
Projective simulation for classical learning agents: a comprehensive investigation

Julian Mautner1,2, Adi Makmal1,2, Daniel Manzano1,2,3, Markus Tiersch1,2 and Hans J. Briegel1,2
1Institut für Theoretische Physik, Universität Innsbruck, Technikerstraße 25, A-6020 Innsbruck

2Institut für Quantenoptik und Quanteninformation der Österreichischen Akademie der Wissenschaften, Innsbruck, Austria
3Instituto Carlos I de Fisica Teórica y Computational, University of Granada, Granada, Spain

(Dated: October 3, 2018)

We study the model of projective simulation (PS), a novel approach to artificial intelligence based
on stochastic processing of episodic memory which was recently introduced [1]. Here we provide a
detailed analysis of the model and examine its performance, including its achievable efficiency, its
learning times and the way both properties scale with the problems’ dimension. In addition, we
situate the PS agent in different learning scenarios, and study its learning abilities. A variety of
new scenarios are being considered, thereby demonstrating the model’s flexibility. Further more, to
put the PS scheme in context, we compare its performance with those of Q-learning and learning
classifier systems, two popular models in the field of reinforcement learning. It is shown that PS is
a competitive artificial intelligence model of unique properties and strengths.

I. INTRODUCTION

Artificial intelligent agents are playing an increasingly
important role in our modern life. Different from ordi-
nary computers, intelligent agents are designed to op-
erate autonomously in complex and possibly unknown
environments. Intelligence is thereby understood as the
agent’s capability of acting in its environment in a ratio-
nal and flexible way that maximizes its chance of success
[2]. Applications of artificial agents include robots that
interact with humans, operate in remote space, or search
the internet (netbots), while in biology, the study of arti-
ficial agents may also provide new perspectives to model
animal behavior. Comprehensive introductions can be
found in modern textbooks [2–4].

In this paper we study a novel approach to artificial in-
telligence (AI) which was first introduced recently [1] and
which we call projective simulation (PS). Projective sim-
ulation constitutes a model of information processing for
artificial agents, in which the agent effectively projects it-
self into potential future scenarios, according to its previ-
ous experience. The model is based on simple stochastic
processes, thus providing a physically grounded approach
toward an embodied agent design. The model can be
naturally applied to problems in reinforcement learning,
where the agent learns via interaction with some reward-
ing environment [5, 6]. At the same time, the notion of
PS is more general and can also be seen as a principle
and building block for complete agent architectures and
computational intelligence [7].

A central component of the PS scheme is a specific
type of memory, which we denote as episodic & com-
positional memory (ECM). The ECM is structured as
a directed, weighted network (graph), and we refer to
each node of this network as a clip. The “clips” are the
basic units of memory and correspond to short episodic
experiences. They consist e.g. of remembered percepts,
or actions, or simple combinations thereof. In everyday
life, examples of such clips could be “seeing a red ball”,
“kicking a ball”, or its combination “seeing a red ball
and kicking it”. A clip in ECM can be excited through

some perceptual stimulus from the environment, and this
excitation then hops to an adjacent clip with probability
that is correlated to the strength of the directed edge be-
tween these two clips. Perceptual input thereby leads to
a random walk through memory, organized as a network
of clips. This random walk finally reaches its end once
the excitation of a so-called “action clip” couples out –
also probabilistically in general – and leads to a corre-
sponding real action of the agent in its environment.

“Learning” is effectively achieved through dynamic
changes of the ECM network. The network is continu-
ously adjusted, through experience, according to rewards
obtained from the environment. This adjustment may
take place in terms of both the clips themselves as well
as the weights of the edges connecting different clips. At
the beginning, the PS agent is situated in an environment
as a tabula rasa, meaning that its ECM network shows
no preferences toward any kind of action, or behavior[25].
Then, in subsequent time steps, the agent’s actions are
rewarded by the environment. These rewards are directly
translated into corresponding changes within the ECM
according to simple prescribed rules. The changes in the
ECM may then result in the PS agent taking different
actions, thus initiating a new feedback loop. A snapshot
of the ECM at each time step thus reflects the past ex-
perience of the PS agent with respect to its actions and
rewards. When successful, the resulting ECM allows the
PS agent to take actions that maximize, on average, the
rewards it obtains from the environment.

We note that the model of projective simulation can
also be generalized to quantum mechanical operation.
This leads to the concept of a quantum agent which
employs the principles of quantum mechanics, such as
quantum superposition and parallelism, for processing its
episodic memory [1]. Even though it is not the topic of
this paper, the possibility of a quantum generalization
can be seen as a unique feature of the model. Research
along this line will be published in a separate work.

This paper provides, in addition to a thorough anal-
ysis of the PS model, three main contributions: First,
the PS agent is situated in a variety of novel scenarios,

ar
X

iv
:1

30
5.

15
78

v2
 [

nl
in

.A
O

]
 1

 D
ec

 2
01

4

2

each of which confronts the agent with a different kind
of challenge, thereby enabling us to evaluate the agents
learning abilities and demonstrate its flexibility. Second,
a new “glowing” mechanism is introduced to the model,
which builds up correlations between ECM excitations
that were activated at different times. This is shown to
have a dramatic effect on the PS performance in certain
scenarios. Last, we conduct a detailed comparison be-
tween the PS model and two well established approaches
to reinforcement learning problems, namely, Q-learning
and learning classifier systems (see below). This compar-
ison is twofold: on one, more technical, level, the models
are repeatedly compared with respect to their qualita-
tive performance, whereas on a more conceptual level,
the models are compared with respect to their simplic-
ity, an important trait of any artificial intelligent agent
and of embodied agents in particular.

The paper is structured as follows: section II is de-
voted to formal aspects of PS, basic notions and features.
In particular, we start in section II A with a formal de-
scription of PS; Afterwards, in section II B we introduce
our simplest toy model, for which we analyze the per-
formance of PS analytically in section II C, where closed
expressions are obtained for the asymptotic efficiency of
the PS agent and the initial slope of its learning curve;
In section II D we then describe the role of damping in
PS; Last, we define a notion of “learning time” in section
II E, and study its scaling properties when increasing the
number of inputs and/or actions.

In sections III-V, we then examine the ability of the PS
agent to handle more advanced kinds of scenarios, where
each scenario is of completely different nature. We show,
for each case, how simple changes in the update rules
of the ECM may lead to better performances, thereby
making the agent more flexible. In particular, section
III considers scenarios in which rewards may depend not
only on present actions, but also on actions taken in the
past. Such scenarios, to which we refer as temporal cor-
relations, require some mechanism to correlate between
actions taken at different times. We show that the PS
scheme can be extended to account for such correlations,
by allowing a slower decay of the excitations in the ECM,
which we denote as afterglow. Next, in section IV we
study scenarios in which it is beneficial to notice similar-
ities between inputs and to associate the corresponding
percepts. We show how the ECM can be automatically
shaped to allow for such associations between percept-
clips, and denote this capability as associative memory.
Last, in section V we aim at scenarios where compos-
ite actions are needed, i.e. where it is beneficial to com-
bine known actions into new ones. We show how the
PS scheme allows the agent to “try out” such compos-
ite actions within the ECM. These new action clips are
then available to the agent, increasing its adapting and
learning capabilities.

To put the PS scheme in perspective with respect to
existing models of AI, we perform a detailed comparison
throughout the paper between PS and other AI mod-

els, whenever such a comparison is sensible. Out of
many possible existing AI schemes we chose to focus on
two representatives, namely Q-learning (QL) [2, 6, 8, 9]
(with and without Dyna-style planning [10, 11] exten-
sion) which is a well known model in reinforcement learn-
ing, and on extended learning classifier systems (XCS)
[12] that is an advanced variant of standard learning clas-
sifier systems (LCS) [13–15]. Both are shortly described
in appendices A and B, respectively. We chose to focus on
these two models for two main reasons: first, both models
are popular and well studied, and second, because they
are known to perform well on our set of learning scenar-
ios. In particular, QL is used as a reference model in the
context of “temporal correlations” (section III), whereas
the XCS is used for comparison in the context of “as-
sociative memory” and “composite actions” (sections IV
and V).

Last, in section VI we study the PS model in terms of
its simplicity, that is, we look at the resources it requires,
and estimate their complexity. This is an important as-
pect, as PS ultimately aims at providing a framework
of embodied agent design [3], grounded only on physi-
cal processes, rather than computational ones. Here we
study the essential resources of PS in terms of required
parameters, basic data structure, and inherent processes.
The PS is then compared to both QL and XCS in this
context. Section VII concludes the paper.

II. BASIC NOTIONS AND FEATURES

The PS agent is conceived as an entity situated in a
(partially unknown) environment, which receives inputs
via its sensors and can perform different actions. The
actions of the agent are rewarded by the environment,
which affects the internal structure of its memory. The
PS agent has, however, no explicit model of the environ-
ment which predicts the next state or reward and in that
sense the PS is “model-free” [6]. From the point of view
of an external observer, the agent may be described by a
conditional probability P (t)(a|s) of performing an action
a given a percept s (denoted elsewhere as the agent’s
“stochastic policy” [2]). Yet, a complete description of
the agent connects P (t)(a|s) with the internal state of the
agent’s memory at time t, and specifies how its memory
is modified as the agent interacts with the environment.

The model of projective simulation provides such a de-
scription in terms of stochastic processes, as will be spec-
ified in the next subsection.

A. The PS formalism

In what follows we list the main formal points that
constitute the PS model:

• The ECM is the central component of PS, defined
as a directed, weighted network (graph). Each node
of this network is called a clip.

3

• Clips represent fragments of episodic experi-
ences, which are defined as L-tuples c =
(c(1), c(2), ..., c(L)). Each of c(i) is an internal repre-
sentation of either a percept (S), or an action (A),
where both are defined below. In this paper, we
consider only clips composed of length L = 1.

• Percepts (“inputs”) are defined as N -tuples s =
(s1, s2, ..., sN) ∈ S ≡ S1 × S2 × ... × SN , si ∈
{1, ..., |Si|}, where the number of possible percepts
is given by S ≡ |S| = |S1| · · · |SN |. The struc-
turing of the input into subspaces is usually natu-
rally given, for example when considering robots:
S1 might represent a visual sensor, S2 may account
for an acceleration sensor, and so forth. The no-
tation in the original proposal [1] differentiates be-
tween the immediate physical percept (sensory in-
put) caused by the environment denoted by s and
its representation in memory, i.e. a percept clip de-
noted by s○. Here we employ the notation s both
for the percept and for the percept clip, as long as
there is no danger of confusion.

• Actions (“outputs”) are given as M -tuples: a =
(a1, a2, ..., aM) ∈ A ≡ A1 × A2 × ... × AM , ai ∈
{1, ..., |Ai|}, where the number of possible actions is
given by A ≡ |A| = |A1| · · · |AM |. The action space
is also structured using subspaces, which could be,
e.g. moving, beeping, touching, etc. Similar to per-
cepts, real actions a are conceptually different from
remembered actions, i.e. action clips, which were
denoted by a○ in the original proposal [1]. Again,
in the present work we will employ the notation a
both for the real action and for the action clip.

• Each edge, connecting clip ci to clip cj , has a dy-

namic weight h(t)(ci, cj), which changes over time,
and is denoted as the h-value of this edge. Initially,
at time t = 0, there exist edges directed from each
percept-clip to each action-clip. The h-values of the
edges are initialized to h(0)(ci, cj) = 1, and obey

h(t)(ci, cj) ≥ 1 at each time t.

• The hopping probability according to which an
excitation hops from clip ci to clip cj is given by

p(t)(cj |ci) =
h(t)(ci,cj)∑
k h

(t)(ci,ck)
where the sum is over all

clips ck connected to clip ci.

• “Emotion” tags are degrees of freedom which can
be assigned internally to percept-action edges to in-
dicate e.g. whether or not the corresponding tran-
sition has been rewarded the last time it was taken.
These tags can be used to memorize the most re-
cent reward on a given transition, thereby enabling
the detection of short-time changes in the environ-
ment. Formally, the emotion tags are given by
e(s, a) = (e1, e2, ..., ek) ∈ E ≡ E1×E2× ...×Ek, ei ∈
{1, ..., |Ei|}, where here we restrict ourselves to the
case where k = 1 and e(s, a) ∈ E = {,,/}.

• Reflection is the mechanism that exploits the
emotion tags: before an action a is coupled out
as a response to an excitation of percept clip s, the
emotional tag e(s, a) is checked. If it is positive (,)
the action is performed, but if it is negative (/) the
random walk process is restarted. This allows the
agent to reconsider, so to speak, its choice. The
maximum number of random walks per decision is
limited by a predefined “reflection time” parameter
R, whose default value R = 1 means no reflection.

• The interface between the PS agent and the ex-
ternal environment is realized via its sensors and
actuators and their connection to memory. An ex-
ternal percept s excites a certain percept clip c
according to I(c|s), an input-coupling probability
function. Similarly, an action-clip couples out to
perform a real action a according to an output-
coupling probability function O(a|c). The cou-
pling functions connect the internal random walk,
described by the hopping probabilities p(t)(cj |ci),
with the external behavior of the agent, described
by P (t)(a|s). To be more explicit, in the simplest
case, the probability that a percept s will initi-
ate a specific random walk through clips {ck1 →
ck2 → . . . → ckl} (including possible repetitions),
which will eventually lead to action a, is given by
O(a|ckl)Π

l−1
j=1p

(t)(ckj+1
|ckj)I(ck1 |s). The external

conditioned probability P (t)(a|s) is then given by
summing up the probabilities over all such possi-
ble paths inside the clip network. Here we consider
only the case where I(c|s) and O(a|c) are simple
Kronecker delta functions[26]. This corresponds
to the simplification that a percept always excites
the corresponding percept-clip and an action-clip
always couples out to produce the corresponding
action.

The basic process underlying the PS model is a
stochastic one. Each time step t begins with a percept
coming from the environment (an input) and exciting a
memory clip ci inside the network according to I(c|s).
Next, the excitation hops from clip ci to one of its neigh-
boring clips, cj , with the hopping probability p(t)(cj |ci).
This hopping process then continues in a random walk
manner, allowing the excitation to propagate through the
clip network. The hopping process then reaches its end,
once an action clip is encountered and couples out to an
action in the real-world according to O(a|c).

When an action is performed, the agent gets a reward
λ ≥ 0 from the environment. As a result, the h-values of
all edges are updated according to the following two rules:
(i) The h-values of all activated edges, i.e. edges that
were traversed during the last random walk, are updated
according to

h(t+1)(ci, cj) = h(t)(ci, cj)− γ(h(t)(ci, cj)− 1) + λ, (1)

where t is the current time step, γ (0 ≤ γ ≤ 1) is a damp-
ing parameter (see also section II D), and λ quantifies the

4

reward given by the environment. (ii) The h-values of all
other edges of the network are merely damped, described
by the rule

h(t+1)(ci, cj) = h(t)(ci, cj)− γ(h(t)(ci, cj)− 1). (2)

This update of the ECM network concludes a single time
step.

At each time step all the h-values are therefore re-
duced, by a factor of γ(h − 1), whereas only edges that
were actively used in the last step, are given the reward λ.
When the PS-agent obtains a positive reward, the edges
that were visited during the random walk that led to the
correct action are then strengthened, thereby increasing
the probability that they will be used again in the future.
On the other hand, when a wrong action is taken and no
reward is given, i.e. λ = 0, all edges are merely damped,
including those that were used in the current step, thus
reducing the probability to use them in the future.

Last, we remark that Eq. (1)-(2) is a simple, yet obvi-
ously not the only possible update rule for the network,
where different behaviors may emerge from choosing dif-
ferent update rules. This makes PS a very flexible frame-
work. Throughout this paper, this flexibility will be ex-
amined and demonstrated.

B. Toy model: The invasion game

For an initial analysis of the PS model we use a game
we call the “invasion game” [1] as our simplest toy model
(for more advanced scenarios see sections III-V). The
game is composed of an attacker, a defender and sev-
eral doors. The agent has the role of the defender, whose
task is to block the attacker. At the beginning of each
time step, the attacker and defender are facing each other
at the same door. The attacker then shows a symbol in-
dicating where it will appear next (e.g. left or right ar-
row), and the defender makes a move. The defender has
thus to learn the meaning of the symbols to take the cor-
rect action. If it managed to move to the correct door
and block the attacker, it will receive a reward λ > 0,
whereas no reward is otherwise obtained. The percept
space here is a set of symbols indicating the direction
of the attacker’s motion. In the simplest version, where
the attacker has only two symbols to show, this would
amount to e.g. S = {←,→}. The action space is a set of
possible actions. In the simplest case, only two actions
are allowed: one step to the left and one to the right,
therefore A = {−,+}.

A typical learning curve of the PS in the invasion game
is depicted in red in Fig. 1. The game is played by an
ensemble of Y agents, for T time steps. At time t = 0
all agents are similarly initialized to show no preference
toward any action (their h-values are all set to 1). Then,
at every time step, each of the agents is confronted with
a random symbol, takes an action, and is possibly re-
warded, followed by the update of its ECM according to
Eq. (1)-(2). A particular network will then develop for

each of the individual agents, resulting with a different
blocking efficiency of the different agents. A trajectory
of a single agent consists of a sequence of blocking and
non-blocking actions, as shown in Fig. 2. In what follows,
we always use at least Y = 104 agents, unless stated oth-
erwise. We further define the efficiency of each time step
as the ratio X

Y , where X is the number of agents that
blocked the attacker at this time step. An efficiency of
0.85 therefore means, that out of the 104 agents, 8500
blocked the attacker, and 1500 did not.

To make sure that the choice of Y = 104 agents is
sufficient for meaningful statistics, we also calculated the
error bars, as shown in Fig. 1. To that end, we calculated
100 efficiency curves (with each being averaged over 104

agents). Then out of this ensemble we calculated the
averaged efficiency and the standard deviation for each
time step. The error bars we show are of 2σ width, cen-
tered at the mean efficiency value. Fig. 1 shows that the
errors are of the same order as the fluctuations. There-
fore, in following plots, we omit the error bars, as they
are indirectly given by the fluctuations.

Figure 1: A typical learning curve of PS for the invasion game
shows the efficiency, averaged over 104 single agents, as a
function of time steps (in red). Error bars on top of the curve
were calculated using 100 different learning curves (using a
total of 106 runs) and they are of 2σ width (see text). It is
seen that the errors are of the same order as the fluctuations.

Figure 2: A trajectory of a single PS agent for 40 time steps of
the invasion game. It is seen that the percentage of blocking
events increase with time, indicating that the agent learns.

5

C. The PS learning curve: A heuristic analysis

In this section, we analyze the learning curve of PS
(such as shown, e.g. in Fig. 1) from an analytical per-
spective. In particular, we develop closed and compact
expressions which approximate the initial slope of the
efficiency and its asymptotic value. These are most rele-
vant properties: the initial slope provides a first indica-
tion for the agent learning time, whereas the asymptotic
efficiency indicates the averaged maximal efficiency that
can be achieved.

Obtaining analytical expressions for the learning curve
is usually not easy, and may even be impossible, in gen-
eral, as the underlying equations are non-linear. We
therefore limit our investigation to a restricted invasion-
game, where for each percept 1 ≤ s ≤ S there exist a
single, unique, rewarded action, as, such that h(s, as) is
the only rewarded edge for this percept. In addition, we
assume that percepts are shown one-by-one in a fixed
order, starting with a randomly chosen percept at time
t0. Let us denote with t0 the (random) time between
0 and S − 1 when the specific percept s = 1 is shown
for the first time. Fig. 3 illustrates the clip network as
it develops for such a scenario. Here, percept-clips and
action-clips are shown in the first and second rows, re-
spectively, and thick edges denote the rewarded edges.
It is seen that the resulting configuration is highly struc-
tured (yet at each time step the strengths of the rewarded
edges slightly vary, according to the order in which the
percept are shown). This allows us to treat all percepts
in the same manner, thereby simplifying our analysis.

Figure 3: A schematic illustration of the PS clip network, as
built for the restricted invasion game that is used for our an-
alytical derivation. Percept and action clips are shown on top
and on the bottom, respectively, and thick (thin) edges denote
rewarded (unrewarded) edges. Here, each percept clip has a
single, unique, rewarded action. The resulting clip network is
highly structured (though at each time step the strengths of
the rewarded edges slightly vary).

First, we find an expression for the asymptotic value
of the learning curve. For a single agent, the blocking

efficiency at time t, which we denote by r(t), is given by

r(t) =

S∑
s=1

P (t)(s)p(t)(as|s) . (3)

where P (t)(s) is the probability that the attacker shows
the s symbol (thereby exciting percept s○) and p(t)(as|s)
is the hopping probability from percept s to the re-
warded action as as defined in section II A. In our re-
stricted invasion game, where percepts are shown in
a fixed order (“regular training”), we have P (t)(s) =
δ((s − t mod S) + t0). For large times, t → ∞, the
agent then evolves into a cyclically steady state described
by p(t)(as|s) = p(t+S)(as|s) and a corresponding blocking
efficiency

r(t) = p(t)(as0 |s0)

=
h(t)(s0, as0)

h(t)(s0,as0)+
∑A
a6=as0

h(t)(s0,a)

=
h

h+ (A− 1)
, (4)

where s0 refers to the percept presented to the agent
at time t and as0 to the corresponding rewarded action.
Note that s0 and as0 depend on the random time variable
t0 described above. In the second equality, we denote the
h-value of the corresponding rewarded edge simply by h
and take into account that all unrewarded edges are of
weight 1.

In the following, we will consider an ensemble of many
agents, each of which is trained by the same percept his-
tory but may develop a different clip network. We are
interested in the averaged blocking efficiency, i.e. r, and
its asymptotic value, where the average is taken over the
ensemble of agents. From (4) we obtain the correspond-
ing expression

r =
h

h+ (A− 1)
' h

h+ (A− 1)
. (5)

In the second step, we have made the essential approx-
imation, which only holds if the distribution of the h-
values is sufficiently narrow. This requires that the
weight of an edge does not change too much between
subsequent rewards. In particular, the damping should
not change the h-value of an edge significantly while
the S − 1 other percepts are shown, i.e. h(t0+S−1) =
(1 − γ)S−1h(t0) ' h(t0). To first order in γ, this regime
is characterized by Sγ � 1.

With the approximation made in Eq. (5), finding an
expression for r boils down to finding an expression for
h, i.e. the value of the rewarded edge at the cyclic steady
state, averaged over many agents. To express h we first
rewrite the update rule, given in Eq. (1)-(2) to get:

h(t+1) − 1 = (1− γ)(h(t) − 1) + λ , (6)

where the reward λ is assigned only to edges that were
traversed during the last random walk. Importantly, we

6

note that when averaging over many agents, the rewarded
edge is updated on average with a reward of λp(as|s) =

λ h
h+A−1

, that is by the reward times the probability to

take the correct action. The average of a rewarded edge,
of a certain percept s, is therefore updated according to

h
(t+1) − 1 = (1− γ)(h

(t) − 1) + λ
h

(t)

h
(t)

+A− 1
, (7)

whenever the corresponding percept s is encountered. We
recall that in our restricted invasion game, the percepts
are shown one by one, in a fixed order, such that each
percept s is shown exactly once every S time steps. The
reward is therefore applied every S time steps, and at
the same time, the mere damping is applied S − 1 times
in between. In the asymptotic limit, the average value h
thus reaches a (cyclically) steady state, where the average
reward compensates the damping terms. This leads to
the following recursion relations:

h
(t+1) − 1 = (1− γ)(h

(t) − 1) + λ
h

(t)

h
(t)

+A− 1

h
(t+2) − 1 = (1− γ)(h

(t+1) − 1)

h
(t+3) − 1 = (1− γ)(h

(t+2) − 1)

...

h
(t+S) − 1 = (1− γ)(h

(t+S−1) − 1) . (8)

For the steady state we have h
(t)

= h
(t+S) ≡ h, which

finally leads to (shown also in the original proposal [1]):

h− 1 = (1− γ)S(h− 1) + (1− γ)S−1λ
h

h− 1 +A
, (9)

a quadratic equation that can be solved for h. Note that,
due to the ordered percept excitation, there is still a
cyclic time dependence in h. For a given edge, the h-value
obtained from (9) refers to the times when a percept s is
shown that connects to this edge.

In Fig. 4 we show a comparison between the numerical
learning curves for the invasion game (as described in
section II B and Fig. 2) and the approximate asymptotic
value as computed from Eq. (9). It can be seen that the
predicted asymptotic efficiencies are quite accurate, even
though the numerical curves refer to a game with random
percept training while the analytic values are obtained
within our simplified scenario of regular percept training.

We now turn to the study of the initial slope of the
PS learning curve. To that end we take into account the
initial h-value, h(0) = 1, and estimate the derivative of
the efficiency curve at t = 0. Formally, we obtain from
(5) the expression

dr

dt

∣∣∣∣
t=0

' d

dh

(h

A− 1 + h

)∣∣∣∣
h=1

dh

dt

∣∣∣∣
t=0

=
A− 1

A2

dh

dt
' A− 1

A2

∆h

∆t
(10)

Figure 4: Numerical learning curves, obtained for a regular,
unrestricted invasion game, accompanied with our analytical
approximations of both the asymptotic efficiency, given in Eq.
(9), and the curve’s initial slope, given in Eq. (12), as obtained
for the restricted invasion game (see text). Different values of
A = S and λ are used, whereas γ = 0.01 is fixed. The plot is
taken from the original proposal [1].

To express ∆h we look at the increase of the average
h-value of a rewarded edge over S time steps. As before,
we consider an ordered percept stimulation, meaning we
hit one percept after the other in sequence.

To begin with, we focus on a specific (but arbitrary)
rewarded edge. We assume, as mentioned earlier, that
the percept which connects to this edge is shown for the
first time at t0, somewhere from 0 to S−1. This leads, on
average, to an update of the h-value of this percept-action

edge given by: h
(t0+1)

= 1 + λ
A . During the subsequent

S− 1 steps, different percepts will be shown, resulting in
S−1 damping steps for our particular h-value. Following
the same set of equations as given in (8), together with

the initial condition h
(t0)

= h
(0)

= 1, we arrive at:

∆h=h
(t0+S) − h(t0)

=h
(t0+S) − h(0)

=
λ(1−γ)S−1

A
.(11)

This describes the increase of the h value over a cycle,
starting at time t0 and ending at time t0 + S. Consider
now the time t0 as a random variable, distributed equally
between 0 and S − 1, corresponding to an ensemble of
(regularly trained) agents with different initial percepts.
The initial “slope” of the learning curve, as estimated by
∆h
∆t = ∆h

t0+S , will depend on t0 and thus be different for
the different sub-ensembles. Averaging over t0 gives rise

to an effective 1
∆t = 1

S

∑S−1
t0=0

1
t0+S , which can be approx-

imated by a more compact (but less accurate) expression
∆t ' S−1+ S

2 . Together with (11) and (10) this provides
the following heuristic approximation:

dr

dt
' λ(1− γ)S−1(A− 1)

A3(S − 1 + S
2)

(12)

7

In Fig. 4 we plot the lines y(x) = dr
dtx+ 1

A for different
parameters of λ, γ,A, and S. Here we used the expres-
sion of dr

dt , given in Eq. (12) as the slope, and took into
account that the initial value of the efficiency is given by
1/A. It is seen that in all three cases, the resulting lines
are approximately tangential to the numerical learning
curves in the initial time steps. The analytic approxima-
tions are a useful tool to predict the qualitative change in
the agent’s learning behavior when the different param-
eters are changed, and to check the plausibility of the
numeric results.

D. The damping parameter γ

The constant damping of the h-values can be inter-
preted as an ongoing “forgetting” over time. This im-
portant feature of the PS model allows for a weakening
of connections between clips, and thereby making it pos-
sible for the agent to adapt to changing environments.
Using a positive γ (in this work typical values are around
0.02) is further motivated from the point of view of an
embodied agent: physically, it assures finite h-values of
the edges, and biologically, as said, it represents a natural
forgetting over time.

We note, however, that the use of damping affects the
overall performance of the PS agent. For example, we
note that when γ is positive the asymptotic efficiency of
the PS agent is not optimal, as can be seen e.g. in Fig. 1
and Fig. 4. Without damping (γ = 0), the asymptotic
efficiency is equal to unity. This is a general property of
PS, which will be encountered many times throughout
this paper.

The effect of the damping is even more pronounced
as the size of the ECM network is increased: the more
edges there are, the more damping steps occur on av-
erage between two successive rewarding steps. This is
demonstrated in Fig. 4, where increasing the dimension
S and/or A results in a decreased asymptotic efficiency.
The negative effect of the damping can, however, be tack-
led in various ways: The simplest way would be to reduce
the value of γ. When γ is made smaller, the asymptotic
value can be made arbitrarily high. Another possibility
is to increase the reward λ. This directly increases the
h-values, thereby compensating for the damping and in-
creasing the efficiency. The third possibility is to increase
the reflection time R to boost the asymptotic efficiency,
as shown below.

Finally we note that, even though the use of a damping
term is well motivated, it is not a necessary ingredient in
the general scheme of projective simulation, which may
be implemented with many different learning rules.

E. Scaling of learning times

In what follows we examine the scaling properties of PS
learning times, when increasing the number of possible

percepts and/or actions. We emphasize that while in
section II C we studied the initial slope of the learning
curve as a first indicator for the learning time, here we
are interested in the actual learning time, which we define
as:

Learning time The number of steps needed for the av-
eraged efficiency to reach a certain threshold frac-
tion of its asymptotic value, for the first time.

In the remainder of this paper, we set the threshold frac-
tion to be 0.9.

We note that this definition of the learning time may
allow situations in which the learning time turns out to
be misleadingly short, merely because the asymptotic ef-
ficiency is very low (hence reaching the threshold by sta-
tistical fluctuations only). To avoid such situations, we
either set γ = 0 or rescale it properly, as explained in sec-
tion II C. This way the asymptotic value is either equal
to unity or sufficiently high (> 0.5).

We start with the scaling of the learning time when the
number of possible percepts is increased. Fig. 5 shows
the learning time as a function of the size S of percept
space, for different values of the reward λ. The number
of actions A = 2 is kept fixed, and there is exactly one
rewarded action per percept. It is seen that the learning
time scales linearly with increasing S. This linear scaling
arises because each percept has to be encountered the
same number of times to allow the agent to learn the
rewarded action. It is further seen that increasing the
reward reduces the learning time as hinted at by Eq. (12).
This is because fewer steps are needed before the higher
steady state h-value is achieved. Here we set γ = 1

10S to
compensate for the decrease in asymptotic efficiency. We
remark that when compared to QL, we observe a similar
trend of the learning time with respect to increasing the
reward (not shown).

In Fig. 6 we examine the effect of changing the re-
flection number R (see definition in section II A) on the
learning time. We set γ = 0, so no damping occurs. It
is seen that increasing the number of reflections does not
effect the scaling behavior, which stays linear, but that
it reduces the overall learning time, in a similar effect
to an increase in the reward. This beneficial behavior
of using multiple reflection is very general within the PS
scheme, as it (in most cases) boosts the entire perfor-
mance in terms of both the asymptotic efficiency as well
as the learning time of an agent.

Fig. 7 shows the learning time as a function of the size
of the input space, as performed by QL (accompanied
with Dyna-style planning) and XCS. It is seen that with
these schemes too, the learning time scales linearly with
the size of the input space. Moreover, it is shown that
increasing the number of planning steps, P , for the Dyna-
style planning scheme, reduces the learning time, with a
similar effect as increasing the reflection parameter, R, in
PS (one should note, however, that using more planning
steps does not lead to an increase in the asymptotic ef-
ficiency, whereas using a higher reflection parameter, R,

8

Figure 5: Learning time of PS shown as a function of the size
S of the percept space S, for different values of the reward
λ. It is seen that the PS learning time scales linearly with
S, and that for larger values of λ the learning time increases
slower with S.

Figure 6: Learning times of PS shown as a function of the size
of the percept space S, using different values of the reflection
R. It is seen that the PS learning time scales linearly with
S, and that for larger values of R the learning time increases
slower with S. The plot is reprinted from the original proposal
[1], with small modifications.

does [1]).

Last, we studied the scaling of the PS learning time
when both input space S and action spaceA are increased
together, such that S = A. We found that the learning
time scales quadratically, implying a linear scaling when
A alone is increased. A similar quadratic behavior was
also observed for QL and XCS. We thus conclude that in
such simple scenarios, all three models behave qualita-
tively in a similar way with respect to the scaling of the
learning time when increasing the problem size (input
and/or action dimensions).

Figure 7: Learning times of QL (with Dyna-style planning)
shown as a function of the size of the percept space S, using
different number of planning steps P . The reward is increased
to λ = 2 for achieving a reasonably high asymptotic efficiency
while maintaining to use a softmax policy, and α is a learning
rate parameter, defined in appendix A. It is seen that the QL
learning time scales linearly with S, and that for larger values
of P the learning time increases slower with S. A learning-
time plot is also shown for XCS (depicted with hollow squares)
using the same learning rate α.

III. TEMPORAL CORRELATIONS

In this section we investigate the performance of PS
in situations that are far more complicated than those
presented until now. In particular, we study scenarios in
which the rewards the agent receives may depend not
only on the particular action it takes at present, but
also on actions it made previously, that is we use non-
Markovian rewarding schemes. To such situations we re-
fer as temporal correlations.

A. “Afterglow” mechanism

The PS scheme, as it was introduced so far, has no
efficient mechanism to handle situations of the form of
“temporal correlations”. It does, however, provide a flex-
ible paradigm that can be naturally extended. Here, we
generalize the excitation process, i.e. the dynamics of ex-
citation propagation in the ECM, to account for tempo-
rally correlated scenarios. It is expedient to associate a
certain state of “excitation” also with edges that have
been used during the random walk. We refer to such an
excitation informally as “edge glow”. An excited or glow-
ing edge indicates that this edge should be strengthened
if the subsequent action is rewarded. In what follows,
we allow edge excitations to decay slowly, step by step,
instead of fully decaying after a single step only. This
means that an edge that was not used during the latest
random walk may nevertheless be still (partially) excited,

9

because it was visited in previous time steps. The edges
are then strengthened in straight correlation to the level
of their excitation: the stronger the excitation, the larger
is the reward. As before, edges that are not excited at
all get no reward. We refer to this slow decay of edge
excitation as afterglow.

Formally, the afterglow is implemented using a new de-
gree of freedom: a parameter g called “glow”, which is
attached to each of the edges in the clip network. Ini-
tially, g is set to zero for all edges. Then, once an edge
is visited during the random walk, its glow parameter is
set to g = 1. In subsequent steps g is damped at each
time step toward zero with rate η, according to:

g(t+1) = g(t) − ηg(t), 0 ≤ η ≤ 1, (13)

and the update rule of Eq. (1)-(2) is modified to:

h(t+1)(c1, c2) = h(t)(c1, c2)− γ(h(t)(c1, c2)− 1)

+λg(t)(c1, c2), (14)

where g(t)(c1, c2) stands for the g value of the edge con-
necting clip c1 to clip c2 at time t. As before, only excited
edges may be strengthened when a reward λ is given. The
difference is that the edges may now be partially excited,
allowing for a partial reward, according to the strength
of their excitation. Therefore, an unrewarded edge (i.e.
an edge associated with an unrewarded transition) may
eventually be rewarded if subsequent actions are suffi-
ciently rewarded, thus enabling a non-greedy choice of
actions. We note that η = 1 amounts to no “afterglow”.
Accordingly, all plots shown previously can be obtained
within the afterglow scheme, by simply setting η = 1.

Finally, we remark that the use of reflection (R > 1,
see section II A) may sometimes conflict with the after-
glow scheme. This is because reflection leads to a pseudo-
greedy strategy: with it the agent is inhibited to take any
action that was unrewarded in the previous step, even if it
is more beneficial in the long run. No unrewarded paths
can thus be explored, which would limit the effect of af-
terglow. In what follows we set R = 1, i.e. no reflection
is used.

B. The n-ship game

To examine the utility of afterglow we employ the n-
ship game, a variant of the invasion game. It consists of
a single door and several attacking ships. The defender-
agent can take one of two actions: to block and to not-
block. The attacking ships arrive in sequence and for
each of them the agent has to decide whether it should
block it or not. Temporal correlations are introduced to
the game by using a time-dependent rewarding scheme.
This means that an action is rewarded/not-rewarded ac-
cording to both present actions and actions taken at pre-
vious time steps.

In the simplest version of the n-ship game, only two
ships arrive, i.e. n = 2. A temporal correlation is then

implemented through the following rewarding scheme: if
the agent blocks the first ship, it gets a small reward λS ,
but will not get any reward for neither blocking nor not-
blocking the second. On the other hand, if it does not
block the first ship, it will get a larger reward λL > λS
for blocking the second. Thus the agent has to learn to
let the first ship pass, despite being rewarded for blocking
it, and aim at blocking only the second ship.

Figure 8: Averaged reward of PS in the 2-ship game. A re-
ward of 1 is given for blocking the first ship and a reward of
5 is given for blocking the second, if the first ship was not
blocked before (see text). The maximal achievable reward of
5 cannot be reached due to γ > 0. For an equiprobable choice
of both actions the average reward is 7/4.

Fig. 8 shows the performance of the PS agent in the
simplest 2-ship game. Here, each game is composed of
two time steps and the games follow each other continu-
ously. We emphasize that from the point of view of the
agent there is no notion of a distinct game, so that all it
perceives is a continuing process with ships number one
and two following one another. The sum of rewards given
for both ships is plotted as a function of the number of
games. One can see that without afterglow (η = 1) the
agent cannot reach the high reward, because most of the
time it greedily blocks the first ship. However, when η is
decreased, the afterglow is turned on, and a higher av-
erage reward is achieved. This indicates that using the
afterglow is indeed beneficial for temporally correlated
scenarios.

Fig. 8 further indicates that below a certain value of η,
the performance of the agent deteriorates. This can be
seen by comparing η = 0.5 (in blue) to η = 0.25 (in red).
The success of afterglow thus depends on the η parameter
(see Eq. (13)): when η is too large no memory of edge
excitations is carried forward to successive steps, whereas
when it is too small the excitations are never damped. In
the later case, excitations from all previous steps persist
(including previous games!), leading to an undesirable
circumstance of over memorizing and rewarding all clip
transitions taken in the past, even though they may be

10

unrelated, resembling a state of “confusion”.

Figure 9: Reward scheme for the n-ship game with n=3. Here,
B and NB denote blocking and non-blocking actions, respec-
tively, and the numbers along the arrows denote the corre-
sponding rewards. The blue sequence of actions denotes the
optimal strategy.

We next consider a general n-ship game. Here the en-
vironment rewards the blocking of any of the first n− 1
ships with a small reward of λS , but rewards the blocking
of the last ship with a large reward if and only if all pre-
vious ships were let pass. Fig. 9 illustrates this rewarding
scheme for n = 3. It can be seen that the number of pos-
sible paths grows exponentially with n, which makes the
problem very hard. We remark that in the n-ship game
we rescale the large reward λmax = (n − 1) · λL so that
it remains beneficial to block only the last ship. In what
follows we use λS = 1 and λL = 5.

Fig. 10 shows in solid lines the performance of PS in
the n-ship game for n = 2, 3, 4, accompanied with dashed
lines at 5, 10, and 15, respectively, to indicate the maxi-
mal achievable reward for each n. As before, each game is
composed of n time steps, one for each ship. The sum of
all rewards given by the n ships is then plotted as a func-
tion of the number of games. For each curve, an optimal
η parameter was used. It is seen that for each of these
curves the asymptotic reward is higher than n− 1 which
is the maximal achievable reward when a naive greedy
strategy is used (and much higher than the averaged re-
ward achieved by an untrained agent with equiprobable
action choice, see caption). This indicates that most of
the PS agents successfully adopt a non-greedy strategy,
even when n increases.

Fig. 10 further indicates the learning time for each n.
It is seen that the learning time roughly doubles for each
additional layer. Indeed the learning time of PS scales
exponentially with n (not shown). This is however to
be expected, as the problem of merely finding the most
rewarded series of actions becomes exponentially hard as
n increases (see Fig. 9).

The success of PS to learn in temporally correlated
scenarios owes itself to the afterglow mechanism, which
introduces an implicit notion of time to the agent’s mem-
ory (with no need of an explicit “time counter”). To illus-
trate better the underlying process, we show in Fig. 11

Figure 10: Averaged reward of PS in the n-ship game for
n =2, 3, and 4 shown in solid lines. Dashed lines indicate the
maximum achievable reward in a single game. Learning times
for each n are also indicated. For each curve an (nearly) op-
timal η was used. For comparison: A greedy strategy results
with a maximal achievable reward of n − 1, and the average
reward of an untrained agent of equiprobable choice of both
actions is 1.75, 2.25 and 2.44 for n = 2, 3, 4, respectively.

a schematic drawing of the clip network, as it is built
up during many 3-ship games (see also Fig. 9). Percept
clips (¬,,®), shown on top, indicate the ships numbers,
whereas action clips (NB, B), shown at the bottom, in-
dicate non-blocking, and blocking actions, respectively.
The number of clips is thus given by n + 2: at each
round only a single percept is encountered and the agent
is not supplied with the history of its previous actions.
A dashed black arrow marks the weakest edge, which is
never rewarded. Solid black edges are stronger (not nec-
essarily equal). They are always rewarded, albeit with
small reward λS . Last, blue edges are the strongest (not
necessarily equal), thereby effecting the agent the most.
It is seen that for the first two ships the edge to the non-
blocking action is stronger than the edge to the blocking
action, even though the blocking action is the rewarded
one. This is desirable and achieved via strengthening
the non-blocking edges indirectly after blocking the third
ship and getting a large reward. It is thus the strength
of these two blue edges, whose emergence is not trivial
and allows the agent to take non-greedy actions that are
more beneficial in the long run.

The afterglow scheme is however not optimal. Fig. 10
also indicates that the performance of PS deteriorates as
n increases: more and more agents fail to learn to avoid
the greedy actions, as reflected in the reduced asymptotic
values of the achievable rewards, relative to the maximal
ones. This is because the time length of correlations be-
tween different actions becomes longer and longer, mak-
ing it difficult for the PS to construct and maintain an
optimal clip network. Moreover, when temporal corre-
lations extend along many steps, the excitation should
persist longer before decaying. Hence, we expect an in-

11

Figure 11: A schematic illustration of the PS clip network, as
built during learning for the 3-ship game. The dashed edge
is the weakest, solid black edges are stronger, and blue edges
are the strongest.

verse relation between the optimal η value and the length
of the temporal correlation.

To understand the dependence over the η parameter
in a quantitative manner, we plotted the asymptotic av-
eraged reward of the PS agent as a function of the η
parameter, for the 2-,3-, and 4-ship game, as shown in
Fig. 12. We see that indeed an optimal η value exists.
It is further seen that each n-ship game, has a differ-
ent optimal η, which decreases when n is increased, as
expected.

Figure 12: Achievable asymptotic reward shown as a function
of η for the n-ship game with n = 2, 3, and 4. For each n an
optimum value of η is depicted, for which the agent remembers
enough, and yet not too much. It can be observed that the
peaks become narrower as n increases, that is for increasing
correlation times.

For comparison, we turn now to study the performance
of QL and XCS in temporally correlated scenarios (see
Appendices A and B, respectively). The QL scheme
relies on a temporal-difference mechanism [6] which al-
lows it to propagate rewards to earlier time steps. This
makes QL a natural reference scheme to begin with. We
therefore implemented a QL agent and let it play the n-
ship game. To that end we used a Q-function that has
2n state-action entries, i.e. for each time step the corre-
sponding ship number is given as a state of the environ-

ment, for which the agent may take one of two actions.
The size of the Q-function thus grows linearly with n in
this setup. Further, we have chosen QL parameters that
are (nearly) optimal for that problem, given by a learn-
ing rate of α = 0.4 and a discount factor of γ = 1 (for
parameter definitions see Appendix A).

We found that the QL agent does not perform well in
the n-ship game. In particular, the scaling of the max-
imal reward λmax = (n − 1) · λL is not sufficient and
the QL agent clings to the less beneficial greedy strat-
egy. This, however, can be overcome by rescaling the
maximal reward λmax even further. Fig. 13 shows the
averaged reward obtained by QL for the n-ship game
with n = 2, 3, 4 where the maximal reward is scaled as
λmax,QL = 10 ·(n − 1) ·λL. It is seen that the QL per-
formance resembles that of PS as shown in Fig. 8. QL
differs, however, by achieving a nearly optimal perfor-
mance, yet at the cost of very large learning times. The
scaling of the learning time in QL is exponential too (not
shown), by an approximated factor of ten for each addi-
tional ship (see learning times for n=2, 3, 4 in Fig. 13).

Figure 13: Average reward of QL in the n-ship game for n =2,
3, and 4 shown in solid lines. Dashed lines indicate the max-
imum achievable reward in a single game. Learning times for
each n are also indicated. For comparison: A greedy strategy
results with a maximal achievable reward of n − 1, and the
average reward of an untrained agent of equiprobable choice
of both actions is 13, 13.5, and 10.87 for n = 2, 3, 4, respec-
tively.

XCS shares many parallels with QL regarding the per-
formance in the n-ship game. The learning curves are
qualitatively similar to those of QL for the same reward
scheme and learning parameters (not shown). For our im-
plementation we have used a population of 2n classifiers,
and disabled the genetic algorithm as it only degraded
performance. Similarly to QL, the XCS requires the scal-
ing up of the reward to learn the non-greedy strategy.

Before concluding, we remark that the performance of
all three models can of course be significantly improved
by providing the entire history of previous actions to the
agent, i.e. by having an explicit representation of the past

12

in the agent’s memory. In particular, one can associate
each possible path of states and actions (see Fig. 9) with
a percept, a state, or a classifier. However, this approach,
which is exponentially expensive in space for PS and QL,
is against the spirit of an embodied (and thus finite) agent
architecture and trivializes the problem in a way we want
to avoid.

We conclude that all three models perform qualita-
tively the same in the n-ship problem. Specifically,
in terms of space and time requirements they all scale
similarly: linear with space and exponential with time.
Quantitatively, both QL and XCS achieve an optimal ef-
ficiency but are relatively slow. In addition, the reward
must be significantly scaled upward to allow for mean-
ingful learning. PS, on the other hand, cannot achieve a
fully optimal efficiency, due to forgetting, but learns very
fast due to the afterglow mechanism, as explained above.

C. The 2-ship game with A actions

To add a further complication to the 2-ship game, we
now allow for the more general case of A different actions
(instead of just two), whenever a ship arrives. Against
the first ship, all actions are rewarded with a small re-
ward λS = 1, except of a single action a0 which is not
rewarded at all. Then for the second ship, half of the
actions are never rewarded, whereas half of the actions
are highly rewarded with λL = 15, but only if the unre-
warded action a0 was previously taken (otherwise, they
are not rewarded either). The idea, as before, is that
in order to maximize the long-term reward, the agent
must avoid making any of the rewarded actions in the
first round, to eventually obtain a much larger reward
in the second round. The agent, however, has now many
optional actions at its disposal, making it much more dif-
ficult and unlikely to make the smart choice per chance
and act with the single unrewarded action a0 against the
first ship.

In Fig. 14 (top) we show the performance of the PS
agent for the 2-ship game with A = {2, 8, 16}. Here,
each game is composed of n = 2 time steps and the sum
of all rewards given for both ships is plotted as a func-
tion of the number of games. It is seen that in all cases
the asymptotic value is reached within less than 1000
games, and that more games are needed as the number
of available actions A is increased. A dashed line marks
the maximum achievable reward of 15, and it is seen that
the asymptotic averaged reward decreases when increas-
ing A. Fig. 14 (middle) shows that this decrease of the
asymptotic averaged reward is approximately linear for
A ≤ 200. For each value of A the asymptotic averaged
reward is given by averaging over the last 50 games (here
averaged over 1000 agents). In Fig. 14 (bottom) we fur-
ther show the learning time of PS (calculated using 5000
agents) as a function of the number of actions, A. Last,
we remark that a single value of η was used for all A.
This is because in the n-ship game, for each n there is a

Figure 14: Performance of PS in the n-ship game with A ac-
tions. Top: average reward as a function of played games.
Middle: asymptotic reward as a function of A for both a
trained PS agent, shown in full black squares, and an un-
trained agent with equiprobable choice action depicted in
empty squares. Bottom: Learning time of PS as a function
of A.

single optimal value of η, irrespective of A, since it is the
value of n that determines the time length of the corre-
lation. Here, where n = 2, the optimal value of η turns
out to be η = 0.5.

Before ending this section we show the performance of
QL for the same scenario. Here a Q-function of 2A en-
tries was used to represent all 2A state-action pairs. The
values of α = 0.8 and γ = 1 parameters were chosen to

13

be (nearly) optimal ones. Fig. 15 (top) shows the per-
formance of QL for the 2-ship game with A = {2, 8, 16}.
As before, each game is composed of n = 2 time steps
and the sum of the two rewards is plotted as a func-
tion of games. The averaged asymptotic reward is shown
in Fig. 15 (middle) and the learning time is shown as a
function of A in Fig. 15 (bottom).

When compared with the performance of PS as shown
in Fig. 14, it is noted that the asymptotic reward de-
creases in QL rather fast. For example, at A = 50 it
is already below 7, whereas it is still above 12 for PS.
As A increases further the asymptotic average reward
decreases toward one, i.e. toward a greedy behavior. Be-
cause QL achieves very low rewards for large A, its corre-
sponding learning times, as defined in section II E are no
longer indicative. For example, for A = 200 the averaged
reward of an untrained QL agent is 1.07, reached within
zero time steps. For this reason we show in Fig. 15 (bot-
tom) the corresponding learning times only up to A = 50.
It is seen that the learning time of QL increases rapidly
and reaches almost 3 ·104 steps for A = 50, whereas it
is still below 103 for PS. In fact, the learning time of
PS does not reach 3 ·103 steps even for A = 200. This
implies that even though QL allows for reward to prop-
agate backward to previous actions (see Appendix A), it
encounters difficulties when confronted with the 2-ship
game with increasing number of actions.

IV. ASSOCIATIVE MEMORY

In this section we investigate the capability of PS to
exhibit a notion of associative memory, i.e. to relate sim-
ilar percept-clips to each other, and to use these relations
to enable a more efficient learning. This is a natural fea-
ture of PS, whose basic idea has already been introduced
in the original proposal [1]. Here, we develop this idea
further. We start with formulating the underlying mech-
anism of “associative memory”. Then, we present sce-
narios in which efficient realization of associative mem-
ory is beneficial. We demonstrate the success of PS in
such scenarios and show that it may perform even better
when the mechanism of associative memory is combined
with a modified excitation scheme, which we call “clip
glow”. Last, we compare the performance of PS to the
one of XCS. This comparison is of value because the XCS
is a method designed specifically to handle problems in
which similarity in input-space may be exploited (e.g. in
classification problems [15]).

A. Basic notion and features

Within PS the notion of associative memory is real-
ized by introducing new edges between percept-clips that
are considered to be “similar”. This is a dynamic pro-
cess, where edges can be created “on the fly”, at each
time step. A schematic visualization of a clip network

Figure 15: Performance of QL in the n-ship game with A ac-
tions. Top: averaged reward as a function of played games.
Middle: asymptotic reward as a function of A for both a
trained QL agent, shown in full black squares, and an un-
trained agent with equiprobable choice action depicted in
empty squares. Bottom: Learning time of QL as a function
of A, shown only up to A = 50, see text.

after such associative memory has been built is shown
in Fig. 16. In this simple illustration, it is seen that all
“left-arrow” (“right-arrow”) percept clips are considered
similar and are therefore connected to each other (irre-
spective of their color). The entire clip network is then
better connected, allowing for learning to be shared be-
tween the similar percept clips.

In what follows we consider two percept clips to be
similar, if they differ by exactly a single component. In

14

addition, to avoid a situation of “prolific association”, i.e.
a situation in which associative edges are built between
clips whose similarity exists along irrelevant properties
(such as the color property in Fig. 16), we provide the
PS with a predefined “similarity mask”, that indicates
for each component in the percept space whether it is a
relevant property for association or not[27].

Figure 16: The clip network as built using association for the
invasion game with color as additional property. Dark and
light arrows indicate strong and weak edges, respectively. As-
sociative memory is manifested via additional edges between
similar percept-clips (i.e. of the same shape).

To check the performance of PS when association is
enabled, we situated the PS agent in an invasion-game in
which percepts are given as combinations of both shapes
and colors, i.e. S = {⇐,⇒}×{red, blue}. At each step
the agent is confronted with one of four combinations of
a colored arrow and has to decide whether to go right
or left. The hidden rewarding scheme is such that only
shape matters, regardless of their color. Associating per-
cepts with similar shapes but different colors might thus
be beneficial.

Fig. 17 shows the blocking efficiency of the PS agent as
a function of time steps for this scenario, where at time
step t=150 the meaning of the symbols is inverted, such
that a right (left) arrow (colors are of no importance)
then indicates that the attacker is going to move to the
left (right). Three different kinds of PS agents are con-
sidered: without association (in red), with association (in
black), and with association + “clip glow” (in blue). We
delay our discussion on the concept of “clip glow” to sec-
tion IV B and focus here on the performance of the first
two agent types. It is seen that, as usual (see also section
II D), the asymptotic efficiency is not optimal, due to the
use of a non-vanishing damping parameter γ. It is, how-
ever, interesting to note that the asymptotic efficiency is
higher when association is enabled, indicating that it is
indeed useful for the agent. It is further observed that
the slope of the learning curve is higher when association
is used, implying that the use of association allows for a
shorter leaning time, as discussed below. This improve-
ment in the performance is due to the fact that when
association is enabled the length of the random walk is
extended, so that more edges may be strengthened at
each time step, thereby compensating better the effect
of the damping (when association is not used only a sin-

gle percept-action edge may be strengthened at a time).
Last, we note that the better performance obtained when
association is enabled, persists also when the meaning of
the symbols is inverted, and has to be relearned.

Figure 17: Efficiency of PS shown as a function of time step for
the invasion game with two shapes and two colors. Here the
meaning of a percept is determined only by the shape, whereas
colors do not matter. At time step t=150, the meaning of the
symbols is inverted, i.e. the symbol⇒ (⇐) now indicates that
the attacker is going to move to the left (right). Three types
of PS agents are shown: (a) without association (in red),
which performs the worst; (b) with association (in black),
which performs better; and (c) with association + clip glow
(in blue), which performs the best.

It turns out that the effect of association is even more
pronounced when more colors are used by the attacker
(meaning that more percept-clips can be associated to
each other). To see that we show in Fig. 18 the result-
ing learning time as a function of color number, where
shapes are kept fixed to left- and right- arrows. The
same three kinds of agents are shown as before, where
we once again focus only on two kinds, namely with as-
sociation (in black) and without (in red). It is seen that
without association, the PS learning time scales linearly,
whereas for agents with association the learning time
scaling appears somewhat slower than linear, sufficient
to exhibit a dramatic reduction in the resulting learning
times. We remark that the no-association curve obtained
here for S = {⇐,⇒} × {color1, color2, . . . , colorN} is
the same learning curve (up to statistical variations) ob-
tained in section II E, when increasing the percept space
S = {shape1, shape2, ..., shapeS} directly (see, e.g. the
black curve of Fig. 6). The reason for this similarity is
that when association cannot be exploited, all the per-
cept have to be learned independently, regardless of their
similarity.

The desirable performance of association comes with
a price: more edges exist in the ECM network, thus en-

15

Figure 18: Learning times of PS shown as a function of the
number of colors for the invasion game with two shapes and
many colors. Here the meaning of a percept is determined
only by the shape, whereas colors do not matter. Three
types of PS agents are shown: (a) without association (in
red), which learns the slowest; (b) with association (in black),
which learns faster; and (c) with association + clip glow (in
blue), which learns the fastest, with a scaling that is far better
than linear.

larging the random walk process, which effectively causes
the agent to spend more time on its internal simulation
before making an action. We denote this internal time
as “deliberation time” and define it as the number of
transitions in the clip network taken during the random
walk process. When no association is exploited, the de-
liberation time stays constant when increasing the color
space. However, when association is used, the deliber-
ation time increases only linearly with the number of
colors (not shown). This is a positive finding for the
PS, because it suggests that, at least in such scenarios,
the deliberation time is always finite and that the agent
never gets stuck in its “internal world”, caught inside an
endless loop. It is, however, a good practice to set a
maximal deliberation time beyond which all processing
is immediately stopped and a random action is chosen,
to avoid an undesirably long simulation process. For all
calculations reported in this paper, the maximal delib-
eration time was set to 15, and was never reached. We
further remark that by rewarding percept-percept (asso-
ciation) edges stronger than percept-action edges, higher
efficiency and shorter learning times may be achieved, at
the price of longer deliberation times. This option was
studied previously [1] and will not be pursued here.

B. Clip glow

In what follows we show that it is possible to boost the
performance of the associative memory even further, by
introducing a simple modification to the update rule of

the ECM network (see Eq. (1)-(2) and (14)), which we
denote as clip glow.

The idea behind clip-glow is to strengthen not the ex-
cited edges (i.e. the edges that have been used in a pre-
vious random walk process) as we have done so far, but
rather to reward edges that connect excited clips. This
is formally realized by assigning a glow parameter g ≥ 0
to each clip (instead of edges). At the beginning, g is
initialized to zero, and whenever a clip is encountered,
its glow parameter is set to g = 1. The corresponding
update rule is then given by:

h(t+1)(c1, c2) = h(t)(c1, c2)−γ(h(t)(c1, c2)−1)

+λg(t)(c1)g(t)(c2) (15)

where g(t)(c1), and g(t)(c2) are the glow parameters as-
signed to clips c1 and c2, respectively. This means that
a reward is applied to an edge if and only if it connects
two glowing clips, i.e. clips whose g values are positive. In
principle, the glowing value g may be damped slowly via
the same damping rule given in Eq. (13). However, since
“temporal correlations” are not considered here, we let
the clip-glows to completely decay after each time step,
by setting the corresponding damping parameter η to
one.

An important consequence of using clip-glow is that
an edge might be rewarded even if it was not visited
during the random walk! According to Eq. (15) it is
only sufficient that the clips connecting these edges were
hit. Consider, for example, that during the invasion-
game with the percept space given by S = {⇐,⇒
} × {red, blue, green} the attacker shows a red left ar-
row. Assume further that the random walk takes the
following sequence of clips: red left → blue left → green
left → move left. This sequence is rewarded because the
correct “left” action was finally reached. With the clip-
glow scheme each of these clips is glowing and the reward
is assigned to all of the following edges:

red left � blue left; red left → move left;

blue left � green left; blue left → move left;

green left � red left; green left → move left;

which are five more edges than with the edge-glow scheme
(where the only rewarded edges are: red left → blue left,
blue left → green left, green left → move left, red left
→ move left). These additional rewards have significant
effects on the agent’s performance, especially when the
clip-network increases.

To demonstrate the effect of the clip-glow scheme, we
show in Figs. 17 and 18 the performance of an agent
equipped with both associative memory and clip glow
(in blue). Fig. 17 shows that the resulting asymptotic
efficiency is higher, whereas Fig. 18 shows that learning
time is then reduced even further. Moreover, the perfor-
mance is significantly better, as the new scaling is much
slower than linear: the increase of the learning time be-
comes slower as the color space becomes larger. This is

16

because using the clip-glow scheme allows for even more
edges to be updated and rewarded at each time step, so
that the damping is compensated further.

To further explore the effect of combining the associa-
tion scheme with the notion of clip glow, we put the agent
in a scenario of ever-increasing percept space: while the
number of shapes is kept fixed (left and right arrow), the
color space is increased after every 200 steps. Can the
agent learn at some point that the color is of no impor-
tance? Will it learn faster due to its experience with
previous different colors? Is clip glow of any use in this
scenario? Fig. 19 shows the performance in such a sce-
nario for three different kinds of PS agents: an agent with
no associative memory (in red), an agent without associa-
tive memory but without the use of clip glow (in black),
and an agent with both associative memory and clip glow
(in blue). The efficiency of each scheme is shown as a
function of time steps. It is seen that when association is
disabled, the efficiency of the agent drops with each ad-
ditional color, due to the use of a non-vanishing damping
parameter γ. The agent whose associative learning is en-
abled already does better, reaching much higher asymp-
totic efficiencies. Yet, when the agent can exploit the
combination of both associative memory and clip glow
its performance is the best. In particular, the asymp-
totic efficiency hardly decreases after the fifth color and
the learning time required for each new color, becomes
shorter. This desirable behavior is due to the fact that
the positive effect of the associative network and the clip
glow becomes more significant, the more colors there are,
since learning is then shared more efficiently between sim-
ilar clips.

C. Comparing to XCS

Extended classifier systems, XCS, is a particularly suit-
able model for scenarios of the type considered in this
section, in which associating between different inputs is
beneficial. This is because XCS can generalize inputs,
by means of matching the inputs to conditions that use
“wildcards”, as shortly described in appendix B. We thus
compare the performance of PS, as shown in Fig. 19 for
the ever-increased percept space scenario, where we add
an additional color every 200 time steps, to the perfor-
mance of XCS under the same scenario. Fig. 20 shows
the resulting efficiency of XCS. It can be seen that the
introduction of additional colors does not influence the
asymptotic efficiency, but only temporarily disrupts the
learning and partially causes a relearning for the newly
added color. This leads the XCS to increasingly disre-
gard color information in the input. By the introduc-
tion of the third color, the XCS has almost reached its
asymptotic efficiency and the (re-)learning time for new
colors is already negligible. This means that by this point
the classifiers are general enough to handle all colors by
means of wildcards. We thus conclude that in this sce-
nario the PS performs worse than XCS for the lack of a

Figure 19: Efficiency of PS shown as a function of time steps
for the invasion game with two shapes and many colors. Start-
ing from a single color, a new color is added to the percept
space every 200 steps. Here the meaning of a percept is de-
termined only by the shape, whereas colors do not matter.
Three types of PS agents are shown: (a) without association
(in red), which performs the worst; (b) with association (in
black), which performs better; and (c) with association + clip
glow (in blue), which performs the best: its efficiency does not
drop down (despite the increasing damping), and its required
learning time for each new color becomes shorter.

notion of a “wildcard clip”.

V. COMPOSITION

In this section we study the composition aspect of
the episodic & compositional memory (ECM). Compo-
sition is a dynamic process which accounts for struc-
tural changes in the ECM. In particular, it allows for
spontaneous formation of new clips in the ECM network,
created via combinations or variations of existing clips.
These new clips may represent fictitious episodes that
were never perceived before, thereby extending the va-
riety of conceivable events and actions that exist in the
ECM. As a result, the network is less bounded by the ac-
tual past of the agent. This effectively allows the agent
to generate alternative options to those it had so far en-
countered, thereby making it more capable and flexible.

The composition feature can be exploited in many dif-
ferent ways. In this paper, however, we focus on com-
positions of action clips only. For illustration, consider
the problem of a 2-dimensional invasion game, where the
agent moves on a 2D grid by means of horizontal and
vertical motors. Assume that at first, the agent is pro-
vided only with four basic action clips representing “left”,
“right”, “down”, and “up” actions. The agent can thus
block attackers that move either up/down or left/right.
Assume further that the attackers can, nevertheless, go
along diagonal directions and that the agent is partially
rewarded when it performs one of the four basic actions

17

Figure 20: Efficiency of XCS shown as a function of time
steps for the invasion game with two shapes and many colors.
Starting from a single color, a new color is added to the per-
cept space every 200 steps. Here the meaning of a percept is
determined only by the shape, whereas colors do not matter.
The reward is increased to λ = 2 for achieving a reasonably
high asymptotic efficiency while maintaining to use a softmax
policy. For these parameters the ideal asymptotic efficiency
would be ≈ 0.88. XCS parameters (N, α, µ, χ, and wildcard
probability) are defined in appendix B. The efficiency is the
same for all numbers of colors, and the required (re-)learning
time for each new color goes to zero.

toward the correct quarter of the attacker (e.g. goes left
when the attacker goes left and up). Can the agent learn
under these circumstances to go diagonal and block the
attacker?

It is interesting to note that from a mechanical per-
spective there is no limitation, and the agent could move
in diagonal directions, simply by activating both of its
motors simultaneously. Nevertheless, the agent has no
means to even conceive of the mere possibility of doing
that, for the lack of a corresponding action clip. The
composition feature then remedies this situation by al-
lowing the creation of new action clips corresponding to
diagonal motion.

There are various possibilities of defining clip merging
and variation. Here we generalize the procedure sug-
gested in the original proposal [1], where composition of
2-dimensional action clips was studied, and define com-
position mechanism for M -dimensional action clips, as
formally described below:

• Two action clips ca = (a1, a2, . . . , aM) and cb =
(b1, b2, . . . , bM) are composed into new action clips
if and only if: (a) Both corresponding actions were
sufficiently rewarded for the same percept; and (b)
Action clips ca and cb differ by exactly two com-
ponents. Formally, condition (a) implies that ac-
tion clips ca and cb are both connected to the same
percept clip, with edges of large enough h-value,
i.e. h(c0, ca) ≥ hth and h(c0, cb) ≥ hth for a given

threshold value hth.

• When the parental action clips ca and cb dif-
fer in their ith and jth components, the com-
position can result in two composed clips:
cnew
1 = (a1, a2, . . . , bi, . . . , aj , . . . , aM) and cnew

2 =
(a1, a2, . . . , ai, . . . , bj , . . . , aM).

• A new clip is created only if it is not already present
in the ECM.

• New action clips are to be connected to the
corresponding percept clip c0 with h-values that
are given by the sum of the original h-values:
h(c0, c

new
1) = h(c0, c

new
2) = h(c0, ca) + h(c0, cb). In

addition, the new action clips will be connected (at
the receiving end), to all other percept clips with
an initial h-value of 1.

In what follows we study the performance of compo-
sition in a 4D invasion game. Here, the action space
is composed of 4 motors (a1, a2, a3, a4) where each mo-
tor ai can go forward (+1), backward (-1) or stay still
(0), yielding a 3 × 3 × 3 × 3 action space of 81 possible
actions. There are 8 actions, which we denote as basic
actions, for which only one of the motors is active (i.e.
with value of ±1). At the beginning, the attacker shows
any of eight possible symbols {1, ..., 8}, denoted “basic
symbols” as they indicate motions along one coordinate
only. The defender is supplied with eight basic action-
clips with which it can successfully block the attacker.
Consider now a scenario in which the attacker suddenly
changes strategy and starts to show an unfamiliar sym-
bol J, which indicates its subsequent motion along the
(1, 1, 1, 1) diagonal, that is, a forward movement in all
dimensions. What will the agent do?

We assume that once the attacker has changed its
strategy, it shows only the new “diagonal symbols” J
in all subsequent rounds (this assumption is made for
simplicity - removing it would make the learning pro-
cess less transparent, yet with no significant qualitative
insight). We further assume that the rewarding scheme
(summarized in Table I) accounts also for partial success
of the agent: first, all the basic four “forward actions”
(i.e. with one of the ai being 1) are rewarded with λ = 1;
and second, all composite actions (i.e. non-basic actions),
are rewarded proportionally to the sum of their motions,
given by q = a1 + a2 + a3 + a4. This ensures that actions
that are partially successful are rewarded in direct pro-
portionality with their success, corresponding to similar
scenarios in real-life where combined sets of actions are
rewarded more than their subsets, as is the case, for ex-
ample, in the darts game, where the agent must aim its
arrow both horizontally and vertically, on top of being
close enough to the target plate.

Fig. 21 illustrates parts of the ECM network as built
up, using composition for this rewarding scheme. Four
different strengths of edges are depicted: weakest (dashed
arrow), pointing to the four basic backward action clips;
stronger (thin black), pointing to the four basic forward

18

1000 0100 0010 0001

1100 0011

1111

-1000

0-100 00-10

000-1

Figure 21: An illustration of part of the ECM network as
built through composition in the 4D invasion game. Four
kinds of arrows are shown: dashed arrows denote the weak-
est, unrewarded edges to the unrewarded backward basic ac-
tion clips; thin black arrows denote stronger edges to the re-
warded forward basic action clips; thicker black lines denote
even stronger edges to partially successful composite action
clips; and the blue edge is the strongest, leading to the most
rewarded “diagonal” action clip. For a composition threshold
of hth > 1, only rewarded edges may be combined.

action clips; even stronger (thick black), pointing to com-
posite partially successful action clips; and the strongest
(in blue), pointing to the most rewarded “diagonal” ac-
tion clip. It is illustrated that when hth > 1, only re-
warded edges are enabled to combine into new composite
action clips.

Fig. 22 shows the average reward reached by PS as
a function of the number of time steps, immediately af-
ter the attacker started to show the “diagonal” symbol
J. When composition is disabled (in black) the agent is
only able to perform the basic 8 actions, which allows
for obtaining (occasionally) a maximal reward of only 1,
therefore resulting with a low average reward. Allow-
ing composition with a minimal threshold of hth = 1 (in
blue) results with a much higher average reward. How-
ever, using the minimal threshold of hth = 1, causes the
creation of all possible composite actions from the very
beginning, that is, before the new “diagonal” percept J
is even perceived. This excessive mode of composition
has two distinct drawbacks: first, it requires the creation
of all (exponentially many) action clips, which may not
be feasible for larger spaces; and second, too many unre-
warded action-clips are being created, leading potentially
to a non-optimal average reward.

Fig. 22 further shows that a higher average reward is
achieved by setting hth = 1.05 (and γ = 0.02, in green).
To that end any hth = 1 + ε will do. Adding ε pre-
vents a default creation of “second order” composite clips
(composed of composite clips), and reduces the number
of non-rewarded actions that are being composed. In
fact, it turns out that when a threshold of hth = 1.05 is
used, only about 10 action clips are created on average.
This is a significant reduction compared to 72 action clips
that are immediately created when the minimal thresh-
old hth = 1 is employed. In more involved scenarios,
where larger action space are exploited, a selective clip-
composition may become vital. We remark that a too
high threshold hth would deteriorate the agent’s perfor-
mance with respect to the achievable reward (not shown),
implying the existence of an optimal value for the com-
position threshold hth. Fig. 22 further indicates that the
desirable features of selective clip-composition when us-
ing hth > 1 come at the cost of longer learning times.
This is inevitable, as the process of selective composition
is done according to the agent’s experience, which takes
time. This implies that there is a trade-off between higher
reward, economical space usage, and learning time.

q example #equivalent clips λ = 5q

1 (1,0,1,-1)
(
4
1

)(
3
1

)
=12 5

2 (1,0,1,0), (1,1,1,-1)
(
4
2

)
+
(
4
1

)
=10 10

3 (1,1,1,0)
(
4
1

)
=4 15

4 (1,1,1,1)
(
4
4

)
=1 20

1 (basic) (0,1,0,0)
(
4
1

)
= 4 1

Table I: Reward scheme of the 4D invasion game, for the
“diagonal” percept J. The reward is given by λ = 5q ≡ 5(a1+
a2 + a3 + a4), except for the basic forward actions which are
rewarded by λ = 1. In total, there are 31 rewarded actions.

Finally, we note that when γ is set to zero, i.e. when
no damping is involved, the average reward drops down
(in red). This is because the agent is being rewarded
for actions that are only partially successful. In the ab-
sence of damping, the edges leading to this partially suc-
cessful action-clips can only be strengthened but never
damped. This means that the probability to choose these
actions increases with time, to the extent that eventu-
ally no other actions are chosen. In particular, when the
threshold is higher then 1, the “diagonal” action clip is
never created, and the agent’s performance is effectively
stuck in a local minima. This is an interesting feature
as it emphasizes once again the importance of damping,
also for rewarded edges (see section II D).

Finally we compare the composition feature to XCS.
The genetic algorithm, which is part of the XCS, is ca-
pable of performing a role similar to that of composi-
tion in the PS by mutating and combining well perform-
ing input-actions pairs, thereby creating new ones. We
remark, however, that in our reference implementation,
mutations are the only way allowed for creating new ac-
tions (crossover of actions is not employed because here

19

Figure 22: Average reward of PS shown as a function of
time step for the 4D invasion game with only the “diago-
nal” percept J being shown. PS agent without composition
(in black) performs the worst since only basic actions with a
maximum reward of λ = 1 are available. Agents with com-
position perform better (in color). They differ by the choice
of the composition threshold hth and the damping parameter
γ: when γ = 0 (in red) the agent is effectively stuck in a
local minimum, where it keeps on choosing actions that are
only partially successful without ever creating the optimal
“diagonal” action clip; using a threshold of hth = 1 (in blue)
results with an immediate creation of all 81 possible action-
clips, out of which 50 are never rewarded and their presence
reduces the probability of finding higher rewarded actions. A
higher averaged reward is depicted for hth = 1.05 (in green),
where rewarded actions are combined to form potentially bet-
ter composite actions.

the genetic algorithm acts on the “action set”). Thereby,
in a successful input-action pair, new composite actions
can be obtained by randomly changing (mutating) the
individual motor actions ai of the composite action. For
the same reward scheme as used for the PS in Fig. 22, the
XCS performs similarly, with comparable learning times
and efficiencies as shown in Fig. 23.

Last, we remark that in the XCS the population size
of classifiers is limited, so that unsuccessful classifiers
are eventually removed. This feature of removing un-
rewarded actions may straightforwardly be adopted to
PS.

VI. MODEL SIMPLICITY

The PS approach is distinct in its aim for a physical
(and embodied) realization rather than a computational
one. Ultimately, all computational steps are to be real-
ized by stochastic processes, and the underlying mecha-
nism should be as simple as possible.

In this section we thus compare PS with the models of
QL and XCS in terms of their conceptual and procedu-
ral simplicity. In particular, we focus on the number of
parameters involved in each scheme, the basic data struc-

Figure 23: Average reward of XCS (the average is taken over
1000 agents) shown as a function of time steps for the 4D inva-
sion game with only the “diagonal” percept J being shown.
Without action mutation (mutation rate µ = 0, in black)
only basic actions are available and yield an average reward
below 1. Three exemplary cases for nonzero mutation rates
µ > 0 illustrate that the creation of combined actions is pos-
sible and yields higher average rewards. A larger mutation
rate causes a faster initial learning, but large mutation rates
also recreate more suboptimal actions and thereby reduce the
asymptotic average reward, as can be seen for µ = 0.5 (in
blue). In all cases, crossover of classifiers is disabled χ = 0.
Other XCS parameters (N and α) are defined in appendix B.

tures that have to be realized, and the inherent processes
that should be carried out.

Starting with the number of parameters involved in
each scheme, Table II lists all the required parameters
that have to be set for PS. Here we also consider different
choices that have to be made, e.g. “edge-glow” vs. “clip-
glow” for PS. Although not a parameter in the strict
sense, one has still to decide, which option should be
used for a certain problem. It is seen that all in all PS
has 6 parameters. QL is more economical with only 3-4
parameters (see appendix A), whereas XCS requires the
tuning of about 13 parameters (see appendix B), out of
which 6 are the most problem-dependent.

parameter range field default

damping 0 ≤ γ ≤ 1 R γ � 1

reflection time 1 ≤ R N 1

glow damping 0 ≤ η ≤ 1 R 1

similarity mask — — —

clip- vs. edge-glow — — edge-glow

composition threshold 1 ≤ hth R 1

Table II: List of parameters used in PS.

The realization of each model on a computer would re-
quire the implementation of different kinds of data struc-
tures and computational processes. Within PS, the basic
ingredient is the ECM network. In particular, a dynamic
network of connected clips has to be implemented. Two

20

main processes are then to be realized to perform a single
time step: (a) a random walk through the ECM network,
to reach an action after observing a percept, and (b) up-
dating the strength of all involved edges in the ECM, once
receiving a reward. From a complexity point of view, the
number of operations involved at each time step is of the
order of the number of edges that exist in the ECM.

The QL approach relies on the Q-function, i.e. an array
or a table, as its main data structure. At each time step
the choice of an action according to a softmax or a greedy
policy has to be implemented, preferably using a binary
search, and once a reward is given, single entry in the Q-
function should be updated, as well as all the state-action
probabilities P (s, a) for the current state s. Complexity-
wise these amounts to the order of A operations at each
time step, where A is the number of available actions.

Last, the XCS scheme is based upon the availability
of many (hundreds or more, for the simple problems we
have studied here) individual classifiers, where to per-
form a single time step, all classifiers have to be checked,
whether they match or not. This results in a so called
“matching set” that is potentially large. The selection
process then takes several parameters of each classifier in
the matching set into account (e.g. fitness, predicted re-
ward, accuracy, etc.) and chooses a single action, which
determines the “action set”. When reward is assigned,
the entire action set is updated, changing all the param-
eters of these classifiers. Afterwards, a genetic algorithm
may be invoked, performing parent selection from the
action set and creation of new classifiers by means of
mutation and crossover. In total, each time step of XCS
requires number of operations that is of the order of the
number of classifiers being used.

This simple analysis implies that while QL is a direct
and economical approach, the XCS model is (by far) more
involved. We argue that, from a complexity point of view,
PS positions itself in between QL and XCS, yet closer to
QL, in terms of simplicity and required resources. Its
concept of an ECM network is more complicated and
requires more space than a plain Q-function, and yet it is
much simpler than the notion of classifiers. The random
walk process, that is inherent to PS, is also relatively
simple and straightforward. We therefore believe that
PS provides an appropriate platform for an embodied
realization of an AI agent.

VII. CONCLUSION

In this paper we studied the model of PS, as a novel
approach to artificial intelligence: we analyzed its learn-
ing features in a variety of scenarios and compared its
performance with those of QL and XCS.

In our investigation we first focused on the learning
features of the model, namely its asymptotic efficiency
and its learning times. In particular, we were able to
analytically estimate the asymptotic efficiency and the
initial slope of the learning curves, for simple problems

such as the invasion game. In addition, we studied the
scaling behaviour of the model, where we showed that the
learning time of PS scales linearly with either the input
or action spaces, for the same problem.

Next we confronted the PS agent with different classes
of prototypical scenarios, each of its own nature, thus
demonstrating different aspects of its learning capabili-
ties. Three types of scenarios were studied: (a) temporal
correlation scenarios, where present rewards may depend
on actions done in the past; (b) scenarios for which sim-
ilarities between different percepts can be exploited; and
(c) scenarios for which the environment varies, in such
a way that new actions are required to maximize the re-
ward. For each of these three different learning classes we
showed that the PS agent can reach a satisfactory level
of success. In addition, for each class, we challenged the
agent with learning tasks of increasing difficulty. There
too, we could show that the PS agent performs well. This
result is encouraging.

It is important to note, that irrespective of specific
scenario, the basic mechanism of the learning process is
always the same: a random walk over network of clips
connected with edges whose strength changes dynami-
cally, due to environmental reward. This is a computa-
tionally simple, yet flexible mechanism that can be eas-
ily modified and extended. Indeed, to allow the agent
to perform well in the above learning scenarios, several
such extensions were made. First, we have introduced
the notion of afterglow, with which edge excitations in
the ECM may decay slowly, thereby allowing rewards to
propagate backward in time. The PS agent can then
correlate between actions of different times and achieve
higher rewards in temporally correlated scenarios, that is
problems of the first class. Next, we have demonstrated
how associative memory, i.e. the ability to spontaneously
create edges between similar percept clips, provides the
PS agent with the ability to associate between similar
percepts to speed up learning. This ability is of value
for scenarios of the second class. Moreover, it was shown
that combining associative memory with the notion of
clip glow, according to which edges between all visited
clips are rewarded, can boost the agent’s performance
even further. Last, the notion of composition was ex-
plored. Here, the agent is equipped with a mechanism
that allows the formation of new, potentially better re-
warded, action clips, by combining old ones. This for-
mation is done dynamically, thereby providing the agent
with means for surviving in varying environments, where
new or more complex actions may be needed.

Throughout the paper, we compared the performance
of PS with those of QL and XCS, where we put our
focus on achievable asymptotic efficiencies and learning
times. Initially we showed that for simple scenarios such
as the invasion game, the performances of all three mod-
els are comparable. We then compared the performances
of the models for each type of the above learning scenar-
ios, where between QL and XCS, only the leading model
was used as a reference.

21

For problems of class (a) (“temporal correlations”), all
models showed a learning behavior that was qualitatively
same. Yet, important quantitative differences were no-
ticed: First, for the n-ship game, both QL and XCS were
relatively slow and required a significant rescaling of the
reward to allow for meaningful learning. PS, on the other
hand, was fast but could not achieve a complete optimal
performance, due to its forgetfulness. Second, for the
n-ship game with A actions, the asymptotic reward of
QL (with optimal parameters) decreased rapidly and the
learning times increased very fast. The performance of
PS in this case is therefore quantitatively the best.

For problems of class (b) (“associative memory”), XCS
performs better than PS. Nevertheless, PS can reach an
almost optimal efficiency, despite using a non-vanishing
forgetting parameter, and performs very well (better
than linear) with respect to learning times. Last, prob-
lems of class (c) (“composition”), both PS and XCS are
qualitatively the same. We note that for both association
and composition problems, QL lacks a suitable machin-
ery and hence cannot perform well.

We conclude that except of the case of association
problems (class (b)), where XCS performs better than
PS, the performance of PS is found to be comparable
to the other models, and even quantitatively better as is
shown for the 2-ship game with A actions. Importantly,
we note that there is no single model that outperforms
the other models in all cases, and that except of PS, only
the XCS model is flexible enough to well-perform in all
three scenarios, wheras QL is more rigid and cannot per-
form well in problems of classes (b) and (c).

Last, but not least, we showed that in terms of simplic-
ity, PS is a promising model. With at most six tunable
parameters, relatively primitive network structure, and
a direct random walk process, it is only a bit more in-
volved than the QL model, but much simpler than the
XCS approach.

We thus conclude that projective simulation, a model
for AI that aims at a physical realization in embodied
agents, has its own strengths and limitations. In partic-
ular, it stands out as a competitive AI model for solving
reinforcement learning problems, that is both simple and
flexible at the same time.

Acknowledgements: We thank Gemma De las Cuevas
for discussions. This work was supported in part by the
Austrian Science Fund (FWF), through the SFB FoQuS
F4012, and by the Templeton World Charity Foundation
(TWCF).

Appendix A: Q-learning

Q-learning is an AI algorithm which belongs to the
computational approach of reinforcement learning [2, 5,
6, 8–11, 16–21]. It is an off-policy, temporal difference
algorithm, in which an action-value function Q(s,a) in-
dicates the desirability of choosing action a, when be-
ing in an environmental state s. Formally, we write

Q : S ×A → R, where S and A stand for all the possible
states and actions, respectively.

Once the agent performs an action a in a state s, it
is given a reward R, and the Q-function is subsequently
updated according to the following update rule:

Q(s(t), a(t))←Q(s(t), a(t)) + (A1)

α

[
R(t)+γmax

a(t+1)
Q(s(t+1), a(t+1))−Q(s(t),a(t))

]
,

where t indicates the current time step, 0 < α ≤ 1 is
a learning-rate parameter, which determines the signif-
icancy of new experiences, and γ is a “discount factor”
which determines the significancy of possible future re-
wards. At the begining t = 0, all Q values are assigned
a fixed value. Throughout this work, we initiallized the
Q function to zero.

For each state s, there is a certain probability to take
action a, that is calculated based on the Q-function.
Here, we used a softmax policy [6], with which the prob-
ability to take action a in state s is calculated according
to:

Pr(aj |s) =
eQ(s,aj)∑
k e

Q(s,ak)
, (A2)

There exist different approaches to improve the Q-
learning algorithm [22]. Among them we implemented
both “Dyna-style planning” [10, 11] and “experience re-
play” [22, 23]. These two techniques turned out to give
similar results for our basic invasion-game scenario, and
therefore only results obtained with Dyna-style planning
are presented in section II E. In particular, our Dyna-Q
implementation is based on a textbook pseudocode [6]
(see Fig. 9.4 in page 233), except that we have used a
softmax policy instead of a greedy one.

As implied by Eq. (A1), QL relies on two important
free parameters, namely, the learning rate, α, and the
discount factor, γ. We further regard the choice of policy
as an additional parameter that has to be set. Last, using
extensions such as experience-replay or Dyna introduces
(at least) one more parameter (depending on the exact
implementation), P , that is the number of replaying or
planning, respectively.

Appendix B: Learning classifier system

Learning classifier system (LCS) [13–15] is a machine
learning model with roots in both reinforcement learning
and genetic algorithms [13]. Within this model, percepts
received from the environment are responded to by means
of a set of rules, called classifiers. For a given percept all
rules are examined whether they match the percept and
subsequently an action is chosen from the matching rules
based on the rules’ payoff predictions. Individual invoked
rules are modified by a reinforcement learning algorithm,
and the entire set of rules is evolved by a genetic algo-
rithm.

22

For the purpose of comparison with PS, we imple-
mented a variant of the extended learning classifier sys-
tem (XCS) [12], where classifier fitness is based on the
accuracy of the payoff prediction. Our implementation is
based on a reference implementation by Butz and Wil-
son [24], i.e. the original LCS proposal [12] but with
a number of improvements put forward in more recent
literature. In order to facilitate better qualitative com-
parison with the projective simulator, some more com-
plex features were not implemented. In particular, for
our implementation the following applies: (a) The ge-
netic algorithm is applied to the action set only; (b) For
some problems (when indicated), the genetic algorithm
was disabled because the classifier system contains all
possible rules and the genetic algorithm would only de-
crease performance by destroying successful classifiers;
(c) Any form of classifier subsumption algorithms were
not implemented; (d) The calculation of classifier accu-
racy follows a power-law function; (e) The usually applied
MAM-update rule (moyenne adaptive modifiée), was not
implemented in order to compare learning times on an
equal footing; (f) Action selection was always done with
a “soft-policy”.

For direct comparison let us briefly specify the update
and action selection rules. Each classifier consists of a
condition, i.e. a symbol or a string of symbols that
is compared with the percept s, and an action, which
should be executed if the condition matches the percept.
In addition, each classifier i carries a number of param-
eters: payoff prediction pi, prediction error εi, and its
fitness fi. After the match set M has been formed by
all classifiers whose condition matches the percept, it is
grouped into subsets of classifiers that propose the same
action. For each of the actions a fitness-weighted pre-
diction is calculated from the respective classifiers by
PA(aj) =

∑
i pifi/

∑
i fi, where the sum goes over all

classifiers in the match set advocating action aj . Using
a softmax policy for action selection, out of the existing
actions in M action aj is chosen with probability

Pr(aj |s) =
ePA(aj)∑
k e

PA(ak)
. (B1)

All classifiers of the thereby chosen action form the ac-
tion set A, which is updated and is also subject to the
genetic algorithm. For one-step problems the action set
A(t) is updated immediately after executing the action
and an immediate reward may have been received. For
a received reward r(t), classifier parameters are updated
with learning rate α according to

pi → pi + α(r(t) − pi), (B2)

εi → εi + α(
∣∣∣r(t) − pi

∣∣∣− εi), (B3)

fi → fi + α(κi − fi), (B4)

where κi is the relative accuracy of classifier i with re-
spect to all classifiers in the action set and it is calculated

according to

κi =
κ(εi)∑

j∈A(t) κ(εj)
(B5)

with

κ(ε) =

{
κ0

(
ε
ε0

)ν
, ε > ε0

1 , ε ≤ ε0
. (B6)

For multistep problems the update occurs in the action
set of the previous time step A(t−1), i.e. the action set is
remembered for one time step, and in addition, instead of
the immediate reward the payoff P (t−1) is used to update
classifier predictions and errors. The payoff for A(t−1) is
calculated from the immediate reward of that time step
r(t−1) and the discounted prediction of the current time
step:

P (t−1) = r(t−1) + γ max
aj∈A(t)

PA(aj). (B7)

The genetic algorithm is applied to the action set
only if the average age of the classifiers has exceeded
a given number of time steps. Upon occurrence, two
classifiers are selected from A with probability propor-
tional to fitness and they are duplicated. With prob-
ability χ a single-point crossover is performed in the
string of symbols that form the condition. With prob-
ability µ per symbol each of the symbols is mutated and
changed. When mutating action symbols the symbol can
be changed to any other symbol with equal probability.
When mutating condition symbols the symbol is either
changed to a wildcard, i.e. a “don’t care” symbol that
matches any symbol in the percept, or to the symbol
given in the percept. Both classifiers are then inserted
into the population. If the given maximal population size
is surpassed excessive classifiers are removed from the
population of classifiers with probability proportional to
an estimate of the action set size that each classifier car-
ries along and updates every time it belongs to an action
set. In addition, classifiers whose fitness is below a given
fraction of the average population fitness and which have
been updated more than a given number of times are
deleted with an enhanced probability. The exact proce-
dure is implemented as in the reference implementation
[24].

In our studies the performance of the XCS depends on
a number of internal parameters that need to be speci-
fied and can be tuned to optimize the performance. The
most important parameters affect both learning speed,
the asymptotic efficiency, and the ability of reaching a
successful behavior. They are the size of the classifier
population N , the learning rate α, in multistep problems
the discount rate γ, the number of steps after which the
genetic algorithm is executed (if it is invoked at all) and
the rates that govern the genetic algorithm, namely the
crossover rate χ and the mutation rate µ (for the latter
we specified the rate independently for conditions and

23

actions), and the ability to generalize by specifying the
probability of wildcard symbols. In addition, there are
a number of inherent parameters specified in the algo-
rithm: (i) parameters which only affect the behavior to
a small extent, such as the initial values of classifier pa-
rameters, which need to be specified but whose values are
dominated in the long run by the learning rule and re-
ward scheme, or (ii) parameters which would effectively

change the algorithm like a softmax policy for action se-
lection (rather than a greedy, ε-greedy or roulette-wheel
action selection) or (iii) parameters that are set to tested
literature values and left unaltered, such as the three pa-
rameters for specifying the functional form of the accu-
racy function, and two parameters governing the deletion
of unsuccessful but experienced classifiers.

[1] Briegel, H. J. & De las Cuevas, G. “Projective simulation
for artificial intelligence.” Sci. Rep. 2, 400, (2012)

[2] Russel, S. J. & Norvig, P. Artificial intelligence - A mod-
ern approach. Second edition (Prentice Hall, New Jersey,
2003).

[3] Pfeiffer, R. & Scheier, C. Understanding intelligence.
First edition (MIT Press, Cambridge Massachusetts,
1999).

[4] Floreano, D. & Mattiussi, C. Bio-inspired artificial intel-
ligence: theories, methods, and technologies. Intelligent
robotics and autonomous agents (MIT Press, Cambridge
Massachusetts, 2008).

[5] Sutton, R. S. Temporal Credit Assignment in Reinforce-
ment Learning. PhD Thesis, University of Massachusetts
at Amherst, 1984.

[6] Sutton, R. S. & Barto, A. G. Reinforcement learning:
An introduction. First edition (MIT Press, Cambridge
Massachusetts, 1998).

[7] Poole, D., Mackworth, A. & Randy Goebel Computa-
tional intelligence. A logical approach. (Oxford Univer-
sity Press, 1998).

[8] Watkins, C. J. C. H. Learning from delayed rewards. PhD
Thesis, University of Cambridge, England, 1989.

[9] Watkins C. J. C. H & Dayan P. “Q-learning” Machine
Learning 8, 279-292 (1992).

[10] Sutton, R. S. “Integrated architectures for learning, plan-
ning, and reacting based on approximating dynamic pro-
gramming.” Proceedings of the Seventh International
Conference on Machine Learning, Morgan Kaufmann,
pp. 216-224 (1990).

[11] Sutton, R. S., Szepesvári, Cs., Geramifard, A. & Bowl-
ing, M. “Dyna-style planning with linear function ap-
proximation and prioritized sweeping.” Proceedings of
the 24th Conference on Uncertainty in Artificial Intelli-
gence, pp. 528-536 (2008).

[12] Wilson S. W. “Classifier Fitness Based on Accuracy.”
Evol. Comput. 3(2), pp. 149-175 (1995).

[13] Holland J. H. Adaptation in Natural and Artificial Sys-
tems. University of Michigan Press (1975).

[14] Bull, L. & Kovacs, T. (Eds.) Foundations of Learning
Classifier Systems. Studies in Fuzziness and Soft Com-
puting, 183 (Spinger Berlin/Heidelberg, 2005).

[15] Urbanowicz, R. J. & Moore, J. H. “Learning
Classifier Systems: A Complete Introduction, Re-
view, and Roadmap.” Journal of Artificial Evolu-
tion and Applications, 2009, Article ID 736398, (2009).
doi:10.1155/2009/736398.

[16] Parr, R. & Russell, S. “Reinforcement Learning with
Hierarchies of Abstract Machines.” in Advances in Neural
Information Processing Systems 10, pp. 1043-1049, (MIT
Press, 1997).

[17] Sutton, R. S., Precup, D. & Singh, S. “Between MDPs
and semi-MDPs: A Framework for Temporal Abstraction
in Reinforcement Learning.” Artificial Intelligence, 112,
pp. 181-211 (1999).

[18] Dietterich, T. G. “Hierarchical reinforcement learning
with the MAXQ value function decomposition.” Jour-
nal of Artificial Intelligence Research, 13, pp. 227-303
(2000).

[19] Ormoneit, D. & Sen, S. “Kernel-based reinforcement
learning”. Machine Learning, 49, pp. 161178 (2002)

[20] Toussaint, M. “A sensorimotor map: Modulating lat-
eral interactions for anticipation and planning.” Neural
Computation 18, pp. 1132-1155 (2006).

[21] Butz, M. V., Shirinov, E. & Reif, K. L. “Self-
Organizing Sensorimotor Maps Plus Internal Motivations
Yield Animal-Like Behavior.” Adaptive Behavior, 18, pp.
315-337 (2010).

[22] Lin, L. J. “Self-improving reactive agents based on re-
inforcement learning, planning and teaching.” Machine
Learning 8, pp. 292-321 (1992).

[23] Adam, S., Busoniu, L. & Babuska, R. “Experience Re-
play for Real-Time Reinforcement Learning Control.”
Systems, Man, and Cybernetics, Part C: Applications
and Reviews, IEEE Transactions on, 42, pp. 201-212
(2012).

[24] Butz M. V. & Wilson S. W. “An Algorithmic Descrip-
tion of XCS.” in Proceedings IWLCS ’00 Revised Pa-
pers from the Third International Workshop on Advances
in Learning Classifier Systems, pp. 253-272, (Springer-
Verlag London, U.K., 2001).

[25] Clearly, the mere structure of the ECM network already
encodes hard-wired information, e.g., regarding the po-
tential percepts and actions the agent may encounter and
perform. From this perspective, no agent is a perfect tab-
ula rasa.

[26] This is consistent with our restriction to clips of length
L = 1, which means that c is itself a single remembered
percept or action.

[27] Using a similarity mask can be relinquished by a proper
modification of the update rule, and is a subject of an
ongoing work.

	I Introduction
	II Basic notions and features
	A The PS formalism
	B Toy model: The invasion game
	C The PS learning curve: A heuristic analysis
	D The damping parameter
	E Scaling of learning times

	III Temporal correlations
	A ``Afterglow'' mechanism
	B The n-ship game
	C The 2-ship game with A actions

	IV Associative memory
	A Basic notion and features
	B Clip glow
	C Comparing to XCS

	V Composition
	VI Model simplicity
	VII Conclusion
	A Q-learning
	B Learning classifier system
	 References

