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ON THE DIOPHANTINE EQUATIONS z2 = f (x)2 ± f (y)2
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Abstract. By the theory of Pell’s equation, we give conditions for f (x) = b+ c
x with b,c∈Z\{0}

such that the Diophantine equations z2 = f (x)2 ± f (y)2 have infinitely many solutions x,y ∈ Z
and z ∈Q, which gives a positive answer to Question 3.2 of Zhang and Shamsi Zargar [16]. By
the theory of elliptic curve, we study the non-trivial rational solutions of the above Diophantine
equations for Laurent polynomials f (x) = ∏

n
t=0(x+kt )

x , ∏
n
t=0(x−kt )(x+kt )

x , n ≥ 1, k ∈Z\{0,±1}, and
give a positive answer to Question 3.1 of Zhang and Shamsi Zargar [16].
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1. INTRODUCTION

Let f (x) ∈ Q[x] be a polynomial without multiple roots and deg f ≥ 2. Many
authors considered the non-trivial integer and rational (parametric) solutions of the
Diophantine equations

z2 = f (x)2 + f (y)2 (1.1)
and

z2 = f (x)2 − f (y)2 (1.2)
for different polynomials f (x). Let us recall that a triple (x,y,z) is a non-trivial
solution of Eq. (1.1) (respectively, Eq. (1.2)) if f (x) f (y) ̸= 0 (respectively, f (x)2 ̸=
f (y)2, f (y) ̸= 0).

In 1962, W. Sierpiński [5] obtained infinitely many non-trivial positive integer
solutions of Eq. (1.1) for f (x) = x(x+1)

2 . In 2010, M. Ulas and A. Togbé [9] studied the
non-trivial rational solutions of Eqs. (1.1) and (1.2) for f (x) being quadratic and cubic
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polynomials. At the same year, B. He, A. Togbé and M. Ulas [4] further investigated
the non-trivial integer solutions of Eqs. (1.1) and (1.2) for some special polynomials
f (x). In 2018, Y. Zhang and A. Shamsi Zargar [15] proved that Eq. (1.1) has infin-
itely many non-trivial rational solutions for the quartic polynomials f (x) = x(x−1)
(x+1)(x+ 1−k2

2k ), k ∈ Z\{0,±1} and Eq. (1.2) has infinitely many rational solutions
for the quartic polynomials f (x) = x(x−1)(x+1)(x− 2k

k2+1), k ∈ Z\{0,±1}, which
gave a positive answer to Question 4.3 of [9] for quartic polynomials. In 2019, A. E.
A. Youmbai and D. Behloul [11] extended the results of Zhang-Shamsi Zargar [15] to
the polynomials x(∏n

t=0(x− kt)(x+ kt)) of degree 2n+3 and gave a positive answer
to Question 4.3 of [9] for the polynomials x(∏n

t=0(x+ kt)) of degree n+2.
As a generalization of Eqs. (1.1) and (1.2), in 2017, Sz. Tengely and M. Ulas

[8] investigated the existence of the non-trivial integer solutions of the Diophantine
equations z2 = f (x)2±g(y)2 and proved similar results for some special higher degree
polynomials as well.

A Laurent polynomial with coefficients in a field F is an expression of the form

f (x) = ∑
k

akxk, ak ∈ F,

where x is a formal variable, the summation index k is an integer (not necessarily
positive) and only finitely many coefficients ak are non-zero.

In 2018, Y. Zhang [13] studied the non-trivial rational parametric solutions of the
Diophantine equation

f (x) f (y) = f (z)n (1.3)
for n = 1,2, involving the Laurent polynomials f (x) = ax+ b+ c/x. In 2019, Y.
Zhang and A. Shamsi Zargar [14] further investigated the non-trivial rational (para-
metric) solutions of Eq. (1.3), where f (x) = xk +axk−1+b/x,k ≥ 2, x2+a/x+b/x2

for n = 1, and f (x) = x2 +ax+b+a3/(27x), x2 +ax+b+a3/(16x)+a4/(256x2)
for n = 2.

In 1783, L. Euler [2, p. 167] studied the rational solutions of Eq. (1.1) for f (x) =
x+ 1

x . In 2020, Y. Zhang and A. Shamsi Zargar [16] continued the study of Euler and
considered the non-trivial rational (parametric) solutions of Eqs. (1.1) and (1.2) for
some simple Laurent polynomials, such as

f (x) = x+b+
c
x
,

(x+1)(x+b)(x+ c)
x

with b,c ∈ Z\{0}.
By the theory of Pell’s equation and the same method of Zhang [12, Theorem

1.1], we give a positive answer to Question 3.2 of Zhang and Shamsi Zargar [16] in
Theorem 1.

Theorem 1. 1) For

f (x) = b+
c
x
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with b,c ∈ Z\{0}, if there exists an integer y0 such that (2b2y2
0 + 2bcy0 + c2)x2 +

2bcy2
0x+c2y2

0 = v2 has a non-zero integer solution (x0,v0) and 2b2y2
0 +2bcy0 +c2 >

0 is not a perfect square, then Eq. (1.1) has infinitely many non-trivial solutions
(x,y0,z) with x,y0 ∈ Z and z ∈Q.

2) For

f (x) = b+
c
x

with b,c∈Z\{0}, if there is an integer x0 such that c(2bx0+c)y2−2bcx2
0y−c2x2

0 = v2

has a non-zero integer solution (y0,v0) and c(2bx0 + c) > 0 is not a perfect square,
then Eq. (1.2) has infinitely many non-trivial solutions (x0,y,z) with x0,y ∈ Z and
z ∈Q.

Following the methods of Youmbai and Behloul [11, Theorems 1.1-1.4] and Zhang
and Shamsi Zargar [15, Theorems 1.1-1.2], we give a positive answer to Question
3.1 of Zhang and Shamsi Zargar [16] in Theorems 2 and 3.

Theorem 2. For

f (x) =
∏

n
t=0(x+ kt)

x
, n ≥ 1

with k ∈ Z\{0,±1}, Eqs. (1.1) and (1.2) have a rational parametric solution.

Theorem 3. When

f (x) =
∏

n
t=0(x− kt)(x+ kt)

x
, n ≥ 1,

for all but finitely many k ∈ Z\{0,±1}, Eqs. (1.1) and (1.2) have infinitely many
non-trivial rational solutions.

By the map x 7→ 1/x, we have

Proposition 1. For

f (x) =
∏

n
t=0(k

tx+1)
xn , n ≥ 1

with k ∈ Z\{0,±1}, Eqs. (1.1) and (1.2) have a rational parametric solution.
When

f (x) =
∏

n
t=0(1− ktx)(1+ ktx)

x2n+1 , n ≥ 1,

for all but finitely many k ∈ Z\{0,±1}, Eqs. (1.1) and (1.2) have infinitely many
non-trivial rational solutions.
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2. PRELIMINARIES

To prove Theorem 1, we need the following lemma about the integer solutions of
Pell’s equation.

Lemma 1 (Corollary in [3]). Let m1, m2, D be positive integers, D is not a square,
and a2 −Db2 = M, then there are infinitely many integer solutions (u,v) of the Pell’s
equation u2 −Dv2 = M with

u ≡ a (mod m1) and v ≡ b (mod m2).

To simplify the proof of Theorem 3, we state the following useful Lemma.

Lemma 2. The quartic curve C : V 2 = aU4+bU3+cU2+dU +e2 is birationally
equivalent to an elliptic curve with Weierstrass equation

E : Y 2 = X3 −27(12ae2 −3bd + c2)X +27(2c3 −72ace2 +27b2e2 +27ad2 −9bcd),

by the map ϕ : C ∋ (U,V ) 7→ (X ,Y ) ∈ E

X =
3(cU2 +3dU +6e2 +6eV )

U2 ,

Y =
27(beU3 +2ceU2 +3deU +dUV +4e3 +4e2V )

U3 ,

and its inverse map ϕ−1 is

U =− 3(24ce2 +4e2X −9d2)

54be2 −9cd +3dX −2eY
,

V =− N(V )

(54be2 −9cd +3dX −2eY )2 ,

where

N(V ) =−8e3X3 −9e(8ce2 −3d2)X2 +4e3Y 2 +(−216be4 +108cde2 −27d3)Y

+27e(108b2e4 −108bcde2 +32c3e2 +27bd3 −9c2d2).

Proof. This is a modified version in [10, p. 37, Theorem 2.17]. □

3. PROOFS OF THE THEOREMS

Proof of Theorem 1. 1) For

f (x) = b+
c
x

with b,c ∈ Z\{0}, Eq. (1.1) equals

z2 =
(2b2y2 +2bcy+ c2)x2 +2bcy2x+ c2y2

x2y2 .
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To get integral values of x and y, let us consider the integer solutions (x,v) of the
quadratic equation

(2b2y2 +2bcy+ c2)x2 +2bcy2x+ c2y2 = v2.

Put U = (2b2y2 +2bcy+ c2)x+bcy2, V = v, then we get the Pell’s equation

U2 − (2b2y2 +2bcy+ c2)V 2 =−c2y2(by+ c)2.

Take y = y0, then U = (2b2y2
0 +2bcy0 + c2)x+bcy2

0 and

U2 − (2b2y2
0 +2bcy0 + c2)V 2 =−c2y2

0(by0 + c)2. (3.1)

Note that if 2b2y2
0 +2bcy0 + c2 > 0 is not a perfect square, then the Pell’s equation

U2 − (2b2y2
0 +2bcy0 + c2)V 2 = 1

has infinitely many integer solutions. If there exists an integer y0 such that
(2b2y2

0 +2bcy0 + c2)x2 +2bcy2
0x+ c2y2

0 = v2 has a non-zero integer solution (x0,v0),
then

(U0,V0) = ((2b2y2
0 +2bcy0 + c2)x0 +bcy2

0, v0)

is an integer solution of Eq. (3.1). So there are infinitely many integer solutions of
Eq. (3.1).

Note that U0 = (2b2y2
0 +2bcy0 + c2)x0 +bcy2

0 satisfies

U0 ≡ bcy2
0 (mod 2b2y2

0 +2bcy0 + c2).

By Lemma 1, Eq. (3.1) has infinitely many integer solutions U satisfying the above
condition. Therefore, there are infinitely many

x =
U −bcy2

0

2b2y2
0 +2bcy0 + c2 ∈ Z.

Thus, for

f (x) = b+
c
x

with b,c ∈ Z\{0}, Eq. (1.1) has infinitely many non-trivial solutions (x,y0,z) with
x,y0 ∈ Z and z ∈Q.

2) For

f (x) = b+
c
x

with b,c ∈ Z\{0}, Eq. (1.2) becomes

z2 =
c(2bx+ c)y2 −2bcx2y− c2x2

x2y2 .
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To get integral values of x and y, let us consider the integer solutions (y,v) of the
quadratic equation

c(2bx+ c)y2 −2bcx2y− c2x2 = v2.

Take U = c(2bx+ c)y−bcx2, V = v, then we obtain the Pell’s equation

U2 − c(2bx+ c)V 2 =−c2x2(bx+ c)2.

By the same method as 1), we can give the proof of 2). □

Example 1. When b = c = 1, f (x) = 1+ 1
x , Eq. (1.1) reduces to

z2 =
(2y2 +2y+1)x2 +2xy2 + y2

x2y2 .

Consider (2y2 +2y+1)x2 +2xy2 + y2 = v2. If y0 = 1, we have

5x2 +2x+1 = v2.

It is easy to check that (x0,v0) = (2,5) is a solution of the above equation, and
2y2

0 + 2y0 + 1 = 5 > 0 is not a perfect square. By the theory of Pell’s equation,
5x2 + 2x+ 1 = v2 has infinitely many integer solutions (x,v). Then Eq. (1.1) has
infinitely many non-trivial solutions (x,1,z) with x ∈ Z and z ∈Q.

Remark 1. In fact, we can use the transformation x= T, y= cT to study Eqs. (1.1)
and (1.2). But we also need some conditions about b,c to get infinitely many non-
trivial solutions. Here, we give two simple cases to display this method.

1) When b = 1, c ∈ Z\{0,1}, f (x) = 1+ c
x . Let

x = T, y = cT.

Then Eq. (1.1) equals

z2 =
2T 2 +(2c+2)T + c2 +1

T 2 .

To get integral values of x and y, let us consider the integer solutions (T,S) of the
quadratic equation

2T 2 +(2c+2)T + c2 +1 = S2.

Let U = 2T + c+1, V = S, then we get the Pell’s equation

U2 −2V 2 =−(c−1)2.

Note that (U,V ) = (c− 1,c− 1) is an integer solution of the above Pell’s equation,
and (U,V ) = (3,2) is an integer solution of the Pell’s equation U2 −2V 2 = 1. Thus,
an infinity of integer solutions of U2 −2V 2 =−(c−1)2 are given by

Um +Vm
√

2 = (3+2
√

2)m(c−1+(c−1)
√

2), m ≥ 0.
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Then {
Um = 6Um−1 −Um−2, U0 = c−1, U1 = 7(c−1);
Vm = 6Vm−1 −Vm−2, V0 = c−1, V1 = 5(c−1).

It is easy to prove that

Um ≡ c+1 (mod 2), Vm = Sm ∈ Z.

Then we have

Tm =
Um − (c+1)

2
∈ Z, m ≥ 0.

So

xm = Tm ∈ Z, ym = cTm ∈ Z, zm =
Sm

Tm
∈Q, m ≥ 0.

2) For

f (x) = 1+
2c
x

with c ∈ Z\{0,1}, let
x = T, y = cT.

Then Eq. (1.2) reduces to

z2 =
4(c−1)(c+T +1)

T 2 .

To get integral values of x and y, let us consider the integer solutions (T,S) of the
following equation

(c−1)(c+T +1) = S2.

Solve it for T , then we have

T =
S2

c−1
− c−1.

Put S = (c−1)u, then

T = (c−1)u2 − c−1.

So

x = (c−1)u2 − c−1 ∈ Z, y = cx ∈ Z, z =
2u(c−1)

(c−1)u2 − c−1
∈Q,

where u is an integer parameter.
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Proof of Theorem 2. 1) For

f (x) =
∏

n
t=0(x+ kt)

x
, n ≥ 1

with k ∈ Z\{0,±1}, let

x = T, y = kT.

Then Eq. (1.1) equals

z2 =

(
∏

n−1
t=0 (x+ kt)

T

)2 (
(k2n +1)T 2 +2kn(kn−1 +1)T + k2n−2(k2 +1)

)
.

Consider the conic section

C1 : S2 = (k2n +1)T 2 +2kn(kn−1 +1)T + k2n−2(k2 +1).

Take U = T + 1
k , V = kS, then we obtain

C1,k : V 2 = k2(k2n +1)U2 +2k(kn+1 −1)U +(kn+1 −1)2,

which can be parametrized by

U =
2(1− kn+1)(t − k)
t2 − k2(k2n +1)

,

V =
(1− kn+1)(t2 −2kt + k2(k2n +1))

t2 − k2(k2n +1)
,

where t is a rational parameter. Then Eq. (1.1) has a rational parametric solution

(x,y,z) =

(
U − 1

k
, kU −1,

∏
n−1
t=0 (U − 1

k + kt)

kU −1
V

)
,

where U,V are given in above.
2) For

f (x) =
∏

n
t=0(x+ kt)

x
, n ≥ 1

with k ∈ Z\{0,±1}, let
x = T, y = kT.

Then Eq. (1.2) becomes

z2 =

(
∏

n−1
t=0 (x+ kt)

T

)2 (
(−k2n +1)T 2 +2kn(−kn−1 +1)T + k2n−2(k2 −1)

)
.

Consider

C2 : S2 = (1− k2n)T 2 +2kn(1− kn−1)T + k2n−2(k2 −1).
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Put U = T + 1
k , V = kS, then we have

C2,k : V 2 = k2(1− k2n)U2 +2k(kn+1 −1)U +(kn+1 −1)2.

The remainder of the proof is similar as 1), we omit it. □

Proof of Theorem 3. 1) For

f (x) =
∏

n
t=0(x− kt)(x+ kt)

x
, n ≥ 1

with k ∈ Z\{0,±1}, let

x = T, y = kT.

Then Eq. (1.1) reduces to

z2 =

(
∏

n−1
t=0 (x

2 − k2t)

T

)2 (
(k4n+2 +1)T 4 −2k2n(k2n +1)T 2 + k4n−2(k2 +1)

)
.

Consider the quartic curve

C3 : S2 = (k4n+2 +1)T 4 −2k2n(k2n +1)T 2 + k4n−2(k2 +1).

Take U = T − 1
k , V = k2S, then we get

C3(n,k) : V 2 = k4(k4n+2 +1)U4 +4k3(k4n+2 +1)U3 +2k2(2k4n+2 − k2n+2 +3)U2

−4k(k2n+2 −1)U +(k2n+2 −1)2.

The discriminant of C3(n,k) is

256k12n+18(k2 +1)(k4n+2 +1)(k2n+2 −1)4.

So C3(n,k) is smooth, when k ̸= 0,±1. By Lemma 2, the corresponding elliptic curve
E3(n,k) of C3(n,k) is

E3(n,k) : Y 2 = X3 −108k4n+6(3k4n+4 +4k4n+2 +2k2n+2 +4k2 +3)X

+432k6n+10(k2n +1)(9k4n+4 +8k4n+2 −2k2n+2 +8k2 +9).

In order to prove Theorem 3, it needs to show that the curve C3(n,k) has infinitely
many rational points, equivalently, E3(n,k) has a rational point of infinite order. It
is easy to see that the rational points (U,V ) = (0,±(k2n+2 − 1)) on C3(n,k) lead to
rational points of order 2 on E3(n,k). Since f (kn) = 0, Eq. (1.1) has a trivial solution
(kn,kn+1, f (kn+1)). From this observation, we find another rational point on C3(n,k):

P =

(
kn − 1

k
,k2n+1(k2n+2 −1)

)
.

By the map ϕ1 : C3(n,k) ∋ (U,V ) 7→ (X ,Y ) ∈ E3(n,k), we can obtain the point

Q = ϕ1(P) = (6k2n+3(3k2n+2 +2k2n+1 +6kn+1 +2k+3),108k3n+5kn+1(kn+1 +1)2)
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on E3(n,k). By the group law, we have

[2]Q =

(
3k2n+2(3k4n+4 +4k4n+2 +8k3n+2 +14k2n+2 +8kn+2 +4k2 +3)

(kn +1)2 ,

− 27k3n+3(k2n+2 +1)(k4n+4 −4k3n+2 −6k2n+2 −4kn+2 +1)
(kn +1)3

)
.

Let E3(n,2) be the specialization of E3(n,k) at k = 2, and the specialization of [2]Q
at k = 2 is

[2]Q2 =

(
3×22n+2(24n+6 +23n+5 +7×22n+3 +2n+5 +19)

(2n +1)2 ,

− 27×23n+3(22n+2 +1)(24n+4 −23n+5 −3×22n+3 −2n+4 +1)
(2n +1)3

)
.

A quick calculation reveals that the remainder of the division of the numerator of the
X-coordinate of the point [2]Q2 by its denominator equals

|r|= 18(2n+8 +2n+2 +210),

which is non-zero. So the X-coordinate of [2]Q2 is not a polynomial. For 1 ≤ n ≤ 12,
one can check that

|r|
(2n +1)2

is not an integer except for n = 1,2, and that it is nonzero and is less than 1 in
modulus for n > 12. Then for integers n ̸= 1,2, the point [2]Q2 has non-integral
X-coordinate and hence, by Nagell-Lutz Theorem (see [7, p.56]), is of infinite order.
Thus, E3(n,k) has a positive rank in the field Q(k). By the Specialization Theorem
of Silverman (see [6, p.457, Theorem 20.3]), when n ̸= 1,2, for all but finitely many
k ∈ Z\{0,±1}, E3(n,k) has a positive rank and infinitely many rational points.

When n = 1,2, we have

E3(1,2) : Y 2 = X3 −118886400X +399900672000,

E3(2,2) : Y 2 = X3 −29251141632X +1385178693894144.

Using the package of Magma [1], the ranks of the above two elliptic curves are 2,
hence, they have infinitely many rational points. Therefore, when n ≥ 1, for all but
finitely many k ∈ Z\{0,±1}, E3(n,k) has infinitely many rational points, i.e., the
curve C3(n,k) has infinitely many rational points.

Thus, when

f (x) =
∏

n
t=0(x− kt)(x+ kt)

x
, n ≥ 1,

for all but finitely many k ∈ Z\{0,±1}, Eq. (1.1) has infinitely many non-trivial
rational solutions.
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2) For

f (x) =
∏

n
t=0(x− kt)(x+ kt)

x
, n ≥ 1

with k ∈ Z\{0,±1}, let
x = T, y = kT.

Then Eq. (1.2) equals

z2 =

(
∏

n−1
t=0 (x

2 − k2t)

T

)2 (
(−k4n+2 +1)T 4 +2k2n(k2n −1)T 2 + k4n−2(k2 −1)

)
.

Consider the quartic curve

C4 : S2 = (−k4n+2 +1)T 4 +2k2n(k2n −1)T 2 + k4n−2(k2 −1).

Put U = T − 1
k , V = k2S, then we have

C4(n,k) : V 2 = k4(1− k4n+2)U4 +4k3(1− k4n+2)U3 −2k2(2k4n+2 + k2n+2 −3)U2

−4k(k2n+2 −1)U +(k2n+2 −1)2.

The discriminant of C4(n,k) is

−256k12n+18(k2 −1)(k4n+2 −1)(k2n+2 −1)4.

So C4(n,k) is smooth, when k ̸= 0,±1. By Lemma 2, the corresponding elliptic curve
E4(n,k) of C4(n,k) is

E4(n,k) : Y 2 = X3 +108k4n+6(3k4n+4 −4k4n+2 +2k2n+2 −4k2 +3)X

+432k6n+10(k2n −1)(9k4n+4 −8k4n+2 −2k2n+2 −8k2 +9).

By the method of Fermat [2, p. 639], from the point P0 = (0,k2n+2 −1), we can get
another point

P′ =

(
− 4(k4n+4 −1)

k(k4n+4 +2k2n+2 +4k4n+2 −3)
,

(k2n+2 −1)N(k)
(k4n+4 +2k2n+2 +4k4n+2 −3)2

)
on E4(n,k), where

N(k) = k8n+8 −24k8n+6 +16k8n+4 −4k6n+6 −16k6n+4 +6k4n+4 −24k4n+2

−4k2n+2 +1.

By the map ϕ2 : C4(n,k) ∋ (U,V ) 7→ (X ,Y ) ∈ E4(n,k), we get the rational point

Q′ = ϕ2(P′)

=

(
3(3k8n+8 −40k8n+6 +48k8n+4 +4k6n+6 +16k6n+4 +50k4n+4 −40k4n+2

+4k2n+2 +3)/(4(k2n+2 +1)2),

−27(k4n+4 −4k4n+2 −2k2n+2 +1)(k8n+8 +16k8n+6 −16k8n+4 +4k6n+6
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−10k4n+4 +16k4n+2 +4k2n+2 +1)/(8(k2n+2 +1)3)

)
lying on E4(n,k).

Using Nagell-Lutz Theorem and the Specialization Theorem of Silverman, we
obtain the result in a similar way like in 1). □

Example 2. When n = 1, k ∈ Z\{0,±1},

f (x) =
(x−1)(x+1)(x− k)(x+ k)

x
,

we have

C3(1,k) : V 2 = k4(k6 +1)U4 +4k3(k6 +1)U3 +2k2(2k6 − k4 +3)U2

−4k(k4 −1)U +(k4 −1)2

and

E3(1,k) : Y 2 = X3 −108k10(3k4 −2k2 +3)(k2 +1)2X

+432k16(k2 +1)3(9k4 −10k2 +9).

From Theorem 3, E3(1,k) has rational points:

Q(1) = (6k5(k2 +1)(3k2 +2k+3),108k8(k+1)(k2 +1)2),

[2]Q(1) =
(

3k4(3k8 +4k6 +8k5 +14k4 +8k3 +4k2 +3)
(k+1)2 ,

− 27k6(k8 −4k5 −6k4 −4k3 +1)(k4 +1)
(k+1)3

)
.

By the group law, we get

[4]Q(1) = (X([4]Q(1)),Y ([4]Q(1))) ,

where

X([4]Q(1)) = 3k4(3k32 +40k30 +128k29 +248k28 +384k27 +1016k26 +2176k25

+2964k24 +1664k23 −2136k22 −7040k21 −8504k20 −2688k19

+10296k18 +23808k17 +29778k16 +23808k15 +10296k14 −2688k13

−8504k12 −7040k11 −2136k10 +1664k9 +2964k8 +2176k7 +1016k6

+384k5 +248k4 +128k3 +40k2 +3)/(4(k8 −4k5 −6k4 −4k3 +1)2

× (k4 +1)2(k+1)2)

and

Y ([4]Q(1) =−(27k6(k16 +4k14 +16k13 +28k12 +16k11 −4k10 −32k9 −42k8

−32k7 −4k6 +16k5 +28k4 +16k3 +4k2 +1)(k32 −16k30 −80k29
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−136k28 −144k27 −80k26 −32k25 −68k24 −544k23 −1712k22

−3312k21 −3896k20 −2096k19 +2320k18 +7232k17 +9478k16

+7232k15 +2320k14 −2096k13 −3896k12 −3312k11 −1712k10

−544k9 −68k8 −32k7 −80k6 −144k5 −136k4 −80k3 −16k2 +1))

/(8(k+1)3(k8 −4k5 −6k4 −4k3 +1)3(k4 +1)3).

Using the method of Zhang and Shamsi Zargar [15, Theorem 1.1], we can show
that, for k ∈ Z\{0,±1}, [4]Q(1) is a rational point of infinite order. Then E3(1,k)
and C3(1,k) have infinitely many rational points. Thus, Eq. (1.1) has infinitely many
non-trivial rational solutions.

From the rational point [2]Q(1) on E3(1,k), we can get the rational point

(U,V ) =
(
2(k−1)(k2 +1)(k8 +4k6 +8k5 +6k4 +1)(k+1)2/(kD(k)),

k2(k4 −1)(k24 +24k22 +64k21 +82k20 +24k19 −92k18 −192k17

−81k16 +288k15 +704k14 +768k13 +492k12 +144k11 −72k10 −192k9

−177k8 −96k7 +8k6 +64k5 +66k4 +24k3 +4k2 +1)/(D(k)2)
)

on C3(1,k), where

D(k) = k13 −4k11 −16k10 −15k9 −6k8 +4k7 +8k6 +11k5 +4k4 +3k+2.

Therefore, for

f (x) =
(x−1)(x+1)(x− k)(x+ k)

x
, k ∈ Z\{0,±1},

Eq. (1.1) has a rational solution

(x,y,z) =
(

U +
1
k
, kU +1,

(kU +1− k)(kU +1+ k)V
k3(kU +1)

)
,

where U,V are given in above.

REFERENCES

[1] W. Bosma, J. Cannon, and C. Playoust, “The Magma algebra system. I. The user language.” J.
Symbolic Comput., vol. 23, no. 3-4, pp. 235–265, 1997, doi: 10.1006/jsco.1996.0125.

[2] L. E. Dickson, History of the Theory of Numbers, Vol. II: Diophantine Analysis. New York:
Dover Publications, 2005. doi: 10.1007/BF01705606.

[3] L. C. Eggan, P. C. Eggan, and J. L. Selfridge, “Polygonal products of polygonal numbers and the
Pell equation.” Fibonacci Quart., vol. 20, no. 1, pp. 24–28, 1982.
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