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Abstract

It is well known that the compatible linear and quadratic Poisson brackets of the full
symmetric and of the standard open Toda lattices are restrictions of linear and quadratic
r-matrix Poisson brackets on the associative algebra gl(n,R). We here show that the
quadratic bracket on gl(n,R), corresponding to the r-matrix defined by the splitting
of gl(n,R) into the direct sum of the upper triangular and orthogonal Lie subalgebras,
descends by Poisson reduction from a quadratic Poisson structure on the cotangent bundle
T ∗GL(n,R). This complements the interpretation of the linear r-matrix bracket as a
reduction of the canonical Poisson bracket of the cotangent bundle.

1Corresponding author, e-mail: lfeher@physx.u-szeged.hu
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1 Introduction

The goal of this brief communication is to illuminate the group theoretic origin of a certain
quadratic r-matrix structure on the associative algebra G := gl(n,R). This Poisson structure is
associated with the QU factorization and it appeared in the theory of integrable systems [5, 6].
Like the corresponding linear r-matrix bracket, it can be restricted to the Poisson submanifolds
consisting of symmetric and of tridiagonal symmetric matrices [6], thereby producing the bi-
Hamiltonian structures of the full symmetric and of the usual (open) Toda lattices [1, 10]. It is
well known (see e.g. [8]) that the linear r-matrix bracket on G is a reduction of the canonical
Poisson bracket of the cotangent bundle of the group G := GL(n,R). Our observation is that
T ∗G carries also a quadratic Poisson bracket that descends to the relevant quadratic bracket
on G via the same reduction procedure which works in the linear case. The idea arises from
[3, 4], where bi-Hamiltonian structures for spin Sutherland models were obtained by reducing
bi-Hamiltonian structures on the cotangent bundle of GL(n,C).

We now recall the necessary background information about linear and quadratic r-matrix
Poisson brackets on G. This is a specialization of general results found in [5, 6] (see also [9]).
Let R be a linear operator on G that solves the modified classical Yang-Baxter equation2.
Decompose R as the sum of its anti-symmetric and symmetric parts, Ra and Rs, with respect
to the non-degenerate bilinear form,

〈X, Y 〉 := tr (XY ), ∀X, Y ∈ G, (1.1)

and suppose that Ra solves the same equation as R. For a smooth real function on G let
df denote its gradient defined using the trace form (1.1), and introduce the ‘left- and right-
derivatives’ ∇f and ∇′f by

∇f(L) := Ldf(L), ∇′f(L) := df(L)L. (1.2)

Then the following formula defines a Poisson bracket on G:

{f, h}2 := 〈∇f, Ra∇h〉 − 〈∇′f, Ra∇
′h〉+ 〈∇f, Rs∇

′h〉 − 〈∇′f, Rs∇h〉. (1.3)

The Lie derivative of this quadratic r-matrix bracket along the vector field V (L) := 1n is the
linear r-matrix bracket,

{f, h}1(L) = 〈L, [Rdf(L), dh(L)] + [df(L), Rdh(L)]〉, (1.4)

and thus the two Poisson brackets are compatible. The Hamiltonians hk(L) :=
1

k
tr (Lk) are in

involution with respect to both brackets. They enjoy the relation

{f, hk}2 = {f, hk+1}1, ∀f ∈ C∞(G), (1.5)

and their Hamiltonian vector fields engender bi-Hamiltonian Lax equations:

∂tk(L) := {L, hk}2 = {L, hk+1}1 = [R(Lk), L], ∀k ∈ N. (1.6)

2For reviews on r-matrices and their use, one may consult, for example, [8, 10].
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Turning to the example of our interest, let us decompose any X ∈ G as

X = X> +X0 +X<, (1.7)

where X>, X0 and X< are the strictly upper triangular, diagonal and strictly lower triangular
parts of the matrix X , respectively. Denote A < G the Lie subalgebra of skew-symmetric
matrices and B < G the subalgebra of upper triangular matrices. They enter the vector space
direct sum

G = A+ B, (1.8)

and, using the projections πA onto A and πB onto B, yield the r-matrix

R =
1

2
(πB − πA). (1.9)

In terms of the triangular decomposition (1.7),

πA(X) = X< − (X<)
T , πB(X) = X> +X0 + (X<)

T , (1.10)

and

R(X) =
1

2
(X> +X0 −X<) + (X<)

T , Ra(X) =
1

2
(X> −X<), Rs(X) =

1

2
X0 + (X<)

T . (1.11)

This r-matrix R satisfies the conditions stipulated above, and we are going to derive its
quadratic bracket (1.3) by reduction of a Poisson structure on T ∗G.

Remark 1.1. The matrix space mat(n × n,R) is primarily an associative algebra, and the
notation gl(n,R) is usually reserved for its induced Lie algebra structure. In this paper gl(n,R)
is understood to carry both algebraic structures, i.e., we identify gl(n,R) with mat(n × n,R)
when using the associative product. This should not lead to any confusion.

2 The r-matrix brackets from Poisson reduction

We start with the manifold

M := G× G = {(g, L) | g ∈ G, L ∈ G}, (2.1)

which is to be viewed as a model of T ∗G obtained via right-translations and the identification
G∗ ≃ G given by the trace form. For smooth real functions F,H ∈ C∞(M), the following
formulae define two compatible Poisson brackets:

{F,H}1(g, L) = 〈∇1F, d2H〉 − 〈∇1H, d2F 〉+ 〈L, [d2F, d2H ]〉, (2.2)

and

{F,H}2(g, L) = 〈Ra∇1F,∇1H〉 − 〈Ra∇
′

1F,∇
′

1H〉+ 〈∇2F −∇′

2F, r+∇
′

2H − r−∇2H〉

+〈∇1F, r+∇
′

2H − r−∇2H〉 − 〈∇1H, r+∇
′

2F − r−∇2F 〉, (2.3)
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where

r± := Ra ±
1

2
id. (2.4)

The derivatives are taken at (g, L),

〈∇1F (g, L), X〉 =
d

dt

∣

∣

∣

∣

t=0

F (etXg, L), 〈∇′

1F (g, L), X〉 =
d

dt

∣

∣

∣

∣

t=0

F (getX , L), ∀X ∈ G, (2.5)

and ∇2F (g, L) := Ld2F (g, L), ∇′
2F (g, L) := d2F (g, L)L with d2F denoting the gradient with

respect to the second argument. The first bracket is just the canonical one. The second one
is obtained by a change of variables from the Heisenberg double [7] of the Poisson–Lie group
G equipped with the Sklyanin bracket that appears in the first two terms of (2.3). In the
corresponding complex holomorphic case, this is explained in detail in [3]. The compatibility
of the two brackets also follows by the same Lie derivative argument that works in the complex
case [3].

We are interested in the restriction of the Poisson brackets (2.2) and (2.3) to those functions
on M that are invariant with respect to the group

S := A×B with A := O(n,R), B := exp(B), (2.6)

whose factors correspond to the Lie algebras A and B in (1.8). That is, B consists of the upper
triangular elements of G having positive diagonal entries. The action of S on M is given by
letting any (a, b) ∈ A× B act on (g, L) ∈ M by the diffeomorphism

(g, L) 7→ (agb−1, aLa−1). (2.7)

Due to the QU factorization3, every S orbit in M admits a unique representative of the form
(1n, L). Therefore, we may associate to any smooth, S invariant functions F,H on M unique
smooth functions f, h on G according to the rule

f(L) := F (1n, L), h(L) := H(1n, L). (2.8)

Provided that the invariant functions close under the Poisson brackets on M, we may define
the reduced Poisson brackets on C∞(G) by setting

{f, h}redi (L) := {F,H}i(1n, L), i = 1, 2. (2.9)

In other words, in this situation the Poisson brackets descend to the quotient space M/S ≃ G.
The closure is obvious for the first Poisson bracket, and for the second one we prove it below.

Proposition 2.1. If F and H are invariant with respect to the S action (2.7), then their second

Poisson bracket (2.3) takes the simplified form

2{F,H}2 = 〈∇2F,∇
′

2H〉 − 〈∇2H,∇′

2F 〉+ 〈∇1F,∇
′

2H +∇2H〉 − 〈∇1H,∇′

2F +∇2F 〉. (2.10)

This formula implies that the Poisson bracket of two S invariant functions is again S invariant.

3That is, due to the fact that the matrix multiplication m : A×B → G is a diffeomorphism.
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Proof. The invariance of F with respect to the action of one parameter subgroups of A and B
leads to the conditions

〈∇′

1F,X〉 = 0, ∀X ∈ B and 〈∇1F +∇2F −∇′

2F, Y 〉 = 0, ∀Y ∈ A. (2.11)

The first condition means that ∇′
1F (g, L) is strictly upper triangular, and since the same holds

for H we get
〈Ra∇

′

1F,∇
′

1H〉 = 0. (2.12)

By using the second condition in (2.11), we are going to show that the contributions containing
Ra cancel from all other terms of (2.3) as well. To do this, it proves useful to employ the
direct sum decomposition G = A + A⊥, where A⊥ consists of the symmetric matrices in G.
Accordingly, we may decompose any element Z ∈ G as

Z = Z+ + Z− with Z+ ∈ A, Z− ∈ A⊥. (2.13)

Then the second condition in (2.11) means that

(∇1F )+ = (∇′

2F −∇2F )+. (2.14)

By using this together with the anti-symmetry of Ra and that Ra maps A into A⊥ and A⊥ into
A, we derive the equalities,

〈Ra∇1F,∇1H〉 = 〈Ra(∇1H)−, (∇2F −∇′

2F )+〉 − 〈Ra(∇1F )−, (∇2H −∇′

2H)+〉, (2.15)

and

〈∇1F,Ra(∇
′

2H−∇2H)〉 = 〈Ra(∇1F )−, (∇2H−∇′

2H)+〉+〈Ra(∇
′

2F−∇2F )+, (∇2H−∇′

2H)−〉.
(2.16)

By adding up (2.15) and the terms in (2.16) together with (minus one times) their counterparts
having F and H exchanged, one precisely cancels 〈∇2F − ∇′

2F,Ra(∇
′
2H − ∇2H)〉 in (2.3).

Then the formula (2.10) results directly from (2.3). Having derived (2.10), one sees that the
right-hand side of this expression is invariant under the action (2.7) of S. Indeed, this is a
consequence of the fact that the derivatives of invariant functions are equivariant, meaning for
example that we have

∇1F (agb−1, aLa−1) = a(∇1F (g, L))a−1, ∇2F (agb−1, aLa−1) = a(∇2F (g, L))a−1. (2.17)

This and the conjugation invariance of the trace imply the claim.

The following lemma will be important below.

Lemma 2.2. The S invariant function F on M and the function f on G related by (2.8) satisfy
the relations

∇1F (1n, L) = (r+ −Rs)(∇
′f(L)−∇f(L)), d2F (1n, L) = df(L), (2.18)

where Rs and r+ are given by (1.11) and (2.4).
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Proof. The second relation is obvious, and it implies the identities ∇2F (1n, L) = ∇f(L) and
∇′

2F (1n, L) = ∇′f(L). Since ∇1F (1n, L) = ∇′
1F (1n, L) by (2.5), we see from (2.11) that

∇1F (1n, L) = (∇1F (1n, L))>, (2.19)

where we applied the triangular decomposition (1.7). Then, noting that the anti-symmetric
part of any X ∈ G is X+ = 1

2
(X −XT ), it follows from the equality (2.14) that

(∇1F (1n, L))> = 2((∇1F (1n, L))
+)> = (∇′f(L)−∇f(L))> − ((∇′f(L)−∇f(L))<)

T . (2.20)

Because r+X = X> + 1

2
X0 and RsX = 1

2
X0 + (X<)

T by (1.11) and (2.4), the statement (2.18)
is obtained by combining (2.19) and (2.20).

We now prove our claim about the reduction origin of the quadratic bracket (1.3), which
we could not find in the literature. For completeness, we also show that the linear r-matrix
bracket (1.4) descends from (2.2), which is a classical result [8].

Theorem 2.3. The reductions (2.9) of the Poisson brackets (2.2) and (2.3) on the cotangent

bundle M ≡ T ∗GL(n,R) (2.1) defined by taking quotient by the action (2.7) of the group S
(2.6) give the linear (1.4) and quadratic (1.3) r-matrix brackets on G = gl(n,R), respectively.

Proof. We have to evaluate the expressions (2.9) for f and h related to the S invariant functions
F and H by (2.8). We start with the second bracket, relying on (2.10). Substitution of the
relations (2.18) into (2.10) gives

〈∇1F,∇
′

2H+∇2H〉−E(F,H) = 〈r+(∇
′f −∇f)−Rs(∇

′f −∇f),∇′h+∇h〉−E(f, h), (2.21)

where E(F,H) stands for the terms obtained by exchanging the roles of F and H , and similarly
for f and h. Writing r+ = Ra +

1

2
id, we find

1

2
〈∇′f −∇f,∇′h+∇h〉 − E(f, h) = 〈∇′f,∇h〉 − 〈∇f,∇′h〉. (2.22)

The terms containing Ra and Rs contribute

〈Ra(∇
′f −∇f),∇′h+∇h〉 − E(f, h) = 2〈Ra∇

′f,∇′h〉 − 2〈Ra∇f,∇h〉, (2.23)

and
〈Rs(∇f −∇′f),∇′h+∇h〉 − E(f, h) = 2〈Rs∇f,∇′h〉 − 2〈Rs∇

′f,∇h〉. (2.24)

Plugging these identities into (2.10), we obtain the result

{f, h}red2 = 〈∇f, Ra∇h〉 − 〈∇′f, Ra∇
′h〉+ 〈∇f, Rs∇

′h〉 − 〈∇′f, Rs∇h〉, (2.25)

which reproduces the quadratic r-matrix bracket (1.3).

To continue, we evaluate (2.9) for i = 1. Substitution of (2.18) now gives, at the appropriate
arguments,

〈∇1F, d2H〉 = 〈(Ra +
1

2
id−Rs)[df, L], dh〉 = 〈L, [df, Rdh]〉 −

1

2
[df, dh]〉. (2.26)

Here, R = Ra + Rs and we used the standard invariance properties of the trace form (1.1).
Consequently, we get

〈∇1F, d2H〉 − 〈∇1H, d2F 〉+ 〈L, [d2F, d2H ]〉 = 〈L, [Rdf, dh] + [df, Rdh]〉. (2.27)

The right-hand side gives {f, h}red1 , which coincides with the linear r-matrix bracket (1.4).
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Remark 2.4. Let us recall [5, 6] that G carries also a cubic r-matrix Poisson bracket which is
compatible with the linear and quadratic ones. It can be obtained from the linear bracket by
performing the densely defined change of variables L 7→ L−1, and then extending the result to
the full of G. For completeness, we note that the same change of variables is applicable on T ∗G,
too, and the so-obtained Poisson bracket then leads to the cubic bracket on G by the reduction
procedure described in the above.

3 Discussion

We explained that the quadratic r-matrix bracket (1.3) of the ‘generalized Toda hierarchy’
(1.6) on gl(n,R) is a reduction of a quadratic Poisson bracket on T ∗GL(n,R). This observation
escaped previous attention, probably because the convenient form (2.3) of the relevant parent
Poisson bracket came to light only recently [3]. The integrability of the system (1.6) was
thoroughly studied in [2] (see also [5]), together with two other related hierarchies. These are
of the form (1.6), but instead of R (1.11) use either R′ given by R′(X) := 1

2
(X> +X0 − X<)

or R′′ := Ra (which gives the anti-symmetric part of R′, too). We can show that the quadratic
r-matrix brackets obtained from (1.3) by replacing R with R′ or R′′ are also reductions of the
bracket (2.3) on M, similarly to how the linear r-matrix brackets descend [8] from (2.2). In
the case of R′ one may use the group S ′ := A′ × B, where A′ is the exponential of the strictly
lower triangular subalgebra of G. In the case of R′′ the reduction group is S ′′ < (G × G)
having elements of the form (a, b) = (eX0eX<, e−X0eX>) which act in the same way as (2.7).
(The notation refers to (1.7) with arbitrary X ∈ G.) To be precise, in these cases one needs
to restrict the starting system to T ∗Ǧ, where the leading principal minors of the elements of
Ǧ are positive, otherwise the reduction procedure is identical to the presented case, even the
crucial equations (2.10) and (2.18) keep their form for the corresponding invariant functions.
The open Toda phase space is well known [10] to be a Poisson submanifold with respect to the
linear r-matrix brackets for any of R, R′ and R′′. However, in contrast to the case of R (1.11),
it is not a Poisson submanifold with respect to the quadratic brackets associated with R′ and
R′′. It would be interesting to find the reduction origin of the modified quadratic r-matrix
brackets of Suris [9, 10] that are free from this difficulty. Another open problem is to extend
our treatment of the quadratic brackets to spectral parameter dependent r-matrices.

Acknowledgements. We wish to thank Maxime Fairon for useful remarks on the manuscript.
This work was supported in part by the NKFIH research grant K134946.
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