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Abstract. Here, some fixed point theorems in partially ordered spaces are proved. As an applic-
ation, the existence of a solution of an integral equation is obtained.
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1. INTRODUCTION

Fixed point problems are interesting problems in Nonlinear Analysis and Engin-
eering Sciences. There is a broad set of applications of fixed point problems, espe-
cially in solving differential equations and integral equations. Thus fixed point theory
is an interdisciplinary science and many researchers are studying them in different
spaces (see [1–6, 9–11, 13–18]).

The existence of fixed points in partially ordered sets was first considered in [12]
to solve an matrix equation. This study was continued in [7, 8] by assuming the
existence of only a lower solution instead of the usual approach where both lower
and upper solutions are assumed to exist. These fixed point theorems were applied to
obtain certain uniqueness and existence results for ordinary differential equations in
[7, 8].

Definition 1. A partial ordering on a nonempty set X is a relation R on X with the
following properties:

(i) xRx for all x ∈ X ,
(ii) if xRy and yRx then x = y,

(iii) if xRy and yRz then xRz.

Definition 2. Let (X ,≤) be a partially ordered set and f : X → X . f is called
monotone nondecreasing if x ≤ y ⇒ f (x)≤ f (y), where x,y ∈ X .

Ran et al. [12, Theorem 2.1] proved the following theorem.

Theorem 1. Let X be a partially ordered set such that every pair x,y ∈ X has a
lower and an upper bound. Furthermore, let d be a metric on X such that (X ,d) is
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a complete metric space. If f : X → X is a continuous, monotone (i.e., either order
preserving or order-reserving) operator such that

∃0 < c < 1 d( f (x), f (y)≤ cd(x,y),∀x ≥ y,

∃x0 ∈ X x0 ≤ f (x0) or x0 ≥ f (x0),

then f has a unique fixed point x. Moreover, for every x ∈ X, limn→∞ f n(x) = x.

Later on, Petruşel et al. [10, Theorem 1.2] by dropping the hypothesis that each
pair of points has an upper and a lower bound, proved the following theorem.

Theorem 2. Let X be a partially ordered set and let d be a metric o X such
that the metric space (X ,d) is complete and the metric and the ordered structure
are compatible. Let f : X → X be a continuous and monotone (i.e. either order -
preserving or order-reversing) operator. Suppose that the following two assertions
hold:

1) there exits a ∈ (0,1) such that d( f (x), f (y))≤ ad(x,y) for each x,y ∈ X with
x ≥ y,

2) there exists x0 ∈ X such that x0 ≤ f (x0) or x0 ≥ f (x0).
Then f has at least a fixed point x∗ ∈ X and for each x ∈ X and for each x ∈ X with
x ≥ x0 (or x ≤ x0) the sequence ( f n(x))n∈N of successive approximations of f starting
from x converges to x∗ ∈ X.

Also Nieto et al. [7, 8, Theorem 2.1] proved the following theorem.

Theorem 3. Let (X ,≤) be a partially ordered set. Assume there exists a metric d
in X such that (X ,d) is a complete metric space. Suppose f : X → X is a continuous
and nondecreasing mapping such that there exists a k ∈ [0,1) with

d( f (x), f (y))≤ kd(x,y),

for all x ≥ y. If there exists x0 ∈ X with x0 ≤ f (x0), then f has a fixed point.

In this paper, we extend the fixed point theorem [7, 8, Theorem 2.1] in partially
ordered sets. Finally, an integral equation is solved and an example is stated. The
main result of the paper is as follows:

Theorem 4. Let (X ,≤) be a partially ordered set. Assume there exists a metric d
in X such that (X ,d) is a complete metric space. Suppose f : X → X is a continuous
and nondecreasing mapping satisfying

d( f (x), f (y))≤ α(d(x,y))d(x,y),

where α : [0,∞) → [0,1) and limsups→t+ α(s) < 1 for all t ∈ [0,∞). If there exists
x0 ∈ X with x0 ≤ f (x0), then f has a fixed point.

This theorem can be considered as a new version generalization of Theorem 3.
Indeed, the contractive constant is replaced by a function.
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2. FIXED POINT THEOREMS IN PARTIALLY ORDERED SET

In this section, we present the proof of the main result and an alternative version
of the main result. Then we study the existence of a solution of an integral equation.
By induction of proof of Theorem 3 or [7, 8, Theorem 2.1], we state the proof of
Theorem 4.

Proof of Theorem 4. . If x0 = f (x0), then the proof is finished. If x0 ̸= f (x0) then
x0 ≤ f (x0) and since f is nondecreasing we have

x0 ≤ f (x0)≤ f 2(x0)≤ f 3(x0)≤ ·· · ≤ f n(x0)≤ f n+1(x0)≤ ·· · .
Now

d( f n(x0), f n+1(x0))≤ α(d( f n−1(x0), f n(x0)))d( f n−1(x0), f n(x0)).

If f n(x0) = f n+1(x0) then f n(x0) is a fixed point of f . Otherwise, since α(t)< 1, we
have

d( f n(x0), f n+1(x0))< d( f n−1(x0), f n(x0)).

Thus {d( f n(x0), f n+1(x0))} is a nonnegative decreasing sequence. Thus it converges
to a, where a ≥ 0, that is

d( f n(x0), f n+1(x0))→ a.

Since limsups→t+ α(s) < 1, then α(a) < 1. Therefore, for all ε > 0 there exists r ∈
[0,1) such that α(s)< r for all s ∈ [a,a+ ε). Now, choose v ∈ N such that

a ≤ d( f n(x0), f n+1(x0))≤ a+ ε

for all n ≥ v. Since

d( f n+1(x0), f n+2(x0))≤ α(d( f n(x0), f n+1(x0)))d( f n(x0), f n+1(x0))

≤ rd( f n(x0), f n+1(x0)),

thus by induction

d( f n+v(x0), f n+v+1(x0))≤ rnd( f v(x0), f v+1(x0)). (2.1)

In order to show that { f n(x0)} is a Cauchy sequence, consider
n=∞

∑
n=1

d( f n(x0), f n+1(x0))≤
n=v

∑
n=1

d( f n(x0), f n+1(x0))

+
n=∞

∑
n=v

d( f n(x0), f n+1(x0)).

Using (2.1), the second part of the right hand side of the above inequality is estimated
as follows:

n=∞

∑
n=v

d( f n(x0), f n+1(x0))≤
n=∞

∑
n=1

rnd( f v(x0), f v+1(x0))
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= d( f v(x0), f v+1(x0))
n=∞

∑
n=1

rn ≤ ∞.

This shows that ∑
n=∞
n=1 d( f n(x0), f n(x0)) is convergent which implies

d( f n(x0), f n+1(x0))→ 0, (2.2)

Notice that the convergence of ∑
n=∞
n=1 d( f n(x0), f n(x0)) and (2.2) shows that { f n(x0)}

is a Cauchy sequence. Since X is complete, there exists a q in X such that f n(x0)→ q
as n → ∞. We prove that q ∈ X is a fixed point of f . Let ε > 0. Using the continuity
of f at the point q, given ε/2 > 0, there exists δ > 0 such that d(z,q) < δ implies
that d( f (z), f (q)) < ε/2. Now, by the convergence of { f n(x0)} to q, assume η =
min{ε/2,δ}, there exists n0 ∈ N such that for all n ≥ n0

d( f n(x0),q)< η.

Then

d( f (q),q)≤ d( f (q), f n(x0))+d( f n(x0),q)

≤ ε/2+η = ε.

This proves that d( f (q),q) = 0, and q is a fixed point of f . □

Next theorem is an alternative version of Theorem 4.

Theorem 5. Let (X ,≤) be a partially ordered set. Assume there exists a metric d
in X such that (X ,d) is a complete metric space. Suppose f : X → X is a continuous
and nondecreasing mapping satisfying

d( f (x), f (y))≤ ϕ(d(x,y)),

where ϕ : [0,∞) → [0,∞) is an increasing and upper semicontinuous function such
that ϕ(t) < t for all t > 0. If there exists x0 ∈ X with x0 ≤ f (x0), then f has a fixed
point.

Proof. If x0 = f (x0) then the proof is finished. If x0 ̸= f (x0) then x0 ≤ f (x0) and
since f is nondecreasing we have

x0 ≤ f (x0)≤ f 2(x0)≤ f 3(x0)≤ ·· · ≤ f n(x0)≤ f n+1(x0)≤ ·· · .
Using ϕ(t)< t,

d( f n(x0, f n+1(x0))≤ ϕ(d( f n−1(x0), f n(x0)))

< d( f n−1(x0), f n(x0)).

Thus {d( f n(x0), f n+1(x0))} is a nonnegative decreasing sequence and then it con-
verges to a as n → ∞. We show a = 0. If not, since ϕ is upper semicontinuous, we
have

a = limd( f n(x0), f n+1(x0))
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≤ limϕ(d( f n−1(x0), f n(x0)))≤ ϕ(a).

This means a ≤ ϕ(a), which is a contradiction. Now, we prove { f n(x0)} is a Cauchy
sequence. Suppose not, there exists ε > 0 such that for all r ∈ N, there exists mr >
nr ≥ r such that

d( f mr(x0), f nr(x0))≥ ε. (2.3)
We can suppose that for all r, mr is the smallest number greater than nr such that (2.3)
holds. Therefore for such k we have

ε ≤ d( f mr(x0), f nr(x0))

≤ d( f mr(x0), f mr−1(x0))+d( f mr−1(x0), f nr(x0))

≤ d( f mr(x0), f mr−1(x0))+ ε.

Hence
lim
r→∞

d( f mr(x0), f nr(x0)) = ε
+,

thus we have

d( f mr(x0), f nr(x0))≤ d( f mr(x0), f mr+1(x0))+d( f mr+1(x0), f nr+1(x0))

+d( f nr+1(x0), f nr(x0))

≤ d( f mr+1(x0), f mr(x0))

+d( f nr+1(x0), f nr(x0))+ϕ(d( f mr(x0), f nr(x0))).

It follows that ε ≤ ϕ(ε), and this a contradiction. Hence { f n(x0)} is a Cauchy se-
quence. Since X is complete, there exists a q in X such that f n(x0) → q as n → ∞.
The rest of the proof is like as the previous theorem. □

Remark 1. Consider the integral equation

y(x) =
∫ x

0
k(x,s)g(s,y(s))ds, (2.4)

where I is a closed interval in R, k : I ×R → R+ such that supx∈I
∫ x

0 k(x,s)ds ≤ 1
and g : I ×R → R is increasing with respect to the second component and |g(x,y)−
g(x,z)| ≤ ϕ(d(y,z)) (for all x ∈ I and y ≤ z) where ϕ : R+ → R+ is an increasing and
upper semicontinuous function such that ϕ(x)< x for all x > 0. Assume there exists
y0 such that y0(x)≤

∫ x
0 k(x,s)g(s,y0(s))ds. Then by Theorem 5 the integral equation

(2.4) has a solution in C(I,R).

By the main result we are interested in solving the ordinary differential equation

y′(x) = 1+ log(x+1)sin((πy)/x). (2.5)

Set I = [0,1] and X =C(I,R). We define d(y,z) = sup{|y(x)− z(x)| : x ∈ I} for every
y,z ∈ X and an order relation in X as

y ≤ z if and only if y(x)≤ z(x) for all x ∈ I
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where y,z ∈ X . It is obvious that (X ,≤) is a partially ordered set and (X ,d) is a
complete metric space. Define T : X → X by

Ty(x) :=
∫ x

0
g(s,y(s))ds, (2.6)

where g : I → R is

g(x,y) :=
{

1+ log(x+1)sin((πy)/x), x ̸= 0,
0, x = 0.

Since the mapping g is increasing with respect to the second component, T is non-
decreasing. Notice that |g(x,y)−g(x,z)| ≤ log |y− z| for every x ∈ I and y ≤ z. Also
log is an increasing function, log(x)< x for x > 0 and an upper semicontinuous func-
tion. In addition, for y ≤ z

d(T (y),T (z)) = sup
x∈I

|[Ty](x)− [T z](x)|

≤ sup
x∈I

∫ x

0
|g(s,y(s))−g(s,z(s))|ds

≤ sup
x∈I

∫ x

0
log(|y(s)− z(s)|)ds

≤ log(sup |y− z|)
= logd(y,z)).

If there exists y0 such that

y0(x)≤
∫ x

0
g(s,y0(s))ds.

According to the Theorem 5, T has a fixed point and thus the integral equation (2.6)
has a solution in C(I,R). Now consider the following integral equation

y(x) =
∫ x

0
1+ log(ξ+1)sin((πy)/ξ)dξ.

Notice that since this integral equation has a solution in [0,1] then equivalently (2.5)
has a solution. According to numerical method this solution is y = x. Notice that this
solution satisfies in (2.5).
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