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Abstract

Since their first appearance in 1997 in the prestigious journal Science, algorithm portfolios have become
a popular approach to solve static problems. Nevertheless and despite that success, they have not received
much attention in Dynamic Optimization Problems (DOPs). In this work, we aim at showing these meth-
ods as a powerful tool to solve combinatorial DOPs. To this end, we propose a new algorithm portfolio
for this type of problems that incorporates a learning scheme to select, among the metaheuristics that
compose it, the most appropriate solver or solvers for each problem, configuration and search stage. This
method was tested over 5 binary-coded problems (dynamic variants of OneMax, Plateau, RoyalRoad,
Deceptive and Knapsack) and compared versus two reference algorithms for these problems (Adaptive
Hill Climbing Memetic Algorithm and Self Organized Random Immigrants Genetic Algorithm). The
results showed the importance of a good design of the learning scheme, the superiority of the algorithm
portfolio against the isolated version of the metaheuristics that integrate it, and the competitiveness of its
performance versus the reference algorithms.
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1. Introduction

An optimization problem can be considered as “dy-

namic” when any of its components, namely ob-

jective function, constraints, size, variables domain,

etc., change with time. Dynamic optimization prob-

lems (DOPs) are as follows:

DOPs = {optimize f (x, t);x ∈ F(t)⊂ S; t ∈ T}
where:

• S is the search space

• t represents time

• f : S× T −→ R is the objective or cost function

whose definition depends on t.
• F(t), is the set of feasible solutions at time t,

F(t)⊂ S.

Most of the academic research in DOPs has been

done using artificial problems, because they allow

to properly studying several factors related with

the changes, as severity, frequency or dynamism

type. Examples of artificial problems are the well-

known moving peaks benchmark [28, 29]; dynamic

versions of static continuous functions like Sphere,

Griewank, Rastrigin, Ackley, etc. [23]; or dynamic

versions of combinatorial problems as knapsack

problem [3, 21, 35], moving parabola [1], bitwise

comparison problems [10, 41], and planning prob-

lems [8, 11, 26, 37, 38].

When dealing with DOPs, some aspects are as-

sumed: the changes are gradual; it is not possible to

solve the problem from scratch after a change; and

the current information should be useful to produce

a faster adaptation to the change.

The last years showed an increasing interest on

solving them using metaheuristic methods [2, 7, 30,

49, 51]. One can find evolutionary algorithms [50],

multiswarm techniques [2], ant colony optimization

[19,27], cooperative strategies [17,18,25] and so on.

When solving static problems with metaheuris-

tics, parameter setting is not a trivial task. As a con-

sequence, researchers enhance their methods with

some learning features to change the parameters dur-

ing the run. This is also being done in the con-

text of DOPs, where there is a growing tendency

on using learning mechanism to change the parame-

ters, operators, etc. of the method during the search

[17, 18, 24, 27, 46, 51].

Another non trivial aspect is the selection of the

metaheuristic to solve the problem at hand. In the

context of static problems, one of the most com-

mon approaches for this issue is the algorithm port-

folio [20, 31, 32]. It consists in a set of algorithms

that are executed iteratively or in parallel, in order to

solve the problem. A learning scheme is used to se-

lect the most suitable algorithm at every stage of the

search or to distribute the available execution time

among them. This decision is typically based on

the algorithm’s performance. This type of methods

have shown to be very competitive in problems as

supply chain optimization [48], numerical optimiza-

tion [32], vehicle routing [39] or satisfiability [47],

among others.

Despite this success in static problems, algo-

rithm portfolios have not received much attention in

DOPs. For this reason, in this paper we intend to

deepen in this topic, to show algorithm portfolios as

a powerful alternative to solve DOPs. Concretely,

we propose a new algorithm portfolio for combi-

natorial DOPs emphasizing the role of the learning

scheme.

First, we will analyze if learning makes sense,

what learning scheme is the most appropriate and

how the learning works along the search process.

Then we will study if the portfolio obtains better re-

sults than their composing algorithms, and finally,

we will compare the best portfolio variant against

two reference algorithms: Adaptive Hill Climbing

Memetic Algorithm and Self Organized Random

Immigrants Genetic Algorithm. The computational

experiments are done over five combinatorial opti-

mization problems and the results are analyzed us-

ing statistical testing. It is important to remark that

we will consider DOPs with dynamism only in the

fitness function.

The article is organized as follows. Section 2 dis-

cusses the literature related to our proposal. The al-

gorithm portfolio, its learning scheme and the dif-

ferent learning variants considered are presented in

Section 3. In Section 4, experimental framework,

we show the combinatorial DOPs used to test the
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method, the details of the experimentation, the ref-

erence algorithms with which our proposal is com-

pared, the composition of the portfolio, the perfor-

mance measures and the non-parametric tests em-

ployed for the statistical assessment of the results.

The next part of the paper is devoted to analyze the

results of the experimentation and the comparison

versus the reference algorithms. Finally, we provide

the conclusions of this work in Section 6.

2. Related Work

The idea of algorithm portfolios was proposed by

Huberman and coauthors in 1997 [20]. Inspired by

basic economic concepts of risk management, these

authors presented an approach to allocate a limited

amount of resources (CPU time) among a set of al-

gorithms according to its expected “benefit” (aver-

age fitness) and “risk” (fitness variance). The allo-

cation is done in such a way that the benefit is max-

imized and the risk minimized.

The original concept has evolved along these

years and nowadays, one of the most accepted def-

initions is the next one [16]: a collection of dif-

ferent algorithms and/or copies of the same algo-

rithm that are run in one or more CPUs. We can

classify algorithm portfolios in different categories

depending on: 1) how the algorithms are run and

2) when the available running time is distributed

among them [16, 33]. Regarding the first criterion,

there are three classes [16]: parallel, where all the

algorithms are run concurrently in different proces-

sors [32]; interleaved on a single processor, where

the algorithms are run alternatively, simulating par-

allelism in one processor [14]; and sequential with
restart, where at each iteration, a randomly selected

algorithm is executed for a fixed amount of time (ev-

ery run of the same algorithm uses a different ran-

dom seed) [14]. Respect to the second criterion, the

algorithm portfolios can be classified in two cate-

gories [14,33]: static, if the distribution of the avail-

able CPU time among the algorithms is fixed before

the run [32, 48], or dynamic, if it is done along the

search process [14].

We can find in the literature some references

about the application of algorithm portfolios to solve

DOPs. For example, in [40], the authors propose a

static portfolio to solve the Inventory Routing Prob-

lem with stochastic demands. In this case, the algo-

rithms are run in parallel without information feed-

back, and the portfolio is composed by variants of

the genetic algorithm. Another work on this topic

is found in [39], where an algorithm portfolio is

used to solve the Dynamic Vehicle Routing Prob-

lem with stochastic demands. The paper presents a

static algorithm portfolio that combines trajectory-

based and population-based algorithms that are run

in parallel with no information exchange.

A similar approach to algorithm portfolios that

has been used in DOPs are the hyperheuristics [5].

They can be defined as search methods or learn-

ing mechanisms for the selection and generation of

heuristics in order to solve a particular optimization

problem. They can also be seen as high-level meth-

ods that given a set of low-levels heuristics for a par-

ticular problem, are able to automatically produce a

proper combination of these low-level heuristics to

solve the instance at hand. Among the high-level

methods for the selection/generation/combination of

heuristics we can find tabu search, variable neigh-

borhood search, genetic algorithms or data mining

techniques [5]. In the context of static problems,

these methods have been applied to graph coloring,

production planning, work-force scheduling, con-

straint satisfaction or vehicle routing [5, 6].

Regarding DOPs, its application is fairly recent.

In [45], Gonul et al. proposed a framework for

DOPs that hybridizes hyperheuristics and Popula-

tion Based Incremental Learning. The selection of

low-level heuristics is done through a scoring sys-

tem and reinforcement learning. They tested two

variants of their proposal on dynamic binary func-

tions with successful results. Topcuoglu and coau-

thors present a hyperheuristic to solve DOPs in [43]

whose high-level heuristic selection method is an

evolutionary technique known as memory/search al-

gorithm. The experimentation done over the Dy-

namic Generalized Assignment Problem and the

Moving Peaks Benchmark showed the better per-

formance of this method versus the canonical mem-

ory/search algorithm. In [22], the authors test, us-

ing also the Moving Peaks Benchmark, several hy-
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perheuristics that combine five high-level heuristic

selection methods (simple random, greedy, choice

function, reinforcement learning, random permuta-

tion descent) with seven move acceptance criteria

(all moves, only improving, improving and equal,

exponential Monte Carlo with counter, great deluge,

simulated annealing, simulated annealing with re-

heating). The best performing variant (choice func-

tion - improving and equal) improved the results ob-

tained by state-of-the-art algorithms for this prob-

lem.

As we have seen, the use of algorithm portfo-

lios and hyperheuristics is becoming more popular

in DOPs. In this sense, although algorithm port-

folios and hyperheuristics share a similar approach

(they combine a set of heuristics), it is important

to highlight that they present two important differ-

ences. On one hand, hyperheuristics usually work

with low-level heuristics whereas algorithm portfo-

lios do it with higher-level methods as metaheuris-

tics. On the other hand, and in our opinion the main

difference, hyperheuristics works over a single solu-

tion of the problem (they can be seen as trajectory-

based methods) while algorithm portfolios works

over a set of independent solutions at the same time.

Taking into account these two aspects, the charac-

teristics of our proposal, which we describe in the

next section, fits better to the category of algorithm

portfolios, since our method deals with metaheuris-

tics that works over their own and independent solu-

tions.

3. Algorithm Portfolio

The main motivation to build an algorithm portfolio

is to avoid deciding on a single algorithm to solve

the problem at hand [20]. In this contribution, our

portfolio is made of a set of metaheuristics. Using

a credit based approach, the portfolio selects which

metaheuristic to run at every stage of the search.

Then, a credit assignment is done based on the per-

formance of the selected metaheuristic. According

to the categories of algorithm portfolios showed in

the last section, our proposal can be classified as a

dynamic algorithm portfolio that interleaves the run

of the metaheuristics on a single processor.

Algorithm 1: Portfolio Scheme Pseudocode

1 n = size of the portfolio;

2 for ( j = 1; j � n; j++) do
3 initialize a j ;

4 end
5 while (not stop-condition) do
6 if change is detected then
7 for ( j = 1; j � n; j++) do
8 re-evaluate x

a j
curr or p

a j
curr;

9 recalculate xbest ;

10 end
11 end
12 ai← select an algorithm from A with

probability Pai
selec;

13 xc← run ai for one iteration;

14 if f (xc)> f (xbest) then
15 xbest ← xc;

16 for ( j = 1; j � n; j++) do
17 update x

a j
curr or p

a j
curr with xbest ;

18 end
19 end
20 perform credit assignment to ai;

21 for ( j = 1; j � n; j++) do
22 update selection probability P

a j
selec;

23 end
24 end

More formally, our portfolio is composed by a

set of metaheuristics A = {a1, . . . ,an}, being each ai
a trajectory or population-based metaheuristic. Ev-

ery ai has a single current solution xai
curr (if we con-

sider a trajectory-based method) or a current popu-

lation pai
curr (in population-based metaheuristics).

Algorithm 1 shows the inner working of the port-

folio. After the initialization of the algorithms, the

method goes into the main loop. Firstly, if a change

is detected, xai
curr or pai

curr are re-evaluated, and the

new global best solution (xbest) is calculated.

Subsequently, an ai is selected and run for one

iteration (the definition of what we consider by an

iteration is given at the end of this section). The

selection strategy employed in this step is the well-

known roulette-wheel method, where the portion or

selection probability of each ai is assigned according

to its credit wi. This probability is calculated as:

Pai
selec =

wi

∑n
j=1 w j

(1)
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Table 1. Details of the steps the algorithm portfolio accomplishes in a different way depending on
whether the selected algorithm is trajectory-based or population-based.

Step (Pseudocode line in Algorithm 1) Trajectory-based Population-based

Algorithm initialization (3) random generation of a single solution

following a uniform distribution

random generation of the population

following a uniform distribution

Re-evaluation (8) re-evaluate xai
curr reevaluate the whole population pai

curr

One iteration (13) application of the neighborhood opera-

tor to xai
curr and evaluation of the accep-

tance criterion for the move

perform a sequence of applications of

the corresponding operators

xc (13) solution resulting from applying the

neighborhood operator to xai
curr

individual generated in the sequence of

applications of the operators

xai
curr/p

ai
curr update with xbest(17) replace xai

curr by xbest xbest replace the worst individual in the

population pai
curr

The solution generated by the algorithm selected

in one iteration, xc, is then compared versus the cur-

rent global best xbest . If xc is better than xbest , the

algorithm portfolio refreshes it and then, it updates

the current solution or population of the rest of al-

gorithms (a j �= ai) with the new xbest (the details of

the obtaining of xc and the updates of the current so-

lutions and populations are also described at the end

of the section).

In the last stage of the main loop, the method

assigns a certain credit to ai and recalculates the se-

lections probabilities of the algorithms according to

Equation 1. The amount of credit assigned to ai de-

pends on the quality of the solution xc and the credit

scheme employed. The details of this part of the al-

gorithm portfolio will be described in the next sub-

section.

Some of the steps mentioned above are accom-

plished in a different way depending on whether

the considered algorithm is trajectory-based or

population-based. Table 1 shows how the algorithm

portfolio carries out these steps in each case. The

most important differences appears in how an iter-

ation is performed, how xc is obtained and how the

current solution or population is updated. Regard-

ing the iteration process and the obtaining of xc,

in trajectory-based algorithms, one iteration corre-

sponds to one application of the neighborhood op-

erator to xai
curr and the evaluation of the acceptance

criterion for the move (e.g., tabu and aspiration cri-

teria in Tabu Search, acceptance probability in Sim-

ulated Annealing, etc.). xc represents the solution

resulting from the application of the neighborhood

operator. In population-based methods, one iteration

corresponds to the sequential application of their

operators (e.g., selection → crossover → mutation

→ replacement, in Genetic Algorithms). When a

crossover operator is applied, only one of the two in-

dividuals obtained (randomly selected according to a

uniform distribution) is considered for the next step

of the sequence of operator applications. In case the

method considers replacement, the individual gener-

ated replaces the worst parent. xc corresponds to the

individual generated in this process.

The update of xai
curr for trajectory-based algo-

rithms, performed in the step 17 of Algorithm 1,

consists on replacing xai
curr by xbest . Regarding

population-based algorithms, in this step, xbest re-

places the worst individual of the population.

3.1. Learning scheme

The credit assignment mechanism implemented by

the portfolio is, in fact, a learning scheme whose

objective is to learn which the best performance

method/s for the problem at hand is/are. For this

reason, we will also refer to the credit assignment

mechanism as learning scheme.

The credit assigned to a metaheuristic ai at time

t +1 is calculated as:

wi(t +1) = wi(t)+ ri(t)− li(t) (2)

where:

• t is the current time.
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• wi(t + 1) is the credit obtained by ai at time step

t +1.

• wi(t) is the current credit of ai.

• ri(t) is the reward assigned to ai. It is a value

greater or equal to zero that is determined as a

function of the quality of the solution generated

by ai (xc) and the quality of xbest .

• li(t) is the penalization assigned to ai if the gener-

ated solution (xc) is worse than xbest . It is defined

as follows:

li(t) = wi(t)∗Q (3)

where: Q is a penalty term and Q ∈ [0,1].
We assume here that every possible definition or

variant for the reward, penalization and credit up-

date, lead to a different learning scheme.

3.2. Learning scheme variants

When facing dynamic optimization problems, it is

critical to decide what to do with the learning gained

(credit assigned) by the portfolio. The potential

definitions of the three components of the learning

scheme, namely wi(t), ri(t) and li(t), lead to vari-

ations that will be analyzed next in order to detect

the best alternatives. The potential definitions are

described next:

Current credit (wi(t)):

• Restart (RS): current credit is set to zero when a

change is detected. The rationale behind this idea

is that we need to face a new problem and we need

to detect from scratch which are the good meth-

ods for the new situations (we forget everything

we learnt).

• Keep it or no-restart (NRS): we assume that the

new situation is similar to the previous one and if

a method was good in the past, it will be good in

the future.

Penalization (li(t)):

• Active Penalization (AP): Q = 0.9 if ai generates

worse solutions than xbest , and Q = 0 otherwise.

In this way, we lower the credit of a method if it

is not allowing the improvement of the best found

solution. The value Q = 0.9 was chosen after em-

pirical observations.

• Inactive Penalization (IP): Q= 0 during the whole

run.

Reward (ri(t)):

• Better (RB): ri(t) = 1 if the fitness of the gener-

ated solution (xc) is strictly better than f (xbest).

• Equal or Better (REB): ri(t) = 1 if the fitness of

the generated solution (xc) is equal or better than

f (xbest).

We analyze the eight possible variants derived

from the combination of the previous alternatives

(shown in Table 2). As we stated above, every com-

bination can be considered as a “learning scheme”.

Table 2. Learning scheme variants

Variant wi(t) li(t) ri(t)
RS-AP-RB RS AP RB

RS-AP-REB RS AP REB

RS-IP-RB RS IP RB

RS-IP-REB RS IP REB

NRS-AP-RB NRS AP RB

NRS-AP-REB NRS AP REB

NRS-IP-RB NRS IP RB

NRS-IP-REB NRS IP REB

4. Experimental Framework

We describe here the problems, performance mea-

sure, comparison techniques and the details of the

experimentation we will follow to evaluate our pro-

posal.

4.1. Problems

The portfolio will be tested on dynamic versions

of static binary-coded problems constructed using

the XOR-DOP generator [51]. The generator op-

erates generating masks that are applied to the so-

lution using a bitwise XOR operator. The objective

function is changed every τ evaluations of the fitness

function. In the kth change, a new XOR mask M(k)
is generated as follows:
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M(k) = M(k−1)⊕T (k) (4)

where⊕ is the XOR operator (a⊕b= 1 ⇐⇒ a �= b,

and a⊕b = 0 otherwise) and T (k) is an intermediate

binary mask randomly generated with ρ×m values

set to 1 at change k (being m the dimension of the

problem). When k = 1, M(1) = {0 . . .0}. The cost

of a solution x at evaluation e is done as follows:

f (x,e) = f (x⊕M(k)) (5)

where k = �e/τ� is the current change and �� is the

integer part operator.

Figure 1 shows an example of the evaluation pro-

cess. Through changes in the mask, the generator

produces changes in the optimum position, and us-

ing different values for τ y ρ , we can control the

frequency and severity of the changes, respectively.

High values of ρ imply more severe changes, while

low values of τ mean more frequent changes.

As stated before, using this idea of masking, any

binary encoded static problem can be converted to

its dynamic version. In what follows, the base static

problems used here are described.

Fig. 1. Given the current mask M(k) and a solution x, the

objective function is applied to f (x⊕M(k)), where⊕ is the

XOR (exclusive OR) operator.

4.1.1. Knapsack problem

The knapsack problem is a well-known NP-Hard

combinatorial optimization problem [21]. Given a

set of m elements the knapsack problem is described

as follows:

max f (x) =
m

∑
i=1

pixi (6)

subject to
m

∑
i=1

wixi �C xi ∈ {0,1} i = 1 . . .m (7)

where x=(x1, ...,xm) and xi = 1 if object i is selected

or xi = 0, otherwise. Values pi and wi represent

the profit and weight of object i, respectively, and

C is the capacity of the knapsack. It is believed that

knapsack is one of the easiest NP-Hard problems.

Several exact algorithms are available and for them,

the hardness of random instances, increases with the

correlation between weights and profits [34].

Our test instance has m = 100 objects, and the

weights, benefits and capacity are defined as:

wi =U(1,50) (8)

pi = wi +U(1,5) (9)

C = 0.6∗
m

∑
i=1

wi (10)

where U(a,b) is a function returning a uniformly

distributed random value in the [a,b] interval. The

definition for wi y pi led to an instance with strong

correlation between both values. As stated in [34]:

The strongly correlated instances are hard to
solve for two reasons: (a) The instances are ill-
conditioned in the sense that there is a large gap
between the continuous and integer solution of the
problem; (b) Sorting the items according to decreas-
ing efficiencies correspond to a sorting according to
the weights. Thus, for any small interval of the or-
dered items (i.e. a “core”) there is a limited varia-
tion in the weights, making it difficult to satisfy the
capacity constraint with equality.

Possible unfeasible solutions arising in the

search are penalized as in [51]:

f (x) =

⎧⎨
⎩

∑m
i=1 pixi if C′ �C

10−10 · ((∑m
i=1 wi)−C′) otherwise

(11)

being C′ = ∑m
i=1 wixi
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Fig. 2. Fitness contribution of every 4-bits block with re-

spect to the number of correctly matched bits.

4.1.2. Problems using base binary functions

We use four additional problems and all of them

consist on finding solutions that match all the bits

of a target optimal solution. This target solution is

initially considered to be the solution where all its

bits are set to 1. To evaluate a solution, we consider

blocks of 4 bits where each block contributes a given

amount to the final objective value. The contribution

of every block of 4 bits depends on the considered

functions that are described below:

• OneMax: Each matched bit adds 1 to the fitness.

• Plateau: Three matched bits add 2 to the fit-

ness while four matched bits add 4 and any other

amount of bits matched leads to a 0 contribution.

• RoyalRoad: Each perfectly matched block adds

4 to the fitness. Partially matched blocks have fit-

ness 0.

• Deceptive: Fitness is 4 if all the 4 bits are

matched. If not, the fitness for the block is 3 mi-

nus the number of matched bits.

Figure 2 shows the contribution of every 4-bits

block to every function in terms of the number of

correctly matched bits.

4.1.3. Additional information

The dimension of all the problems was defined as

100 (25 blocks of 4-bits for functions described in

Section 4.1.2). We considered five different change

frequencies (τ ∈ {1200,3000,6000,9000,12000}
fitness function evaluations) , and four different

severities (ρ ∈ {0.1, 0.2, 0.5, 0.9}). The selected

(τ) should be understood as the number of fitness

function evaluations allowed between consecutive

changes, in other words, it accounts for the num-

ber of evaluations that the algorithm has in order to

“catch” the optimum until the next movement.

We performed 30 independent runs for every

algorithm, problem and combination of τ and ρ ,

where every run consisted of 100 changes of the fit-

ness function.

4.2. Reference algorithms

To better assess the performance of our portfolio,

we will perform comparisons against some refer-

ence algorithms. In a recent review [7], two algo-

rithms are shown to be competitive in the DOPs con-

sidered here: Adaptive Hill Climbing Memetic Al-

gorithm (AHMA) [46] and Self Organized Random

Immigrants Genetic Algorithm (SORIGA) [42]. Al-

though there exist more recent methods for the same

problems used in this work [13, 44], AHMA and

SORIGA are still used in comparisons [9, 25, 44],

there is a general agreement on their quality, they are

easy to understand and more important, their source

code is available, thus running them on our bench-

marks is much easier. We consider that in this way

the comparison is fairer than taking values from pub-

lished tables.

4.2.1. Adaptive Hill Climbing Memetic Algorithm
(AHMA)

AHMA, firstly proposed in [46], is essentially a

genetic algorithm coupled with a local search that

has two neighborhood operators available: Greedy

Crossover Hill Climbing (GCHC) and Steepest Mu-

tation Hill Climbing (SMHC). GCHC applies a

crossover operator using the elite solution and an in-

dividual from the population (chosen by the roulette
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wheel selection). It returns the best child obtained.

SMHC operator flips a number of bits in the elite so-

lution (a sort of macro-mutation). The original solu-

tion is replaced if the new one is better.

These operators are selected with a probability

distribution that is adjusted during the run. After

a change, the probability values are kept. AHMA

also includes two mechanisms to manage population

diversity during the run: Adaptable Dual Mapping

(ADM) and Triggered Random Immigrants (TRI).

4.2.2. SORIGA

SORIGA (Self Organized Random Immigrants Ge-
netic Algorithm), proposed in [42], is a Genetic Al-

gorithm in which, after the initialization, its popula-

tion is split into two sub-populations: the main and

the secondary one. The best individuals are moved

to the main subpopulation whereas the worst indi-

viduals are replaced by randomly generated ones

(“Random Immigrants”) and moved to the sec-

ondary subpopulation. Both sub-populations are

co-evolved independently until the worst individual

considering the two sub-populations belongs to the

main one. In this moment, both sub-populations are

joined again, evolved for one generation and split

in the same way explained before. This process is

repeated iteratively until the stopping condition is

reached.

4.2.3. Porfolio Composition

To implement the algorithms that compose the port-

folio we use the Java library BiCIAM [12] which

contains standard versions of the most common

metaheuristics. For the evaluation of the algo-

rithm portfolio we selected the next methods: Best-

First Hill Climbing, Random Search, Simulated An-

nealing, Tabu Search, Genetic Algorithm, Evolu-

tionary Strategy and Univariate Marginal Distri-

bution Algorithm. It is important to note that

we chose the methods basing just on theirs fea-

tures (trajectory/population based, search pattern,

evolutionary/non-evolutionary method, etc.) and

without knowing a priori their performance in the

DOPs showed above. We aimed at having a di-

verse set of algorithm with heterogeneous searching

behaviors. Table 3 displays the parameter settings

of the methods that integrate the algorithm portfo-

lio. The current version of the Java library BiCIAM,

which includes the metaheuristics mentioned above

and the implementation of the algorithm portfolio

presented in this paper, is available in the next link:

http://modo.ugr.es/algorithmportfolio/

index.html

Table 3. Methods that integrate the algorithm portfolio and

their parameter settings

Method Parameter Setting

Hill hill climbing type Best-first

Climbing neighborhood operator one-bit flip mutation

Simulated initial temperature t0 20

Annealing final temperature tn 0

number of iterations T 50

α 0.93

annealing scheme tn = α ∗ t0
neighborhood operator one-bit flip mutation

Tabu tabu list size 20

Search tabu list content solutions

neighborhood operator one-bit flip mutation

Evolutionary population size 50

Strategy mutation probability 0.9

selection operator truncation (20)

mutation operator uniform

Genetic population size 50

Algorithm mutation probability 0.5

crossover probability 0.9

selection operator truncation (20)

crossover operator uniform

mutation operator uniform

Estimation of population size 50

Distribution selection operator truncation (20)

UMDA probability distribution UMDA [36]

4.3. Performance measure

The algorithms will be evaluated using the “offline

performance” [4] which is defined as follows:

FBG =
1

N

N

∑
i=1

(
1

G

G

∑
e=1

FBk
ie

)
(12)

where N is the number of runs; in the original defini-

tion, G stands for the number of generations (which

has perfect sense when talking about evolutionary
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algorithms) but here, G = 100 · τ is the number of

fitness function evaluations allowed for the portfolio

in one run; the value k = �e/τ�, k ∈ {0 . . .100} is the

current change period; and Fk
Bie

is the fitness of the

best solution found in the k-th change period of the

i-th run up to the e-th evaluation (or (e−(k−1)τ)-th

evaluation of the k-th change period).

4.4. Statistical assessment of results

Nowadays, it is widely assumed that any compari-

son among a set of algorithms over a set of prob-

lems should be supported by statistical testing. In

this article we follow the guidelines proposed in [15]

where non-parametric statistical testing is suggested

in situations like the one faced in this contribution

(several problems, algorithms and configurations).

Firstly, we will apply Friedman’s test to check

if significant differences exist among a set of algo-

rithms. Besides this, Friedman’s average rank al-

lows to sort the algorithms in terms of performance.

Secondly, if such significant differences are de-

tected, we use Wilcoxon’s test for pairwise compar-

isons of algorithms, and Holm’s and Finner’s post-

hoc tests for one-to-many comparisons between the

best algorithm (as indicated by Friedman’s rank out-

put) and the rest.

Commercial software SPSS was used for Fried-

man’s and Wilcoxon’s tests and KEEL tool [15] for

Holm’s and Finner’s post-hoc tests.

5. Results

The computational experiments are oriented to ana-

lyze the following questions:

• Does the portfolio obtain better results when using

a learning scheme than when not? Which vari-

ant of the learning scheme leads to better results?

How does the learning scheme influence the se-

lection of the algorithms?

• Does the best portfolio learning variant obtain bet-

ter results than the individual components when

they are run isolated?

• How the performance of the algorithm portfolio

is with respect to good reference algorithms (i.e.

SORIGA and AHMA)?

Every algorithm in this contribution is analyzed

over 5 problems (One-Max, Plateau, Royal-Road,

Deceptive and Knapsack), 4 levels of severity (ρ)

and 5 different change frequency (τ), that is, it is

tested over a total of 100 problem configurations.

For the sake of simplicity and understanding, the of-

fline performance obtained by the different methods,

in each problem configuration considered in this ex-

perimentation, is not displayed during the analysis

of the results. The interested reader can refer to Ap-

pendix 1 to check this information.

5.1. Analysis of the learning scheme

In this subsection we will analyze the learning

schemes presented in Section 3.1 to check if their

use makes sense (if they lead to better results than an

algorithm portfolio without learning scheme), which

of them obtains the best performance and how the

learning scheme influences the selection of the algo-

rithms.

5.1.1. Learning vs No Learning

The aim of this first analysis is to verify whether or

not, the learning schemes proposed lead the portfo-

lio to obtain better results than a strategy without

learning (AP-NoLearn), i.e. a portfolio where the

constituent methods have the same selection proba-

bility along the whole run.

In first place we compare, using Wilcoxon’s

test at a significance level α = 0.05, every learn-

ing scheme against AP-NoLearn and the results are

shown in Table 4. The first column indicates the

learning scheme under consideration. The second

column “Global” states the result of the comparison

over all the problems and configurations. The rest of

the columns correspond to the results in every prob-

lem. The ‘>’ sign states that the considered scheme

is statistically better than AP-NoLearn, ‘<’ means

the opposite, and ‘−’ indicates the difference in per-

formance is not significant.

Considering the “Global” column, just half of the

learning schemes tested lead to significantly better

performance against AP-NoLearn, thus making rele-

vant the need of a careful design of the learning strat-

egy. In other words, a bad learning strategy may lead
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Table 4. Learning vs. no learning. Results of the pairwise comparisons, using the Wilcoxon’s non-
parametric test at a significance level of α = 0.05, between the learning schemes proposed and the
variant of the algorithm portfolio without learning scheme (AP-NoLearn). The first column indi-
cates the credit assignment scheme under consideration. The second column states the result of the
comparison over all the problems and configurations. The rest of the columns correspond to the
results in every problem. The ‘>’ sign states that the considered scheme is statistically better than
AP-NoLearn, ‘<’ means the opposite, and ‘−’ indicates that the difference in performance is not
significant.

Learning scheme Global OneMax Plateau RoyalRoad Deceptive Knapsack
RS-AP-RB > > > > > >

RS-AP-REB − > > > − −
RS-IP-RB > > > > − >

RS-IP-REB < − − < < >

NRS-AP-RB < < < − − −
NRS-AP-REB > > > > − <

NRS-IP-RB > > > > − >

NRS-IP-REB < < < < < >

to worse results than having no learning. It is not

clear which component of the learning scheme have

a higher impact on the performance, although those

schemes using ‘RB’ (giving reward when the gener-

ated solution is strictly better than the reference one)

provide better results.

Considering the results disaggregated by prob-

lem, the cases for OneMax, Plateau and RoyalRoad

are quite similar to those in the Global case. Besides,

the signs in the table are almost equal among the

three problems, probably meaning that the portfo-

lio behaves similarly on them. Deceptive is perhaps

the most complex problem and its intrinsic struc-

ture “confuses” the learning scheme. Only RS-AP-

RB is able to obtain better results than AP-NoLearn.

When considering the Knapsack problem, perhaps

the one closer to real life problems, the learning

feature starts to be very relevant. Just in one case

out of eight (NRS-AP-REB) the use of learning re-

turned worst results than no learning. The other

seven cases allowed obtaining better or equal results

than AP-NoLearn. It has to be noted that RS-AP-

RB is the only variant that consistently outperforms

AP-NoLearn over all the cases considered.

5.1.2. Analysis of learning schemes

We will compare here the different learning schemes

proposed to determine what it is the best one. We

have analyzed the best scheme both globally (over

all problems) and on each specific problem. Firstly,

and using the Friedman test, we compared all learn-

ing strategies over all problems and on each prob-

lem separately. In all cases the test returned a

p− value = 0, thus indicating that there are signif-

icant differences among the portfolios when using

different learning schemes.

As we stated before, Friedman’s test also out-

puts a mean ranking for each compared method.

These results are shown in Figure 3 where each se-

ries represents the mean raking for a specific learn-

ing scheme on each of the cases mentioned before

(Global, OneMax, Plateau, RoyalRoad, Deceptive

and Knapsack). In order to assess whether the best

learning strategy on each case has a performance

significantly different to the others, we applied the

Holm’s and Finner’s post-hoc tests at a significance

level of α = 0.05. Table 5 shows the results of these

tests, where the symbol ‘*’ indicates the learning

scheme considered as control method (the method

with the best mean ranking according to Friedman’s

test), whereas ‘>’ and ‘-’ indicates the existence or

not, respectively, of significant differences between

the control method and the corresponding learning

scheme. In case both tests do not provide the same

result (e.g., Holm’s test does not rejects the hull hy-

pothesis and Finner’s does), the result of the Finner’s

post-hoc test is displayed within parenthesis.
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Fig. 3. Mean ranking provided by the Friedman’s non-

parametric test when all learning schemes are compared.

Each series represents the mean raking (Y axis) for a spe-

cific learning scheme when all problems are considered

(Global) and for each problem (OneMax, Plateau, Royal-

Road, Deceptive and Knapsack).

Figure 3 shows that the best ranked scheme glob-

ally is RS-AP-RB (credit is restarted after a change,

penalization is active and credit is gained if the new

solution is strictly better than the best one available).

Furthermore, the difference in performance with re-

spect to all the other schemes is significant (Table 5).

Therefore, RS-AP-RB is statistically the best learn-

ing scheme over all problems.

If we consider each problem separately, RS-AP-

RB is the best portfolio variant in four out of the

five problems, that is, all but the Knapsack problem.

Looking at Table 5, it improves significantly the rest

of methods in three of these four problems (One-

Max, Plateu and RoyalRoad), whereas in Deceptive

the null hypothesis cannot be rejected for two learn-

ing schemes, RS-AP-RB and NRS-IP-REB (or only

NRS-IP-REB if we consider the Finner’s post-hoc

test). In the Knapsack problem, despite not being

the best learning scheme, RS-AP-RB is not signifi-

cantly worse than RS-IP-RB, the control method in

this case. In short, the performance of RS-AP-RB

is better or similar to the other learning schemes, so

we can conclude that it is the best portfolio variant.

5.1.3. Analyzing the influence of the learning
scheme in the selection of the algorithms

So far, we have focused on the performance of the

different learning schemes. In this section we aim at

studying how the learning scheme influences the be-

havior of the algorithm portfolio. More specifically,

we want to analyze how the selection of the algo-

rithms varies from one learning scheme to another

by studying the evolution of the selection probabil-

ities Pai
selec of the algorithms that compose the port-

folio: Hill Climbing (HC), Random Search (RndS),

Simulated Annealing (SA), Tabu Search (TS), Ge-

netic Algorithm (GA), Evolutionary Strategy (ES)

and Estimation of Distribution Algorithm (EDA).

For the sake of the simplicity and space, we have

limited our analysis to two representative learning

schemes and problem configurations. Concretely,

we have chosen the best learning scheme, RS-AP-

RB, and its non-restarting counterpart, NRS-AP-

RB, in order to have a clear view of the effects of

restarting the credit after each change. Regarding

the problem configurations, we considered the two
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Table 5. Results returned by the Holm’s and Finner’s post-hoc tests at a significance level of α = 0.05
when the best learning scheme globally (over all problems) and on each specific problem is compared
against the others. The symbol ‘*’ indicates the learning scheme considered as control method (the
method with the best mean ranking); ‘>’ means that the control method improves significantly the
corresponding learning scheme; and ‘-’ indicates no significant differences between the two learning
schemes. In case both tests do not provide the same result (e.g., Holm’s test does not rejects the hull
hypothesis and Finner’s does), Finner’s post-hoc test result is displayed within parenthesis.

Learning scheme Global OneMax Plateau RoyalRoad Deceptive Knapsack
RS-AP-RB ∗ ∗ ∗ ∗ ∗ −

RS-AP-REB > > > > > >

RS-IP-RB > > > > −(>) ∗
RS-IP-REB > > > > > >

NRS-AP-RB > > > > > >

NRS-AP-REB > > > > > >

NRS-IP-RB > > > > − −
NRS-IP-REB > > > > > −

most representative problems from a practical point

of view, RoyalRoad and Knapsack, with intermedi-

ate values for severity and frequency of change, con-

cretely, 0.5 and 6000, respectively.

Figure 4 displays the evolution of the mean se-

lection probability for each algorithm, measured ev-

ery 600 evaluations and aggregated over 30 runs, in

the first five changes of the objective function. Rows

and columns corresponds to learning schemes (RS-

AP-RB and NRS-AP-RB) and problem configura-

tions (RoyalRoad and Knapsack), respectively. In

each plot, the horizontal line marks the probability

value for a uniform distribution where all individ-

ual algorithms have the same selection probability,

whereas the vertical lines show when the changes

take place.

First, we focus our analysis on the Royal Road

configuration. For a better understanding of the

analysis, it is important to highlight that in this

problem configuration, RS-AP-RB is significantly

better than NRS-AP-RB (Mann-Whitney’s U non-

parametric test α < 0.05) and the performance of

the isolated algorithms in descent order (better →
worse) according to their offline performance is

HC, ES, GA, SA, RS, TS and EDA. Looking at

the plot we can clearly observe the differences be-

tween restarting or not the credit after changes. In

the NRS-AP-RB scheme, the probabilities converge

after the first change to a virtually uniform dis-

tribution, where all the algorithms have the same

chances of being selected. However, in the RS-

AP-RB scheme, the probabilities vary right after

each change and converge approximately after 3000

evaluations, that is, at half of the period between

changes. Focusing on the individual methods, in the

period before the first change, HC presents the high-

est probability for both credit assignment schemes.

In the next stages, we observe very interesting be-

haviors in RS-AP-RB. The selection probability for

HC becomes closer to the uniform distribution value

but experiences abrupt changes for ES, SA and

EDA, with high values at similar moments of the sta-

tionary periods of the function. Taking into account

that SA and EDA are not among the best perform-

ing methods for this problem configuration when

run individually, this behavior shows that although

a solver may not have a good isolate performance,

it can be very useful in some moments of the search

when it is combined with other methods. This also

explains why “forgetting” the learning gained after

each change (by restarting the credit) is beneficial in

this case. It allows taking advantage of those algo-

rithms that only have a good performance in specific

parts of the search but bad in the others.

The evolution of the selection probabilities for

the Knapsack configuration is different but it keeps

some similarities. In this case, RS-AP-RB is

also significantly better than NRS-AP-RB (Mann-

Whitney’s U non-parametric test α < 0.05), and the

performance of the algorithms in descent order ac-

cording to their offline performance is SA, HC, RS,

TS, GA, EDA y ES. The first issue to highlight here
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Fig. 4. Evolution of the mean selection probability for

each individual algorithm, measured every 600 evaluations

and aggregated over 30 runs, in the first five changes of

the objective function. Rows and columns corresponds to

learning schemes (RS-AP-RB and NRS-AP-RB) and prob-

lem configurations ([RoyalRoad (severity 0.5, frequency

of change 6000) and Knapsack (severity 0.5, frequency of

change 6000)), respectively. In each plot, the horizontal line

marks the probability value for a uniform distribution where

all individual algorithms have the same selection probabil-

ity, whereas the vertical lines show when the changes take

place.
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Fig. 5. Mean ranking provided by the Friedman’s non-

parametric test when the best portfolio variant (RS-AP-RB)

is compared against the individual metaheuristics. Each se-

ries represent the mean raking (Y axis) for a method when

all problems are considered (Global) and for each problem

(OneMax, Plateau, RoyalRoad, Deceptive and Knapsack).

is the higher variation of the selection probabilities

along the whole stationary periods, unlike in Royal

Road where probabilities tended to converged. This

is due to the greater difficulty of the Knapsack prob-

lem, which slows the convergence of the methods

and spread the improvements, and thus the credit

rewards, along the whole search process. Analyz-

ing the individual methods, we observe that TS and

SA are the algorithms that present a higher selec-

tion probability for both learning schemes. Again, it

is interesting to see that TS is one of the two algo-

rithms with the highest selection probability despite

being the fourth best performing method when it is

run individually. This suggests again that bad indi-

vidual methods could be useful in some part of the

search when combined with other algorithms.

5.2. Comparisons with isolated methods

In last section we determined the best learning

scheme (RS-AP-RB). Here, we will check if the

portfolio is able to obtain better results than their in-

dividual metaheuristics separately. To this end, we

compare RS-AP-RB against the methods that com-

pose the portfolio.

We will follow the same methodology employed

in the former section. Figure 5 displays the mean

ranking returned by the Friedman’s non-parametric

test for all methods both globally and on each prob-

lem. The p− value obtained in all cases was equal

to 0 so we can reject the null hypothesis. We also

applied Holm’s and Finner’s post-hoc tests, at a sig-

nificance level of α = 0.05, in order to check if the

difference in performance between the best method

against the remaining algorithms is significant or

not. These results are shown in Table 6 (the nota-

tion is the same explained above).

Globally over all problems, RS-AP-RB improves

significantly all the isolated methods except HC (see

Figure 5 and Table 6). Analyzing the problems sep-

arately, the first issue to highlight is the performance

variability of the isolated metaheuristics, especially

when the difficulty of the problems increases. Three

good examples are HC, RndS and SA, the only
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Table 6. Results returned by the Holm’s and Finner’s post-hoc tests at a significance level of α = 0.05
when the best learning scheme (RS-AP-RB) and the individual metaheuristics are compared globally
and on each specific problem. The symbol ‘*’ indicates the learning scheme considered as control
method (the method with the best mean ranking); ‘>’ means that the control method improves sig-
nificantly the corresponding learning scheme; and ‘-’ indicates no significant differences between
the two learning schemes. In case both tests do not provide the same result (e.g., Holm’s test does
not rejects the hull hypothesis and Finner’s does), Finner’s post-hoc test result is displayed within
parenthesis.

Method Global OneMax Plateau RoyalRoad Deceptive Knapsack
HC − ∗ ∗ ∗ > −

RndS > > > > − >

SA > > > > > −
TS > > > > > >

GA > > > > > >

ES > > > > > >

EDA > > > > > >

RS-AP-RB ∗ − − − ∗ ∗

methods that are not significantly worse than RS-

AP-RB in all problems. HC and RndS have an oppo-

site performance. While HC offers good results for

OneMax, Plateau, RoyalRoad and Knapsack, and

poor for Deceptive, RndS performs very well in De-

ceptive and poorly in the other four problems. As

for SA, it shows a high performance for Knapsack

and Deceptive but low for OneMax, Plateu and Roy-

alRoad. On the contrary, the portfolio presents very

robust results along all problems. Particularly for the

two hardest ones (Knapsack and Deceptive) where it

improves all the individual metaheuristics in terms

of mean ranking, although the null hypothesis can-

not be rejected for RndS in Deceptive, and for HC

and SA in Knapsack. In the end, although HC has

a better performance than RS-AP-RB in OneMax,

Plateau and RoyalRoad, we can affirm that the best

variant of the portfolio obtains similar or signifi-

cantly better results (in at least one problem) than

the isolated versions of the metaheuristics that inte-

grate it.

5.3. Comparisons against SORIGA and AHMA

To finish the analysis of the results, we will compare

RS-AP-RB against SORIGA and AHMA (both de-

scribed in Section 4.2), to check whether its results

are competitive with high-performance algorithms

for these problems. We used the same benchmarks

as before and the parameter setting of both methods

was done according to the guidelines given in their

original works ( [42] and [46], respectively).

We will follow the same comparison scheme

used in the two former sections, that is, we will

use the mean ranking provided by the Friedman’s

non-parametric test, which rejects the null hypoth-

esis in all cases (p− value = 0), and the Holm’s

and Finner’s post-hoc tests at a confidence level of

α = 0.95 to check the significance of the difference

in performance among the three methods. These re-

sults are displayed in Figure 6 and Table 7, respec-

tively.

When considering all the problems and configu-

rations (Global), the portfolio coupled with the RS-

AP-RB learning scheme achieves significantly bet-

ter performance than AHMA and SORIGA. Sepa-

rating the results by problem, we observe that RS-

AP-RB is the best alternative in OneMax, Plateau

and RoyalRoad, as shown in Figure 6. Further-

more, the null hypothesis of similar performance

can be rejected for both AHMA and SORIGA in

the three cases (Table 7). For Deceptive, AHMA

is significantly the best method, whereas for Knap-

sack, AHMA and RS-AP-RB achieved similar per-

formance. Overall, (and setting apart Deceptive,

maybe the one most distant to real problems), it be-

comes clear that RS-AP-RB is better or equal than

the reference algorithms considered.
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Fig. 6. Mean ranking provided by the Friedman’s non-

parametric test when the best portfolio variant (RS-AP-RB)

is compared against SORIGA and AHMA. Each series rep-

resent the mean raking (Y axis) for a specific method when

all problems are considered (Global) and for each problem

(OneMax, Plateau, RoyalRoad, Deceptive and Knapsack).

Table 7. Results returned by the Holm’s and Finner’s post-hoc tests at a significance level of α = 0.05
when the best learning scheme (RS-AP-RB), SORIGA and AHMA are compared globally and on
each specific problem. The symbol ‘*’ indicates the learning scheme considered as control method
(the method with the best mean ranking); ‘>’ means that the control method improves significantly
the corresponding learning scheme; and ‘-’ indicates no significant differences between the two learn-
ing schemes. In case both tests do not provide the same result (e.g., Holm’s test does not rejects the
hull hypothesis and Finner’s does), Finner’s post-hoc test result is displayed within parenthesis.

Method Global OneMax Plateau RoyalRoad Deceptive Knapsack
RS-AP-RB ∗ ∗ ∗ ∗ > −

AHMA > > > > ∗ ∗
SORIGA > > > > > >
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6. Conclusions

In this work we have presented an Algorithm Port-

folio to solve combinatorial Dynamic Optimization

Problems. This method consists of a set of meta-

heuristics that are run iteratively. At each stage of

the search, the portfolio selects which metaheuristic

to apply using a credit based approach that acts as a

learning scheme.

The algorithm portfolio was tested over five test

problems (OneMax, Plateau, RoyalRoad, Deceptive

and Knapsack) to which we induced dynamism by

means of XOR-DOP generator. For each problem

we considered 4 and 5 different severities and fre-

quencies of change, respectively. To compare the

methods, we employed the offline performance, as

performance measure, and paired non-parametric

tests to check the significance of the differences

among algorithms.

The experimentation was oriented to check:

whether the algorithm portfolio obtained better re-

sults when using a learning scheme than when not;

what learning scheme provided better results; how

the learning scheme influenced the selection of algo-

rithms; if the portfolio with the best learning scheme

improved the performance of the individual meta-

heuristics that compose it; and how the performance

of the portfolio was with respect to two reference

methods in the literature, AHMA and SORIGA.

After analyzing the results of the experimenta-

tion we can draw the next conclusions:

• The right design of the learning scheme for the al-

gorithm portfolio is a crucial task in DOPs, since

only 4 out of 8 learning schemes provided better

result than the non-learning version of the algo-

rithm portfolio.

• Different learning schemes lead to different pat-

terns of algorithm selection.

• Algorithms with bad performance when run indi-

vidually may be useful in specific moments of the

search when combined with other methods.

• RS-AP-RB was the only learning scheme that

consistently outperformed the non-learning ver-

sion of the algorithm portfolio in the five problems

considered.

• RS-AP-RB was significantly the best credit as-

signment scheme both globally and in the major-

ity of the problems, except for Knapsack. We

understand the lower performance of RS-AP-RB

in knapsack problem, as an indication that the

structure of the problem may influence the perfor-

mance of the learning scheme, making some fea-

tures more appropriate than others (e.g., penaliza-

tion performs better for OneMax, Plateau, Royal-

Road and Deceptive, while worse for the Knap-

sack problem).

• When considering the results over all problems,

RS-AP-RB improved all the individual meta-

heuristics that integrate it, with all the difference

in performance significant but one, Hill Climb-

ing. Hill Climbing is the best standalone method

for OneMax, Plateau and RoyalRoad. As a con-

sequence, RS-AP-RB selects this method with a

higher frequency, making it, at the end, to reach

a Hill Climbing-like behavior. The situation is

different in Deceptive and Knapsack problems,

where the differences in performance are lower

among the individual methods. Thus RS-AP-RB

shows a behavior that can be understood as a “hy-

brid” among its constituent methods, taking the

“best” of each one.

• RS-AP-RB offered very robust results in all prob-

lems, in contrast to the performance variability of

the individual metaheuristics.

• Over all problems, RS-AP-RB obtained signifi-

cantly better results than AHMA and SORIGA.

In general terms, the results showed that the old

idea of the portfolio of algorithms can also pro-

vide good results in DOPs. An important aspect to

highlight it is the extreme simplicity of the learn-

ing scheme of the portfolio and the metaheuristics

that integrate it. We have seen how very general and

basic versions of common metaheuristics working

together under a simple learning scheme can pro-

vide competitive results with respect to ad-hoc high-

performance methods for DOPs. In our opinion,

these results show that algorithm portfolios could be

a good paradigm for designing solvers not only for

static problems but also for dynamic ones and there-

fore, they deserve a greater attention in this field.
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rithm portfolio for SAT. Artificial Intelligence Review,
40(4):457–465, 2013.

32. F. Peng, K. Tang, G. Chen, and X. Yao. Population-
based algorithm portfolios for numerical optimiza-
tion. IEEE Transactions on Evolutionary Computa-
tion, 14(5):782–800, 2010.

33. M. Petrik and S. Zilberstein. Learning parallel portfo-
lios of algorithms. Annals of Mathematics and Artifi-
cial Intelligence, 48(1-2):85–106, 2006.

34. D. Pisinger. Where are the hard knapsack problems?
Computers and Operations Research, 32(9):2271–
2284, 2005.

35. P. Rohlfshagen and X. Yao. The dynamic knap-
sack problem revisited: A new benchmark prob-
lem for dynamic combinatorial optimisation. In
M. Giacobini, A. Brabazon, S. Cagnoni, G. Caro,
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Table A.1. Offline performance obtained in 30 runs by each learning schemes considered in the
experimentation for each problem, severity and frequency of change.

OneMax Plateau RoyalRoad Deceptive Knapsack

severity severity severity severity severity

change 0.1 0.2 0.5 0.9 0.1 0.2 0.5 0.9 0.1 0.2 0.5 0.9 0.1 0.2 0.5 0.9 0.1 0.2 0.5 0.9

RS-IP-REB 1200 96.697 93.627 88.183 88.009 92.951 85.863 73.776 73.967 75.169 59.801 44.084 40.929 18.201 17.282 16.710 16.893 1674.750 1668.979 1665.183 1674.889

3000 98.650 97.330 94.934 94.932 96.861 93.046 86.141 86.149 83.193 71.834 56.033 51.294 20.123 19.249 18.599 18.599 1679.836 1674.244 1670.331 1679.611

6000 99.326 98.674 97.472 97.461 98.274 95.740 91.089 91.197 87.647 77.650 63.426 58.637 21.726 20.413 19.931 19.707 1684.083 1677.994 1674.314 1683.923

9000 99.540 99.117 98.311 98.300 98.789 96.696 92.894 92.975 89.458 80.805 67.657 63.931 22.679 21.388 20.829 20.702 1687.852 1680.461 1676.542 1687.469

12000 99.662 99.339 98.731 98.724 99.023 97.227 93.892 94.069 90.199 81.972 70.500 67.099 23.729 22.160 21.690 21.353 1689.696 1682.967 1678.778 1689.932

RS-IP-RB 1200 97.363 94.564 87.864 87.637 94.402 87.784 71.548 71.467 77.185 60.925 43.184 40.244 19.714 18.985 18.339 18.346 1675.406 1669.828 1664.828 1675.449

3000 98.942 97.811 95.086 95.024 97.736 94.774 86.920 86.983 87.960 75.308 56.465 52.667 22.491 21.438 20.995 20.737 1681.025 1675.253 1671.222 1681.000

6000 99.473 98.907 97.564 97.510 98.841 97.207 92.955 93.053 92.340 82.820 66.147 63.261 24.206 23.468 22.815 22.562 1686.174 1680.274 1676.124 1687.073

9000 99.649 99.271 98.370 98.328 99.203 98.074 95.131 95.151 94.125 86.425 71.761 70.069 25.510 24.476 23.928 23.675 1690.165 1682.660 1678.850 1689.953

12000 99.737 99.455 98.778 98.752 99.395 98.541 96.299 96.277 94.902 88.690 75.223 74.054 26.851 25.399 24.765 24.664 1692.488 1685.421 1681.317 1692.558

RS-AP-REB 1200 97.321 94.353 87.360 87.149 94.250 87.546 71.518 71.416 77.925 61.276 43.467 40.495 19.762 18.644 17.992 17.596 1672.132 1667.715 1663.481 1672.086

3000 98.924 97.731 94.904 94.810 97.624 94.602 86.541 86.573 87.756 75.211 56.438 51.641 22.002 21.181 20.400 20.214 1674.764 1670.086 1666.705 1675.079

6000 99.462 98.865 97.441 97.404 98.792 97.109 92.653 92.698 92.218 82.934 66.019 62.806 23.953 22.899 22.351 22.221 1675.907 1671.159 1668.374 1675.161

9000 99.640 99.238 98.296 98.273 99.177 97.968 94.724 94.865 94.030 86.067 70.856 68.555 25.454 24.058 23.503 23.210 1676.288 1671.747 1668.235 1676.354

12000 99.728 99.429 98.721 98.706 99.353 98.417 95.928 95.922 94.946 88.001 74.934 72.949 26.417 24.717 24.434 24.067 1676.373 1671.604 1668.943 1676.417

RS-AP-RB 1200 99.532 99.266 99.617 99.544 98.739 95.148 86.702 85.823 92.048 92.452 84.869 82.448 20.195 18.998 18.431 18.367 1675.046 1669.866 1665.136 1675.534

3000 99.007 98.096 96.215 98.167 98.839 95.425 89.887 89.925 89.058 77.949 61.739 79.613 22.407 21.855 21.060 20.933 1682.253 1675.598 1671.495 1681.525

6000 99.507 99.047 98.105 98.091 98.878 97.591 94.667 94.770 92.914 85.540 73.682 73.129 24.589 23.488 23.006 22.973 1686.111 1680.050 1676.114 1685.967

9000 99.670 99.363 98.740 98.725 99.228 98.314 96.345 96.384 94.455 88.680 79.680 79.797 25.917 25.024 24.265 24.001 1689.472 1682.749 1678.951 1689.532

12000 99.750 99.523 99.056 99.042 99.429 98.720 97.231 97.194 95.329 90.588 93.004 93.013 27.272 25.686 25.304 24.927 1691.908 1684.759 1681.273 1691.020

NRS-IP-REB 1200 95.195 90.859 86.096 87.285 89.885 82.284 71.610 73.837 74.705 60.427 40.266 37.505 15.349 14.593 13.986 14.462 1675.527 1669.410 1664.945 1675.560

3000 98.042 95.894 92.528 93.357 95.506 90.181 83.431 84.105 82.838 71.478 52.451 43.020 17.284 16.034 15.224 15.753 1681.742 1675.308 1671.148 1681.524

6000 99.008 97.885 95.590 95.696 97.134 93.402 87.985 90.382 86.181 77.351 60.528 47.917 19.355 17.585 16.564 17.183 1686.731 1679.761 1675.553 1686.680

9000 99.337 98.576 96.656 97.160 98.128 94.737 89.811 91.811 87.860 80.065 65.131 49.795 21.020 18.957 17.636 18.274 1689.568 1682.132 1678.363 1689.815

12000 99.511 98.932 97.172 97.301 98.518 95.368 90.601 92.256 88.372 81.515 68.120 51.566 22.070 19.566 17.852 18.747 1692.428 1684.379 1680.528 1692.290

NRS-IP-RB 1200 97.496 94.488 86.434 86.146 94.653 87.671 69.833 69.350 78.607 60.814 43.116 40.024 20.012 19.111 18.463 18.476 1675.520 1669.685 1664.952 1675.860

3000 98.972 97.791 94.466 94.332 97.785 94.686 85.306 85.377 88.181 75.075 55.933 51.808 22.428 21.499 21.073 20.852 1681.993 1675.298 1671.091 1681.263

6000 99.486 98.891 97.210 97.182 98.860 97.179 92.118 92.074 92.402 83.072 65.364 61.482 24.632 23.363 22.801 22.625 1686.723 1679.341 1675.554 1686.996

9000 99.659 99.259 98.147 98.120 99.228 98.062 94.443 94.403 94.110 86.124 70.421 68.465 25.682 24.400 24.133 23.792 1689.640 1682.575 1678.596 1689.953

12000 99.745 99.449 98.607 98.590 99.379 98.481 95.600 95.649 94.944 88.181 74.229 72.275 26.574 25.345 24.723 24.686 1692.360 1684.905 1680.654 1692.137

NRS-AP-REB 1200 97.441 94.457 86.258 86.063 94.616 87.441 69.535 69.256 78.241 60.636 42.639 39.959 19.879 19.164 18.190 18.326 1659.158 1647.679 1630.299 1660.947

3000 98.973 97.743 94.377 94.268 97.784 94.672 85.390 85.327 88.111 74.814 55.847 51.629 22.233 21.337 20.791 20.626 1671.098 1654.507 1641.605 1673.837

6000 99.486 98.879 97.211 97.146 98.833 97.122 92.024 91.999 92.415 82.778 65.419 61.875 24.344 23.263 22.818 22.360 1676.858 1660.464 1648.235 1671.442

9000 99.657 99.257 98.133 98.103 99.191 98.000 94.389 94.394 93.932 86.067 70.303 68.329 25.527 24.556 23.758 23.814 1678.867 1670.334 1657.083 1678.964

12000 99.743 99.446 98.603 98.584 99.408 98.479 95.608 95.591 94.793 88.177 74.102 72.589 26.556 25.123 24.606 24.433 1678.505 1669.627 1637.374 1678.866

NRS-AP-RB 1200 89.827 86.918 73.941 76.055 81.079 73.119 51.658 53.481 69.108 60.407 54.910 51.738 17.710 16.308 16.101 15.808 1662.259 1656.879 1650.774 1661.837

3000 85.416 81.313 81.423 79.265 75.669 64.629 62.475 61.077 76.467 64.109 50.036 50.735 21.173 19.783 18.875 19.068 1670.644 1666.472 1661.524 1671.387

6000 97.360 89.784 89.206 90.113 94.805 87.656 80.108 79.627 88.007 78.186 64.692 63.529 24.386 23.318 22.556 22.506 1677.665 1674.624 1670.708 1679.441

9000 98.261 96.288 93.037 93.369 96.596 92.771 86.053 86.608 91.951 83.735 71.930 72.178 26.382 25.237 24.296 24.495 1683.665 1678.657 1674.753 1684.315

12000 98.700 97.442 95.130 95.303 97.428 94.571 88.966 90.208 93.423 87.068 77.265 77.509 27.652 26.108 25.800 25.670 1686.898 1682.265 1679.556 1686.938
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Table A.2. Offline performance obtained in 30 runs by the isolated versions of algorithms that com-
pose the portfolio for each problem, severity and frequency of change.

OneMax Plateau RoyalRoad Deceptive Knapsack

severity severity severity severity severity

change 0.1 0.2 0.5 0.9 0.1 0.2 0.5 0.9 0.1 0.2 0.5 0.9 0.1 0.2 0.5 0.9 0.1 0.2 0.5 0.9

HC 1200 99.197 98.384 95.920 92.639 98.258 96.182 89.746 83.748 89.268 80.940 66.838 60.687 11.972 11.915 11.980 13.516 1676.305 1671.407 1665.839 1675.655

3000 99.682 99.348 98.369 97.043 99.298 98.459 95.909 93.519 95.719 92.163 85.759 82.872 11.988 11.972 16.766 17.594 1677.620 1672.574 1668.479 1677.862

6000 99.840 99.673 99.183 98.523 99.656 99.234 97.953 96.769 97.838 96.089 92.901 91.411 11.996 11.990 18.077 18.922 1678.150 1673.188 1668.759 1679.739

9000 99.893 99.783 99.453 99.015 99.768 99.491 98.636 97.844 98.566 97.411 95.307 94.281 11.997 11.992 18.665 19.271 1678.829 1673.836 1669.775 1679.033

12000 99.920 99.837 99.592 99.259 99.829 99.619 98.981 98.372 98.926 98.041 96.461 95.708 11.999 11.995 19.137 19.456 1679.537 1673.282 1669.751 1679.821

RS 1200 65.550 64.894 64.653 64.644 39.346 38.548 38.245 38.138 24.437 24.000 23.727 23.767 18.818 18.652 18.622 18.610 1657.082 1656.955 1656.826 1656.963

3000 66.721 66.219 65.969 65.915 41.268 40.469 40.118 40.183 26.914 26.475 26.415 26.413 19.598 19.559 19.519 19.497 1663.341 1663.146 1663.080 1663.413

6000 67.521 67.052 66.919 66.874 42.285 41.784 41.551 41.618 27.889 27.630 27.553 27.496 19.976 19.933 19.917 19.910 1667.171 1666.993 1667.124 1667.158

9000 67.998 67.614 67.467 67.482 43.038 42.582 42.492 42.430 28.397 28.066 27.939 27.978 21.872 21.490 21.574 21.573 1669.207 1669.229 1669.017 1669.082

12000 68.340 67.948 67.844 67.790 43.645 43.104 43.062 43.055 29.526 29.162 29.075 29.063 23.233 23.210 23.229 23.021 1670.454 1670.362 1670.198 1670.487

TS 1200 60.265 60.183 60.115 60.193 32.217 32.151 32.168 32.149 18.503 18.537 18.528 18.537 13.490 13.578 13.217 13.469 1636.800 1636.055 1636.392 1636.426

3000 62.245 62.365 62.213 62.273 35.168 35.219 35.153 35.154 21.287 21.459 21.283 21.305 17.035 16.904 16.990 16.921 1652.397 1652.123 1652.610 1652.826

6000 63.770 63.690 63.727 63.708 37.205 37.125 37.131 37.252 23.180 23.288 23.174 23.209 18.344 18.347 18.371 18.348 1660.527 1660.413 1660.311 1660.419

9000 64.481 64.473 64.564 64.546 38.274 38.352 38.126 38.254 24.129 24.000 24.275 24.110 18.830 18.852 18.868 18.871 1663.741 1664.157 1663.850 1663.749

12000 65.027 65.013 65.054 65.026 39.143 39.101 39.105 39.043 25.207 25.186 25.370 25.161 19.257 19.194 19.223 19.232 1666.039 1666.021 1666.035 1666.191

SA 1200 62.523 62.610 62.322 62.088 36.643 36.493 36.154 35.933 22.105 21.875 21.890 21.650 13.051 12.865 12.857 12.782 1669.539 1668.425 1666.993 1669.549

3000 64.930 64.937 64.810 64.634 40.244 40.158 40.034 39.757 25.947 25.917 25.698 25.610 17.069 17.074 17.122 16.818 1674.405 1673.263 1673.662 1674.654

6000 66.615 66.581 66.627 66.554 42.911 42.938 42.775 42.768 28.652 28.683 28.343 28.352 18.615 18.584 18.684 18.539 1677.910 1676.437 1677.128 1678.012

9000 67.532 67.480 67.480 67.423 44.438 44.394 44.227 44.257 30.340 30.245 30.233 30.081 19.247 19.240 19.273 19.219 1680.058 1678.683 1678.785 1679.600

12000 68.189 68.087 68.016 67.969 45.469 45.418 45.232 45.269 31.251 31.259 31.109 31.153 19.641 19.587 19.591 19.617 1681.037 1679.657 1679.558 1680.794

GA 1200 96.216 91.330 74.958 58.341 91.788 80.084 50.348 44.777 64.647 43.782 24.990 33.893 11.803 11.000 10.701 11.000 1662.625 1649.844 1614.986 1662.139

3000 98.518 96.503 88.401 74.220 96.815 90.894 67.155 49.101 75.416 54.964 31.542 38.823 11.998 11.760 11.091 11.801 1671.867 1661.739 1642.618 1672.269

6000 99.262 98.264 94.202 86.971 98.416 94.917 75.969 51.863 79.464 60.332 35.031 41.308 12.000 11.936 11.664 11.946 1676.324 1666.720 1652.077 1676.947

9000 99.511 98.844 96.142 91.297 98.960 96.482 79.285 53.469 82.451 62.888 37.404 42.410 12.000 11.947 11.790 11.973 1677.934 1669.617 1656.146 1677.686

12000 99.631 99.132 97.098 93.479 99.216 97.615 81.024 54.213 82.912 64.791 38.573 42.848 12.000 11.970 11.851 11.982 1678.553 1669.102 1657.887 1678.778

EE 1200 95.793 88.685 70.493 56.554 91.008 75.659 46.331 42.389 66.570 45.620 26.410 33.078 11.887 11.274 11.000 11.649 1662.833 1649.219 1630.740 1662.719

3000 98.399 95.677 84.508 67.933 96.647 89.959 65.792 48.535 76.919 57.889 34.027 38.150 11.976 11.859 11.566 11.860 1671.422 1660.911 1642.799 1672.319

6000 99.201 97.833 92.211 82.942 98.342 94.761 78.203 54.035 81.406 64.034 38.173 41.213 11.992 11.943 11.774 11.958 1676.044 1666.298 1652.384 1675.258

9000 99.468 98.549 94.830 88.621 98.891 96.589 83.001 58.020 83.211 66.209 40.996 42.147 11.990 11.959 11.878 11.966 1678.461 1668.898 1656.286 1677.548

12000 99.603 98.917 96.116 91.477 99.166 97.449 85.251 61.961 83.910 69.133 42.627 42.432 12.000 11.972 11.912 11.984 1678.946 1669.402 1658.208 1678.212

EDA 1200 51.879 50.645 50.247 50.874 20.987 18.256 18.011 18.038 15.654 18.995 16.654 17.002 9.556 9.111 8.776 9.554 1662.933 1650.063 1381.000 1661.928

3000 51.654 50.213 50.749 55.845 18.587 18.558 18.841 18.446 15.655 15.699 15.325 15.967 8.997 9.223 9.568 9.668 1672.846 1661.352 1641.698 1672.438

6000 51.652 50.878 50.625 50.451 20.211 18.659 19.654 18.965 11.558 15.694 16.875 15.874 9.351 9.662 8.231 9.884 1675.443 1666.444 1652.521 1676.018

9000 51.635 51.524 50.894 52.451 20.111 18.654 18.963 18.549 16.854 13.325 16.895 16.552 9.622 9.304 9.002 9.684 1677.082 1668.926 1656.387 1677.307

12000 51.623 51.841 50.254 50.647 20.249 20.654 18.122 18.998 17.654 16.215 16.888 17.995 9.335 9.664 8.399 9.645 1678.552 1669.649 1658.087 1678.341

Table A.3. Offline performance obtained by AHMA and SORIGA for each problem, severity and
frequency of change.

OneMax Plateau RoyalRoad Deceptive Knapsack

severity severity severity severity severity

change 0.1 0.2 0.5 0.9 0.1 0.2 0.5 0.9 0.1 0.2 0.5 0.9 0.1 0.2 0.5 0.9 0.1 0.2 0.5 0.9

AHMA 1200 97.648 95.355 90.662 90.607 95.073 89.423 76.900 77.154 79.723 62.762 45.140 42.663 65.123 57.088 53.930 65.736 1679.172 1671.414 1663.916 1669.617

3000 99.060 98.126 96.236 96.179 98.037 95.763 90.229 90.253 89.845 78.694 62.560 61.201 73.112 64.655 56.092 75.094 1693.010 1681.298 1667.938 1677.169

6000 99.531 99.069 98.119 98.097 99.023 97.897 95.118 95.180 93.771 86.590 76.134 75.379 78.593 70.534 62.542 80.269 1701.750 1689.347 1671.447 1682.675

9000 97.688 99.379 98.750 98.727 99.350 98.595 96.739 96.780 95.019 89.807 82.400 82.514 81.574 74.068 65.763 82.302 1705.639 1694.148 1674.089 1688.286

12000 99.763 99.532 99.060 99.049 99.512 98.943 97.580 97.581 95.731 91.983 85.730 85.788 83.433 76.954 67.740 83.265 1707.703 1697.228 1676.013 1692.966

SORIGA 1200 90.016 81.473 67.956 78.296 81.042 65.262 42.366 59.845 61.767 42.152 26.158 38.683 37.055 35.562 34.111 36.985 1664.800 1664.800 1664.800 1664.600

3000 94.362 88.155 73.357 88.395 89.072 76.935 51.593 79.263 77.991 58.863 34.353 58.015 37.493 35.244 34.454 35.989 665.920 665.920 665.760 665.920

6000 96.259 91.274 78.305 90.896 92.677 82.238 57.556 82.715 85.276 69.339 40.614 73.028 39.665 35.925 34.322 36.554 332.940 332.980 332.920 332.960

9000 97.283 93.250 82.096 92.090 94.657 86.391 61.528 83.634 88.848 74.916 44.886 75.672 40.364 36.345 34.672 36.000 221.960 221.973 221.973 221.947

12000 97.914 94.420 84.204 93.044 95.945 88.850 64.558 84.777 90.973 77.586 47.633 75.622 41.358 37.051 34.959 36.957 166.450 166.490 166.460 166.480
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