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In this paper we study the Platonic
Bell inequalities for all possible dimen-
sions. There are five Platonic solids in
three dimensions, but there are also solids
with Platonic properties (also known as
regular polyhedra) in four and higher di-
mensions. The concept of Platonic Bell
inequalities in the three-dimensional Eu-
clidean space was introduced by Tavakoli
and Gisin [Quantum 4, 293 (2020)]. For
any three-dimensional Platonic solid, an
arrangement of projective measurements
is associated where the measurement di-
rections point toward the vertices of the
solids. For the higher dimensional regular
polyhedra, we use the correspondence of
the vertices to the measurements in the ab-
stract Tsirelson space [B. Tsirelson, J. So-
viet Math. 36, 557 (1987)]. We give a re-
markably simple formula for the quantum
violation of all the Platonic Bell inequal-
ities, which we prove to attain the max-
imum possible quantum violation of the
Bell inequalities, i.e. the Tsirelson bound.
To construct Bell inequalities with a large
number of settings, it is crucial to compute
the local bound efficiently. In general, the
computation time required to compute the
local bound grows exponentially with the
number of measurement settings. We find
a method to compute the local bound ex-
actly for any bipartite two-outcome Bell
inequality, where the dependence becomes
polynomial whose degree is the rank of
the Bell matrix. To show that this algo-
rithm can be used in practice, we compute
the local bound of a 300-setting Platonic
Bell inequality based on the halved do-
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decaplex. In addition, we use a diagonal
modification of the original Platonic Bell
matrix to increase the ratio of quantum
to local bound. In this way, we obtain a
four-dimensional 60-setting Platonic Bell
inequality based on the halved tetraplex
for which the quantum violation exceeds
the maximum quantum violation of the
famous Clauser-Horne-Shimony-Holt Bell
inequality. This is the first example of a
Platonic Bell inequality exceeding the

√
2

ratio.

1 Platonic solids in quantum physics
Platonic solids [1] – convex polyhedra with equiv-
alent faces composed of congruent convex regu-
lar polygons – have been recently studied in the
context of Bell nonlocality [2, 3]. Specifically,
Tavakoli and Gisin [4] constructed bipartite two-
outcome Bell inequalities [5, 6] whose maximal vi-
olation is obtained with projective measurements
pointing toward the vertices of three-dimensional
Platonic solids. These inequalities are called Pla-
tonic Bell inequalites [4].

In addition to Platonic solids, semi-regular
polyhedra, namely Archimedean solids [1], were
studied in Ref. [4]. A recent development is the
realization that starting from the fact that Pla-
tonic and Archimedean solids may be generated
as orbits of representations of groups makes it
possible to derive very interesting general prop-
erties of the Bell inequalities constructed [7]. The
group-theoretical approach also allows one to de-
rive further inequalities sharing these properties
based on three-dimensional bodies even without
apparent symmetries.

All the constructed Bell expressions involve
only joint correlation terms and they are denoted
correlation-type Bell expressions [6] (also known
as XOR games [8]). The maximum quantum
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value of these Bell expressions can be achieved
by maximally entangled states [6]. The ratio Q/L
between the optimal quantum value Q for such a
Bell expression and its local bound L quantifies
the amount of isotropic noise p = 1−(L/Q) which
must be added to the maximally entangled state
such that the quantum value becomes smaller
than L. Therefore the Q/L ratio is relevant from
an experimental point of view as well. As a
matter of fact, no Bell inequalities arising from
these three-dimensional solids were found [4, 7]
which have a higher Q/L ratio than

√
2, i.e.,

exhibit higher noise resistance to the isotropic
noise than the famous Clauser-Horne-Shimony-
Holt (CHSH) Bell inequality [9]. Note, however,
that there exist correlation-type Bell inequalities
overcoming the ratio Q/L =

√
2 using maximally

entangled states which are not based on Platonic
Bell inequalities, see e.g. [19, 31]. The first exam-
ple using a two-qubit maximally entangled state
appeared in 2008 in Ref. [32].

Our present study is built upon and motivated
by the recent work of Tavakoli and Gisin [4]. We
generalize the notion of Platonic Bell inequalities
to d 6= 3 dimensional Euclidean spaces. Obvi-
ously, if d > 3, this space can not be identified
with the physical space such that the measure-
ments point towards the vertices of the solids.
Nevertheless, even in such cases the generaliza-
tion does correspond to genuine quantum Bell
scenarios. We have studied all pairs of Platonic
solids in all dimensions. In contrast to previ-
ous works, we have also considered different local
orientations of these solids, especially to deter-
mine which relative orientation gives the maxi-
mum Q/L ratio. We have proven that the quan-
tum value is independent of the relative orien-
tation and can be given in all cases by a very
simple formula. We have found a method to ef-
ficiently calculate the local bound when the rank
of the Bell matrix (which in this case is just d) is
much smaller than the number of measurement
settings. Unfortunaly, we still could not find a
single Bell inequality where Q/L is larger than√

2. Next, we have also studied Platonic Bell
inequalities where the main diagonal entries of
the Bell matrix have been modified by a con-
stant term. We have shown that this modifi-
cation does not change the measurement con-
figuration corresponding to the maximum quan-
tum violation. Therefore, the diagonally modi-

fied inequalities are still considered as Platonic
Bell inequalities. Finally, starting from the 120-
vertex tetraplex, with this diagonal modification
we have found Platonic Bell inequalities with
Q/L >

√
2. Hence, these Bell inequalities are

more tolerant to isotropic noise than the CHSH
inequality. In fact, they require a state space of
dimension 4× 4 to reach the maximum quantum
violation, i.e., the Tsirelson bound [5].

Besides Bell nonlocality, there is a number of
other uses of Platonic solids in quantum physics.
Let us give just a few other examples. In
Refs. [10, 11], the directions of quantum measure-
ments are chosen along the vertices of Platonic
solids to demonstrate Einstein-Podolsky-Rosen
steering. In Ref. [12], quantum circuits have been
devised where the measurement directions point
to vertices of the Platonic solids. In Ref. [13], dif-
ferent types of single qubit private quantum chan-
nels have been constructed and linked to three-
dimensional Platonic solids. In a more recent
work [14] four-dimensional Platonic solids were
connected to qutrit-based private quantum chan-
nels. Such regular polyhedra were also used in ref-
erence frame alignment [15] and quantum hashing
protocols [16]. More recently Platonic solids were
considered in quantum entanglement theory [17]
and quantum contextuality [18].

The structure of the paper is as follows. Sec-
tion 2 gives an introduction to correlation-type
Bell inequalities, and more specifically to Pla-
tonic Bell inequalities introduced in Ref. [4]. Sec-
tion 3 summarizes the basic properties of Pla-
tonic solids in all the possible dimensions. In
Section 4 the maximum quantum value, that is
the quantum bound of a special class of Bell in-
equalities is given. This class is proved to include
all Platonic (and Archimedean) inequalities. We
derive a remarkably simple formula for the quan-
tum violation of all members of this class. We
note that the same formula (5) for the quantum
bound in the framework of group theory has been
obtained independently in Ref. [7]. However,
more conditions have been used than necessary
for the derivation, and no proof has been provided
that the formula also defines the globally optimal
quantum value, i. e., that it reaches the Tsirelson
bound of the Bell inequality. In contrast, we show
that the choice of the measurement vectors is op-
timal, proving that the measurement configura-
tion allows us to reach the Tsirelson bound.
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To construct Bell inequalities with a large num-
ber of settings, it is crucial to compute the lo-
cal bound efficiently. In general, the computa-
tion time required to compute the local bound
grows exponentially with the number of measure-
ment settings. In Section 5, we give a numerical
method that allows the computation of the local
bound in polynomial time (instead of exponen-
tial scaling) in the number of measurement set-
tings for any bipartite two-outcome Bell inequal-
ity with constant rank of the Bell matrix. The
dependence is polynomial in terms of the rank of
the Bell matrix, in particular, the degree of the
polynomial equals the rank of the Bell matrix.
The considered bipartite Bell inequalities include
all correlation-type inequalities and all Platonic
Bell inequalities as a subset of correlation-type
inequalities. In the next sections we apply the
developed tools to Platonic Bell inequalities in
all possible dimensions: In Section 6, we con-
sider Platonic Bell inequalities based on regular
polygons (that is, the case of d = 2). The three
and higher dimensional cases are discussed in Sec-
tions 7 and 8. In particular, the local strategies
for all d ≥ 3 are given in Section 7 and the com-
putation of the local bounds for d ≥ 3 is carried
out in Section 8. Then, in Section 9, we discuss
Platonic Bell inequalities where the main diago-
nal entries of the Bell matrix are modified with
a constant term. In this way, we find (diago-
nally modified) Platonic Bell inequalities that are
more robust to isotropic noise than the celebrated
CHSH-Bell inequality. The obtained results are
summarized in Section 10. In Appendix A we
discuss the known relationship between the Eu-
clidean and Hilbert space descriptions whose ex-
istence shows that higher dimensional general-
izations do indeed correspond to quantum Bell
scenarios. The proof of special properties of our
classes of Bell inequalities is given in Appendix B.

2 Introduction to Platonic Bell in-
equalities

Tavakoli and Gisin [4] have constructed two-party
correlation-type Bell inequalities [6] whose max-
imal quantum value can be reached by measure-
ments performed on a pair of one-half spins along
directions of the vertices of Platonic solids. In a
two-party Bell scenario parts of identically pre-
pared physical systems are distributed between

two distant parties, say Alice and Bob. Each of
them independently chooses a measurement set-
ting from a pre-decided set and performs the cor-
responding measurement on her/his subsystem.
A Bell inequality expresses the fact that, given
the measurement settings chosen by the parties,
a linear combination of the conditional probabil-
ities of the possible outcomes cannot be greater
than a certain value, the so-called local bound, in
any locally realistic theory. Quantum theory al-
lows for the violation of many Bell inequalities [3].

Correlation-type Bell inequalities [6] involve bi-
nary, that is two-outcome measurements. Let
the two outcomes be +1 and −1. In the present
case, when the system is a pair of one-half spins,
the spin projections are measured along pre-
determined spatial directions. The possible result
of such a measurement is either +~/2 (outcome
+1) or −~/2 (outcome −1). The general form of
such an inequality may be written as:

mA∑
i=1

mB∑
j=1

Mij〈aibj〉 ≤ L, (1)

where mA and mB are the number of measure-
ment settings, while ai = ±1 and bj = ±1 are
the outcome of measurement i and j of Alice
and Bob, respectively. The M is the Bell matrix
whose real elements are the Bell coefficients. The
expectation value 〈aibj〉 is p(11|ij)+p(−1−1|ij)−
p(1−1|ij)−p(−11|ij), that is it can be expressed
as a linear combination of p(aibi|ij) conditional
probabilities. The value L is the maximum value
the expression may take considering all possibil-
ities with deterministic outcomes (when the out-
comes are the same in all rounds with the same
choices of settings), which is the maximum value
allowed by any locally realistic theory.

In quantum mechanics 〈aibj〉 = Tr(ρâi ⊗ b̂j)
in case of projective measurements, where âi
and b̂j are the Hermitian measurement opera-
tors with eigenvalues ±1 corresponding to the
ith and jth measurement of Alice and Bob, re-
spectively, while ρ is the density operator of
the system. For a pure state |ψ〉 this becomes
〈ψ|âi ⊗ b̂j |ψ〉. The maximal quantum value, that
is, the quantum bound, can always be achieved
with a pure state, in the case of a correlation-
type Bell inequality with a maximally entangled
one [6, 19]. The quantum bound can be de-
termined by semidefinite programming applying
the Navascués-Pironio-Acín (NPA) hierarchy of
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Ref. [20] at its first level.
For a qubit the most general non-degenerate

measurement operator is αxσ̂x + αyσ̂y + αzσ̂z ≡
~α·~σ, where σ̂x, σ̂y and σ̂z are the Pauli-operators.
If the qubit corresponds to a spin, then the unit
vector ~α points towards the direction in the phys-
ical space along which the spin projection is mea-
sured. It can be shown (for example [4]) that if
the measurement by Alice and Bob is performed
on a pair of Bell state |Φ+〉 = (|00〉 + |11〉)/

√
2

along ~α and ~β, respectively, then the expecta-
tion value of the product of the measurement
outcomes 〈Φ+|(~α~σ) ⊗ (~β~σ)|Φ+〉 = ~α · ~β∗, where
β∗x ≡ βx, β∗y ≡ −βy and β∗z ≡ βz. Therefore,
the quantum value of the Bell inequality with the
|Φ+〉 state is:

Q =
mA∑
i=1

mB∑
j=1

Mij~ai ·~bj , (2)

where ~ai is Alice’s ith measurement direction,
while ~bj is Bob’s jth measurement direction re-
flected through the x− z plane.

The systematic method to construct the de-
sired Bell inequalities Tavakoli and Gisin [4] pro-
posed was to take Mij = ~Ai · ~Bj , where ~Ai and
~B∗j are the unit vectors pointing towards the
desired measurement directions in Alice’s, and
Bob’s side, respectively, namely towards vertices
of Platonic bodies. Then the quantum value for
the resulting Bell inequality with these measure-
ment directions is

∑
ij( ~Ai · ~Bj)2. Although all

terms in the expression are positive, it itself does
not ensure that the desired measurement direc-
tions are really optimal. For a general choice of
vectors ~Ai and ~Bj this is usually not true. How-
ever, the authors checked all pairs of Platonic
solids, although only with one relative orientation
for each pair, by calculating the quantum bound
using the NPA method [20], and found that the
desired measurement directions were optimal for
all of cases they checked. We will show here that
all Platonic solids have certain property that en-
sures this, moreover, the form of the quantum
bound is very simple and independent of the rel-
ative orientation of the two bodies. However, the
local bound, and hence the maximum violation
of the inequality does depend on this. We will
discuss this dependence in the present paper.

Tavakoli and Gisin [4] have considered only the
classical, three-dimensional Platonic solids. The
objects corresponding to the Platonic solids in

two dimensions are the regular convex polygons.
There is an infinite number of them. If the sys-
tem is a pair of one-half spins, the Bell inequal-
ity, which is constructed according to Ref. [4]
from two such polygons in the same plane, will
be maximally violated by measurements towards
the vertices of the polygons. We will explore this
generalization in Section 6. There are generaliza-
tions of the Platonic solids in higher dimensions
as well. In four dimensions there are six such
objects, while in each higher dimensional space
there are only three of them. Due to a theorem by
Tsirelson [6], for any Euclidean space there exists
a Hilbert space H and a state |Φ〉 in H ⊗H such
that for all unit vectors ~a and ~b in the Euclidean
space there exist measurement operators â and b̂
in H such that ~a ·~b = 〈Φ|â ⊗ b̂|Φ〉. For a three
dimensional Euclidean space the Hilbert space is
the qubit space and the operators are ~a · ~σ and
~b∗ · ~σ. In Appendix A we discuss the relationship
between the Euclidean and Hilbert space descrip-
tion. The considerations there are based on the
explicit construction for all dimensions given for
example in Refs. [19, 21]. From the existence of
such a construction, it follows that for any set of
~ai and ~bj vectors in any Euclidean space, the ex-
pression

∑
ijMij~ai ·~bj will give the quantum value

of the Bell expression with certain measurements
performed on certain bipartite quantum system.
This means that the generalization of the con-
struction of the Bell inequalities to higher dimen-
sional spaces does make sense, the result will cor-
respond to a genuine Bell scenario. We will call
the ~ai and ~bj the measurement vectors.

Unfortunately, the beauty of those measure-
ment settings corresponding to highly symmetric
arrangements in the physical space is necessarily
lost in more than three dimensions. At the same
time, in experimental realizations of Bell scenar-
ios the quantum systems are typically not pairs
of one-half spins even if they are pairs of qubits.
In that case symmetry would only show up in an
abstract space anyway, just like in the generaliza-
tion to higher dimensions.

In more than two dimensions some Platonic
solids have too many vertices, such that the calcu-
lation of the local bound of Bell inequalities con-
structed from them in the straightforward way
may not be feasible. We have found a method
which makes it possible to calculate the local
bound exactly whenever the Bell coefficients are
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given as scalar products of low dimensional Eu-
clidean vectors, even if the number of measure-
ment settings is large. As the vectors need not
be unit vectors in this case, the method may be
useful whenever the rank of the Bell matrix of a
correlation-type inequality is low. In addition, we
show that the computation of the local bound can
be done efficiently for any bipartite two-outcome
Bell inequality with low Bell matrix rank.

3 Platonic solids in d dimensions

In this section we briefly summarize some well-
known facts about Platonic bodies [1]. All this
knowledge can even be found on Wikipedia.

For d > 4 there are just three types of Pla-
tonic solids: the simplex, the cross polytope and
the hypercube. A simplex has d + 1 vertices,
and if the vectors pointing towards those vertices
are normalized, the scalar product of each pair
of them is −1/d. A cross polytope has 2d ver-
tices. In its standard orientation, which is the
most convenient one, these vertices are given by
~ei and −~ei, where ~ei are the coordinate vectors.
The d-dimensional hypercube or simply d-cube
has m = 2d vertices ~Vi, whose each coordinate
Vij in the standard orientation is either +1/

√
d

or −1/
√
d, such that all variations of the signs

are covered. Cross polytopes and hypercubes are
centrally symmetric, while simplices are not.

In two dimensions there are an infinite num-
ber of Platonic bodies, they are the regular con-
vex polygons. An n-sided regular polygon is cen-
trally symmetric if and only if n is even. From
our point of view if n is odd, the n-sided and
the 2n-sided polygons behave very similarly. The
two-dimensional simplex is the regular triangle,
while both the cross polytope and the 2-cube is
the square, their standard orientation differs by
an angle of π/4.

In three dimensions the simplex is the tetrahe-
dron, the cross polytope is the octahedron, while
the 3-cube is simply the cube. If we reflect the
vertices of the tetrahedron to its center and add
the reflected points as new vertices, we get a cube.
As we will see later, for this reason the two bodies
will behave equivalently from our point of view.
There are two additional three-dimensional Pla-
tonic bodies, the icosahedron and the dodeca-
hedron having 12 and 20 vertices, respectively.
Both are centrally symmetric.

In four dimensions the simplex is the penta-
choron, but it is also referred to as 5-cell, pen-
tatope, pentahedroid, or tetrahedral pyramid.
The cross polytope is the hexdecahedroid, also
called 16-cell or hexadecachoron, while the 4-
cube is the tesseract, whose alternative names
are 8-cell, octachoron, octahedroid, cubic prism,
and tetracube. There are three additional Pla-
tonic bodies in d=4: the octaplex (24-cell, icosite-
trachoron, icosatetrahedroid, octacube, hyper-
diamond, polyoctahedron), the tetraplex (600-
cell, hexacosichoron, hexacosihedroid, polyte-
trahedron) and the dodecaplex (120-cell hy-
perdodecahedron, polydodecahedron, hecatoni-
cosachoron, dodecacontachoron, hecatonicosahe-
droid) with 24, 120 and 600 vertices, respec-
tively. These three bodies are centrally symmet-
ric. We note that in the name n-cell for each 4-
dimensional body n refers to the number of facets,
while for us the number of vertices is relevant.

4 Quantum bound for the special cases
Observation: The set of unit vectors ~Vi point-
ing towards the vertices of a Platonic solid has the
property that the columns of the matrix whose el-
ements Vij ≡ (~Vi)j are the components of the vec-
tors are orthogonal to each other and have equal
norm, that is

∑m
i=1 VijVik = δjkm/d, where m is

the number of vertices, d is the dimensionality
of the space and j, k = 1, . . . d. In other words,
matrix V is proportional to a semiorthogonal ma-
trix.

The value of the norm of the columns follows
from the unit lengths of ~Vi. If ~Vi has the property,
then

m∑
i=1

(~Vi · ~x)~Vi =
m∑
i=1

d∑
j,k=1

(Vijxj)(Vik~ek) = m

d
~x,

(3)
where ~x is any vector in the d-dimensional space,
and ~ek are the basis vectors. From this it follows
that if ~y is also a d-dimensional vector, then

m∑
i=1

(~Vi · ~x)(~Vi · ~y) = m

d
~x · ~y. (4)

From the equation above it is clear that the prop-
erty is independent of the choice of the basis vec-
tors (~x and ~y may be members of another basis),
therefore, the property is invariant to any orthog-
onal transformation.
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Now let the Bell coefficients be Mij = ~Ai · ~Bj
(i = 1, . . . ,mA; j = 1, . . . ,mB). We will refer to
~Ai and ~Bj as the construction vectors. Further-
more, let either ~Ai or ~Bj obey the constraint given
in the Observation. Then the quantum value one
gets when the measurement vectors are the same
as the respective construction vectors, i.e. ~ai = ~Ai
and ~bi = ~Bi is

mA∑
i=1

mB∑
j=1

( ~Ai · ~Bj)( ~Ai · ~Bj) = mAmB

d
, (5)

which readily follows from Eq. (4) and from the
fact that ~Ai and ~Bj are unit vectors. It is triv-
ial that the quantum value calculated this way
does not depend on the relative orientation of the
two sets of vectors, it is invariant to orthogonal
transformations applied on either side. The same
formula has been obtained for three dimensions
independently in Ref. [7]. To derive it, the au-
thors assumed that the vectors on both sides cor-
respond to orbits of the same group generated by
the same three-dimensional irreducible represen-
tation. Eqs. (15) and (16) of the paper show that
if the vectors generated this way, they will obey
the constraint given in the Observation on both
sides, which is unnecessary. As we have shown, if
the condition holds on either side, then Eq. 5 is
true. However, this quantum value will usually be
below the quantum bound unless the constraint
is obeyed on both sides, in which case the quan-
tum bound is reached, as we will prove later. If
the vectors are generated as orbits, as in Ref. [7],
it is not necessary to use the same representation
of the same group on both sides; the quantum
bound will be given by the simple formula even
if different groups are chosen.

The quantum values given by Tavakoli and
Gisin [4] for 3-dimensional Platonic solids all
agree with mAmB/3 given above. They have
shown for each pairs of solids that taking the mea-
surement vectors equal to the construction vec-
tors is actually an optimum choice, which gives
the maximum quantum value. For that they used
the NPA hierarchy [20]. Proof was necessary,
because although such a choice must clearly be
a good one, as each term in the Bell-expression
gives a positive contribution, but actually this is
usually not the optimum one if the construction
vectors are chosen differently.

Now we will show that if both ~Ai and ~Bi obey
the constraint, this choice of the measurement

vectors is optimal by proving that the quantum
value agrees with the upper bound derived by
Epping et al. in Ref. [22] for two-party binary-
outcome correlation-type Bell inequalities. The
bound is given as

√
mAmB||g||2, where ||g||2 is

the maximal singular value of the Bell matrix.
The Bell matrix can be rewritten as:

Mij = ~Ai · ~Bj =
d∑

k=1
AikB

T
kj =

d∑
k=1

ĀikSkkB̄
T
kj ,

(6)
where Aik ≡ ( ~Ai)k, Bjk ≡ ( ~Bj)k, Āik ≡√
d/mAAik, B̄jk ≡

√
d/mBBjk and S is a di-

agonal matrix with nonzero elements Skk =√
mAmB/d. The constraint for ~Ai and ~Bi means

that matrices Ā and B̄ are semiorthogonal. We
may extend Ā and B̄ with further columns,
which are normalized, orthogonal to the original
columns and to each other to get orthogonal ma-
trices, and also we may extend matrix S by zero
elements to size mA ×mB. Let us denote the re-
spective extended matrices by Ã, B̃ and S̃. Then

Mij =
mA∑
k=1

mB∑
l=1

ÃikS̃klB̃
T
lj . (7)

The equation above is nothing else than a singu-
lar value decomposition of the Bell-matrix. The
singular values are the diagonal elements of S̃,
that is

√
mAmB/d and zero. Therefore, ||g||2 =√

mAmB/d, and the upper bound for the quan-
tum value is mAmB/d, which is achievable with
the choice ~ai = ~Ai and ~bi = ~Bi (see Eq. 5).
Therefore, Bell inequalities constructed this way
from vectors obeying the constraint in the Obser-
vation are special cases of the ones discussed in
Ref. [23]. Actually, Eq. (6) is just the truncated
singular value decomposition referred to in The-
orem 1 in Ref. [23], and the matrix denoted by α
there, whose existence is required, is

√
mA/dδij ,

which leads to the optimum measurement vectors
given above, indeed.

In Ref. [23] the authors have also discussed
modifications of the inequalities leaving the upper
bound for the maximum quantum value achiev-
able. One is twisting (Corollary 1i), which is
nothing else for the present construction than
changing the relative orientation of sets ~A and
~B. The maximum quantum value remains the
same, which is evident from the formula giving
it, as we have already noted. As the local value
depends on it, we will look for the optimum rela-
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tive orientation minimizing the local value, conse-
quently, maximizing the quantum violation. The
other modification changes the singular values. If
it is done appropriately as prescribed in Corollary
1ii, the bound for the maximum quantum value
will change in a well-defined way while it remains
achievable. We will use this modification only in
a very special way and for a case when ~Ai = ~Bi.
We subtract λ, the same number from all diag-
onal elements of S̃. It is allowed in this case if
λ < mA/2d. Then the modified Bell matrix will
be:

M ′ij =
mA∑
k

Ãik(S̃kk − λ)ÃTkj

=
d∑

k=1
ĀikSkkĀ

T
kj − λ

mA∑
k=1

ÃikÃ
T
kj = Mij − λδij .

(8)

Here we have used that Ãik = Āik and S̃kk = Skk
if k ≤ d, and Eq. (6). The modification of
the Bell matrix is very simple, the same number
is subtracted from each diagonal element. The
maximum quantum value becomes m2

A/d− λmA

and it can be achieved with measurement vec-
tors ~ai = ~bi = ~Ai, the same ones as without the
modification. As it is easy to show that the local
value decreases by the same λmA amount than
the quantum maximum until the optimal local
strategy does not change, if the original inequal-
ity is violated, the modification increases the vi-
olation.

We have shown above that ~ai = ~Ai and~bj = ~Bj
is an optimal choice for the measurement vectors
if both sets of construction vectors obey the con-
straint of the Observation. However this is not
the only optimal choice. For example, the quan-
tum value is obviously the same if ~ai = Ô ~Ai and
~bj = Ô ~Bj , where Ô is an orthogonal transforma-
tion. There may be less trivial examples, it may
even happen that measurement vectors in a lower
dimensional subspace also lead to the maximum
quantum value.

For the five three-dimensional and for the six
four-dimensional Platonic solids the Observation
may easily be verified explicitly. For more than
four dimensional spaces there are only three kinds
of Platonic solids, the cross polytope, the simplex
and the hypercube (octahedron, tetrahedron and
cube in three dimensions, respectively). In Ap-
pendix B we prove that the Observation is true

for these bodies in all dimensions. We also prove
that it is also true for all convex polygons, which
are the Platonic solids of two dimensions. The 13
Archimedean solids in three dimensions also obey
the property, as it can easily be checked.

The validity of the Observation is certainly
connected to some symmetry properties, there-
fore, it must be valid for many other symmetric
objects. The Observation involves d(d+ 1)/2− 1
constraints. Finding the same number of inde-
pendent constraints for a set of unit vectors which
can be derived from the original ones is enough
to show that the set has the property, with all of
its consequences. Such constraints can be found
in case of symmetric objects. For any Ô sym-
metry of V̂i (that is when the set Ô~Vi is the
same as V̂i), it is true that

∑m
i=1(~Vi · ~x)(~Vi · ~y) =∑m

i=1(~Vi · Ô−1~x)(~Vi · Ô−1~y). From Eq. (33) in Ap-
pendix B we also show that if the vectors have
an l-fold symmetry for rotations in some plane,
then for all vectors ~x in that plane the value of
the sum

∑m
i=1(~Vi · ~x)(~Vi · ~x) are the same, and

for all orthogonal pairs of vectors ~x and ~y in that
plane

∑m
i=1(~Vi · ~y)(~Vi · ~x) = 0. If there are several

such planes and possibly some other symmetries,
it may be enough to ensure that all constraints
are satisfied.

It is easy to see that if the set ~Vi is centrally
symmetric and obeys the constraints of the Ob-
servation, then the subset of ~Vi containing only
one of each pairs pointing towards opposite direc-
tions also obeys the constraints (the scalar prod-
ucts of the columns are just one half of the scalar
products corresponding to the original set).

5 The local bound

In this paper we are dealing with Bell inequalities
whose coefficients are given as scalar products of
d-dimensional unit vectors from two sets. The
considerations of this section do not require that
the sets are normalized, which means that they
are valid for any correlation-type bipartite Bell
inequality, as the Bell coefficients can always be
written as scalar products of two non-normalized
sets of vectors using the singular value decompo-
sition of the Bell matrix. The dimensionality of
the vectors is equal to the rank of the Bell matrix.
We further extend the validity of our analysis to
generic non-correlation-type Bell inequalities.

Normally, the computation time required for
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the exact calculation of the local bound grows
exponentially with the number of measurement
settings. With the method proposed in this sec-
tion the dependence becomes polynomial whose
degree is the rank of the Bell matrix. Therefore, if
this rank is considerably lower than the number of
settings on each side, a lot of computation effort
can be saved. Unfortunately, if the rank is not
low enough, the computation effort required still
grows fast with the number of settings. Neverthe-
less, for low ranks and not very many settings the
method makes exact calculations of local bounds
affordable that would be intractable otherwise.

The local bound for any correlation-type Bell
inequality can be determined as:

L = max
ai,bj=±1

mA∑
i=1

mB∑
j=1

aibj( ~Ai · ~Bj), (9)

where ai and bj are the respective components
of the local strategies of Alice and Bob, and ~Ai
and ~Bj are not necessarily normalized Euclidean
vectors. The evaluation of the expression would
involve to check 2mA+mB strategies. This can be
reduced by noticing that for any strategy of Bob
there is an optimal strategy for Alice, namely:

ai = sgn

 ~Ai · mB∑
j=1

bj ~Bj

 . (10)

Using this strategy for Alice, the local bound be-
comes:

L = max
bj=±1

mA∑
i=1

mB∑
j=1
| ~Ai · bj ~Bj |. (11)

Taking into account that strategies with com-
ponents bj and −bj give the same value, the
evaluation of 2mB−1 expressions is sufficient (for
example, one can consider only strategies with
b1 = +1). Obviously, if mA < mB, one can use
an analogous formula and end up with 2mA−1

evaluations. However, the present construction
of the Bell coefficients may lead to further and
very significant reduction of the number of eval-
uations. Instead of an exponential dependence
on the number of settings we get a polynomial
dependence whose degree is d− 1.

Furthermore, our result for bipartite
correlation-type inequalities can be extended
to generic bipartite two-outcome inequalities.

Indeed, in this case we can write the Bell
inequality

mA∑
i=1

MA
i 〈ai〉+

mB∑
j=1

MB
j 〈bj〉+

mA∑
i=1

mB∑
j=1

Mij〈aibj〉 ≤ L.

(12)
We show that the calculation of the local bound
above can be traced back to the calculation of
the local bound of a correlation-type Bell inequal-
ity (1). In particular, let us define the following
(mA + 1)× (mB + 1)-setting correlation-type in-
equality:

MmA+1,mB+1〈amA+1bmB+1〉+
mA∑
i=1

MA
i 〈aibmB+1〉

+
mB∑
j=1

MB
j 〈amA+1bj〉+

mA∑
i=1

mB∑
j=1

Mij〈aibj〉 ≤ L′.

(13)

Let us further choose the constant

MmA+1,mB+1 =
mA∑
i=1
|MA

i |+
mB∑
j=1
|MB

j |+
mA∑
i=1

mB∑
j=1
|Mij |.

(14)
In this case, one can show that the local bound L′

above is obtained with a deterministic strategy,
where amA+1bmB+1 = 1. Then the local bound
L in (12) can be obtained by a simple subtrac-
tion from the local bound L′ in (13): L = L′ −
MmA+1,mB+1. On the other hand, the Bell ma-
trix in Eq. (13) can have only one more rank than
the Bell matrix in Eq. (12). This follows from
the definition of the matrix rank given by the
linearly independent number of rows or columns
of the matrix. Thus, we proved that the local
bound L of a generic two-outcome bipartite Bell
inequality (12) can be reduced to the calculation
of the local bound L′ of the correlation-type Bell
inequality (13). Using the following algorithm
to compute the local bound of a correlation-type
Bell inequality with small matrix rank M , how-
ever, we obtain an efficient algorithm for compu-
tating the local bound of any two-outcome bipar-
tite Bell inequality when the matrix rank M is
much lower than the number of settings mA and
mB.

Let us call strategy ai a geometrical strategy
for Alice if there exists some vector ~q such that
ai = sgn( ~Ai · ~q). Looking at Eq. (10) it is clear
that all strategies of Alice that are potentially op-
timal are geometrical ones. From the analogous
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expression giving the optimal bj for ai follows that
the same is true for the potentially optimal strate-
gies of Bob. Therefore, it is enough to check only
the geometrical strategies when calculating the
local bound. From Eq. (11) it follows that apply-
ing a geometrical strategy of Bob means multi-
plying ~Bi by +1 or −1 depending on which side
of a hyperplane (the normal plane of ~q) it is, such
that bi ~Bi are all in the same side.

Now we give a recipe to determine all geometri-
cal strategies for a set of vectors ~Ai. We may take
~q to be a unit vector, so that it may be thought
of as a point on the surface of the unit sphere. It
is clear that a small change in ~q usually will not
change the geometrical strategy it defines: there
is a whole region on the surface of the unit sphere
giving the same geometrical strategy. If we move
around on the surface and cross the normal hy-
perplanes of one of the ~Ai vectors, than ai will
change sign. Until such does not happen, we
remain in the same region. Therefore, the bor-
ders of the regions corresponding to geometrical
strategies are the intersections of the normal hy-
perplanes of ~Ai with the unit sphere, which are
great (hyper)circles of the (hyper)sphere.

The question is how to find all regions, or at
least the geometrical strategies they define. In
two dimensions the problem is easy. The unit
sphere is a circle and its intersections with the
normal planes (now just lines), that is the borders
of the regions are points which are easy to find.
There are 2mA such points, consequently the
same number of regions and geometrical strate-
gies (if no two vectors point to the same or oppo-
site directions).

Let us consider the three-dimensional case,
which is not difficult to visualize and which can
be generalized to higher dimensions. First let us
discuss the number of geometrical strategies, that
is the number of regions on the surface of the
sphere whose borders are the great circles defined
by the normal planes of ~Ai. If there is only one
vector, then the one great circle divides the sur-
face into two regions. For two vectors, if they do
not point to the same or to the opposite direc-
tions, the number of regions is four. If we add
a third vector such that only two great circles
cross each other in all intersections, that is there
are no multiple crossings, the number of regions
will be doubled again to eight. There is no gain
so far, all strategies are geometrical ones. How-

ever, when a fourth vector is added, the num-
ber of regions grows only by six instead of eight,
and the (i + 1)th vector will increase this num-
ber only by 2i instead of 2i. The reason is sim-
ple. The new great circle crosses each existing
one twice. Between each consequtive crossings
one region is cut into two parts. Since there are
2i new crossings, the number of regions grows by
this amount. It is easy to prove by induction
that if there are mA vectors, then the number of
regions is mA(mA − 1) + 2. If there are multiple
crossings, the number of regions will be smaller: if
two crossings occur in the same place, there is no
region cut between them. For symmetric arrange-
ments, like the Platonic bodies, multiple crossings
occur. Although a smaller number of geometric
strategies is advantageous in itself, unfortunately
the determination of them is more difficult, as we
will see later.

Our aim is to determine all geometrical strate-
gies. To do that let us concentrate on the in-
tersections, which are the corners of the regions.
Each intersection is in a direction orthogonal to
two vectors. All intersections can be found in the
directions of vectors ± ~Ak × ~Al taken for all pairs
(k, l = 1, . . . ,mA). We have supposed that there
are no pairs of vectors pointing towards opposite
directions. Let us also suppose that there are no
multiple crossings. Then each intersection is on
the border of four regions. For the four strate-
gies corresponding to these regions each ai for
i 6= k; i 6= l are the same for all four regions and
they are given as the sign of the scalar product of
~Ai with the vector pointing towards the intersec-
tion (these are well defined in case of no multiple
intersections), while for i = k or i = l, for which
this scalar product is zero, the four variations of
+1 and −1 has to be taken. This way we get
all geometrical strategies, but in multiple copies,
each strategy will occur in our list as many times
as the number of corners of its region. Therefore,
the last step is to get rid of the multiple copies.

If ai represents a geometrical strategy so does
−ai. One can save some effort when applying
the algorithm above by looking only for one from
each such pair. Therefore, it is better to take only
one of the intersections from the pair in opposite
directions (say + ~Ak× ~Al), and to reverse all signs
whenever a strategy derived has a1 = −1.

The algorithm may be extended to dimensions
d > 3. Now the corners of the regions, that is
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the points to find are at the intersections of d− 1
hyperplanes with the hypersphere. They are in
directions which are orthogonal to d− 1 vectors.
This is towards the null space of the matrix given
by those d − 1 vectors, provided the null space
is one-dimensional (if not, those vectors do not
define a corner). One may find all corners by
taking all combinations of d−1 vectors out of the
mA ones. Each such point now is on the border
of 2d−1 regions. The strategies corresponding to
these regions can be determined similarly to the
three-dimensional case. For d = 4 the number of
geometrical strategies ismA(mA−1)(mA−2)/3+
2mA. We note that if mA ≤ d all strategies are
geometrical ones if ~Ai are linearly independent.

So far, we supposed that there are no pairs of
vectors pointing towards opposite directions and
no multiple crossings, meaning that no more than
the minimum number of great hypercircles to de-
fine a point intersect in each point. For randomly
chosen ~Ai this is true. Unfortunately in the case
of Platonic solids, and when ~Ai shows some sym-
metries, it is not the case. If ~Ai = − ~Aj for some
i, j then in all geometric strategies it is obviously
true that ai = −aj . Therefore, we may elimi-
nate one of them and reduce the number of set-
tings mA by one by dropping one of the vectors
and doubling the length of the other one. We
note that in this part we have not used that Ai
are normalized, all considerations are true even
if their lengths are different. For d > 2 all Pla-
tonic bodies are centrally symmetric except for
the simplices, therefore one half of the vertices
can be eliminated. We may even leave the vec-
tors normalized and just multiply the local bound
by two at the end.

The most obvious way to treat the problem
of multiple crossings is to take all variations of
+1 and −1 for the undetermined strategy com-
ponents, that is if ν great hypercycles intersect,
create 2ν strategies. However, this way we would
create spurious strategies. Let us look at the
three-dimensional case. If there is a ν-fold in-
tersection, we would create 2ν strategies, while
the intersection is on the border of only 2ν re-
gions. This recipe may even be intractable. For
the four dimensional Platonic body that has the
most vertices (the dodecaplex) even 30-fold inter-
sections occur. It would probably be possible to
work out an algorithm to identify the truely ex-
isting regions, but it does not seem obvious. We

have chosen a different approach. We can dissolve
the degeneracies of the intersections by applying
small perturbations to vectors ~Ai. This method
will also introduce spurious strategies, but not as
many as the one discussed above. If the pertur-
bations are small enough, the desired strategies
will always be found. The number of all strategies
created this way, including the spurious ones, will
be the same as we would get for random ~Ai. The
spurious strategies we get depend on the pertur-
bation applied. Therefore, we may get rid of them
by repeating the calculation with different pertur-
bations several times and keeping the strategies
present in the results of all runs.

For the dodecaplex, the four dimensional Pla-
tonic solid that has 600 vertices, the total num-
ber of strategies to consider is 2599, which can
be reduced to 2299 by eliminating half of the ver-
tices, as explained earlier. For the same object
the number of geometric strategies to be checked
is just 1787760.

For further considerations it is useful to intro-
duce the notion of strategy vectors that we define
as
∑mA
i=1 ai

~Ai and
∑mB
j=1 bi

~Bi for Alice and Bob, re-
spectively, where ai and bj are geometric strate-
gies. The local bound in Eq. (9) may be rewritten
as:

L = max
ai,bjgeom. strat.

(
mA∑
i=1

ai ~Ai

)
·

mB∑
j=1

bj ~Bj

 .
(15)

This means that the local value is the largest of
the scalar products of Alice’s and Bob’s strategy
vectors. If we vary the relative orientation of sets
~Ai and ~Bj by applying orthogonal transforma-
tions to one of them, when the longest strategy
vectors overlap, the local value is just the product
of their length. This is obviously the maximum
value of L in any relative orientation. For sym-
metric arrangements, like in the case of Platonic
bodies, it may happen that there are many strat-
egy vectors having the same maximal length. In
this case, if the dimensionality of the space is not
large, there will be no relative orientation with a
local bound significantly smaller than this max-
imum value, since there will always be a pair of
such vectors with a small angle between them.
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6 The two dimensional case

The Platonic solids of two dimensions are the
regular convex polygons. There is an infinite
number of them. Let ~Ai point towards the ver-
tices of an mA-sided regular convex polygon.
Then the lengths of all strategy vectors will be
the same. If mA is even, this value is lmA =
2
∑mA/2
k=1 sin[(2k−1)π/mA], and the vectors point

towards the midpoints of the sides if mA is divis-
ible by four, and towards the vertices, if not. If
mA is odd, there are 2mA strategy vectors the
same as for the 2mA-sided polygon, except that
their length is halved. Half of them point to-
wards the vertices and half of them towards the
midpoints of the sides. The strategy vectors have
length lmA =

∑mA
k=1 sin[(2k − 1)π/2mA].

If there are identically oriented identical poly-
gons on both sides ( ~Ai = ~Bi), the local bound
of the Bell inequality constructed is the square
of the length of the strategy vector, while the
quantum bound with any relative orientation is
m2
A/2. Therefore, for two squares the local bound

is the same as the quantum bound, namely 8, so
there is no violation. However, if we rotate one
of the squares by π/4 the local bound is mul-
tiplied by 1/

√
2 (the cosine of the largest angle

between pairs of strategy vecors from the two
sides), therefore Q/L becomes

√
2 (the Bell in-

equality is like four CHSH ones [9] multiplied by
1/
√

2 or −1/
√

2). In case of two regular hexagons
the maximum local bound is 16 (identical orien-
tation) and the minimum one is 8

√
3 = 13.856406

(π/6 relative angle). As the quantum bound
is 18, the minimum Q/L ratio is 9/8 = 1.125,
while the maximum one is 9/(4

√
3) = 1.2990381.

The values are the same for regular triangles. If
there are two identical regular even-sided poly-
gons, with one of them rotated by angle ϕ, then
for −π/m ≤ ϕ ≤ π/m (where m = mA = mB)
the local bound is l2m cosϕ. At the ends of the
interval the function is minimal, and the pattern
repeated m-times around the circle. The ratio
of the minimal and the maximal local bound is
cos(π/m). In Fig. 1 we show the ϕ-dependence
of the local bound for two squares and for two
hexagons.

The behaviour is qualitatively the same for two
non-identical even-sided polygons, too, but the
periodicity of the function is 2π/lcm(mA,mB),
where lcm denotes the least common multiple.
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Figure 1: Dependence of the local bound on the relative
orientation of the two regular polygons used to construct
the Bell inequality. The solid, the dash-dotted and the
dashed line correspond to two squares, two hexagons and
a square and a hexagon, respectively. At zero angle (at
least) two vertices align.

In Fig. 1 we also show the result for a square on
one side and a hexagon on the other side. The
length of the period can be determined by find-
ing out that starting from a position when two
strategy vectors overlap, at least how much we
have to rotate one of the polygons such that two
other vectors overlap again. Let the directions
of the strategy vectors in the starting position be
given by angles 2πµ/mA (µ = 0, · · · ,mA−1) and
2πν/mB (ν = 0, · · · ,mB − 1). Then the angles
between the pairs are

2π
∣∣∣∣ µmA

− ν

mB

∣∣∣∣ = 2π |µm
′
B − νm′A|

lcm(mA,mB) , (16)

where m′A = mA/gcd(mA,mB) and m′B =
mB/gcd(mA,mB), and gcd refers to the great-
est common divisor. As m′A és m′B are rela-
tive primes, the minimal nonzero value of the
numerator on the right hand side is one, there-
fore, the smallest nonzero value of the expression
is 2π/lcm(mA,mB), indeed, which is the period
of the function we are looking for. The ratio be-
tween the minimal and the maximal local bound
is cos(π/lcm(mA,mB)). For odd-sided polygons
the behaviour is the same as for the ones with
twice as many sides, only the local bound and
the quantum value has to be divided by two.

For large mA the length of the strategy vec-
tors l(mA) converges to 2mA/π, because lmA/mA
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approaches the Riemann-sum of
∫ π
x=1 sin(x)dx/π.

Therefore, Q/L converges to π2/8 = 1.2337006 if
both mA and mB tend to infinity. This is ob-
viously true for any relative orientations of the
polygons. This value recovers the Q/L ratio of
the inequality with a continuum infinite number
of settings corresponding to the special case n = 2
in Refs. [24, 25].

7 Local strategies for d ≥ 3

First we discuss the three Platonic solids existing
in all dimensions, the cross polytope, the sim-
plex and the hypercube. We note that in the
present context in d = 3 the simplex (tetrahe-
dron) and the cube are equivalent: one can get
the cube from the tetrahedron by reflecting its
vertices to the midpoint and adding the resulting
points as new vertices. There is a one-to-one cor-
respondence between the geometrical strategies
for the two bodies, in the cube the component
corresponding to the reflected vertex is minus one
times the value for its mirror image, therefore, all
strategy vectors will be the same only with dou-
ble lengths. If used as construction vectors on one
side for a Bell inequality, both the classical and
the quantum bound should simply be multiplied
by two. For d > 3 there are no such equivalences.

From the present pont of view the simplest
body is the cross polytope. As it has been
told before, it has 2d vertices, in the most conve-
nient orientation they are the basis vectors with
both signs, that is ~Ai = ~ei and ~Ai+d = −~ei,
(i = 1, . . . , d). The geometrical strategy de-
fined by vector ~q is ai = sgn( ~Ai · ~q), which is
ai = −ai+d = sgn(qi). The strategy vector∑2d
i=1 ai

~Ai = 2
∑d
i=1 sgn(qi)~ei. All ~q whose ev-

ery component has the same sign give the same
strategy vector. Therefore, each strategy vector
can be written as 2

∑d
i=1 αi~ei, where αi takes

the value of +1 or −1, and all such combina-
tions are to be taken to get all strategy vectors.
There are 2d vectors, they point towards the ver-
tices of a hypercube and have the same length
of 2
√
d = mA/

√
d. As the quantum bound for

a Bell inequality constructed from two identical
bodies ism2

A/d, and the local bound is the square
of the length of the longest strategy vector if the
orientation is the same in both sides, for two such
cross polytopes there is no violation.

A simplex has d+1 vertices. Each pair of ver-

tices has the same scalar product ~Ai · ~Aj = −1/d,
i 6= j. When constructing all strategies, we now
consider not the ~qi vectors but their normal hy-
perplanes. If such a plane cuts the d-dimensional
space, any 1 ≤ k ≤ d of the d + 1 vertices
may get into one side and the rest into the other
side. Such a cut gives a strategy with k plus one
and d + 1 − k minus one components (from all
strategies only the two strategies corresponding
to all signs equal are not geometrical ones). For
a given k there are

(d+1
k

)
possibilities, correspond-

ing to the same number of strategies and strat-
egy vectors of lengths 2

√
k(d+ 1− k)/d. The

reason is the following. Due to the symmetry∑d+1
i=1

~Ai = 0, therefore, the sum of the k of them
multiplied by one is the same as the sum of the
d + 1 − k of them multiplied by minus one. As
(
∑k
i=1

~Ai) · (
∑k
j=1

~Aj) = k − k(k − 1)/d (any k
vectors could have been used as the ones on the
plus side), and the length of the strategy vector is
twice the square root of this value, what we get
is just what we have given above, indeed. The
longest strategy vectors correspond to the most
even distribution of vectors, that is k = (d+ 1)/2
if d is odd, and k = d/2 and k = d/2 + 1 if d is
even, that is the maximum length is (d + 1)/

√
d

and
√
d+ 2 for odd and even d, respectively.

When d is odd (similarly to the cross polytope in
all dimensions), the Bell inequality constructed
using two simplices of the same orientation can
not be violated (both the local and the quantum
bound is (d+ 1)2/d).

The d-dimensional hypercube, the d-cube has
mA = 2d vertices ~Ai, whose each coordinate
Aij in the most convenient orientation is either
+1/
√
d or −1/

√
d, such that all variations of the

signs are covered. If T̂ is an orthogonal transfor-
mation that permutes the coordinates and change
the sign of some of them, the set T̂ ~Ai contains
the same vectors as ~Ai, only in a different or-
der. From this it follows that if ~S is a strat-
egy vector, so is T̂ ~S. If ~S is a strategy vector
there exists ~q such that ~S =

∑2d

i=1 sgn(~q · ~Ai) ~Ai.
Then the strategy vector belonging to T̂ ~q is∑2d

i=1 sgn(T̂ ~q · ~Ai) ~Ai =
∑2d

i=1 sgn(T̂ ~q · T̂ ~Ai)T̂ ~Ai =∑2d

i=1 sgn(~q · ~Ai)T̂ ~Ai = T̂ ~S. The first equality fol-
lows from the fact that sets ~Ai and T̂ ~Ai are the
same, while the second one from the orthogonal-
ity of T̂ . From this it follows that the strategy
vectors of the d-cube belong to families, where
the members of a family can be derived by taking
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m cs nsv nsvg nsvx m/
√

3/lx
tetrahedron 4 n 14 2 6 1.0000000
octahedron 6 y 8 1 8 1.0000000

cube 8 y 14 2 6 1.0000000
icosahedron 12 y 32 2 12 1.0704663

dodecahedron 20 y 92 3 20 1.1026409
truncated tetrahedron 12 n 134 5 8 1.1055416

cuboctahedron 12 y 24 1 24 1.0954451
truncated cube 24 y 134 6 6 1.0572365

truncated octahedron 24 y 116 4 12 1.0954451
rhombicuboctahedron 24 y 134 4 6 1.0978539

truncated cuboctahedron 48 y 554 16 6 1.1084962
snub cube 24 n 482 15 6 1.1074356

icosidodecahedron 30 y 120 1 120 1.1387895
truncated dodecahedron 60 y 872 12 20 1.1240927
truncated icosahedron 60 y 872 12 12 1.1397231

rhombicosidodecahedron 60 y 872 11 20 1.1414557
truncated icosidodecahedron 120 y 3542 35 30 1.1387895

snub dodecahedron 60 n 3422 37 30 1.1401438

Table 1: Properties of the strategy vectors for the three dimensional Platonic and Archimedean solids. The number
of vertices is m, cs shows if the solid is centrally symmetric, nsv is the number of strategy vectors, nsvg is the number
of groups of strategy vectors containing vectors of the same lengths, nsvx is the size of the group containing the
longest strategy vectors of lx length. The Q/L value for a Bell inequality constructed from two solids in a relative
orientation such that two of their longest strategy vectors align is the product of the corresponding m/

√
3/lx values

shown in the last column. For any different relative orientation Q/L is larger.

all permutations and all variations of the signs of
the coordinates of one of its members. For d = 3
there are two families that may be represented
by (0, 0, 8)/

√
3 and (4, 4, 4)/

√
3 the members of

the families point towards the midpoints of the
faces and the vertices, respectively. There are
altogether 6 + 8 = 14 strategy vectors, each cor-
responding to a geometrical strategy. For d = 4
there are three families represented by (0, 0, 0, 8),
(0, 4, 4, 4) and (2, 2, 2, 6). The total number of
strategy vectors is 8+32+64 = 104. For d = 5 the
number of families is 7, while the number of vec-
tors is 10+80+320+160+960+320+32 = 1882.
The number of families for d = 6, 7 and 8 are
21, 135 and 2470, respectively, while for d = 9
it is at least 175428. Unfortunately, we have
not found a systematic way to get formulae for
all dimensions. However, it is true for all di-
mensions that the longest strategy vectors point
towards the midpoints of the facets, they are
2d~ei/

√
d =

∑2d

j=1(~ei · ~Aj) ~Aj (all components but

the ith one add up to zero), which shows that
they are strategy vectors. As their length is
2d/
√
d = mA/

√
d, the Bell inequality constructed

from two d-cubes of the same orientation can not
be violated. These strategy vectors are indeed the
longest, since the local bound cannot be greater
than the quantum bound.

It is true for all cases we have considered so far
except for simplices in even dimensions that the
length of the longest strategy vectors is mA/

√
d.

Therefore, if a Bell inequality is constructed from
any two such objects, there exist relative orienta-
tions (when longest strategy vectors are aligned),
when the inequality cannot be violated. If one of
the bodies is a simplex in an even dimension, Q/L
is (d+1)/

√
d(d+ 2) if the orientation is such that

the local bound is maximal, while it is the square
of this number if there are simplices in both sides.

For d = 3 there are two further Platonic solids,
the icosahedron and the dodecahedron with 12
and 20 vertices, respectively, while for d = 4
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we have the octaplex, the tetraplex and the do-
decaplex with 24, 120 and 600 vertices, respec-
tively. We have calculated the geometrical strate-
gies and the strategy vectors using the algorithm
presented in Section 5. All these bodies are cen-
trally symmetric, therefore when we applied the
algorithm we eliminated one half of their vertices.

In three dimensions for the icosahedron there
are 32 geometrical strategies and strategy vec-
tors. The longest ones of length 2

√
6 + 2

√
5 =

6.4721360 point towards the 12 vertices, while the
shorter ones of lengths 2

√
6 + 6/

√
5 = 5.8934817

point towards the middle of the 20 faces (as the
coordinates of the vertices are known analytically,
if we know a geometrical strategy, we may de-
rive the corresponding strategy vector analyti-
cally). If the Bell inequality is constructed from
two identical sets corresponding to the icosahe-
dron, then the local bound is 41.888544, and
as the maximum quantum value is 122/3 = 48,
Q/L = 1.1458980. For the dodecahedron
there are 92 geometric strategies. The length
of the 20 longest strategy vectors is 10.472136,
and there are also 60 and 12 further vectors of
lengths 9.8863510 and 9.8224695. The analyt-
ical forms are quite involved. For two identi-
cally oriented dodecahedrons L = 109.66563 and
Q/L = 1.2158169. Results for the strategy vec-
tors for all three dimensional Platonic solids and
also for all Archimedean solids are summarized in
Table 1.

In four dimensions there are 192 geometrical
strategies for the octaplex, and all strategy vec-
tors have the same length of 4

√
7 = 10.583005.

Therefore, for two identical bodies L = 112
and Q/L = 144/112 = 1.2857143. For the
tetraplex the 14400 strategy vectors also have
equal lengths of 51.146605, therefore for two such
objects L = 2615.9752 and Q/L = 1.3761599.
For the dodecaplex there are 3575520 strategy
vectors. Surprisingly, they can be arranged into
201 groups of different lengths. One of the small-
est group of 1440 members is the one containing
the longest vectors of length 255.71725. Conse-
quently, for two identical bodies L = 6539.1314
and Q/L = 1.3763296. The shortest strategy
vectors belong to one of the largest groups of
129600 members, and their length is 254.17151.
Although there are many groups, the difference
between the longest and shortest vectors is just
0.6%.

As we have said, when two objects are oriented
such that their longest strategy vectors point into
the same direction, the corresponding Bell in-
equality has the maximum local bound. This
can be reduced by changing the relative orienta-
tion. If both objects obey the constraint given in
the Observation, reorientation will not change the
quantum bound, therefore Q/L will increase, like
we have already discussed in the two-dimensional
cases. We explore in the next section how much
improvement we can achieve this way for d > 2.

8 Minimal local bounds for d ≥ 3

To find relative orientations where the local
bound is minimal, consequently Q/L is maximal,
we have used the Nelder-Mead method starting
from many random relative orientations. The
transformation has been parameterized by the
d(d−1)/2 generalized Tait–Bryan angles. Unfor-
tunately, the minimal values found this way are
not necessarily the global minima, it may hap-
pen that is some cases there exists relative ori-
entations with lower local bounds, but we have
missed them. Whenever the numerical result has
shown some recognizable analytical pattern, we
have tried to find the analytical form (either for
the transformation or for the Bell inequality it-
self), and give L analytically, or as accurately as
possible.

The simplest body from our point of view is
the cross polytope, a centrally symmetric object.
If we eliminate half of its vertices in the most
obvious way, the remaining ones are just the basis
vectors ~ei, (i = 1, . . . , d). If these are the vectors
on one side to construct the Bell inequality, then
the Bell coefficients will be nothing else than the
vector coordinates on the other side.
Cross polytope–cross polytope. Let an-

other such halved cross polytope be on the other
side, but reoriented by an orthogonal transforma-
tion. An optimal transformation we found con-
sists of rotations in the 1 − 2 the 3 − 4, and
so on planes by π/4 angle. If d is odd, the
dth coordinate remains unchanged. If d is even,
we get the sum of d/2 independent CHSH in-
equalities multiplied by 1/

√
2. Therefore, the

local bound is d/
√

2, while the quantum maxi-
mum is d, as it should be, giving Q/L =

√
2.

For odd d there are (d − 1)/2 independent in-
equalities proportional to CHSH, and there is
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one additional nonzero Bell coefficient, namely
Mdd = 1. Then L = (d − 1)/

√
2 + 1, Q = d and

Q/L =
√

2/[1 + (
√

2 − 1)/d]. For two complete
cross polytopes L and Q should be multiplied by
four.

Cross polytope–hypercube. Let there be a
hypercube on Bob’s side. When d = 3 an optimal
transformation we found was a rotation around
the third axis (that is in the 1− 2 plane) by π/3,
which leads to L = 8 + 8/

√
3 = 12.618802 and

Q/L = 1.2679492. For d = 5 the same trans-
formation turned out to be optimal, namely a
rotation in the 1 − 2 plane by π/3, which gives
L = 50.789699 and Q/L = 1.2600980. It is pos-
sible that this transformation is optimal in all
odd dimensions if there is a cross polytope on
one side and a hypercube on the other one. The
local bound can be analytically calculated in this
case, the result is L = 4

( d−1
(d−1)/2

)
(
√

3+d−2)/
√
d,

and Q/L = 2d+1/L. The calculation can be done
for even d as well, but in that case such trans-
formation is never optimal. For d = 4 the opti-
mal transformation is the same as in the case of
two cross polytopes: π/4 rotations in the 1 − 2
and in the 3 − 4 planes, and then we obtain
L = 32/

√
2 and Q/L =

√
2. If we eliminate

appropriately one half of vertices of both bodies,
the Bell inequality we get will be like the sum of
four CHSH ones divided by

√
2. Although they

are not independent, there exist strategies and
measurement settings that optimize all of them,
therefore, Q/L =

√
2, indeed. Surprisingly, the

analogous transformation is inferior for d = 6.
There the best we could find was to apply no ro-
tation at all. Then L = 40

√
6 = 97.979590, and

Q/L = 1.3063945. The local bound with no reori-
entation can be calculated for any d analytically,
the result is L = 2

√
d
( d
d/2
)
for even d. It is possi-

ble that this is the best we can do for d ≥ 6 even
values, but we do not know. Actually, for large d
the formula approaches

√
2/π2d+1, consequently

Q/L converges to
√
π/2. For odd d what we get

without reorientations is worse than what we ob-
tained with the π/3 rotation in a single plane, as
discussed above.

Cross polytope–simplex. Let there be a
cross polytope on Alice’s side and a simplex on
Bob’ side. For d = 3 the simplex is the tetrahe-
dron that we can get by appropriately eliminating
half of the vertices of a cube. Therefore, L is one
half that of we have got for the cube, namely L =

4 + 4/
√

3 = 6.3094011 while Q/L = 1.2679492
is the same. For d = 4 and for d = 5 the op-
timally oriented simplex can also be determined
from the numerical data. From those forms it
follows that L = 3 +

√
5(1 +

√
2) = 8.3983456,

Q/L = 1.1907107, and 4(
√

0.1+
√

0.3+2
√

0.6) =
9.6525746, Q/L = 1.2431916 for d = 4 and d = 5,
respectively. From the d = 4 form we could give
an ansatz for d = 6, but it turned out that it can
further be improved by applying a further rota-
tion of a quite small angle in just a single plane
defined by two basis vectors. This way we get
L = 11.639817 and Q/L = 1.2027681. For higher
dimensions we have no reliable results. For the
cross polytope-simplex pair we could not find any
consistent behaviour that could be generalized.
Hypercube–hypercube. Let us consider d-

cubes on both sides. In three dimensions the ma-
trix of an optimal transformation is:

1
4

 1/2
√

5 + 1
√

5− 1√
5− 1 −1/2

√
5 + 1

−
√

5− 1
√

5− 1 1/2

 . (17)

Then L = 16(
√

5 + 1)/3 = 17.259029 and Q/L =
4/(
√

5 + 1) = 1.2360680. In four dimensions the
optimal transformation is the same as in the case
of two cross polytopes or the cross polytope 4-
cube pair. If we eliminate appropriately one half
of the simplices from both cubes, the Bell ma-
trix we get will correspond to the sum of eight
CHSH Bell matrices divided by

√
2. Like be-

fore, although they are not independent, there
are classical strategies and measurement settings
optimal for all of them. Therefore, Q/L =

√
2,

and for the full cubes L = 64/
√

2. For d = 5
the smallest value we have got numerically was
L = 165.01046 (Q/L = 1.2411334), and we could
not recognize pattern leading to some analytical
form. For d = 6 the transformation we have
found optimal was the same as the one for the
cross polytopes. However, the Bell inequality this
time did not come out as a sum of CHSH ones
which could all be optimized by the same strat-
egy, therefore the L = 4256/6/

√
2 = 501.57441

value is slightly bigger than 4096/6/
√

2, as it
would be if the behaviour were the same as for
d = 4. Now Q/L = 128

√
2/133 = 1.3610476.

Hypercube–simplex. For a hypercube on
one side and a simplex on the other in 3 dimen-
sions the L and Q values are just one half of
the corresponding ones for the cube-cube pair,
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3D Platonic solids tetrahedron octahedron cube icosahedron dodecahedron

tetrahedron 1.0000000 1.0000000 1.0000000 1.0704663 1.1026409
m = 4 1.2360680 1.2679492 1.2360680 1.2584081 1.1803399

octahedron 1.0000000 1.0000000 1.0704663 1.1026409
m = 6 1.2426407 1.2679492 1.1969160 1.1755012
cube 1.0000000 1.0704663 1.1026409
m = 8 1.2360680 1.2584081 1.1803399

icosahedron 1.1458980 1.1803399
m = 12 1.2811529 1.2734640

dodecahedron 1.2158169
m = 20 1.2901781

Table 2: Maximum quantum values divided by local bounds Q/L for Bell inequalities constructed from unit vectors
pointing towards the vertices of three-dimensional (3D) Platonic solids. The upper and the lower numbers correspond
to relative orientations giving the maximal and the minimal local bounds, respectively. In the first column the number
of vertices for the solids is also shown.

while Q/L is the same. For d > 3 we have
only got numerical results. Actually, we think
that with more calculations they could slightly
be improved. The best values we got for d = 4,
d = 5 and d = 6 are L = 15.6971864 (Q/L =
1.2741137), L = 31.068002 (Q/L = 1.2359984)
and L = 60.254415 (Q/L = 1.2391900), respec-
tively.

Simplex–simplex. For two simplices in d = 3
(two tetrahedrons) the values of L and Q are one
quarter of the ones for two cubes. For d = 4 we
have been able to figure out some analytical pat-
tern from the numerical data, and we have got
L = 2

√
5 = 4.4721360, and Q/L = 5

√
5/8 =

1.3975425. For d = 5 and d = 6 we have only
numerical results, which probably could be im-
proved with further calculations. What we have
got is L = 5.8332724 (Q/L = 1.2342986) and
L = 6.6836480 (Q/L = 1.2218876) for d = 5 and
d = 6, respectively.

Other pairs in three and four dimen-
sions. In Tables 2 and 3 we show the results for
the ratios of the quantum and the local bounds,
both the maximum and the minimum ones for all
pairs of Platonic bodies in d = 3 and d = 4, re-
spectively. The maximum values are calculated
as the products of the longest strategy vectors
for the objects, as shown in the previous chapter,
while the minimum ones are numerical results we
got using the Nelder-Mead method starting from
many random relative orientations. In Table 2

the results for the cube and for the tetrahedron
agree, as they must. One may notice in Table 3
that Q/L =

√
2 when one of the solids is the octa-

plex, while the other one is either the hexdecahe-
droid (cross polytope), the octaplex or the tesser-
act (4-cube). In all cases a number of CHSH in-
equalities are involved, like in other similar cases.
Let us take the 24 vectors one can get by con-
sidering all permutations and all sign variations
of the coordinates of vector (1, 1, 0, 0)/

√
2. These

vectors correspond to the vertices of an octaplex.
If the other body is the cross polytope in stan-
dard orientation, and we eliminate appropriately
one half of the vertices of both bodies, the Bell
matrix is


1 1 1 1 1 1 0 0 0 0 0 0
1 −1 0 0 0 0 1 1 1 1 0 0
0 0 1 −1 0 0 1 −1 0 0 1 1
0 0 0 0 1 −1 0 0 1 −1 1 −1


(18)

divided by
√

2. This involves six non-independent
CHSH matrices such that there exist local strate-
gies and measurement settings maximizing all of
them. The inequality is the same as I4,12 in
Ref. [26]. For the octaplex 4-cube pair the be-
haviour is similar. For two octaplexes one of
the bodies has to be rotated by π/4 both in
the 1 − 2 and the 3 − 4 planes. For two pen-
tacopes the number of settings is five for both
parties, and the vectors pointing towards the ver-
tices of the pentacopes in the four dimensional

Accepted in Quantum 2022-06-07, click title to verify. Published under CC-BY 4.0. 16



4D Platonic solids pentacope hexdecahedroid tesseract octaplex tetraplex dodecaplex

Orthographics

pentacope 1.0416667 1.0206207 1.0206207 1.1572751 1.1972885 1.1973624
m = 5 1.3975425 1.1907107 1.2741137 1.2180011 1.2042164 1.2057998

hexdecahedroid 1.0000000 1.0000000 1.1338934 1.1730984 1.1731707
m = 8 1.4142136 1.4142136 1.4142136 1.2286820 1.1869546

tesseract 1.0000000 1.1338934 1.1730984 1.1731707
m = 16 1.4142136 1.4142136 1.2286820 1.1869546
octaplex 1.2857143 1.3301686 1.33025058
m = 24 1.4142136 1.3350119 1.34038194

tetraplex 1.3761599 1.3762447
m = 120 1.3776804 1.3842396

dodecaplex 1.3763296
m = 600 1.3834497

Table 3: Maximum quantum values divided by local bounds Q/L for Bell inequalities constructed from unit vectors
pointing towards the vertices of four-dimensional (4D) Platonic solids. The upper and the lower numbers correspond
to relative orientations giving the maximal and the minimal local bounds, respectively. In the first column the number
of vertices for the solids is also shown. Orthographic projections of the vertices of the six 4D Platonic solids are also
shown below the names.

space are optimal measurement vectors. How-
ever, it turns out that one can find measurement
vectors within three-dimensional subspaces giv-
ing the same quantum value. This means that the
question raised in Ref. [24] about the existence
of correlation-type Bell inequality with five set-
tings for each of the two parties whose maximum
violation requires four-dimensional measurement
vectors still remains open.

9 Diagonally modified Bell inequalities

In this section, we consider Platonic Bell inequal-
ities in which the main diagonal entries of the Bell
matrix, formed by scalar product of Euclidean
vectors, are modified by subtracting the same
constant from each diagonal entry. This modi-
fication of the original Platonic Bell inequalities
has been performed in section 4, which, according
to (8), looks as follows:

Mij(λ) = Mij − λδij = ~Ai · ~Aj − λδij . (19)

In section 4 we have also shown that the maxi-
mum quantum value, i.e., the Tsirelson bound [5]
becomes (m2

A/d)−λmA, and this can be obtained
with the same measurement vectors as without
the modification. Note that in this case M is
a square matrix of size mA × mA. Therefore,

the Bell inequality defined by the expression in
Eq. (19) can still be regarded as a Platonic Bell
inequality. In this way, we find Platonic Bell in-
equalities that are more robust to noise than the
celebrated Clauser-Horne-Shimony-Holt Bell in-
equality [9], i.e., the quantum (Q) per local bound
(L) is greater than

√
2. However, this construc-

tion requires higher dimensional Hilbert spaces to
reach the Tsirelson bound.

This diagonal modification technique has been
applied previously by Davie and Reeds [27] to ob-
tain the best lower bound for the Grothendieck
constant, KG ≥ 1.67696 [28, 29]. The
Grothendieck constant of order d [30], denoted
by KG(d), corresponds to the largest ratio
Q(M,d)/L(M) among arbitraryM real matrices,
where Q is defined by Q(M,d) =

∑
i,jMi,j~ai ·~bj ,

where ~ai,~bj are unit vectors in the d-dimensional
Euclidean space. This relation was first noticed
by Tsirelson [6]. Note that KG = limd→∞KG(d).
Therefore the lower bound KG ≥ 1.67696 corre-
sponds to a correlation-type Bell expression M
with Q(M,d)/L(M) ≥ 1.67696. However, the
constructed Bell inequality has an infinite num-
ber of settings on both Alice’s and Bob’s side. We
note that the exact value of KG(d) is known only
for d = 2, KG(2) =

√
2 with the Bell matrix cor-

responding to the CHSH inequality. This proof
is due to Krivine [30].
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The first example of M with modest size ex-
ceeding the ratio Q/L =

√
2 was discovered by

Reeds and Sloane in 1990. They used an M ma-
trix of size 120 × 120 of the family (19) with
λ = 0, where ~Ai are formed by the 240 eight-
dimensional unit vectors of the lattice E8 result-
ing in KG(8) ≥ 45/31 = 1.4516129. A finite
M(λ) matrix size in (19), where λ > 0, was first
used by Fishburn and Reeds [31]. Their 20 × 20
matrixM(λ) provides a ratio Q/L = 10/7, which
implies that KG(5) ≥ 10/7 = 1.4285714. Note,
however, that the construction by Fishburn and
Reeds [31] does not give a lower bound on KG(4)
greater than

√
2.

In the following, we prove that

KG(4) ≥ 70
5 + 27φ − 4× 10−6 = 1.4377539 (20)

using Platonic Bell inequalities, where φ is the
golden ratio and the dimension of the matrix
M(λ) is 60 × 60. Note that there exist bet-
ter lower bounds in the literature. Namely,
KG(4) ≥ 1.445207 [32], KG(4) ≥ 1.44566 [33]
and KG(4) ≥ 1.4821664 [34]. However, neither
of them is based on Platonic Bell inequalities.
Let us also mention the upper bound KG(4) ≤
π/2 [30].

To get the ratio Q/L = 1.4377539 using the
Platonic Bell inequalities, we construct M(λ) ac-
cording to Eq. (19). In particular, we choose { ~Ai}
as the vertices of the halved tetraplex (mA = 60,
d = 4). We explicitly define the 60 vertices ~Ai as
follows: Four vertices come from

(0, 0, 0, 1) (21)

by permuting the coordinates, eight vertices from

(1/2,±1/2,±1/2,±1/2) (22)

and the remaining 48 vertices are obtained by
taking all even permutations of

(φ/2,±1/2,±1/(2φ), 0), (23)

where φ is the golden ratio. Note that the 120-
vertex regular tetraplex comprises the above ~Ai
vertices and its antipodal ones − ~Ai. The quan-
tum value Q(λ) for the Bell matrix M(λ) in (19)
is

Q(λ) = m2
A/d− λmA = 450− 60λ (24)

if λ ≤ mA/(2d) = 15/2. This is due to the analy-
sis of Section 4, in which case the Tsirelson bound

of the Bell inequality is given by the 60 vertices
of the halved tetraplex shown above. Indeed,
the 120 vertices of the tetraplex readily obeys
the constraints of the Observation in Section 4.
Moreover, the set of 120 vertices is centrally sym-
metric (i.e. every ~Ai has an antipodal vector − ~Ai
in the set). Therefore, by the argument at the
end of Section 4 the halved 60-vertex tetraplex
also obeys the constraints of the Observation and
the maximum quantum bound is given by (24).

However, the local bound is difficult to calcu-
late. Recall that, for a generic M matrix the
calculation of the local bound (9) is an instance
of Km,n-quadratic programming [35]. In our case
the matrix M is replaced by the one-parameter
family of matrices M(λ) in (19). However, un-
like the case λ = 0 discussed in Section 5, we
have not found an efficient method to compute
the local bound for λ > 0. On the other hand,
a brute-force computation based on the enumer-
ation of local deterministic strategies would re-
quire the evaluation of 2mA−1 = 259 instances.
This task is impossible to perform in a reasonable
time even with supercomputers. However, the
algorithm based on the branch-and-bound (BB)
technique [36] developed in Ref. [34] makes the
problem tractable for our particular case. This
code is publicly available [37], and supports paral-
lel computation of the local bound (9). With the
latest parallel implementation available in [37],
running our problem on a 56-core workstation,
the local bound L(λ) is obtained for an arbi-
trary λ in about 2 minutes. The obtained ratio
Q/L = (450 − 60λ)/L(λ) as a function of λ is
plotted from λ = 0 to λ = 7.5 in Fig. 2. For com-
parison, we also plot Q(λ) and L(λ) in the same
figure. The abrupt change in the L(λ) function is
observed just as the ratio Q(λ)/L(λ) reaches its
peak value at λ = 23/9.

The BB-based code [37] computes exactly the
local bounds of Bell matrices whose coefficients
are all integers.

Some technical notes on the computation of the
local bound L(λ) are in order. The BB-based
code [37] computes with exact arithmetics the lo-
cal bound of Bell matrices whose entries are all in-
tegers. Hence, for a matrixM with integer entries
the calculated local bound is exact. However, the
entries of our specialM(λ) matrices are in general
not integers. We avoid this problem by the fol-
lowing method. This way we obtain a very good
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Figure 2: The Q/L ratio (red dots) in the function of
λ for the Platonic Bell inequality defined by the coef-
ficients (19), where ~Ai are the vertices of the halved
tetraplex. The functions Q (blue dashed line) and
L (blue solid line) are also plotted against λ. The
maximum ratio Q/L = 1.4377579 − ε is obtained at
λ = 23/9, where ε = 4× 10−6. The value 1.4377579 is
analytically given by 70/(5+27φ), where φ = (1+

√
5)/2

is the golden ratio.

upper bound on L(M(λ)) as follows. We multiply
M(λ) by a large number (106, in our particular
case) and round each entry to the nearest integer
below it. That is, we have 106M = Mint + ∆M ,
where Mint = b106Mc is an integer matrix, and
the entries of ∆M are ∆Mij ∈ [0, 1]. The number
106 has been chosen in order not to occur over-
flow, as the code is limited to Bell matrices where∑
i,j |Mij | ≤ 231. Then we have the following up-

per bound

L(106M) ≤ L(Mint) + L(∆M), (25)

where we used that for any two Bell matrices we
have L(M1 + M2) ≤ L(M1) + L(M2). Further-
more, due to all the positive entries in ∆Mi,j , we
have L(∆M) =

∑
i,j |∆Mij |. Then, if we divide

both sides of (25) by 106, we get the following
upper bound on L(M):

L(M) ≤ L(Mint)
106 +

∑
i,j |∆Mij |

106 , (26)

where L(Mint) is the output of the BB-based
code [37]. The maximum Q/L ratio of M(λ) oc-
curs at λ = 23/9 (see Fig. 2). In this case, we
have L(Mint) = 519326904 and

∑
i,j |∆Mij | =

1622.88706865, which results in an upper bound
L(M) ≤ 519.32852689 and a lower bound

Q(M)/L(M) ≥ 1.4377539, where the latter value
equals 70/(5 + 27φ) − ε, where ε = 4 × 10−6.
In summary, using measurement directions point-
ing to the vertices of the four-dimensional 60-
vertex halved tetraplex and the diagonal modi-
fication of the Bell matrixM , we obtain the ratio
Q/L ≥ 1.4377539 and the corresponding lower
bound KG(4) ≥ 1.4377539.

10 Discussion

Tavakoli and Gisin [4] constructed Bell inequal-
ities with coefficients Mij = ~Ai · ~Bj , where ~Ai
and ~B∗j are the unit vectors pointing to the de-
sired measurement directions on the sides of Alice
and Bob, respectively, i.e., towards the vertices
of Platonic bodies. Then the obtained quantum
value of the Bell expression with these measure-
ment directions is

∑
ij( ~Ai · ~Bj)2. Using the NPA

method [20], the authors find that the above mea-
surement directions provide optimal quantum vi-
olation (i.e. the Tsirelson bound [5]). Such con-
structions have been called Platonic Bell inequal-
ities. Motivated by this construnction, we gener-
alized the Platonic Bell inequalities to all possible
dimensions. Due to a theorem of Tsirelson [6], the
generalization of the construction of the Bell in-
equalities to higher dimensional spaces does make
sense, the result will correspond to a genuine Bell
scenario, however, the symmetry of the solids will
show up in the abstract Tsirelson space. To prove
that this generalization is possible, we have shown
that all Platonic solids (and Archimedean solids)
have some property that ensures this, and that
the form of the quantum bound is very simple
and independent of the relative orientation of the
two solids on Alice and Bob side. However, the
local bound, and hence the maximum violation of
the inequality depends on this, which is discussed
in detail in this paper.

In more than two dimensions some of the Pla-
tonic solids have too many vertices, hence com-
puting the local bounds of the Bell inequali-
ties constructed from them in a brute force way
may not be feasible. We have found an efficient
method which makes it possible to calculate the
local bound exactly in all cases where the Bell
coefficients are given as scalar products of low-
dimensional Euclidean vectors, even when the
number of measurement settings is large. The
practical significance of the method is demon-
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strated by the exact computation of the local
bound for the 300-setting four-dimensional Pla-
tonic Bell inequality. The Euclidean vectors in
this method do not have to be unit vectors, which
allows us to prove that the method can be used
not only for Platonic Bell inequalities but also for
all bipartite two-outcome Bell inequalities where
the rank of the Bell matrix is low.

Finally, we study Platonic Bell inequalities
where the main diagonal entries of the Bell matrix
formed by the scalar product of Euclidean vectors
are modified by a constant term. In this way, we
find Platonic Bell inequalities that are more ro-
bust to noise than the celebrated Clauser-Horne-
Shimony-Holt Bell inequality, that is, the quan-
tum (Q) per local bound (L) is greater than

√
2.

However, this construction requires higher dimen-
sional Hilbert spaces to achieve maximal quan-
tum violation. In this regard, we leave open the
question whether the Tsirelson bound with a Q/L
ratio larger than

√
2 can be achieved by a suitable

symmetric Bell inequality using a two-qubit max-
imally entangled state where the measurements
point to the vertices of some three-dimensional
symmetric polyhedron.
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tions point to the opposite directions for both
parties. In Ref. [7] this latter relationship has
been exploited. A beautiful feature of the Pla-
tonic Bell inequalities in three dimensions is that
if the system is a pair of one-half spins, the sym-
metries of the Platonic solids show up directly in
the orientations of the measurement settings in
the physical space. Unfortunately, this beauty is
lost if the system is not like that (even if it is
a pair of qubits, but not spins). Therefore for
the higher dimensional generalization discussed
in the present paper the symmetries are only
present in an abstract space, not in the phys-
ical arrangements concerning the measurement
settings.

However, it is not even obvious that the con-
siderations in more than three dimensional spaces
are relevant at all for Bell scenarios. A theorem
by Tsirelson [6] ensures that this is the case. Due
to this theorem, for any Euclidean space there ex-
ists a Hilbert space H and a state |Φ〉 ∈ H ⊗H
such that for any unit vectors ~a and ~b in the Eu-
clidean space there exist binary measurement op-
erators â and b̂ in the Hilbert space such that

~a ·~b = 〈Φ|â⊗ b̂|Φ〉. (27)

Hence, for each party, any unit vector does rep-
resent some quantum measurement performed on
the respective subsystem of the quantum system
|Φ〉. The statement can be proven by construc-
tion [19, 21]. The considerations we will give here
are based on this construction.

Let us consider a d-dimensional Eulidean
space. If there exist d mutually anticommuting
operators γ̂i (i = 1, . . . , d) whose square is the
identity operator (that is γ̂iγ̂j + γ̂j γ̂i = 2δij Î)
in the D-dimensional Hilbert space, then with
â =

∑d
i=1 aiγ̂i, b̂ =

∑d
i=1 biγ̂

t
i (t denotes the

transposition) and with the maximally entan-
gled state |Φ〉 =

∑D
µ=1 |µµ〉/

√
D Eq. (27) is

satisfied. Indeed, 〈Φ|â ⊗ b̂|Φ〉 = Tr(âb̂t)/D =∑d
i,j=1 aibjTr(γ̂iγ̂j)/D = ~a ·~b. The last equality

follows from the fact that γ̂i and γ̂i anticommute
if i 6= j, therefore Tr(γ̂iγ̂j) = 0, and that γ̂2

i is the
identity operator whose trace is D. It can simi-
larly be shown that the square of both â and b̂ is
the identity operator, therefore they do represent
binary measurements with outcomes +1 and −1,
as required.

One can construct a set of 2n+ 1 γ̂i operators
as tensor products of n Pauli operators and two-

dimensional identity operators Î2 in appropriate
orders. An example of such a construction for
arbitrary n is given explicitly in the Appendix of
[21]. This way one can get the d γ̂i operators
needed to assign quantum measurements to the
unit vectors of the d-dimensional Euclidean space
as tensor products of bd/2c operators acting on
qubit spaces. Therefore, the Hilbert space H of
each subsystem has D = 2bd/2c dimensions.

For d = 3 the assignment is the same as we
have already discussed. The three γ̂i operators
are the Pauli operators themselves, and D = 2.
For d = 2 one can choose any two of the Pauli
operators. With the choice of σ̂x and σ̂z, one
arrives at a real Hilbert space. For d = 5 the
five operators corresponding to the recipe given
in Ref. [21] are γ1 = σ̂x ⊗ Î2, γ2 = σ̂y ⊗ Î2, γ3 =
σ̂z ⊗ σ̂x, γ4 = σ̂z ⊗ σ̂y and γ5 = σ̂z ⊗ σ̂z, and
D = 4. For d = 4 any four of these operators may
be chosen. However only three of them are real,
therefore we can not get a real Hilbert space this
way. Even if we do not follow the recipe, we can
not find four pairwise anticommuting operators
among all real ones which are tensor products of
either two Pauli operators or one Pauli operator
and the identity.

Following the construction discussed above, the
dimensionality of the Hilbert space grows expo-
nentially with d. We do not know the conditions
for the existence of some more economical assign-
ment. In Ref. [24] almost a hundred Bell inequali-
ties that required four dimensional Euclidean vec-
tors for maximum violation have been considered,
and neither of them could maximally be violated
in smaller than 4×4 dimensional complex Hilbert
spaces. We have also investigated numerically
some inequalities requiring 6 and 8 dimensional
Euclidean spaces for maximum violation, and we
could not violate them maximally with less than
8× 8 and 16× 16 dimensional quantum systems,
respectively.

It has been shown that for all d-dimensional
vector pairs ~a and ~b one can assign operator
pairs â and b̂ from the D = 2bd/2c dimensional
Hilbert space H such that Eq. (27) is satisfied
with |Φ〉 =

∑D
µ=1 |µµ〉. The opposite statement is

not true for d > 3. As all measurement operators
constructed have zero trace, other operators be-
longing to legitimate two-outcome measurements
are excluded. Not even all zero trace operators
are covered: the d − 1 independent parameters
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characterizing the unit vectors are not sufficient
to characterize all such operators. Moreover only
Hilbert spaces with dimensionalities of a power of
two have occured.

Therefore, to show that for any quantum sce-
nario one can find appropriate Euclidean vectors
for the two parties requires a different construc-
tion. This relation is less important as far as
this paper is concerned, but for the sake of com-
pletenes we still sketch the argument here. Let
HA and HB be the DA and DB dimensional
Hilbert spaces of the two parties, respectively.
Let the measurements be performed on the state
|Φ〉 ∈ HA⊗HB. Then for any â and b̂ for the par-
ties the 2DADB dimensional real vectors ~a and ~b
whose components are the real and the imagi-
nary parts of the components of â ⊗ ÎB|Φ〉 and
ÎA ⊗ b̂|Φ〉, respectively satisfy Eq. 27, where IA
and IB are the identity operators in HA and HB,
respectively. Using â2 = ÎA and b̂2 = Îb, the
statement is easy to prove. If the number of set-
tings is mA and mB for the respective parties,
then an (mA+mB)-dimensional subspace is suffi-
cient, as no more vectors are involved. Moreover,
if one is only interested in the maximum violation,
no more than anmA ormB dimensional subspace
is needed, whichever is the smaller. The reason
is that the optimum vectors on one side are in
the subspace spanned by the vectors on the other
side.

B Proof of special property

In Section 4 we have proven that the maximum
quantum value for the Bell inequality whose Bell
coefficients have been constructed as the scalar
products of two sets of d-dimensional unit vec-
tors ~Ai (i = 1, · · · ,mA) and ~Bj (j = 1, · · · ,mB)
is mAmB/d if both sets satisfy the constraints
give in the Observation. This means that the
columns of matrix Aij whose rows are the co-
ordinates of vectors ~Ai are orthogonal to each
other and have equal norm, which is

√
mA/d,

and ~Bj also has this property. Here we will prove
that cross polytopes, simplices and d-cubes sat-
isfy the constraints for all d, and it is also true
for the 2-dimensional regular polygones. The
additional two three-dimensional and the three
four-dimensional Platonic bodies has simply been
checked, we do not consider them in this Ap-
pendix.

The cross polytope is simple. We get its ma-
trix Aij if we write the d-dimensional unit matrix
above minus one times the same matrix. Then
the columns are trivially orthogonal and their
norm is

√
2 (There is one 1 and one −1 in each

column), as it should be.
Let us consider simplices in d-dimensions.

They have d + 1 vertices. Let the elements of
the matrix of size (d+1)×d be Aij = 0 for j > i,
Aij = τj for j = i and Aij = −σi for j < i, that
is:

Â =



τ1 0 0 0 0 · · ·
−σ1 τ2 0 0 0 · · ·
−σ1 −σ2 τ3 0 0 · · ·
−σ1 −σ2 −σ3 τ4 0 · · ·
−σ1 −σ2 −σ3 −σ4 τ5 · · ·
−σ1 −σ2 −σ3 −σ4 −σ5 · · ·
...

...
...

...
...


(28)

where

τj =
√

(d+ 1)(d+ 1− j)
d(d+ 2− j)

σj =
√

d+ 1
d(d+ 1− j)(d+ 2− j) . (29)

it is easy to verify that τ1 = 1, and that τ2
j =

τ2
j+1 + σ2

j . From these it follows that

1 = τ2
1 = σ2

1+τ2
2 = σ2

1+σ2
2+τ2

3 = · · · =
i−1∑
j=1

σ2
j+τ2

i ,

(30)
which is nothing else than the squares of the
norms of the rows. It follows from Eq. (28) that
the scalar product of the ith and the kth rows for
any k > i can be written as

i−1∑
j=1

σ2
j −σiτi = 1− (τ2

i +σiτi) = 1− d+ 1
d

= −1
d
,

(31)
where we used Eq. (30) and that τ2

i +σiτi = (d+
1)/d, which can be verified using Eq. (29). From
these it follows that the d+ 1 rows of the matrix
are the coordinates of normalized vectors pointing
towards the vertices of a d-dimensional simplex.
Now, let us look at the columns to show that the
constraints are met. The square of the norm of
the jth column is τ2

j +(d+1−j)σ2
j = (d+1)/d, as

required, which can be checked by using Eq. (29).
It can also be checked that τj + (d+ 1− j)σj = 0,
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that is the sum of the elements in each column is
zero. From Eq. (28) it is obvious that the scalar
product of columns j and l where (l > j) is the
sum of the elements of column l multiplied by
σj , therefore, the columns are orthogonal to each
other, so all constraint are obeyed.

A simple way to generate the components of
the 2d vectors pointing towards the simplices of
a d-cube is to take the binary representation of
the integers between zero and 2d− 1 (writing the
necessary number of zeros in front of the binary
numbers), and replacing every zero by −1. If
one wants the vectors normalized, they should be
multiplied by 1/

√
d. To show that the columns

of the matrix whose rows are these vector com-
ponents have equal norm and they are orthogo-
nal to each other, we may forget about the nor-
malization. Then the last column will have −1
and +1 values alternating, starting with a −1.
The column before that will have pairs of −1 and
+1 values alternating. In each column periods
of −1s and +1s of equal length alternate, where
the length is some power of two, it is 2d−1 for
the first column (the upper half of the column is
-1, the lower one is +1) and 20 = 1 for the last
one. It is easy to see that the scalar product of
any two different columns is zero: in each inter-
val corresponding to a section of equal signs in
the column that has the longer sections there is
an even number of sections in the other column,
therefore there are the same number of +1 and
−1 values in every such interval. The equality of
the norms of the column is trivial, all elements
have the same absolute value.

Let us look at the Platonic solids of two-
dimensional spaces, the convex regular polygons.
Let ~Ai be unit vectors pointing towards the ver-
tices of the regular m-sided polygon, and ~x and
~y be two orthogonal vectors. Then

m∑
i=1

( ~Ai · ~x)( ~Ai · ~x) =
m∑
i=1

cos2(ϕi)

=
m∑
i=1

cos(2ϕi) + 1
2 = m

2
m∑
i=1

( ~Ai · ~x)( ~Ai · ~y) =
m∑
i=1

cos(ϕi) sin(ϕi)

=
m∑
i=1

sin(2ϕi)
2 = 0, (32)

where ϕi the angle between ~Ai and ~x (measured
towards ~y). A sufficient condition for the equa-

tions above to be satisfied is that vectors ~A′i,
whose angles with ~x are two times the ones be-
tween ~Ai and ~x have a k-fold symmetry. This is
true in the present case, k = m and k = m/2 for
odd and even sided polygons, respectively. There
are cases when ~A has no such symmetry at all,
while A′i does (for example, when m=2 and ~A1
and ~A2 are two orthogonal vectors). We get the
constraints of the Observation if we write the ba-
sis vectors into the equations.

The considerations above have relevance if d >
2 as well, this is the reason we have written the
equations in the more general form. Let ~Ai have
an l-fold (l > 2) symmetry for rotations in some
plane. Let ~x and ~y be orthogonal vectors in that
plane. Then Eq. (32) is modified as

m∑
i=1

( ~Ai · ~x)( ~Ai · ~x) =
m∑
i=1

πi cos2(ϕi)

=
m∑
i=1

πi(cos(2ϕi) + 1)
2 =

m∑
i=1

πi
2

m∑
i=1

( ~Ai · ~x)( ~Ai · ~y) =
m∑
i=1

πi cos(ϕi) sin(ϕi)

=
m∑
i=1

πi sin(2ϕi)
2 = 0, (33)

where πi is the length of the projection of ~Ai onto
the plane and ϕi is the angle between the projec-
tion and ~x. Therefore, such symmetry ensures
that some constraints are satisfied.
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