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Abstract. This paper deals with the initial boundary value problem for a higher-order parabolic
equation with logarithmic source term

ut +(−∆)mu = ur−2u ln |u| .
By employing the potential wells technique we show the global existence of the weak solution.
Also, we obtain the exponential decay for the weak solutions.
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1. INTRODUCTION

In this article, we deal with the following higher-order parabolic equation with
logarithmic source term ut +Pu = ur−2u ln |u| , x ∈ Ω, t > 0,

Dγu(x, t) = 0, |γ| ≤ m−1, x ∈ ∂Ω, t > 0,
u(x,0) = u0(x), x ∈ Ω,

(1.1)

where P = (−∆)m, m ≥ 1 a positive integer, Ω ⊂Rn (n ≥ 1) is a bound domain with
smooth boundary ∂Ω, γ = (γ1,γ2, ...,γn) is multi-index, γi (i = 1,2, ...,n) are positive

integers, |γ|= γ1+γ2+ ...+γn, Dγ = ∂|γ|

∂xγ1
1 ∂xγ2

2 ...∂xγn
n

are derivative operators, ∆ =
n
∑

i=1

∂2

∂x2
i

is the Laplace operator, and r satisfies{
2 ≤ r ≤+∞, n = 1,2,
2 ≤ r ≤ 2n

n−2 , n ≥ 3.

When m = 1, equation (1.1) becomes a heat equation as follows

ut −∆u = ur−2u ln |u| ,
where 2 ≤ r, which case was considered by many authors [1, 4, 10]. In the case
of r = 2, Chen et al. [1] obtained under some suitable conditions for the global
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existence, decay estimate and blow-up at +∞ of weak solutions, via the logarithmic
Sobolev inequality and potential well technique. In the case of 2 < k, Peng and Zhou
[10] studied the existence of the unique global weak solutions and blow-up in the
finite time of weak solutions, via potential well technique and energy technique.

When m = 2, Li and Liu [7] established the equation

ut +∆
2u = ur−2u ln |u| ,

where 2 < r. They studied the existence of global solutions, by using potential well
technique. In addition, they also studied result of decay and finite time blow-up for
weak solutions.

Nhan and Truong [9] studied the following nonlinear pseudo-parabolic equation

ut −∆ut −div
(
|∇u|r−2

∇u
)
= |u|r−2 u log |u| ,

where 2 < r. They obtained results as regard the existence or non-existence of global
solutions, by using the potential well technique and a logarithmic Sobolev inequality.
Also, He et al. [5] proved the decay and the finite time blow-up for weak solutions of
the equation, by using the potential well technique and concave technique.

Recently many other authors investigated higher-order hyperbolic and parabolic
type equation [2, 3, 6, 11–15]. Ishige et al. [6] studied the Cauchy problem for non-
linear higher-order heat equation as follows

ut +(−∆)mu = |u|r .

They obtained existence of solutions of the Cauchy problem by introducing a new
majorizing kernel. In addition, they studied the local existence of solutions under the
different conditions.

Xiao and Li [13] considered the initial boundary value problem for nonlinear
higher-order heat equations of

ut +(−∆)mut +(−∆)mu = f (u).

They established the existence of a weak solution to the static problem, by using the
potential well technique.

The remainder of our work is organized as follows. In Section 2, some important
Lemmas are given. In Section 3, the main result is proved.

2. PRELIMINARIES

Let ∥u∥Hm(Ω) =

(
∑

|γ|≤m
∥Dγu∥2

L2(Ω)

) 1
2

denote Hm(Ω) norm, let Hm
0 (Ω) denote the

closure in Hm(Ω) of C∞
0 (Ω). Let ∥.∥r and ∥.∥ denote the usual Lr(Ω) norm and L2(Ω)

norm.
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For u ∈ Hm
0 (Ω)\{0}, we define the energy functional

J(u) =
1
2

∥∥∥P
1
2 u
∥∥∥2

− 1
r

∫
Ω

|u|r ln |u|dx+
1
r2 ∥u∥r

r , (2.1)

and Nehari functional

I(u) =
∥∥∥P

1
2 u
∥∥∥2

−
∫

Ω

|u|r ln |u|dx. (2.2)

By (2.1) and (2.2), we obtain

J(u) =
1
r

I(u)+
(

1
2
− 1

r

)∥∥∥P
1
2 u
∥∥∥2

+
1
r2 ∥u∥r

r . (2.3)

Further, let
d = inf

u∈N
J(u), (2.4)

denote the potential depth, where N is the Nehari manifold, which is defined by

N = {u ∈ Hm
0 (Ω)\{0} : I(u) = 0}.

Lemma 1. Let k be a number with 2≤ k <+∞, n≤ 2m and 2≤ k ≤ 2n
n−2m , n> 2m.

Then there is a constant C depending

∥u∥k ≤C
∥∥∥P

1
2 u
∥∥∥ , ∀u ∈ Hm

0 (Ω) .

Lemma 2. J(t) is a nonincreasing function for t ≥ 0 and

J′ (u) =−
∫
Ω

u2
t dx ≤ 0. (2.5)

Proof. Multiplying equation (1.1) by ut and integrating on Ω, we get∫
Ω

u2
t dx+

∫
Ω

Puutdx =
∫
Ω

ur−1ut ln |u|dx.

By straightforward calculation, we obtain∫
Ω

u2
t dx+

1
2

d
dt

∥∥∥P
1
2 u
∥∥∥2

=
1
r

d
dt

∫
Ω

|u|r ln |u|dx− 1
r2

d
dt

∥u∥r
r ,

which yields that
1
2

d
dt

∥∥∥P
1
2 u
∥∥∥2

− 1
r

d
dt

∫
Ω

|u|r ln |u|dx+
1
r2

d
dt

∥u∥r
r =−

∫
Ω

u2
t dx.

Thus, we get

d
dt

(
1
2

∥∥∥P
1
2 u
∥∥∥2

− 1
r

∫
Ω

|u|r ln |u|dx+
1
r2 ∥u∥r

r

)
=−

∫
Ω

u2
t dx. (2.6)
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By (2.1) and (2.6), we obtain

d
dt

J(u) =−
∫
Ω

u2
t dx. (2.7)

Moreover, integrating (2.7) with respect to t on [0, t], we arrive at

J(u(t))+
∫ t

0
∥us(τ)∥2 dτ = J(u0). (2.8)

□

Lemma 3. Let u ∈ Hm
0 (Ω)\{0} and j (λ) = J(λu). Then we get

(i) limλ→0+ j(λ) = 0 and limλ→+∞ j(λ) =−∞,
(ii) there is a unique λ∗ > 0 such that j′(λ∗) = 0,

(iii) j(λ) is decreasing on (λ∗,+∞), increasing on (0,λ∗) and taking the max-
imum at λ∗,

(iv) I(λu)< 0 for λ ∈ (λ∗,+∞) , I(λu)> 0 for λ ∈ (0,λ∗) and I(λ∗u) = 0.

Proof. By the definition of j, for u ∈ H1
0 (Ω)\{0}, we get

j(λ) =
λ2

2

∥∥∥P
1
2 u
∥∥∥2

− λr

r

∫
Ω

|u|r ln |u|dx− λr

r
lnλ∥u∥r

r +
λr

r2 ∥u∥r
r . (2.9)

By (2.9), we have

d
dλ

j(λ) = λ

∥∥∥P
1
2 u
∥∥∥2

−λ
r−1

∫
Ω

|u|r ln |u|dx−λ
r−1 lnλ∥u∥r

r −
λr−1

r
∥u∥r

r +
λr−1

r
∥u∥r

r

= λ

(∥∥∥P
1
2 u
∥∥∥2

−λ
r−2

∫
Ω

|u|r ln |u|dx−λ
r−2 lnλ∥u∥r

r

)
.

Let φ(λ) = λ−1 j′(λ), thus we obtain

φ(λ) =
∥∥∥P

1
2 u
∥∥∥2

−λ
r−2

∫
Ω

|u|r ln |u|dx−λ
r−2 lnλ∥u∥r

r .

Then

φ
′(λ) =−(r−2)λr−3

∫
Ω

|u|r ln |u|dx− (r−2)λr−3 lnλ∥u∥r
r −λ

r−3 ∥u∥r
r ,

which yields that there exists a λ∗ > 0 such that φ′(λ)< 0 on (λ∗,+∞), φ′(λ)> 0 on
(0,λ∗) and φ′(λ) = 0. Thus, φ(λ) is decreasing on (λ∗,+∞), increasing on (0,λ∗).
Since limλ→0+ φ(λ)> 0, limλ→+∞ φ(λ) =−∞, there exists a unique λ∗ > 0 such that
φ(λ∗) = 0, i.e., j′(λ∗) = 0. Then, j′(λ) = λφ(λ) is negative on (λ∗,+∞), positive on
(0,λ∗). Thus, j(λ) is decreasing on (λ∗,+∞), increasing on (0,λ∗) and taking the
maximum at λ∗. By (2.2), we get

I(λu) =
∥∥∥P

1
2 (λu)

∥∥∥2
−

∫
Ω

|λu|r ln |λu|dx
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= λ
2
∥∥∥P

1
2 u
∥∥∥2

−λ
r
∫

Ω

|u|r ln |u|dx−λ
r lnλ∥u∥r

r

= λ j′(λ).

So, I(λu)< 0 for λ ∈ (λ∗,+∞) , I(λu)> 0 for λ ∈ (0,λ∗) and I(λ∗u) = 0. Therefore,
the proof is completed. □

Lemma 4 ([8]). Let µ be a constant and g : R+ → R+ be a nonincreasing function
such that ∫ +∞

t
g1+µ(τ)dτ ≤ 1

ζ
gµ(0)g(t), for all t ≥ 0.

Hence

(i) g(t)≤ g(0)
(

1+µ
1+ζµt

) 1
µ
, ∀t ≥ 0, whenever µ > 0,

(ii) g(t)≤ g(0)e1−ζt , ∀t ≥ 0, whenever µ = 0.

3. MAIN RESULTS

As in [9], we consider the following notations:

W1 = {u ∈ H1
0 (Ω)\{0} : J(u)< d}, W2 = {u ∈ H1

0 (Ω)\{0} : J(u) = d},
W +

1 = {u ∈ W1 : I(u)> 0}, W +
2 = {u ∈ W2 : I(u)> 0},

W −
1 = {u ∈ W1 : I(u)< 0}, W −

2 = {u ∈ W2 : I(u)< 0},
W = W1 ∪W2, W + = W +

1 ∪W +
2 , W − = W −

1 ∪W −
2 .

We refer to W as the potential well and d as the depth of the well.

Definition 1 (Weak Solution). We say that function u(t) is a weak solution of
problem (1.1) on Ω× [0,T ], if u ∈ L∞(0,T ;Hm

0 (Ω)) with ut ∈ L2(0,T ;Hm
0 (Ω)) and

implies the initial condition u(0) = u0 ∈ Hm
0 (Ω)\{0}, and the following equality

(ut ,w)+
(

P
1
2 u,P

1
2 w
)
=
(
|u|r−2 u ln |u| ,w

)
,

for all w∈Hm
0 (Ω) holds for a.e. t ∈ [0,T ], and (., .) means the inner product (., .)L2(Ω) ,

that is
(η,ξ) =

∫
Ω

η(x)ξ(x)dx.

Definition 2 (Maximal Existence Time). Suppose that u(t) is a weak solutions of
problem (1.1). We define the following the maximal existence time Tmax

Tmax = sup{T > 0 : u(t) exists on [0,T ]}.
Then

(a) If Tmax = ∞, we say that u(t) is global;
(b) If Tmax < ∞, we say that u(t) blows up in finite time.
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Theorem 1 (Global Existence). Let u0 ∈ W +. Then problem (1.1) admits a global
weak solution. We get u(t) ∈ W + holds for any t ∈ [0,+∞), and the energy estimate

J(u(t))+
∫ t

0
∥us(s)∥2 ds ≤ J(u0), t ∈ [0,+∞).

Also, the solution decays exponential provided u0 ∈ W +
1 .

Proof. We will the investigate the following two cases:
Firstly, we address the case of the initial data u0 ∈ W +

1 .
The Faedo-Galerkin’s methods is used. In the space Hm

0 (Ω), we take a bases
{w j}∞

j=1 and define the finite orthogonal space

Vs = span{w1,w2, ...,ws}.

Let u0s be an element of Vs such that

u0s =
s

∑
j=1

as jw j → u0, in Hm
0 (Ω), (3.1)

as s → ∞. We construct the following approximate solution us(x, t) of problem (1.1)

us(x, t) =
s

∑
j=1

as j(t)w j(x), (3.2)

where the coefficients as j (1 ≤ j ≤ s) imply the ODEs∫
Ω

ustwidx+
∫

Ω

Puswidx =
∫

Ω

|us|r−2 us ln |us|widx, (3.3)

for i ∈ {1,2, ...,s}, with the initial condition

as j(0) = as j, j ∈ {1,2, ...,s}. (3.4)

We multiply both sides of (3.3) by a′si, sum for i = 1, ...,s and integrating with respect
to time variable on [0, t], we get

J(us(t))+
∫ t

0
∥usτ(τ)∥2 dτ ≤ J(u0s), 0 ≤ t ≤ Tmax, (3.5)

where Tmax is the maximal existence time of solution us(t). We shall prove that
Tmax =+∞. From (3.1), (3.5) and the continuity of J, we obtain

J(us(0))→ J(u0s), as s → ∞. (3.6)

Thanks to J(u0)< d and the continuity of functional J, it follows from (3.6) that

J(u0s)< d, for sufficiently large m.

And therefore, from (3.5), we get

J(us(t))+
∫ t

0
∥usτ(τ)∥2 dτ < d, 0 ≤ t ≤ Tmax, (3.7)
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for sufficiently large s. Next, we will study

us(t) ∈ W +
1 , t ∈ [0,Tmax), (3.8)

for sufficiently large s. We assume that (3.8) does not process and think that there
exists a sufficiently small time t0 such that us(t0) /∈ W +

1 . Then, by continuity of
us(t0) ∈ ∂W +

1 . So, we get
J(us(t0)) = d, (3.9)

and
I(us(t0)) = 0. (3.10)

Nevertheless, by definition of d, we see that (3.9) could not consist by (3.7) while if
(3.10) holds then, we get

d = inf
u∈N

J(u)≤ J(us(t0)),

which also contradicts with (3.7). Moreover, we have (3.8), i.e., I(us(t)) > 0, and
J(us(t))< d, for all t ∈ [0,Tmax), for sufficiently large s. Then, from (2.3), we obtain

d > J(us(t))

=
1
r

I(us(t))+
(

1
2
− 1

r

)∥∥∥P
1
2 us(t)

∥∥∥2
+

1
r2 ∥us(t)∥r

r

≥
(

1
2
− 1

r

)∥∥∥P
1
2 us(t)

∥∥∥2
+

1
r2 ∥us(t)∥r

r ,

which gives
∥us(t)∥r

r < r2d, (3.11)
and ∥∥∥P

1
2 us(t)

∥∥∥2
<

2r
r−2

d. (3.12)

Since us(x, t)∈ W +
1 for s large enough, it follows from (2.3) that J(us)≥ 0 for s large

enough. So, by (3.7) it follows for s large enough∫ t

0
∥usτ(τ)∥2 dτ < d. (3.13)

By (3.12), we know that
Tmax =+∞.

It follows from (3.11) and (3.13) that there exist a function u ∈ Hm
0 (Ω) and a sub-

sequence of {us}∞
j=1 is indicated by {us}∞

j=1 such that

us → u weakly* in L∞(0,∞;Hm
0 (Ω)), (3.14)

ust → ut weakly in L2(0,∞;L2(Ω)). (3.15)
By (3.14), (3.15) and the Aubin-Lions compactness theorem, we obtain

us → u strongly in C([0,+∞];L2(Ω)).
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This yields that

|us|r−2 us ln |us| → |u|r−2 u ln |u| a.e. (x, t) ∈ Ω× (0,+∞). (3.16)

Moreover, since
α

r−1 lnα =−(e(r−1))−1 for α > 1,

and
lnα = 2ln

(
α

1
2

)
≤ 2α

1
2 for α > 0.

By (3.11), we have∫
Ω

(
|us(t)|r−1 ln |us(t)|

) 2r
2r−1

dx =
∫

Ω1

(
|us(t)|r−1 ln |us(t)|

) 2r
2r−1

dx

+
∫

Ω2

(
|us(t)|r−1 ln |us(t)|

) 2r
2r−1

dx

≤ [e(r−1)]−
2r

2r−1 |Ω|+2
2r

2r−1

∫
Ω2

|us(t)|
2r(r−1+ 1

2)
2r−1 dx

= [e(r−1)]−
2r

2r−1 |Ω|+2
2r

2r−1

∫
Ω2

|us(t)|r dx

≤Cd := [e(r−1)]−
2r

2r−1 |Ω|+2
2r

2r−1 r2d, (3.17)

where
Ω1 = {x ∈ Ω : |us(t)| ≤ 1}, and Ω2 = {x ∈ Ω : |us(t)| ≥ 1}.

Hence, it follows from (3.16) and (3.17) that

|us|r−2 us ln |us| → |u|r−2 u ln |u| weakly* in L∞(0,+∞;L
2r

2r−1 (Ω)) .

Then integrating (3.3) respect to t for 0 ≤ t < ∞, we obtain

(ut ,wi)+
(

P
1
2 u,P

1
2 wi

)
=
(
|u|r−2 u ln |u| ,wi

)
.

On the other hand, there exists a global weak solution u0 ∈ W +
1 of problem (1.1).

Now we address the case of the initial data u0 ∈ W +
2 .

First we can choose a sequence {ωs}∞

s=1 ⊂ (0,1) and lims→∞ ωs = 1. Next, we
investigate the following problem: ut +Pu = ur−2u ln |u| , x ∈ Ω, t > 0,

Dγu(x, t) = 0, |γ| ≤ m−1, x ∈ ∂Ω, t > 0,
u(x,0) = u0s(x), x ∈ Ω,

(3.18)

where u0s = ωsu0. By I(u0) > 0 and Lemma 3, it is clear that there exists a λ∗ > 1.
Also, J(u0s) = J(ωsu0) < J(u0) = d and I(u0s) = I(ωsu0) > 0 hold. So, we have
u0 ∈ W +

2 . Similarly to the previous situation, it is clear that problem (3.18) im-
plies that, for all s > 0, there exists a global us which implies us ∈ L∞(0,∞;Hm

0 (Ω)),
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ust ∈ L2(0,∞;L2(Ω)), us(0) = u0s = ωsu0 → u0 strongly in Hm
0 (Ω), and the following

equality ∫
Ω

ustwdx+
∫

Ω

Puswdx =
∫

Ω

|us|r−2 us ln |us|wdx, (3.19)

with any w ∈ Hm
0 (Ω) holds for a.e. 0 ≤ t < ∞. Also, we get

us(t) ∈ W +
2 , t ∈ [0,∞),

and

J(us(t))+
∫ t

0
∥usτ(τ)∥2 dτ ≤ J(u0s)< d.

On the other hand, we can deduce (3.12), (3.13) and (3.17) for each s. Also, there
exist u and a subsequence still denoted by {us}, such that, as s −→ ∞,

us → u weakly* in L∞(0,∞;Hm
0 (Ω)),

ust → ut weakly in L2(0,∞;L2(Ω)),

|us|r−2 us ln |us| → |u|r−2 u ln |u| weakly* in L∞(0,+∞;L
2r

2r−1 (Ω)).

Then integrating (3.19) respect to t for 0 ≤ t < ∞, we obtain

(ut ,w)+
(

P
1
2 u,P

1
2 w
)
=
(
|u|r−2 u ln |u| ,w

)
.

Therefore, there exists a global weak solution u0 ∈ W +
2 of problem (1.1).

Decay estimates

Thanks to u0 ∈ W +
1 , we deduce from (2.3) that

J(u0)> J(u(t))

=
1
r

I(u(t))+
(

1
2
− 1

r

)∥∥∥P
1
2 u(t)

∥∥∥2
+

1
r2 ∥u(t)∥r

r

≥
(

1
2
− 1

r

)∥∥∥P
1
2 u(t)

∥∥∥2
+

1
r2 ∥u(t)∥r

r . (3.20)

From Lemma 2, (2.4) and I(u(t))> 0, there exists a λ∗ > 1 such that I(λ∗u(t)) = 0.
We get

d ≤ J(λ∗u(t))

= (λ∗)r
(
(λ∗)2−r

(
1
2
− 1

r

)∥∥∥P
1
2 u(t)

∥∥∥2
+

1
r2 ∥u(t)∥r

r

)
≤ (λ∗)r

((
1
2
− 1

r

)∥∥∥P
1
2 u(t)

∥∥∥2
+

1
r2 ∥u(t)∥r

r

)
. (3.21)

Using (3.20) and (3.21), we get

d ≤ (λ∗)rJ(u0),
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which yields that

λ
∗ ≥

(
d

J(u0)

) 1
r

. (3.22)

By (2.2), we get

0 = I(λ∗u(t)) = (λ∗)rI(u(t))+
[
(λ∗)2 − (λ∗)r]∥∥∥P

1
2 u(t)

∥∥∥2
− (λ∗)r ln(λ∗)∥u(t)∥r

r .

(3.23)

From (3.22), (3.23) and Lemma 1, we obtain

I(u(t))≥
[
1− (λ∗)2−r]∥∥∥P

1
2 u(t)

∥∥∥2

≥

[
1−
(

d
J(u0)

) 2−r
r
]∥∥∥P

1
2 u(t)

∥∥∥2

≥C1 ∥u(t)∥2 , (3.24)

where C1 is constant. Integrating the I(u(τ)) with respect to τ over (t,T ), we obtain∫ T

t
I(u(τ))dτ =−

∫ T

t

∫
Ω

uτ(τ)u(τ)dxdτ ≤ C2

2
∥u(t)∥2 . (3.25)

where C2 is constant. From (3.24) and (3.25), we have∫ T

t
C1 ∥u(t)∥2 ds ≤ C2

2
∥u(t)∥2 , for all t ∈ [0,T ]. (3.26)

Let T →+∞ in (3.26), we can have∫
∞

t
∥u(t)∥2 ds ≤C3 ∥u(t)∥2 ,

where C3 =
C2
2C1

. By Lemma 4, we have

∥u(t)∥2 ≤ ∥u(0)∥2 e1− t
C3 , t ∈ [0,∞).

□
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