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Approaches to finite baryon density lattice QCD usually suffer from uncontrolled systematic
uncertainties in addition to the well-known sign problem. We test a method - sign reweighting
- that works directly at finite chemical potential and is yet free from any such uncontrolled
systematics: with this approach the only problem is the sign problem itself. In practice the
approach involves the generation of configurations with the positive fermionic weights given by
the absolute value of the real part of the quark determinant, and a reweighting by a sign. There
are only two sectors, +1 and -1 and as long as the average 〈±〉 ≠ 0 (with respect to the positive
weight) this discrete reweighting has no overlap problem - unlike reweighting from 𝜇 = 0 - and
the results are reliable. We also present results based on this algorithm on the phase diagram of
lattice QCD with two different actions: as a first test, we apply the method to calculate the position
of the critical endpoint with unimproved staggered fermions at 𝑁𝜏 = 4; as a second application,
we study the phase diagram with 2stout improved staggered fermions at 𝑁𝜏 = 6. This second one
is already a reasonably fine lattice - relevant for phenomenology. We demonstrate that the method
penetrates the region of the phase diagram where the Taylor and imaginary chemical potential
methods lose predictive power.
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1. Introduction

One of the most important unsolved problems in QCD is the determination of the phase
diagram of strongly interacting matter in the temperature-baryochemical potential plane. The most
well-established method for first-principles studies of QCD is the lattice. Finite chemical potential
lattice calculations are, however, hampered by the notorious sign- or complex-action problem.
A number of approaches have been proposed to side-step this problem, such as reweighting [1–
9], Taylor expansion around zero chemical potential [10–15], analytic continuation from purely
imaginary chemical potentials [16–25], or the complex Langevin approach [26–28]. Unfortunately,
all of these methods introduce extra problems, which are different from the sign problem itself,
such as the analytic continuation problem of the Taylor and imaginary chemical potential methods,
the overlap problem of reweighting and the Taylor method, or the convergence issues of complex
Langevin. Often these problems are just as prohibiting as the original sign problem. It is therefore
of value to have an alternative method, which does not have any of the extra problems of the existing
methods: a method where the only problem is the sign problem itself.

Although manifesting as different, the analytic continuation problem of the Taylor and imag-
inary chemical potential methods and the overlap problem of the reweighting and Taylor methods
have the same physical origin: an inability to directly sample the gauge configurations most relevant
to finite chemical potential, thus requiring some kind of extrapolation in both cases. One would
then like to perform simulations in a theory from which reconstruction of the desired theory is the
least affected by such systematic effects, by (1) keeping as close as possible to the most relevant con-
figurations, thus minimizing the overlap problem, and by (2) making the complex-action problem,
or sign problem, due to cancellations among contributions, as mild as possible. We show here that
such an approach - sign reweighting - has already become feasible on phenomenologically relevant
lattices. This conference contribution is mainly based on Refs. [8, 9]

2. Reweighting and the overlap problem

A generic reweighting method reconstructs expectation values in a desired target theory, with
microscopic variables 𝑈, path-integral weights 𝑤𝑡 (𝑈), and partition function 𝑍𝑡 =

∫
D𝑈 𝑤𝑡 (𝑈),

using simulations in a theory with real and positive path-integral weights 𝑤𝑠 (𝑈) and partition
function 𝑍𝑠 =

∫
D𝑈 𝑤𝑠 (𝑈), via the formula:

〈O〉𝑡 =

〈
𝑤𝑡

𝑤𝑠
O
〉
𝑠〈

𝑤𝑡

𝑤𝑠

〉
𝑠

(1)

where 〈. . . 〉𝑡 and 〈. . . 〉𝑠 means expectation value in the target and the simulated theories respectively.
When the target theory is lattice QCD at finite chemical potential, the target weights 𝑤𝑡 (𝑈) have
wildly fluctuating phases: this is the infamous sign problem. In addition to this problem, generic
reweighting methods also suffer from an overlap problem: the probability distribution of the
reweighting factor 𝑤𝑡/𝑤𝑠 has generally a long tail, which cannot be sampled efficiently in standard
Monte Carlo simulations. The overlap problem is present even in cases when one tries to reweight
to a theory without a sign problem, such as reweighting to a different bare gauge coupling. However,
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even in the case of reweighting from zero to finite baryochemical potential, it is actually the overlap
problem, rather than the sign problem, that constitutes the immediate bottleneck in QCD when one
tries to extend reweighting results to finer lattices, even in the case of the multiparameter reweighting
method [3], as was recently demonstrated by the study of the histogram of the reweighting factors
𝑤𝑡/𝑤𝑠 in Ref. [7].

A way to address the overlap problem is to reweight from a theory where the reweighting
factors 𝑤𝑡/𝑤𝑠 takes values in a compact space. In such a case, their distribution does not have
tails by construction, and so that the ratio 𝑍𝑡

𝑍𝑠
=

〈
𝑤𝑡

𝑤𝑠

〉
𝑠

can be calculated without encountering any
heavy-tailed distributions. The most obvious choice for the theory to reweight from is the phase
quenched (PQ) theory, defined by

𝑤𝑃𝑄 = | det 𝑀𝑢𝑑 (𝜇)
1
2 | det 𝑀𝑠 (0)

1
4 𝑒−𝑆𝑔 , (2)

where 𝜇 is the chemical potential of the light quarks, and for simplicity we take the strange quark
chemical potential to be zero. In this case the reweighting factors are pure phases 𝑒𝑖 𝜃 , where
𝜃 = Arg

(
det 𝑀𝑢𝑑 (𝜇)1/2) . Another choice, which - as we will show - has a weaker sign problem is

to reweight from the sign quenched (SQ) ensemble [8, 29, 30], defined by

𝑤𝑆𝑄 = | Re det 𝑀𝑢𝑑 (𝜇)
1
2 | det 𝑀𝑠 (0)

1
4 𝑒−𝑆𝑔 , (3)

where reweighting involves only a sign factor:

𝜀 = sign cos Arg det 𝑀𝑢𝑑 (𝜇)
1
2 . (4)

We note that this amounts to the substitution of the determinant with its real part in the path integral,
which is not permitted in arbitrary expectation values, but is completely valid for (1) observables
that satisfy 𝑂 (𝑈) = 𝑂 (𝑈∗) or (2) observables which can be defined as real derivatives of the
partition function with respect to a real parameter, such as the gauge coupling, the quark mass or
the chemical potential. While this set of observables is not exhaustive, it is enough to study bulk
thermodynamics, which is the main target of our work.

3. Lattice simulations

As a first test of the method, in Ref. [8] we used unimproved staggered fermions on lattices
of size 63 × 4, 83 × 4, 103 × 4 and 123 × 4 to estimate the position of the critical endpoint on these
coarse lattices. For each lattice size and each chemical potential in the baryochemical potential
range 0 ≤ 𝜇̂𝐵 = 𝜇𝐵/𝑇 ≤ 2.4, we simulated one single value of the bare gauge coupling 𝛽, chosen
to be close to the transition temperature at the given 𝜇𝐵.

To move in the direction of the continuum limit, in Ref. [9] we used a tree level Symanzik
improved gauge action with two steps of stout smearing with parameter 𝜌 = 0.15 on 163 × 6
lattices [31]. We performed a scan in chemical potential at fixed 𝑇 = 140 MeV, and a scan in
temperature at fixed 𝜇̂𝐵 = 1.5.

In both cases, simulations were performed by modifying the RHMC algorithm at 𝜇𝐵 = 0

by including an extra accept/reject step that takes into account the factor |Re det 𝑀𝑢𝑑 (𝜇)
1
2 |

det 𝑀𝑢𝑑 (0) . The
determinant was calculated with the reduced matrix formalism [1] and dense linear algebra, with
no stochastic estimators involved.
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Figure 1: The strength of the sign problem on 2stout improved 163 × 6 staggered lattices as a function of
𝜇𝐵/𝑇 at 𝑇 = 140 MeV (left) and as a function of 𝑇 at 𝜇𝐵/𝑇 = 1.5. A value close to 1 shows a mild sign
problem, while a small value indicates a severe sign problem. Data for sign reweighting (black) and phase
reweighting (orange) are from simulations. Predictions of the Gaussian model (see text) are also shown.

4. Comparison with phase reweighting and the strength of the sign problem

In the PQ ensemble the severity of the sign problem is measured by the average phase factor
〈𝑒𝑖 𝜃 〉PQ

𝑇 ,𝜇
= 〈cos 𝜃〉PQ

𝑇 ,𝜇
, while in the SQ ensemble it is measured by the average sign 〈𝜀〉SQ

𝑇 ,𝜇
=

〈cos 𝜃〉PQ/〈|cos 𝜃 |〉PQ. Clearly, 〈cos 𝜃〉PQ
𝑇 ,𝜇

≤ 〈𝜀〉SQ
𝑇 ,𝜇

, so the sign problem is generally weaker in
the SQ case. To understand how much weaker it is, it is useful to introduce some small chemical
potential approximations for the strength of the sign problem in both cases. The probability
distribution of the phases 𝜃 = arg det 𝑀 in the phase quenched theory, 𝑃PQ(𝜃), controls the strength
of the sign problem in both ensembles. A simple estimate can then be obtained with the following
two steps: (i) in a leading order cumulant expansion, 𝑃PQ(𝜃) is assumed to be a wrapped Gaussian
distribution; (ii) the chemical potential dependence of its width is approximated by the leading
order term in its Taylor expansion [10],

𝜎(𝜇)2 ≈
〈
𝜃2〉

LO = −4
9
𝜒𝑢𝑑

11 (𝐿𝑇)3 𝜇̂2
𝐵, (5)

where 𝜒𝑢𝑑
11 = 1

𝑇 2
𝜕2𝑝

𝜕𝜇𝑢𝜕𝜇𝑑
|𝜇𝑢=𝜇𝑑=0 is the disconnected part of the light quark susceptibility, obtained

in 𝜇 = 0 simulations. In this approximation the strength of the sign problem can be calculated
analytically in both cases, with 〈cos 𝜃〉PQ

𝑇 ,𝜇
≈ 𝑒−

𝜎2 (𝜇)
2 in the phase quenched case, while in the sign

quenched case the expression for 〈𝜀〉SQ
𝑇 ,𝜇

is more involved. (See the Appendix of Ref. [9].) It
is however worth noting the different asymptotics of the two cases. The small-𝜇 (i.e., small-𝜎)
asymptotics are notably very different, with 〈cos 𝜃〉PQ

𝑇 ,𝜇
∼ 1− 𝜎2 (𝜇)

2 analytic in 𝜇̂𝐵, while in the sign
quenched case 〈𝜀〉SQ

𝑇 ,𝜇
is not analytic,

〈𝜀〉SQ
𝑇 ,𝜇

∼
𝜇̂𝐵→0

1 −
(

4
𝜋

) 5
2
(
𝜎2 (𝜇)

2

) 3
2
𝑒
− 𝜋2

8𝜎2 (𝜇) , (6)

approaching 1 faster than any polynomial: therefore we expect the sign problem of the phase
quenched ensemble to get worse faster at small 𝜇𝐵 as compared to the sign quenched case. The
large-𝜇 or large volume asymptotics are on the other hand quite similar: in the large-𝜎 limit 𝑃𝑃𝑄 (𝜃)

tends to the uniform distribution, and so one arrives at
〈𝜀〉SQ

𝑇 ,𝜇

〈cos 𝜃 〉PQ
𝑇 ,𝜇

∼
𝜇̂𝐵 or𝑉→∞

(∫ 𝜋

−𝜋 𝑑𝜃 |cos 𝜃 |
)−1

= 𝜋
2 ,

4
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Figure 2: Finite volume scaling of the imaginary part of the leading Fisher zero at 𝜇𝐵/𝑇 = 2.4 (left) and
the infinite volume extrapolated value of the imaginary part of the leading Fisher zero as a function of the
chemical potential (right) for the unimproved staggered action at 𝑁𝜏 = 4.

which asymptotically translates to a factor of ( 𝜋2 )
2 ≈ 2.5 less statistics needed for a sign quenched

simulation as compared to a phase quenched simulation.
The simple considerations made above are confirmed by actual simulation data to a decent

degree, as can be seen in Fig. 1: our simple model predicts the strength of the sign problem both
as a function of 𝜇𝐵 at a fixed temperature (left) and as a function of temperature at a fixed 𝜇𝐵/𝑇
(right). This is of great practical importance, as it makes the planning of future simulation projects
with reweighting relatively straightforward.

5. Physics observables

5.1 Unimproved action at 𝑁𝜏 = 4

The main goal of our first numerical study in Ref. [8] was to confirm or falsify the critical
endpoint prediction of Ref. [3] for the unimproved staggered discretization at temporal extent
𝑁𝜏 = 4, with a method that does not suffer from an overlap problem in the reweighting factors. To
be as close to Ref. [3] as possible, we therefore uses the same physical observable and computed
the zeros of the partition function in the bare gauge coupling 𝛽, the so-called Fisher zeros. This
amounts to measuring the observables 𝑂𝛽 (𝑈) = 𝑒

− 𝛽−𝛽𝑠
𝛽𝑠

𝑆𝑔 (𝑈 ) , where 𝑆𝑔 (𝑈) is the gauge action and
𝛽𝑠 is the simulated bare coupling. Since 𝑂𝛽 (𝑈∗) = 𝑂𝛽 (𝑈), sign reweighting can be applied to this
observable. The partition function has several zeros as a function of complex 𝛽. We computed
the one closest to the real axis, which in every run happens to coincide with the one closest to
the simulation point in the 𝛽 as well. This zero will be called the leading Fisher zero. The finite
volume scaling and the infinite volume extrapolated leading zero position can be seen in Fig. 2. As
can be seen in that Figure, the leading Fisher zero extrapolates to a point on the real line at around
𝜇𝐵/𝑇 = 2.4, in agreement with the result of Ref. [3].

5.2 Two-stout improved action at 𝑁𝜏 = 6

We now proceed to display physics results for the light quark condensate and density from
simulations with the 2stout improved staggered action at 𝑁𝜏 = 6. The light-quark chiral condensate

5
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Figure 3: The renormalized chiral condensate (left) and the light quark number-to-light quark chemical
potential ratio (right) as a function of 𝑇 at fixed 𝜇𝐵/𝑇 = 1.5, 0 and 1.5𝑖 on 2stout improved lattices at 𝑁𝜏 = 6.
The insets show a rescaling of the temperature axis, which approximately collapses the curves onto each
other.

was obtained via the formula

〈𝜓̄𝜓〉𝑇 ,𝜇 =
1

𝑍 (𝑇, 𝜇)
𝜕𝑍 (𝑇, 𝜇)
𝜕𝑚𝑢𝑑

=
𝑇

𝑉

1
〈𝜀〉SQ

𝑇 ,𝜇

〈
𝜀

𝜕

𝜕𝑚ud
ln
����Re det 𝑀

1
2
𝑢𝑑

����〉SQ

𝑇 ,𝜇

, (7)

with the determinant det 𝑀 = det 𝑀 (𝑈, 𝑚𝑢𝑑 , 𝑚𝑠, 𝜇) calculated in the reduced matrix formalism at
different light-quark masses and fed into a symmetric difference, 𝑑 𝑓 (𝑚)

𝑑𝑚
≈ 𝑓 (𝑚+Δ𝑚)− 𝑓 (𝑚−Δ𝑚)

2Δ𝑚 . The
step Δ𝑚 small enough to make the systematic error from the finite difference negligible compared
to the statistical error. The renormalized condensate was obtained with the prescription

〈𝜓̄𝜓〉𝑅 (𝑇, 𝜇) = −𝑚𝑢𝑑

𝑓 4
𝜋

[
〈𝜓̄𝜓〉𝑇 ,𝜇 − 〈𝜓̄𝜓〉0,0

]
. (8)

We also calculated the light quark density

𝜒𝑙1 ≡
𝜕
(
𝑝/𝑇4)

𝜕 (𝜇/𝑇) =
1

𝑉𝑇3
1

𝑍 (𝑇, 𝜇)
𝜕𝑍 (𝑇, 𝜇)

𝜕𝜇̂
=

1
𝑉𝑇3〈𝜀〉SQ

𝑇 ,𝜇

〈
𝜀
𝜕

𝜕𝜇̂
ln
����Re det 𝑀

1
2
𝑢𝑑

����〉SQ

𝑇 ,𝜇

, (9)

evaluating the derivative analytically using the reduced matrix formalism. This quantity does not
have to be renormalized.

Our results for the temperature scan at 𝜇𝐵/𝑇 = 1.5 are shown in Fig. 3. We also show the
corresponding curves at zero and the imaginary value of 𝜇𝐵/𝑇 = 1.5𝑖 for comparison. We also
show a rescaling of the temperature axis, collapsing the curves into each other, and demonstrating
that at least up to 𝜇𝐵/𝑇 = 1.5 the chiral crossover does not get narrower. Our results for the
chemical potential scan at a fixed temperature of 𝑇 = 140 MeV are shown in Fig. 4. We have
performed simulations at 𝜇̂𝐵 = 1, 1.5, 2, 2.2, 2.5, 2.7. The point at 𝜇̂𝐵 = 2.2 corresponds roughly
to the chiral transition, as at this point the chiral condensate is close to its value at the 𝜇𝐵 = 0
crossover. The sign-quenched results are compared with the results of analytic continuation from
imaginary chemical potentials. To demonstrate the magnitude of the systematic errors of such an
extrapolation we considered two fits. (i) As the simplest ansatz, we fitted the data with a cubic
polynomial in 𝜇̂2

𝐵
in the range 𝜇̂2

𝐵
∈ [−10, 0]. (ii) As an alternative, we also used suitable ansätze

for
〈
𝜓̄𝜓

〉
𝑅

and 𝜒𝑙1/𝜇̂𝑙 based on the fugacity expansion 𝑝/𝑇4 =
∑

𝑛 𝐴𝑛 cosh(𝑛𝜇̂), fitting the data in

6
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Figure 4: The renormalized chiral condensate (left) and the light quark number-to-light quark chemical
potential ratio (right) as a function of (𝜇𝐵/𝑇)2 at temperature𝑇 = 140 MeV with the 2stout improved staggered
action at 𝑁𝜏 = 6. Data from simulations at real 𝜇𝐵 (black) are compared with analytic continuation from
simulations at imaginary 𝜇𝐵 (blue). In the left panel the value of the condensate at the crossover temperature
at 𝜇𝐵 = 0 is also shown by the horizontal line. The simulation data cross this line at 𝜇𝐵/𝑇 ≈ 2.2.

the entire imaginary-potential range 𝜇̂2
𝐵
∈
[
−(6𝜋)2, 0

]
using respectively 7 and 6 fitting parameters.

Fit results are also shown in Fig. 4; only statistical errors are displayed. While sign reweighting
and analytic continuation give compatible results, in the upper half of the 𝜇𝐵 range the errors
from sign reweighting are an order of magnitude smaller. In fact, sign reweighting can penetrate
the region 𝜇̂𝐵 > 2 where the extrapolation of many quantities is not yet possible with standard
methods [13, 22].

6. Summary

Sign reweighting has opened up a new window to study the bulk thermodynamics of strongly
interacting matter from first principles. While the method is ultimately bottlenecked by the sign
problem, in the region of its applicability it offers excellent reliability compared to the dominant
methods of Taylor expansion and imaginary chemical potentials - which always provide results
having a shadow of a doubt hanging over them due to the analytic continuation problem. We have
demonstrated that the strength of the sign problem can be easily estimated with 𝜇 = 0 simulations,
making the method practical and the planning of simulation projects straightforward. We have also
demonstrated that the method extends well into the regime where the established methods start to
lose predictive power and covers the range of the RHIC BES.
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