

NEW INEQUALITIES OF WIRTINGER TYPE FOR DIFFERENT KINDS OF CONVEX FUNCTIONS

ALI KARAOĞLAN, ERHAN SET, AHMET OCAK AKDEMIR, AND EDA ŞAHIN

Received 11 February, 2021

Abstract. T.Z. Mirković [14] obtained new inequalities of Wirtinger type by using some classical inequalities and special means for convex function. So in this paper, we obtain some inequalities of Wirtinger type for *s*-convex function, *m*-convex function, (α, m) -convex function, quasi-convex function and *P*-function. Also several special cases are discussed, which can be deduced from our main results.

2010 Mathematics Subject Classification: 26A33, 26A51, 26D10.

Keywords: Wirtinger inequality, Wirtinger type inequalities, convex function, *s*-convex function, *P*-function, *m*-convex function, (α , *m*)-convex function, quasi-convex function.

1. INTRODUCTION

W.Wirtinger proved the following Theorem 1 regarding periodic functions.The proof of Wirtinger was published in 1916 in the book [5] by W. Blaschke.

Theorem 1. Let f be a periodic function with period 2π and let $f' \in L^2$. Then, if $\int_0^{2\pi} f(x) dx = 0$, the following inequality holds

$$\int_{0}^{2\pi} f^{2}(x)dx \le \int_{0}^{2\pi} (f')^{2}(x)dx \tag{1.1}$$

with equality if and only if $f(x) = A\cos x + B\sin x$, where A and B are constants.

Inequality (1.1) is known in the literature as Wirtinger's inequality. Wirtinger's inequality compares the integral of a square of a function with that of a square of its first derivative. Last years, a large number of papers which generalize and extend Wirtinger's inequality have been appeared in the literature (see [1], [4], [13] [15], [3], [12], [17], [19]).

In 1905, E.Almansi proved the following theorem [2].

© 2022 Miskolc University Press

Theorem 2. Let f and f' are continuous the interval (a,b), that f(a) = f(b) and that $\int_a^b f(x)dx = 0$ then the following inequality holds

$$\int_{a}^{b} f^{2}(x) dx \leq \left(\frac{b-a}{2\pi}\right)^{2} \int_{a}^{b} [f'(x)]^{2} dx.$$
(1.2)

We recall some previously known definitions of different type of convexity.

Definition 1. The function $f : [a,b] \subseteq \mathbb{R} \to \mathbb{R}$ is said to be convex if the following inequality holds

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y)$$

for all $x, y \in [a, b]$ and $\lambda \in [0, 1]$. We say that *f* is concave if (-f) is convex.

Definition 2. (see [8],[16]) Let $0 < s \le 1$. A function $f : [0, \infty) \to \mathbb{R}$ is said to be s-Orlicz convex or s-convex in the first sense, if for every $x, y \in [0, \infty)$ and $\alpha, \beta \ge 0$ with $\alpha^s + \beta^s = 1$, we have:

$$f(\alpha x + \beta y) \le \alpha^s f(x) + \beta^s f(y). \tag{1.3}$$

We denote the set of all s-convex functions in the first sense by K_s^1 .

Definition 3. (see [6],[11]) Let $0 < s \le 1$. A function $f : [0, \infty) \to \mathbb{R}$, is said to be s-Breckner convex or s-convex in the second sense, if for every $x, y \in [0, \infty)$ and $\alpha, \beta \ge 0$ with $\alpha + \beta = 1$, we have:

$$f(\alpha x + \beta y) \le \alpha^s f(x) + \beta^s f(y).$$
(1.4)

The set of all s-convex functions in the second sense is denoted by K_s^2 .

Definition 4. ([7]) A function $f : I \subseteq \mathbb{R} \to \mathbb{R}$ is P-function or that f belongs to the class of P(I), if it is nonnegative and, for all $x, y \in I$ and $\lambda \in [0, 1]$, satisfies the following inequality;

$$f(\lambda x + (1 - \lambda)y) \le f(x) + f(y).$$
(1.5)

Definition 5. (see, e.g., [9]) The function $f : [0,b] \to \mathbb{R}$ is said to be *m*-convex, where $m \in [0,1]$, if for every $x, y \in [0,b]$ and $t \in [0,1]$ we have:

$$f(tx + m(1-t)y) \le tf(x) + m(1-t)f(y).$$

Denote by $K_m(b)$ the set of the *m*-convex functions on [0,b] for which $f(0) \le 0$.

Definition 6. (see, e.g., [9]) The function $f : [0,b] \to \mathbb{R}$ is said to be (α, m) -convex, where $(\alpha, m) \in [0,1]^2$, if for every $x, y \in [0,b]$ and $t \in [0,1]$ we have:

$$f(tx+m(1-t)y) \le t^{\alpha}f(x)+m(1-t^{\alpha})f(y).$$

Denote by $K_m^{\alpha}(b)$ the set of the (α, m) -convex functions on [0, b] for which $f(0) \leq 0$.

Definition 7. [10] Let $f : I \subseteq \mathbb{R} \to \mathbb{R}$ for all $t \in [0, 1]$ and all $x, y \in I$, if the following inequality

$$f(tx + (1-t)y) \le max\{f(x), f(y)\}$$

holds, then f is called a quasi-convex function on I.

We recall definition of Beta function (see, e.g., [18])

Definition 8. Assume that $\Re(a) > 0$ and $\Re(b) > 0$, the Beta function is denoted by B(a,b) and defined as

$$B(a,b) = \int_0^1 t^{a-1} (1-t)^{b-1} dt.$$

An important property connecting the Gamma and Beta functions can be stated as following:

$$B(a,b) = \frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)}.$$

T.Z. Mirković [14] proved the following theorems involving inequalities of Wirtinger type for convex functions.

Theorem 3. Let f and f' are continuous on the interval (a,b), with f(a) = f(b) and $\int_a^b f(x)dx = 0$. If $(f')^2$ is convex on [a,b], then the following inequality holds

$$\int_{a}^{b} [f(x)]^{2} dx \leq \frac{(b-a)^{3}}{8\pi^{2}} \left([f'(a)]^{2} + [f'(b)]^{2} \right).$$
(1.6)

Theorem 4. Let f and f' are continuous on the interval (a,b), with f(a) = f(b) and $\int_a^b f(x)dx = 0$. If f' is convex on [a,b], then the following inequality holds

$$\int_{a}^{b} [f(x)]^{2} dx \leq \frac{(b-a)^{3}}{(2\pi)^{2}} \left(\frac{[f'(a)]^{2} + [f'(a)][f'(b)] + [f'(b)]^{2}}{3} \right).$$
(1.7)

Theorem 5. Let f and f' are continuous on the interval (a,b), with f(a) = f(b)and $\int_a^b f(x)dx = 0$. If f' is positive, $(f')^{\frac{1}{\alpha}}$ and $(f')^{\frac{1}{\beta}}$ are convex on [a,b], then the following inequality holds

$$\int_{a}^{b} [f(x)]^{2} dx$$

$$\leq \alpha (b-a)^{3} \frac{[f'(a)]^{\frac{1}{\alpha}} + [f'(b)]^{\frac{1}{\alpha}}}{8\pi^{2}} + \beta (b-a)^{3} \frac{[f'(a)]^{\frac{1}{\beta}} + [f'(b)]^{\frac{1}{\beta}}}{8\pi^{2}}$$
(1.8)

where $\alpha, \beta > 0$ and $\alpha + \beta = 1$.

2. MAIN RESULTS

In this section, we obtained some new inequalities of Wirtinger type for different kinds of convex functions.

Theorem 6. Let f and f' are continuous on the interval (a,b), with f(a) = f(b) and $\int_a^b f(x)dx = 0$. If $(f')^2$ is P-function on [a,b], then the following inequality holds:

$$\int_{a}^{b} [f(x)]^{2} dx \leq \frac{(b-a)^{3}}{(2\pi)^{2}} \left([f'(a)]^{2} + [f'(b)]^{2} \right).$$
(2.1)

Proof. Since $(f')^2$ is a *P*-function on [a,b], therefore for $t \in [0,1]$ we have

$$\frac{1}{b-a} \int_{a}^{b} [f'(x)]^{2} dx = \int_{0}^{1} \left[f'(ta+(1-t)b) \right]^{2} dt$$
$$\leq \int_{0}^{1} \left([f'(a)]^{2} + [f'(b)]^{2} \right) dt$$
$$= [f'(a)]^{2} + [f'(b)]^{2}.$$

Multiplying the both sides of above inequality by $\frac{(b-a)^3}{(2\pi)^2}$, we get

$$\left(\frac{b-a}{2\pi}\right)^2 \int_a^b [f'(x)]^2 dx \le \frac{(b-a)^3}{(2\pi)^2} \left([f'(a)]^2 + [f'(b)]^2 \right).$$

By using inequality (1.2), we get inequality (2.1) and the proof is completed.

Theorem 7. Let f and f' are continuous on the interval (a,b), $0 \le a < b$, with f(a) = f(b) and $\int_a^b f(x)dx = 0$. If $(f')^2$ is s-convex in the second sense on [a,b], then the following inequality holds:

$$\int_{a}^{b} [f(x)]^{2} dx \leq \frac{(b-a)^{3}}{(2\pi)^{2}} \left(\frac{[f'(a)]^{2} + [f'(b)]^{2}}{s+1} \right) \qquad \text{where } s \in (0,1].$$
(2.2)

Proof. Since $(f')^2$ is a s-convex function on [a, b], therefore for $t \in [0, 1]$, we have

$$\begin{aligned} \frac{1}{b-a} \int_{a}^{b} [f'(x)]^{2} dx &= \int_{0}^{1} \left[f'(ta+(1-t)b) \right]^{2} dt \\ &\leq \int_{0}^{1} \left[t^{s} [f'(a)]^{2} + (1-t)^{s} [f'(b)]^{2} \right] dt \\ &= \frac{1}{s+1} \left[f'(a) \right]^{2} + \frac{1}{s+1} \left[f'(b) \right]^{2} \\ &= \frac{[f'(a)]^{2} + [f'(b)]^{2}}{s+1}. \end{aligned}$$

By multiplying by $\frac{(b-a)^3}{(2\pi)^2}$, the both sides of above inequality, we can write

$$\left(\frac{b-a}{2\pi}\right)^2 \int_a^b [f'(x)]^2 dx \le \frac{(b-a)^3}{(2\pi)^2} \frac{[f'(a)]^2 + [f'(b)]^2}{(s+1)}$$

With the help of the inequality (1.2), we obtain (2.2) and the proof is completed. \Box

Remark 1. In Theorem 7, if we choose s = 1, the inequality (2.2) reduces to the inequality (1.6).

Theorem 8. Let f and f' are continuous on the interval (a,b), with f(a) = f(b)and $\int_a^b f(x)dx = 0$. If $(f')^2$ is quasi-convex on [a,b], then the following inequality holds:

$$\int_{a}^{b} [f(x)]^{2} dx \leq \frac{(b-a)^{3}}{(2\pi)^{2}} \max\left\{ [f'(a)]^{2}, [f'(b)]^{2} \right\}.$$
(2.3)

Proof. Since $(f')^2$ is a quasi-convex on [a,b], we have

$$\frac{1}{b-a} \int_{a}^{b} [f'(x)]^{2} dx = \int_{0}^{1} \left[f'(ta+(1-t)b) \right]^{2} dt$$
$$\leq \int_{0}^{1} \max\left\{ [f'(a)]^{2}, [f'(b)]^{2} \right\} dt$$
$$= \max\left\{ [f'(a)]^{2}, [f'(b)]^{2} \right\}$$

for $t \in [0, 1]$. Multiplying the both sides of above inequality by $\frac{(b-a)^3}{(2\pi)^2}$, we get

$$\left(\frac{b-a}{2\pi}\right)^2 \int_a^b [f'(x)]^2 dx \le \frac{(b-a)^3}{(2\pi)^2} \max\left\{ [f'(a)]^2, [f'(b)]^2 \right\}.$$

By using inequality (1.2) for the resulting inequality, the proof is completed.

Theorem 9. Let f and f' are continuous on the interval (a,mb), $0 \le a < mb$, with f(a) = f(mb) and $\int_a^{mb} f(x)dx = 0$. If $(f')^2$ is m-convex function on [a,b], then the following inequality holds

$$\int_{a}^{mb} [f(x)]^{2} dx \leq \frac{(mb-a)^{3}}{(2\pi)^{2}} \left[\frac{[f'(a)]^{2} + m[f'(b)]^{2}}{2} \right]$$
(2.4)

for $m \in [0, 1]$.

Proof. By using the *m*-convexity of $(f')^2$ on [a,b], we have

$$\frac{1}{mb-a} \int_{a}^{mb} [f'(x)]^{2} dx = \int_{0}^{1} \left[f'(ta+m(1-t)b) \right]^{2} dt$$
$$\leq \int_{0}^{1} \left(t [f'(a)]^{2} + m(1-t) [f'(b)]^{2} \right) dt$$
$$= \frac{[f'(a)]^{2} + m[f'(b)]^{2}}{2}$$

for $t \in [0, 1]$. Multiplying the both sides of above inequality by $\frac{(mb-a)^3}{(2\pi)^2}$, we get

$$\left(\frac{mb-a}{2\pi}\right)^2 \int_a^{mb} [f'(x)]^2 dx \le \frac{(mb-a)^3}{(2\pi)^2} \left[\frac{[f'(a)]^2 + m[f'(b)]^2}{2}\right]$$

By using inequality (1.2), we conclude the desired result.

Remark 2. In Theorem 9, if we set m = 1, the inequality (2.4) reduces to the inequality (1.6).

Theorem 10. Let f and f' are continuous on the interval (a,mb), $0 \le a < mb$, with f(a) = f(mb) and $\int_a^{mb} f(x)dx = 0$. If $(f')^2$ is (α,m) -convex on [a,b], then the following inequality holds:

$$\int_{a}^{mb} [f(x)]^{2} dx \leq \frac{(mb-a)^{3}}{(2\pi)^{2}} \left[\frac{[f'(a)]^{2} + \alpha m [f'(b)]^{2}}{\alpha + 1} \right]$$
(2.5)

where $(\alpha, m) \in [0, 1]^2$.

Proof. Since $(f')^2$ is a (α, m) -convex on [a, b], we have

$$\frac{1}{mb-a} \int_{a}^{mb} [f'(x)]^{2} dx = \int_{0}^{1} \left[f'(ta+m(1-t)b) \right]^{2} dt$$

$$\leq \int_{0}^{1} \left(t^{\alpha} [f'(a)]^{2} + m(1-t^{\alpha}) [f'(b)]^{2} \right) dt$$

$$= \frac{1}{\alpha+1} \left[f'(a) \right]^{2} + m \frac{\alpha}{\alpha+1} \left[f'(b) \right]^{2}$$

for $t \in [0,1]$ and $(\alpha,m) \in [0,1]^2$. Multiplying the both sides of above inequality by $\frac{(mb-a)^3}{(2\pi)^2}$ and using inequality (1.2) for the resulting inequality, we get the required inequality.

Remark 3. In Theorem 10, if we take m = 1 and $\alpha = 1$ the inequality (2.5) reduces to the inequality (1.6).

Theorem 11. Let f and f' are continuous on the interval (a,b), with f(a) = f(b) and $\int_a^b f(x)dx = 0$. If f' is *P*-function on [a,b], then the following inequality holds:

$$\int_{a}^{b} [f(x)]^{2} dx \leq \frac{(b-a)^{3}}{(2\pi)^{2}} \left[f'(a) + f'(a) \right]^{2}.$$
(2.6)

Proof. By using the change of the variable, it is easy to see that

$$\left(\frac{b-a}{2\pi}\right)^2 \int_a^b [f'(x)]^2 dx = \frac{(b-a)^3}{(2\pi)^2} \int_0^1 \left[f'(ta+(1-t)b)\right]^2 dt$$
$$\leq \frac{(b-a)^3}{(2\pi)^2} \int_0^1 \left[f'(a)+f'(b)\right]^2 dt$$

$$= \frac{(b-a)^3}{(2\pi)^2} \left[f'(a) + f'(b) \right]^2.$$

By using inequality (1.2), we get inequality (2.6) and the proof is completed.

Theorem 12. Let f and f' are continuous on the interval (a,b), with f(a) = f(b) and $\int_a^b f(x)dx = 0$. If f' is quasi-convex function on [a,b], then the following inequality holds:

$$\int_{a}^{b} [f(x)]^{2} dx \leq \frac{(b-a)^{3}}{(2\pi)^{2}} \left[\max\left\{ f'(a), f'(b) \right\} \right]^{2}.$$
(2.7)

Proof. From the definition of quasi-convex functions and by using the change of the variable, we have

$$\left(\frac{b-a}{2\pi}\right)^2 \int_a^b [f'(x)]^2 dx = \frac{(b-a)^3}{(2\pi)^2} \int_0^1 \left[f'(ta+(1-t)b)\right]^2 dt \leq \frac{(b-a)^3}{(2\pi)^2} \int_0^1 \left[\max\left\{f'(a), f'(b)\right\}\right]^2 dt = \frac{(b-a)^3}{(2\pi)^2} \left[\max\left\{f'(a), f'(b)\right\}\right]^2.$$

By using inequality (1.2) in the above inequality, the proof is completed.

Theorem 13. Let f and f' are continuous on the interval (a,mb), $0 \le a < mb$, with f(a) = f(mb) and $\int_a^{mb} f(x)dx = 0$. If f' is m-convex function on [a,b], then the following inequality holds:

$$\int_{a}^{mb} [f(x)]^{2} dx \leq \frac{(mb-a)^{3}}{(2\pi)^{2}} \left[\frac{[f'(a)]^{2} + m[f'(a)][f'(b)] + m^{2}[f'(b)]^{2}}{3} \right]$$
(2.8)
$$a \in [0, 1]$$

for $m \in [0, 1]$.

Proof. By using the *m*-convexity of f' on [a,b], we have

$$\left(\frac{mb-a}{2\pi}\right)^2 \int_a^{mb} [f'(x)]^2 dx = \frac{(mb-a)^3}{(2\pi)^2} \int_0^1 \left[f'(ta+m(1-t)b)\right]^2 dt$$

$$\leq \frac{(mb-a)^3}{(2\pi)^2} \int_0^1 \left[tf'(a)+m(1-t)f'(b)\right]^2 dt$$

$$= \frac{(mb-a)^3}{(2\pi)^2} \int_0^1 \left[t^2[f'(a)]^2 + (2mt-2mt^2)f'(a)f'(b) + (m^2-2m^2t+m^2t^2)[f'(b)]^2\right] dt$$

$$= \frac{(mb-a)^3}{(2\pi)^2} \left[\frac{[f'(a)]^2+m[f'(a)][f'(b)]+m^2[f'(b)]^2}{3}\right].$$

By using inequality (1.2) we get inequality (2.8) and the proof is complete.

Remark 4. In Theorem 13, if we take m = 1, the inequality (2.8) reduces to the inequality (1.7)

Theorem 14. Let f and f' are continuous on the interval (a,mb), $0 \le a < mb$, with f(a) = f(mb) and $\int_a^{mb} f(x)dx = 0$. If f' is (α, m) -convex function on [a,b], then the following inequality holds:

$$\int_{a}^{mb} [f(x)]^{2} dx \leq \frac{(mb-a)^{3}}{(2\pi)^{2}} \left[\frac{(\alpha+1)[f'(a)]^{2} + 2m\alpha[f'(a)][f'(b)] + 2\alpha^{2}m^{2}[f'(b)]^{2}}{(\alpha+1)(2\alpha+1)} \right]$$
(2.9)

 $(\boldsymbol{\alpha},m)\in[0,1]^2.$

Proof. From the definition of f' and by using the change of the variable, we have

$$\begin{split} \left(\frac{mb-a}{2\pi}\right)^2 \int_a^{mb} [f'(x)]^2 dx &= \frac{(mb-a)^3}{(2\pi)^2} \int_0^1 \left[f'(ta+m(1-t)b)\right]^2 dt \\ &\leq \frac{(mb-a)^3}{(2\pi)^2} \int_0^1 \left[t^{\alpha} f'(a) + m(1-t^{\alpha})f'(b)\right]^2 dt \\ &= \frac{(mb-a)^3}{(2\pi)^2} \int_0^1 \left[t^{2\alpha} [f'(a)]^2 \\ &+ (2mt^{\alpha}-2mt^{2\alpha})f'(a)f'(b) + (m^2-2m^2t^{\alpha}+m^2t^{2\alpha})[f'(b)]^2\right] dt \\ &= \frac{(mb-a)^3}{(2\pi)^2} \left[\frac{(\alpha+1)[f'(a)]^2 + 2m\alpha[f'(a)][f'(b)] + 2\alpha^2m^2[f'(b)]^2}{(\alpha+1)(2\alpha+1)}\right]. \end{split}$$

By a similar argument to the proof of previous theorems, by using inequality (1.2), we get the desired result.

Remark 5. In Theorem 14, if we take m = 1, $\alpha = 1$ the inequality (2.9) reduces to the inequality (1.7)

Theorem 15. Let f and f' are continuous on the interval (a,b), $0 \le a < b$, with f(a) = f(b) and $\int_a^b f(x)dx = 0$. If f' is s-convex function in the second sense on [a,b], then the following inequality holds:

$$\int_{a}^{b} [f(x)]^{2} dx$$

$$\leq \frac{(b-a)^{3}}{(2\pi)^{2}} \left[\frac{1}{2s+1} [f'(a)]^{2} + 2 B(s+1,s+1) f'(a) f'(b) + \frac{1}{2s+1} [f'(b)]^{2} \right]$$
(2.10)

for $s \in (0, 1]$.

Proof. Since f' is s-convex function in the second sense, we can write $(b-a)^2 \int_{-a}^{b} \int_{$

$$\left(\frac{b-a}{2\pi}\right)^2 \int_a^b [f'(x)]^2 dx$$

$$= \frac{(b-a)^3}{(2\pi)^2} \int_0^1 \left[f'(ta+(1-t)b) \right]^2 dt$$

$$\leq \frac{(b-a)^3}{(2\pi)^2} \int_0^1 \left[t^s f'(a) + (1-t)^s f'(b) \right]^2 dt$$

$$= \frac{(b-a)^3}{(2\pi)^2} \int_0^1 \left[t^{2s} [f'(a)]^2 + 2t^s (1-t)^s f'(a) f'(b) + (1-t)^{2s} [f'(b)]^2 \right] dt$$

$$= \frac{(b-a)^3}{(2\pi)^2} \left[[f'(a)]^2 \int_0^1 t^{2s} dt + 2f'(a) f'(b) \int_0^1 t^s (1-t)^s dt + [f'(b)]^2 \int_0^1 (1-t)^{2s} dt \right]$$

$$= \frac{(b-a)^3}{(2\pi)^2} \left[\frac{1}{2s+1} [f'(a)]^2 + 2B(s+1,s+1)f'(a)f'(b) + \frac{1}{2s+1} [f'(b)]^2 \right]$$

inequality (1.2), we get inequality (2.10) and the proof is complete. \Box

By using inequality (1.2), we get inequality (2.10) and the proof is complete.

Remark 6. In Theorem 15, if we take s = 1, the inequality (2.10) reduces to the inequality (1.7)

Theorem 16. Let f and f' are continuous on the interval (a,b), $0 \le a < b$, with f(a) = f(b) and $\int_a^b f(x)dx = 0$. If f' is positive, $(f')^{\frac{1}{\alpha}}$ and $(f')^{\frac{1}{\beta}}$ are s-convex in the second sense on [a,b], then the following inequality holds:

$$\int_{a}^{b} [f(x)]^{2} dx$$

$$\leq \frac{(b-a)^{3}}{(2\pi)^{2}} \left\{ \frac{\alpha}{s+1} \left[(f'(a))^{\frac{1}{\alpha}} + (f'(b))^{\frac{1}{\alpha}} \right] + \frac{\beta}{s+1} \left[(f'(a))^{\frac{1}{\beta}} + (f'(b))^{\frac{1}{\beta}} \right] \right\}$$
(2.11)

where $s \in (0, 1]$, $\alpha, \beta > 0$ and $\alpha + \beta = 1$.

Proof. From the definition of $(f')^{\frac{1}{\alpha}}$ and $(f')^{\frac{1}{\beta}}$ on [a,b], by using inequality $cd \leq cd \leq cd$ $\alpha c^{\frac{1}{\alpha}} + \beta d^{\frac{1}{\beta}} \alpha, \beta, c, d > 0 \text{ and } \alpha + \beta = 1, \text{ we get}$

$$\begin{pmatrix} \frac{b-a}{2\pi} \end{pmatrix}^2 \int_a^b [f'(x)]^2 dx$$

$$= \frac{(b-a)^3}{(2\pi)^2} \int_0^1 f'(ta+(1-t)b) f'(ta+(1-t)b) dt$$

$$\le \frac{(b-a)^3}{(2\pi)^2} \left\{ \alpha \int_0^1 \left[f'(ta+(1-t)b) \right]^{\frac{1}{\alpha}} dt + \beta \int_0^1 \left[f'(ta+(1-t)b) \right]^{\frac{1}{\beta}} dt \right\}$$

$$\le \frac{(b-a)^3}{(2\pi)^2} \left\{ \alpha \int_0^1 \left[t^s(f'(a))^{\frac{1}{\alpha}} + (1-t)^s(f'(b))^{\frac{1}{\alpha}} \right] dt$$

A. KARAOĞLAN, E. SET, A. O. AKDEMIR, AND E. ŞAHIN

$$+ \beta \int_{0}^{1} \left[t^{s} (f'(a))^{\frac{1}{\beta}} + (1-t)^{s} (f'(b))^{\frac{1}{\beta}} \right] dt \bigg\}$$

$$= \frac{(b-a)^{3}}{(2\pi)^{2}} \bigg\{ \alpha \bigg[\frac{1}{s+1} (f'(a))^{\frac{1}{\alpha}} + \frac{1}{s+1} (f'(b))^{\frac{1}{\alpha}} \bigg]$$

$$+ \beta \bigg[\frac{1}{s+1} (f'(a))^{\frac{1}{\beta}} + \frac{1}{s+1} (f'(b))^{\frac{1}{\beta}} \bigg] \bigg\}$$

$$= \frac{(b-a)^{3}}{(2\pi)^{2}} \bigg\{ \frac{\alpha}{s+1} \bigg[(f'(a))^{\frac{1}{\alpha}} + (f'(b))^{\frac{1}{\alpha}} \bigg] + \frac{\beta}{s+1} \bigg[(f'(a))^{\frac{1}{\beta}} + (f'(b))^{\frac{1}{\beta}} \bigg] \bigg\}.$$

By applying (1.2), we get required inequality (2.11) and the proof is complete. \Box

Remark 7. In Theorem 16, if we take s = 1, the inequality (2.11) reduces to the inequality (1.8)

Theorem 17. Let f and f' are continuous on the interval (a,b), with f(a) = f(b) and $\int_a^b f(x)dx = 0$. If f' is positive, $(f')^{\frac{1}{\alpha}}$ and $(f')^{\frac{1}{\beta}}$ are *P*-function on [a,b], then the following inequality holds:

$$\int_{a}^{b} [f(x)]^{2} dx$$

$$\leq \frac{(b-a)^{3}}{(2\pi)^{2}} \left\{ \alpha \left[(f'(a))^{\frac{1}{\alpha}} + (f'(b))^{\frac{1}{\alpha}} \right] + \beta \left[(f'(a))^{\frac{1}{\beta}} + (f'(b))^{\frac{1}{\beta}} \right] \right\}$$
(2.12)

where $\alpha, \beta > 0$ and $\alpha + \beta = 1$.

Proof. By using the inequality $cd \leq \alpha c^{\frac{1}{\alpha}} + \beta d^{\frac{1}{\beta}} \alpha, \beta, c, d > 0$ and $\alpha + \beta = 1$ we get

$$\begin{split} \left(\frac{b-a}{2\pi}\right)^2 \int_a^b [f'(x)]^2 dx \\ &= \frac{(b-a)^3}{(2\pi)^2} \int_0^1 f'(ta+(1-t)b) f'(ta+(1-t)b) dt \\ &\leq \frac{(b-a)^3}{(2\pi)^2} \left\{ \alpha \int_0^1 \left[f'(ta+(1-t)b) \right]^{\frac{1}{\alpha}} dt + \beta \int_0^1 \left[f'(ta+(1-t)b) \right]^{\frac{1}{\beta}} dt \right\} \\ &\leq \frac{(b-a)^3}{(2\pi)^2} \left\{ \alpha \int_0^1 \left[(f'(a))^{\frac{1}{\alpha}} + (f'(b))^{\frac{1}{\alpha}} \right] dt \\ &\quad + \beta \int_0^1 \left[(f'(a))^{\frac{1}{\beta}} + (f'(b))^{\frac{1}{\beta}} \right] dt \right\} \end{split}$$

$$=\frac{(b-a)^{3}}{(2\pi)^{2}}\left\{\alpha\Big[\big(f'(a)\big)^{\frac{1}{\alpha}}+\big(f'(b)\big)^{\frac{1}{\alpha}}\Big]+\beta\Big[\big(f'(a)\big)^{\frac{1}{\beta}}+\big(f'(b)\big)^{\frac{1}{\beta}}\Big]\right\}.$$

By applying (1.2), we get required inequality (2.12) and the proof is complete. \Box

Theorem 18. Let f and f' are continuous on the interval (a,b), with f(a) = f(b) and $\int_a^b f(x)dx = 0$. If f' is positive, $(f')^{\frac{1}{\alpha}}$ and $(f')^{\frac{1}{\beta}}$ are quasi-convex function on [a,b], then the following inequality holds

$$\int_{a}^{b} [f(x)]^{2} dx$$

$$\leq \frac{(b-a)^{3}}{(2\pi)^{2}} \left\{ \alpha \left[\max\left\{ (f'(a))^{\frac{1}{\alpha}}, (f'(b))^{\frac{1}{\alpha}} \right\} \right] + \beta \left[\max\left\{ (f'(a))^{\frac{1}{\beta}}, (f'(b))^{\frac{1}{\beta}} \right\} \right] \right\}$$
where $\alpha, \beta > 0$ and $\alpha + \beta = 1$.
$$(2.13)$$

Proof. By a similar way to the previous theorem, but now by using the quasiconvexity of $(f')^{\frac{1}{\alpha}}$ and $(f')^{\frac{1}{\beta}}$ on [a,b], we get

$$\begin{split} \left(\frac{b-a}{2\pi}\right)^2 \int_a^b [f'(x)]^2 dx \\ &= \frac{(b-a)^3}{(2\pi)^2} \int_0^1 f'(ta+(1-t)b) f'(ta+(1-t)b) dt \\ &\leq \frac{(b-a)^3}{(2\pi)^2} \left\{ \alpha \int_0^1 \left[f'(ta+(1-t)b) \right]^{\frac{1}{\alpha}} dt + \beta \int_0^1 \left[f'(ta+(1-t)b) \right]^{\frac{1}{\beta}} dt \right\} \\ &\leq \frac{(b-a)^3}{(2\pi)^2} \left\{ \alpha \int_0^1 \max\left\{ \left(f'(a) \right)^{\frac{1}{\alpha}}, \left(f'(b) \right)^{\frac{1}{\alpha}} \right\} dt \\ &+ \beta \int_0^1 \max\left\{ \left(f'(a) \right)^{\frac{1}{\beta}}, \left(f'(b) \right)^{\frac{1}{\beta}} \right\} dt \right\} \\ &= \frac{(b-a)^3}{(2\pi)^2} \left\{ \alpha \left[\max\left\{ \left(f'(a) \right)^{\frac{1}{\alpha}}, \left(f'(b) \right)^{\frac{1}{\alpha}} \right\} \right] \\ &+ \beta \left[\max\left\{ \left(f'(a) \right)^{\frac{1}{\beta}}, \left(f'(b) \right)^{\frac{1}{\beta}} \right\} \right] \right\}. \end{split}$$

By applying (1.2), we get required inequality (2.13) and the proof is complete. \Box

Theorem 19. Let f and f' are continuous on the interval (a,mb), $0 \le a < mb$, with f(a) = f(mb) and $\int_a^{mb} f(x)dx = 0$. If f' is positive, $(f')^{\frac{1}{\alpha}}$ and $(f')^{\frac{1}{\beta}}$ are m-convex function on [a,b], then the following inequality holds

$$\int_{a}^{mb} [f(x)]^2 dx \tag{2.14}$$

A. KARAOĞLAN, E. SET, A. O. AKDEMIR, AND E. ŞAHIN

$$\leq \alpha (mb-a)^3 \frac{[f'(a)]^{\frac{1}{\alpha}} + m[f'(b)]^{\frac{1}{\alpha}}}{8\pi^2} + \beta (mb-a)^3 \frac{[f'(a)]^{\frac{1}{\beta}} + m[f'(b)]^{\frac{1}{\beta}}}{8\pi^2}$$

where $m \in [0,1]$, $\alpha, \beta > 0$ and $\alpha + \beta = 1$.

Proof. By using the inequality $cd \leq \alpha c^{\frac{1}{\alpha}} + \beta d^{\frac{1}{\beta}} \alpha, \beta, c, d > 0$ and $\alpha + \beta = 1$ and *m*-convexity of $(f')^{\frac{1}{\alpha}}$ and $(f')^{\frac{1}{\beta}}$ on [a,b], one can easily write

$$\begin{split} \left(\frac{mb-a}{2\pi}\right)^2 \int_a^{mb} [f'(x)]^2 dx \\ &= \frac{(mb-a)^3}{(2\pi)^2} \int_0^1 f'(ta+m(1-t)b) f'(ta+m(1-t)b) dt \\ &\leq \frac{(mb-a)^3}{(2\pi)^2} \left\{ \alpha \int_0^1 \left[f'(ta+m(1-t)b) \right]^{\frac{1}{\alpha}} dt \\ &\quad +\beta \int_0^1 \left[f'(ta+m(1-t)b) \right]^{\frac{1}{\beta}} dt \right\} \\ &\leq \frac{(mb-a)^3}{(2\pi)^2} \left\{ \alpha \int_0^1 \left[t \left(f'(a) \right)^{\frac{1}{\alpha}} + m(1-t) \left(f'(b) \right)^{\frac{1}{\alpha}} \right] dt \\ &\quad +\beta \int_0^1 \left[t (f'(a) \right)^{\frac{1}{\beta}} + m(1-t) \left(f'(b) \right)^{\frac{1}{\beta}} \right] dt \\ &= \frac{(mb-a)^3}{(2\pi)^2} \left\{ \alpha \left(\frac{\left[f'(a) \right]^{\frac{1}{\alpha}} + m\left[f'(b) \right]^{\frac{1}{\alpha}}}{2} \right) \\ &\quad +\beta \left(\frac{\left[\left[f'(a) \right]^{\frac{1}{\beta}} + m\left[f'(b) \right]^{\frac{1}{\beta}}}{2} \right) \right\}. \end{split}$$

By applying (1.2), we get required inequality (2.14) and the proof is complete. \Box

Remark 8. In Theorem 19, if we take m = 1, the inequality (2.14) reduces to the inequality (1.8)

Theorem 20. Let f and f' are continuous on the interval (a,mb), $0 \le a < mb$, with f(a) = f(mb) and $\int_a^{mb} f(x)dx = 0$. If f' is positive, $(f')^{\frac{1}{\theta}}$ and $(f')^{\frac{1}{\beta}}$ are (α, m) -convex function on [a,b], then the following inequality holds

$$\int_{a}^{mb} [f(x)]^{2} dx$$

$$\leq \frac{(mb-a)^{3}}{(2\pi)^{2}} \left\{ \Theta\left(\frac{[f'(a)]^{\frac{1}{\theta}} + m\alpha[f'(b)]^{\frac{1}{\theta}}}{\alpha+1}\right) + \beta\left(\frac{[f'(a)]^{\frac{1}{\beta}} + m\alpha[f'(b)]^{\frac{1}{\beta}}}{\alpha+1}\right) \right\}$$
(2.15)

where $(\alpha, m) \in [0, 1]^2, \theta, \beta > 0$ and $\theta + \beta = 1$.

Proof. By using the same inequality and the similar computations to the proof of the Theorem 19, we have

$$\begin{split} \left(\frac{mb-a}{2\pi}\right)^2 \int_a^{mb} [f'(x)]^2 dx \\ &= \frac{(mb-a)^3}{(2\pi)^2} \int_0^1 f'(ta+m(1-t)b) f'(ta+m(1-t)b) dt \\ &\leq \frac{(mb-a)^3}{(2\pi)^2} \left\{ \Theta \int_0^1 \left[f'(ta+m(1-t)b) \right]^{\frac{1}{\theta}} dt \\ &+ \beta \int_0^1 \left[f'(ta+m(1-t)b) \right]^{\frac{1}{\theta}} dt \right\} \\ &\leq \frac{(mb-a)^3}{(2\pi)^2} \left\{ \Theta \int_0^1 \left[t^\alpha (f'(a))^{\frac{1}{\theta}} + m(1-t^\alpha) (f'(b))^{\frac{1}{\theta}} \right] dt \\ &+ \beta \int_0^1 \left[t^\alpha (f'(a))^{\frac{1}{\theta}} + m(1-t^\alpha) (f'(b))^{\frac{1}{\theta}} \right] dt \\ &= \frac{(mb-a)^3}{(2\pi)^2} \left\{ \Theta \left(\frac{[f'(a)]^{\frac{1}{\theta}} + m\alpha [f'(b)]^{\frac{1}{\theta}}}{\alpha + 1} \right) \\ &+ \beta \left(\frac{[f'(a)]^{\frac{1}{\theta}} + m\alpha [f'(b)]^{\frac{1}{\theta}}}{\alpha + 1} \right) \right\}. \end{split}$$

By applying (1.2), this completes the proof.

Remark 9. In Theorem 20, if we take m = 1, $\alpha = 1$ the inequality (2.15) reduces to the inequality (1.8).

ACKNOWLEDGEMENT

This research is supported by Ordu University Scientific Research Projects Coordination Unit (BAP), Project Number:B-2006.

References

- R. P. Agarwal, S. Gala, and M. A. Ragusa, "A regularity criterion in weak spaces to boussinesq equations," *Mathematics*, vol. 8, no. 6, p. 920, jun 2020, doi: 10.3390/math8060920.
- [2] E. Almansi, "Sopra una delle esperienze del *Plateau*." Annali di Mat. (3), vol. 12, pp. 1–17, 1905, doi: 10.1007/BF02419494.
- [3] M. W. Alomari, "On Beesack-Wirtinger inequality," *Result. Math.*, vol. 72, no. 3, pp. 1213–1225, 2017, doi: 10.1007/s00025-016-0644-6.
- [4] P. R. Beesack, "Integral inequalities of the Wirtinger type," *Duke Math. J.*, vol. 25, pp. 477–498, 1958, doi: 10.1215/S0012-7094-58-02541-9.
- [5] W. Blaschke, Kreis and Kugel. Leipzig, 1916.

- [7] S. S. Dragomir, J. Pečarić, and L. E. Person, "Some inequalities of Hadamard type," *Soochow J. Math.*, vol. 21, pp. 335–341, 1995.
- [8] S. S. Dragomir and S. Fitzpatrick, "Hadamard inequality for s-convex functions in the first sense and applications," *Demonstr. Math.*, vol. 31, no. 3, pp. 633–642, 1998, doi: 10.1515/dema-1998-0214.
- [9] S. Dragomir and C. Pearce, *Selected Topics on Hermite-Hadamard Inequalities and Applications*. Victoria University, 2000.
- [10] H. J. Greenberg and W. P. Pierskalla, "A review of quasi-convex functions," *Oper. Res.*, vol. 19, pp. 1553–1570, 1971, doi: 10.1287/opre.19.7.1553.
- [11] H. Hudzik and L. Maligranda, "Some remarks on s-convex functions," Aequationes Math., vol. 48, no. 1, pp. 100–111, 1994, doi: 10.1007/BF01837981.
- [12] J. Jaroš, "On an integral inequality of the Wirtinger type," *Appl. Math. Lett.*, vol. 24, no. 8, pp. 1389–1392, 2011, doi: 10.1016/j.aml.2011.03.017.
- [13] H. Kadakal, M. Kadakal, and I. Iscan, "Some new integral inequalities for n-times differentiable r-convex and r-concave functions," *Miskolc Mathematical Notes*, vol. 20, no. 2, p. 997, 2019, doi: 10.18514/MMN.2019.2489.
- [14] T. Z. Mirkovic, "New inequalities of Wirtinger type for convex and *MN*-convex functions," *Facta Univ., Ser. Math. Inf.*, vol. 34, no. 2, pp. 165–173, 2019, doi: 10.22190/FUMI1902165M.
- [15] M. Mitrinovic and P. Vasic, "An integral inequality ascribed to Wirtinger, and its variations and generalization," Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz, pp. 247–273, 1969.
- [16] W. Orlicz, "A note on modular spacess," IX. Bull. Acad. Polon. Sci., Ser. Sci. Math. Astronom. Phys., vol. 16, pp. 801–808, 1968.
- [17] M. A. Ragusa and A. Razani, "Weak solutions for a system of quasilinear elliptic equations," *Contributions to Mathematics*, aug 2020, doi: 10.47443/cm.2020.0008.
- [18] H. M. Srivastava and J. Choi, Zeta and q-zeta functions and associated series and integrals. Amsterdam: Elsevier, 2012.
- [19] C. A. Swanson, "Wirtinger's inequality," SIAM J. Math. Anal., vol. 9, pp. 484–491, 1978, doi: 10.1137/0509029.

Authors' addresses

Ali Karaoğlan

(corresponding) Department of Mathematics, Faculty of Sciences and Arts, Ordu University, Ordu, Turkey

E-mail address: alikaraoglan@odu.edu.tr

Erhan Set

Department of Mathematics, Faculty of Sciences and Arts, Ordu University, Ordu, Turkey *E-mail address:* erhanset@yahoo.com

Ahmet Ocak Akdemir

Department of Mathematics, Faculty of Sciences and Letters, Ağri Ibrahim Çeçen University, Ağri, Turkey

E-mail address: ahmetakdemir@agri.edu.tr

Eda Şahin

Department of Mathematics, Faculty of Sciences and Arts, Ordu University, Ordu, Turkey *E-mail address:* edaerkoc52@gmail.com