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Abstract. This paper is concerned with the asymptotic behavior of a p-Landau-Lifschitz type
functional with radial structure as parameter goes to zero. We study the concentration compact-
ness and give several global properties in the case of p > 2.
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1. INTRODUCTION

Let B = {x € R%;x? + x5 < 1}. Denote S' = {x = (x; +ix2,x3) € C x R;
B4+x3=1,x3=0}and S? = {x € C x R;x} +x3 +x5 = 1}. Let g(x) = (¢!9,0)
where x = (cos0,sin0) on 0B, d € N. We are concerned with the minimizer of the
energy functional of p-Landau-Lifschitz type

1 1
E¢(u,B) = p/B|Vu]”dx+2€p/Bu%dx (p>2)
in the function class
W = {u(x) = (sin f(r)e’®,cos f(r)) € W' (B,S?);ulap = g},

which is named the radial minimizer of E¢(u,B).

When p = 2, the functional E¢(u,B) was introduced in the study of some sim-
plified model of high-energy physics, which controls the statics of planar ferromag-
nets and antiferromagnets (cf. [8] and [15]). In addition, it is helpful to understand
the dynamics of singularities appearing in the liquid crystals (cf. [2,7, 12, 14] and
[6]). In particular, the authors of [7] discussed the asymptotic behaviour of the ra-
dial minimizer of E¢(u,B) in §5. When the penalization term ﬁ [gu3dx is replaced
by é J5(1—|u|?*)%dx and S is replaced by C, the functional becomes the Ginzburg-
Landau energy introduced in the theory of superconductors (cf. [3] and the references
therein). Nineteen problems were proposed in [3]. Comte and Mironescu studied
Problem 7 in [4, 5, 13]. Problem 7 and Theorems VII.2 and VII.3 in [3] describe the
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global properties of the Ginzburg-Landau functional. For the Landau-Lifschitz func-
tional, Theorem 4.2 in [7] shows analogous results of Theorems VII.2 and VIL.3 in
[3].

When p > 2, Lei studied the behaviour of minimizers of E¢(u,B) as € — 0
(cf. [10]). In addition, he also proved the Wl}np convergence of the radial minim-
izers, and obtained some estimates of the convergent rate of the radial minimizer (cf.
[9]). For the p-Ginzburg-Landau functional, the behaviour of radial minimizers was
studied in [1] and [!1]. In particular, the analogous global properties are shown in
[11].

In polar coordinates, for u(x) = (sin f(r)e®

,cos f(r)), we have
\Vu| = (f2+d*r sinzf)l/z.
Sometimes we denote sin f(r)e“® by u'. If we denote

V={f eWL 0,117 7 £, IPIPsinf € L2(0,1), £(r) = 0,£(1) = 21,

[\

then V = {f(r);u(x) = (sin f(r)e’”®,cos f(r)) € W},
Substituting u(x) = (sin f(r)e®,cos f(r)) € W into E¢(u,B) we obtain
E¢(u,B) = 2nE:(f,(0,1)),
where
11 1
E¢(f,(0,1)) = / [~ (2 +d?r 2sin” f)P/* + —— cos® f]rdr.
0op 2er
This shows that u = (sin f(r)e'® cos f(r)) € W is the minimizer of E¢(u,B) if and
only if f(r) € V is the minimizer of E¢(f,(0,1)). Applying the direct method in the
calculus of variations we can see that the functional E¢(u,B) achieves its minimum
on W by a function ug(x) = (sin f¢(r)e?®, cos fe(r)), hence fe(r) is the minimizer of
Eo(£,(0,1). |
Recall some results in [9]. Let ue = (sin fi(r)e'®®, cos f¢(r)) be a radial minimizer

of E¢(u,B) on W. Then Theorem 1.1 in [9] shows that for any y € (0, 1), there exists
a constant & = h(7y) which is independent of € € (0, 1) such that

Ze = {x € B;|ugz| > v} C B(0, he). (1.1)

This implies that all the points where u2; = 1 are contained in B(0,ke). Hence as
€ — 0, these points converge to 0. Furthermore, Proposition 3.2 and Theorem 1.3 in
[9] show that for any compact subset K C B\ {0}, there exists a positive constant C
(independent of €), such that

Ee(ue,K) <C (1.2)

sup |ues (x)] < Ce'= . (1.3)
xek
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Here K = B\ B(0,n). In addition, Proposition 2.1 in [9] shows
Ee(ue,B) < Ce*7P. (1.4)

In this paper, we will study the global properties of the p-Landau-Lifschitz model,
which are described by the concentration properties.

Theorem 1. Let ue = (sin fe(r)e'® cos fe(r)) be a radial minimizer of E¢(u,B) on
W. Then as € — 0, there exists a subsequence €y such that

32 |ug,3|> — L18,, weakly star in C(B), (1.5)
k

2p

eﬁ_ZWugk\p —

2L150, weakly star in C(B). (1.6)

Here b, is the Dirac mass at the origin, and the positive constant Ly satisfies
nd? 2 2nd?
= sup (1-Y)P2KP(y) <Ly < (1 2)minE; (u,B) + —5-,
P ye(o1) p v 4

1.7

where h(Y) is a positive constant in (1.1).

Theorem 2. Let ue = (sin fe(r)e'®, cos fe(r)) be a radial minimizer of Ee(u,B)
on W. Then for any o. > 2 —4/p, we can find a subsequence € of €, and constants
Lz > 0 and Ly > 0 which are independent of €, such that as k — oo,

|t 3|%| Ve, |* — L38,, weakly star in C(B), (1.8)
8£_2| det(Vu, ) |PI2 5 148,, weakly star in C(B). (1.9)

The related results in higher dimension to Theorems 2 and 1 can be found in [16]
and [17].

2. PROOF OF THEOREM 1
2.1. Proofs of (1.5) and (1.6)

In view of (1.4), there exist two Radon measures ®; and ®,, such that as € — 0,

ef_z\Vugk\p — ), weakly starin C(B), (2.1
1 _
Euéﬁ — @y, weakly starin C(B), (2.2)
k

for some subsequence g; of €. Sometimes we also denote ug, by ue for convenience.
Furthermore, (1.2) implies that as € — 0,

8”72/ |Vug|Pdx — 0,
K

1
278:2/1(14536&)(: — 0,
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where K is an arbitrary compact subset of B\ {0}. These results lead to
supp(®;) C {0} for i = 1,2. Then we can find constants L; and L, such that

o, = Ly8,, =1Ld,. 2.3)

Next, we shall point out the relation between L; and L. It is not difficult to see that
the radial minimizer u, solves the system

1
— div[|VulP72Vu] = u|Vul? + (uu3 —uze3) in B. (2.4)

Multiplying (2.4) by x- Vu and integrating by parts, we can obtain the Pohozaev type
identity

2
—/ |x||Vul|P~ Z\GVulzd.H—/ |Vu|pdx——/ |Vu|Pdx
0B (0) P JBg(0)

1
+—/ X Vu”ds———/ x|luzds + — / dx 2.5
N N @5)

for any R € (0, 1]. Hereafter, we denote f by f. By (1 .2) and the mean value theorem,
there exists 6 € (1/4,1/2) such that

() +dr 2 (n—1)sin? f1772]—s + 8% cos” fly—g < C. (2.6)

Then, we take R = ¢ in (2.5) and multiply it by €#~2 to obtain

e+ s 7 (1 2 12 s 1

o2 d2 o2
+ 2 (24 S sin? 11 o = = 5508 flro / cos? frdr.
p r
Using (2.6), we get
2 1
1——8’772/ Vue|Pd _7/ uZdx — 0 2.7
S Bo(0) Ve &2 Jp0) © @0
as € — 0. Combining this result with (2.1)-(2.3), we obtain
2
=1,
p—2

Thus, (1.5) and (1.6) are proved.

2.2. Proofof (1.7)

Step 1. Upper bound
Similar to the proof of Proposition 2.1 in [9], it is easy to derive

2ndP
s”‘zEg(ug,B) <

ST —|—m1nE1 (u,B) +CeP 2. (2.8)
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Here C > 0 is independent of €. On the other hand, (1.5) and (1.6) lead to

er—2 RS p

This result, together with (2.8), implies the upper bound of L; in (1.7).

Li3,, weakly starin C(B). (2.9)

Step 2. Lower bound
From (1.1), we can deduce that, for any ¢ > 0, there exists C = C(c) > 0 inde-
pendent of €, such that

(o} o
/ [(f;)? +d?r 2 sin? f]P2rdr > aP / r' =P sin fdr
he he
ar s (2.10)
_p_2(1—yz) WP (y)e” " —C(o).

Applying (2.7), we obtain that
(o)
lim "™ 2Ee(ue, B5(0)) = nnn(l)ep—z / [(f,)? +d*r~2sin? f1P/rdr.
£e— 0

e—0
Inserting (2.10) into this result, we deduce that for any n € (0, 1),
AP
lim & 2E¢ (g, Bo(0)) > (1 —P)2h>P(y).
e—0 p—2

Taking the supremum and writing
He= sup (1-7)"P12r(y),
1e(0,1)
we have

Td?
H.
2

lig(l)sl’*zEg(ug,Bc(O)) >

Combining this with (2.9), we can get ﬁLl > %H. This means L; > %H, thus
we obtain the lower bound of Ly in (1.7).
3. PROOF OF THEOREM 2
3.1. Proof of (1.8)

According to Proposition 2.2 in [ 18], there exists a constant C = C(h) > 0 which
is independent of €, such that

[ Vite || 1= (B(0.0e)) < CE ' 3.1)
Therefore,

C
/ |Vite|*|ues|*dx < —m(he)* < C. (3.2)
B(0,he) €

Next, using Holder’s inequality and (1.3) and (1.2), we see that as € — 0,

/ |Vite || g3 | *dx < [/ |Vu£\1’dx}%[/ lues|72dx] 7 — 0. (3.3)
B\B(0,0) B\B(0,0) B\B(0,0)
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By the same derivation of (13) in [13], we also get from Hu83HL2(B) < Ce (which is
deduced by (1.4)) that

o J2
/h Lj—z(sinf)z(cosf)“rdr <C (3.4

by using Holder’s inequality. In addition, noting o0 > 2 — %, using Holder’s inequality
and (1.4), we also deduce that

/G(fr)z(cosf)“rdr <C 6(f,)z(cosf)z’%rdr
he he
< C(/G(cosf)zrdr)l‘%(/G(f,)f’rdr)% <D <0 (35)
he he

Combining this result with (3.2)-(3.4), and noting |Vu|? = (f,)? + f—zz(sin f)?, we ob-
tain that |Viue|?|ue3|* is bounded in L'(B). Thus, there exists a Radon measure ;3
such that

liﬁn(l) |Viue|*|ue3|* = 03, weakly starin  C(B).

By virtue of (3.3), supp(®3) C {0}. Hence we can find L3 > 0 such that @3 = L33,.

We claim Lz > 0. Since f(r) € C[0,1] and f(0) = 0 (see Remark in p.68 of [9]),
f(he) > 1/2 (which can be deduced by (1.1) with y = cos(1/2)), there must exist
re € (0,he) such that f(re) = 1/4. Using (3.1), we can find a sufficiently small pos-
itive constant & which is independent of €, such that

S0 S3, re(R(-8)n(1+3)).

Therefore,

1 3 re(14+8) d
(cos f)%|Vue|*dx > 2md? (sin g)z(cos g)o‘/ 5 Tr > 0.
B(0,re(1+8))\B(0,re(1-3)) re(1-8)

This implies L3 > 0. Equation (1.8) is proved.

3.2. Proofof (1.9)

By a direct calculation, it follows

d, .
det(Vug) = ﬁ(smfcosf) (x-Vf). (3.6)
Using Holder’s inequality and (1.2), we get
/ | det(Vil)|”2dx < C.
B\B(0,0)

This means that when € — 0,

gr? / | det(Vul)|P/2dx — 0. (3.7)
B\B(0,0)
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In addition, in view of |det(Vu})| < §|Vug|?, we can deduce from (1.4) that

er? / | |det(Vul)|P/2dx < CeP ™2 / Vil |Pdx < C.
B(0,6

B(0,0)

Combining this with (3.7) yields the upper bound of €7~2|det(Vu.)|?/? in L'(B).
Then, we can find a Radon measure o4 such that

1irr(1)£”‘2| det(Vul)|"’? = @4, weakly star in C(B).
e

In view of (3.7), supp(®4) C {0}. There exists a constant Ly > 0 such that 04 = L49,.
The proof of Theorem 2 is completed.
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