 40.996 | 42.147 | 11.990 | 11.959 | 11.878 | 11.966 | 1678.461 | 1668.898 | 1656.286 | 1677.548
12000 | 99.603 | 98.917 | 96.116 | 91.477 | 99.166 | 97.449 | 85.251 | 61.961 | 83.910 | 69.133 | 42.627 | 42.432 | 12.000 | 11.972 | 11.912 | 11.984 | 1678.946 | 1669.402 | 1658.208 | 1678.212
EDA | 1200 | 51.879 | 50.645 | 50.247 | 50.874 | 20.987 | 18.256 | 18.011 | 18.038 | 15.654 | 18.995 | 16.654 | 17.002 | 9.556 | 9.111 | 8.776 | 9.554 | 1662.933 | 1650.063 | 1381.000 | 1661.928
3000 | 51.654 | 50.213 | 50.749 | 55.845 | 18.587 | 18.558 | 18.841 | 18.446 | 15.655 | 15.699 | 15325 | 15.967 | 8.997 | 9.223 | 9.568 | 9.668 | 1672.846 | 1661.352 | 1641.698 | 1672.438
6000 | 51.652 | 50.878 | 50.625 | 50.451 | 20.211 | 18.659 | 19.654 | 18.965 | 11.558 | 15.694 | 16.875 | 15.874 | 9.351 | 9.662 | 8.231 | 9.884 | 1675.443 | 1666.444 | 1652.521 | 1676.018
9000 | 51.635 | 51.524 | 50.894 | 52.451 | 20.111 | 18.654 | 18.963 | 18.549 | 16.854 | 13.325 | 16.895 | 16.552 | 9.622 | 9.304 | 9.002 | 9.684 | 1677.082 | 1668.926 | 1656.387 | 1677.307
12000 | 51.623 | 51.841 | 50.254 | 50.647 | 20.249 | 20.654 | 18.122 | 18.998 | 17.654 | 16.215 | 16.888 | 17.995 | 9.335 | 9.664 | 8.399 | 9.645 | 1678.552 | 1669.649 | 1658.087 | 1678.341
Table A.3. Offline performance obtained by AHMA and SORIGA for each problem, severity and
frequency of change.
OneMax Plateau RoyalRoad Deceptive Knapsack
severity severity severity severity severity
change | 0.1 0.2 0.5 0.9 0.1 0.2 0.5 0.9 0.1 0.2 0.5 0.9 0.1 0.2 0.5 0.9 0.1 0.2 0.5 0.9
AHMA 1200 | 97.648 | 95.355 | 90.662 | 90.607 | 95.073 | 89.423 | 76.900 | 77.154 | 79.723 | 62.762 | 45.140 | 42.663 | 65.123 | 57.088 | 53.930 | 65.736 | 1679.172 | 1671.414 | 1663.916 | 1669.617
3000 | 99.060 | 98.126 | 96.236 | 96.179 | 98.037 | 95.763 | 90.229 | 90.253 | 89.845 | 78.694 | 62.560 | 61.201 | 73.112 | 64.655 | 56.092 | 75.094 | 1693.010 | 1681.298 | 1667.938 | 1677.169
6000 | 99.531 | 99.069 | 98.119 | 98.097 | 99.023 | 97.897 | 95.118 | 95.180 | 93.771 | 86.590 | 76.134 | 75.379 | 78.593 | 70.534 | 62.542 | 80.269 | 1701.750 | 1689.347 | 1671.447 | 1682.675
9000 | 97.688 | 99.379 | 98.750 | 98.727 | 99.350 | 98.595 | 96.739 | 96.780 | 95.019 | 89.807 | 82.400 | 82.514 | 81.574 | 74.068 | 65.763 | 82.302 | 1705.639 | 1694.148 | 1674.089 | 1688.286
12000 | 99.763 | 99.532 | 99.060 | 99.049 | 99.512 | 98.943 | 97.580 | 97.581 | 95.731 | 91.983 | 85.730 | 85.788 | 83.433 | 76.954 | 67.740 | 83.265 | 1707.703 | 1697.228 | 1676.013 | 1692.966
SORIGA | 1200 | 90.016 | 81.473 | 67.956 | 78.296 | 81.042 | 65.262 | 42.366 | 59.845 | 61.767 | 42.152 | 26.158 | 38.683 | 37.055 | 35.562 | 34.111 | 36.985 | 1664.800 | 1664.800 | 1664.800 | 1664.600
3000 | 94.362 | 88.155 | 73.357 | 88.395 | 89.072 | 76.935 | 51.593 | 79.263 | 77.991 | 58.863 | 34.353 | 58.015 | 37.493 | 35.244 | 34.454 | 35.989 | 665.920 | 665.920 | 665.760 | 665.920
6000 | 96.259 | 91.274 | 78.305 | 90.896 | 92.677 | 82.238 | 57.556 | 82.715 | 85.276 | 69.339 | 40.614 | 73.028 | 39.665 | 35.925 | 34.322 | 36.554 | 332.940 | 332.980 | 332.920 | 332.960
9000 | 97.283 | 93.250 | 82.096 | 92.090 | 94.657 | 86.391 | 61.528 | 83.634 | 88.848 | 74.916 | 44.886 | 75.672 | 40.364 | 36.345 | 34.672 | 36.000 | 221.960 | 221.973 | 221.973 | 221.947
12000 | 97.914 | 94.420 | 84.204 | 93.044 | 95.945 | 88.850 | 64.558 | 84.777 | 90.973 | 77.586 | 47.633 | 75.622 | 41.358 | 37.051 | 34.959 | 36.957 | 166.450 | 166.490 | 166.460 | 166.480
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