
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

PROGRAMA DE PÓS-GRADUAÇÃO EM MICROELETRÔNICA

TIAGO KNORST

Collaborative-Aware CPU Thread
Throttling and FPGA HLS-Versioning

Thesis presented in partial fulfillment
of the requirements for the degree of
Master of Microeletronics

Advisor: Prof. Dr. Antonio Carlos Schneider
Beck Filho
Coadvisor: Prof. Dr. Mateus Beck Rutzig

Porto Alegre
September 2022

CIP — CATALOGING-IN-PUBLICATION

Knorst, Tiago

Collaborative-Aware CPU Thread Throttling and FPGA
HLS-Versioning / Tiago Knorst. – Porto Alegre: PGMI-
CRO da UFRGS, 2022.

98 f.: il.

Thesis (Master) – Universidade Federal do Rio Grande do Sul.
Programa de Pós-Graduação em Microeletrônica, Porto Alegre,
BR–RS, 2022. Advisor: Antonio Carlos Schneider Beck Filho;
Coadvisor: Mateus Beck Rutzig.

1. CPU-GPU. 2. CPU-FPGA. 3. Throttling. 4. Collabora-
tive. 5. TLP. 6. HLS. I. Schneider Beck Filho, Antonio Carlos.
II. Beck Rutzig, Mateus. III. Título.

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. Carlos André Bulhões Mendes
Vice-Reitora: Profa. Patricia Pranke
Pró-Reitor de Pós-Graduação: Prof. Júlio Otávio Jardim Barcellos
Diretora do Instituto de Informática: Profa. Carla Maria Dal Sasso Freitas
Coordenador do PGMICRO: Prof. Tiago Roberto Balen
Bibliotecário-chefe do Instituto de Informática: Alexsander Borges Ribeiro

“Doubt is not a pleasant condition,

but certainty is absurd.”

— VOLTAIRE

AGRADECIMENTOS

A realização deste trabalho teve a colaboração de diversas pessoas, às quais

merecem os devidos agradecimentos.

Agradeço, primeiramente, aos meus pais Flávio e Inês e à minha irmã Gabriela

pelo amor, carinho e apoio incondicional, especialmente durante estes dois anos de ensino

remoto.

Agradeço à minha namorada Amanda Mohr, que tenho a sorte de estar ao meu

lado me encorajando na busca pelos meus objetivos.

Agradeço ao meu orientador deste trabalho, Professor Antonio Carlos Schneider

Beck Filho, pela paciência, conselhos e ensinamentos passados. Devo agradecer, também,

ao meu co-orientador, Professor Mateus Beck Rutzig, pela enorme contribuição na

realização deste trabalho e em meu ingresso no Mestrado.

Agradeço a todos os meus colegas de laboratório, especialmente ao Michael

Guilherme Jordan, que teve grande contribuição, tanto técnica quanto científica, para a

construção deste e outros trabalhos.

Agradeço à CAPES, pelo auxílio financeiro. Também, aos professores e fun-

cionários do Programa de Pós-Graduação em Microeletrônica e do Instituto de Infor-

mática, que oferecem às condições para o ensino de excelência provido na Universidade

Federal do Rio Grande do Sul.

ABSTRACT

Warehouses and Cloud Servers have been adopting collaborative CPU-GPU and CPU-

FPGA architectures as alternatives to enable extra acceleration for applications by parti-

tioning threads/kernels execution across both devices. However, exploiting the benefits of

these environments is challenging, since there are many factors that may influence perfor-

mance and energy consumption, such as the number of CPU threads, the workload bal-

ance, and optimization techniques such as FPGA HLS (High-Level Synthesis)-versioning.

This work shows that maximizing resource utilization by triggering the highest number

of CPU threads does not always result in the best efficiency for both CPU-GPU and CPU-

FPGA architectures. Moreover, our experiments show that the amount of data distributed

to each device (workload balance) affects the needed CPU processing power and, there-

fore, the number of active CPU threads for the application. To address these problems, we

first propose ETCG – Energy-aware CPU Thread Throttling for CPU-GPU collaborative

environments. ETCG transparently selects a near-optimal number of CPU threads to min-

imize the energy-delay product (EDP) of CPU-GPU applications. In the second study, we

propose ETCF – Energy-Aware CPU Thread Throttling and Workload Balancing Frame-

work for CPU-FPGA collaborative environments. ETCF automatically provides efficient

CPU-FPGA execution by selecting the right workload balance and the number of CPU

threads for a given collaborative application. ETCF framework offers different optimiza-

tion goals: performance, energy, or EDP. Compared to the baseline (an equally balanced

workload executing with the maximum number of CPU threads), ETCG and ETCF pro-

vide, on average, 73% and 93% of EDP reduction, respectively. We also show that both

ETCG and ETCF achieve near-optimal solutions by comparing it to an exhaustive search,

but just taking up to 5% of its searching time. Finally, in the third study, we considered a

task-collaborative CPU-FPGA environment. We investigate the impact of collaboratively

applying Thread Throttling on the CPU side and HLS-versioning on the FPGA side. We

use a multi-tenant Cloud service as our object of study, where sequence of application

requests with different priorities result in DAGs of application kernels that must be ex-

ecuted over the heterogeneous architecture. We show that by synergistically applying

Thread Throttling and HLS-Versioning to the incoming kernels may improve the EDP in

up to 41x over the non-optimized execution.

Keywords: CPU-GPU. CPU-FPGA. throttling. collaborative. TLP. HLS.

CPU Thread Throttling e FPGA HLS-versioning aplicados colaborativamente

RESUMO

Servidores em Nuvem vem adotando arquiteturas colaborativas de CPU-GPU e CPU-

FPGA como alternativas para permitir aceleração extra às aplicações através do particio-

nando da execução de threads/kernels em ambos os dispositivos. No entanto, explorar os

benefícios destes ambientes é desafiador, pois existem muitos fatores que podem influen-

ciar o desempenho e o consumo de energia, como o número de threads da CPU, o balan-

ceamento da carga de trabalho (Worload Balance) e técnicas de otimização como FPGA

HLS (High-Level Synthesis)-versioning. Este trabalho mostra que maximizar a utilização

de recursos acionando o maior número de threads de CPU nem sempre resulta na melhor

eficiência tanto em arquiteturas CPU-GPU quanto CPU-FPGA. Além disso, os experi-

mentos mostram que a quantidade de dados distribuídos para cada dispositivo (Workload

Balance) afeta o poder de processamento necessário da CPU e, portanto, o número ótimo

de threads de CPU para a execução da aplicação. Com o intuito de otimizar a execução

de aplicações colaborativas CPU-GPU, inicialmente propomos o ETCG – Energy-aware

CPU Thread Throttling for CPU-GPU collaborative environments. O ETCG é capaz de

selecionar de forma transparente um número quase ótimo de threads na CPU visando a

minimizar o produto entre atraso e energia consumida (EDP) de aplicações CPU-GPU.

No segundo estudo, propomos ETCF – Energy-Aware CPU Thread Throttling and Wor-

kload Balancing Framework para ambientes colaborativos CPU-FPGA. O ETCF fornece

uma execução CPU-FPGA eficiente ao selecionar apropriadamente o Workload Balance e

o número de threads na CPU para uma aplicação colaborativa. Além disso, são oferecidos

diferentes objetivos de otimização: desempenho, energia ou EDP. Em comparação à linha

de base (considerando uma carga de trabalho igualmente equilibrada entre os dispositi-

vos e usando o número máximo de threads na CPU), nossos experimentos mostram que

ETCG e ETCF fornecem, em média, 73% e 93% de redução de EDP, respectivamente.

Também mostramos que tanto o ETCG quanto o ETCF alcançam soluções quase ótimas

comparando-os a uma busca exaustiva, mas levando apenas 5% de seu tempo de busca

no pior cenário. Finalmente, no terceiro estudo, consideramos um ambiente de tarefas

colaborativas CPU-FPGA. Investigamos o impacto de aplicar sinergicamente Thread Th-

rottling no lado da CPU e do HLS-Versioning no lado do FPGA. Utilizamos como objeto

de estudo um serviço de nuvem multi-inquilino, onde a sequência de requisições de apli-

cações com diferentes prioridades resulta em DAGs de kernels de aplicações que devem

ser executados sobre a arquitetura heterogênea. Nossos experimentos mostram que, ao

aplicar sinergicamente Thread Throttling e HLS-Versioning aos kernels recebidos, pode-

se melhorar o EDP em até 41x em relação à execução não otimizada.

Palavras-chave: CPU-GPU. CPU-FPGA. throttling. colaborativo. TLP. HLS.

LIST OF FIGURES

Figure 1.1 Collaborative execution. ..20
Figure 1.2 Balancing. ..21
Figure 1.3 CPU-TT on CPU-GPU collaborative execution. ...23

Figure 2.1 Architecture of a heterogeneous systems. ...25
Figure 2.2 Task Partitioning vs Data Partitioning. ..26
Figure 2.3 Comparison of linear partitioning and ideal data partitioning.......................27
Figure 2.4 TLP Scalability issues. ..30
Figure 2.5 High-Level Synthesis...33

Figure 3.1 CPU Thread Throttling Opportunities in CPU-GPU applications.40
Figure 3.2 Influence of Workload Balance in CPU-GPU applications.42
Figure 3.3 CPU Thread Throttling Opportunities in CPU-FPGA applications.44
Figure 3.4 Influence of Workload Balance in CPU-FPGA applications.........................46

Figure 4.1 ETCG execution flow...50
Figure 4.2 Performance improvements normalized w.r.t the baseline Max #Threads

(α=0.5). ...55
Figure 4.3 Energy consumption normalized w.r.t the baseline Max #Threads (α=0.5)..56
Figure 4.4 EDP normalized w.r.t the baseline Max #Threads (α=0.5).57
Figure 4.5 ETCF Overview. ..59
Figure 4.6 ETCF Optimization Modes. ..60
Figure 4.7 ETCF Workload balance..61
Figure 4.8 Performance improvements w.r.t the baseline Max #Threads (α=0.5)..........63
Figure 4.9 Energy consumption normalized w.r.t the baseline Max #Threads (α=0.5)..64
Figure 4.10 EDP normalized w.r.t the baseline Max #Threads (α=0.5).64

Figure 5.1 Cloud’s Acceleration-as-a-Service model. ..70
Figure 5.2 TLP scalability of Rodinia CPU kernels. ..73
Figure 5.3 HLS-Versioning applied to Rodinia FPGA kernels.74
Figure 5.4 Cloud’s DAG workload scheme and Kernel Configuration...........................76
Figure 5.5 Kernel allocation using our conventional BFS algorithm..............................76
Figure 5.6 How different CPU/FPGA configurations affect overall execution.77
Figure 5.7 Improvements provided by multiple configuration scenarios........................82
Figure 5.8 Improvements from Single and Multiple Configuration scenarios................83

LIST OF TABLES

Table 2.1 Comparison w.r.t. the State-of-the-Art..35

Table 3.1 System specifications. ...38
Table 3.2 Chai benchmarks. ..39

Table 4.1 #Threads found by Oracle and ETCG searches. ...56
Table 4.2 Time to solution (ms). ...56
Table 4.3 Time to solution (seconds). ...66

Table 5.1 Rodinia benchmarks. ...71
Table 5.2 Rodinia FPGA HLS versions. ...72
Table 5.3 Search complexity. ..77
Table 5.4 EDP gains (×) using Single Configuration exploitation.80
Table 5.5 Versioning Variation for CPU/FPGA kernels of t threads or HLS version v. .82

Table A.1 Execution time (s) of the applications at each scenario using α=0.393
Table A.2 Execution time (s) of the applications at each scenario using α=0.593
Table A.3 Execution time (s) of the applications at each scenario using α=0.793
Table A.4 Energy consumption (J) of the applications at each scenario using α=0.394
Table A.5 Energy consumption (J) of the applications at each scenario using α=0.594
Table A.6 Energy consumption (J) of the applications at each scenario using α=0.794

Table B.1 Execution time (s) of the applications at each scenario..................................95
Table B.2 Energy consumption (J) of the applications at each scenario.........................95

Table C.1 Single Configuration results - 1 to 16 threads / HLS v1 to v6........................97
Table C.2 Single Configuration results - 1 to 16 threads / HLS v1 to v6 - and Mul-

tiple Configurations at the end. ..98

LIST OF ABBREVIATIONS AND ACRONYMS

CPU Central Processing Unit

CMP Chip Multiprocessor

DAG Direct Acyclic Graph

DSE Design Space Exploration

EDP Energy-Delay Product

FPGA Field-Programmable Gate Array

GPU Graphics Processing Unit

HLS High-Level Systensis

OS Operating System

SMT Simultaneous Multithreading

TLP Thread-level Parallelism

TT Thread Throttling

WB Workload Balance

CONTENTS

1 INTRODUCTION...19
1.1 Challenge ...20
1.2 Contributions...22
1.3 Work Structure ...24
2 BACKGROUND..25
2.1 Collaborative Computing...25
2.1.1 Data partitioning solutions...26
2.1.2 Task partitioning solutions ...28
2.1.3 Task and Data partitioning solutions..29
2.2 CPU Thread Throttling ...30
2.3 FPGA High-Level Synthesis...33
2.4 Contributions w.r.t. the State-of-the-Art ..35
3 MOTIVATION TO EXPLOIT DATA-COLLABORATIVE CPU-GPU AND

CPU-FPGA ENVIRONMENTS ..37
3.1 Methodology ..37
3.1.1 Execution Environment..37
3.1.2 Benchmarks..38
3.2 Optimization Opportunities in CPU-GPU Collaborative Environments39
3.2.1 Influence of Workload Balance..41
3.3 Optimization Opportunities in CPU-FPGA Collaborative Environments........43
3.3.1 Influence of Workload Balance..45
3.4 Discussion ..47
4 OPTIMIZATION OF DATA-COLLABORATIVE COMPUTING EXECU-

TION USING CPU THREAD THROTTLING ...49
4.1 ETCG: Energy-Aware CPU Thread Throttling Approach for CPU-GPU

Collaborative Environments ..49
4.1.1 ETCG Overview ..49
4.1.1.1 Execution Flow ...50
4.1.1.2 Search Algorithm..51
4.1.1.3 Integration to C++ library ...53
4.1.2 Methodology ..54
4.1.2.1 Compared scenarios ..54
4.1.3 Results..55
4.2 ETCF: Energy-Aware Thread Throttling and Workload Balancing Frame-

work for CPU-FPGA Collaborative Environments58
4.2.1 ETCF Overview ...58
4.2.1.1 ETCF Workload Balance ..59
4.2.1.2 ETCF Thread Throttling ...61
4.2.1.3 Full ETCF ...61
4.2.2 Methodology ..62
4.2.2.1 Evaluation Scenarios...62
4.2.3 Results..63
4.2.3.1 ETCF-TT Mode ..64
4.2.3.2 ETCF-WB Mode...65
4.2.3.3 ETCF-Full Mode...65
4.2.3.4 ETCF-Full x Oracle Evaluation ..66
4.3 Discussion ..67

5 ON THE BENEFITS OF APPLYING CPU THREAD THROTTLING AND
HLS-VERSIONING IN CPU-FPGA TASK-COLLABORATIVE EN-
VIRONMENTS ...69

5.1 Methodology ..70
5.1.1 Execution Environment..70
5.1.2 Benchmarks..70
5.2 Thread Throttling and HLS-Versioning opportunities ...72
5.3 Experimental Grounding ...75
5.3.1 Evaluation Setup ..78
5.4 Results ..79
5.4.1 Single Configuration Scenarios..80
5.4.2 Multiple Configurations Scenarios ..80
5.4.3 Single vs Multiple Configuration...82
6 CONCLUSION ...85
6.1 Future Work ..86
6.2 Publications ...86
REFERENCES...89
APPENDIX A — ETCG EXPERIMENTS ...93
APPENDIX B — ETCF EXPERIMENTS ..95
APPENDIX C — CHAPTER 5 EXPERIMENTS ..97

19

1 INTRODUCTION

Computation is increasingly moving away from traditional data servers to the

cloud, leveraging cost savings, reliability, and scalability. Cloud Service Providers such

as Amazon, Google, and Microsoft provide on-demand access to hardware resources and

services to their costumers (WU et al., 2010). To deliver that, vendors host and manage

Cloud Data Warehouses, which maintain data and offered applications. Current Cloud

services usually comprise the use of applications such as machine learning, big data,

video, and audio processing, which impose high performance requirements. However, to

reach these requirements while meeting power and energy constraints, inherent in such

systems, clever strategies are required from hardware designers.

Hardware designing have taken advantage of the tremendous advances in mi-

croelectronics since Complementary Metal–Oxide Semiconductor technology became

widespread, which enabled an increase in computers’ efficiency, following Moore’s and

Dennard’s scaling laws (BECK; LISBÔA; CARRO, 2012). With transistors enhance-

ments reaching physical limits, though, both laws came to an end, imposing the challenge

of achieving the performance requirements while meeting energy constraints. One of the

main strategies to reach it is by exploiting parallelism from control and data-oriented ap-

plications, and properly utilizing the hardware resources to benefit from such exploitation.

Thread-level Parallelism (TLP) exploitation is commonly employed in Chip Mul-

tiprocessors (CMPs), which traditionally equip Cloud Data Warehouses. TLP exploitation

takes advantage of the multiple cores inside a single chip offered by CMPs to execute por-

tions of the program (threads) in different cores simultaneously, increasing concurrency

and improving performance in parallel applications. To further optimize the efficiency

in Cloud Data Warehouses, vendors moved their systems from traditional homogeneous

CPU-only systems to heterogeneous CPU-GPU and CPU-FPGA systems - by coupling

a Graphics Processing Units (GPU) and a Field-Programmable Gate Array (FPGA), re-

spectively -, which enable extra acceleration when executing the applications on the most

suitable device (KACHRIS; SOUDRIS, 2016).

In the last two decades, GPUs gained attractive because of their capability to accel-

erate graphical workloads compared to traditional CPUs. Despite being developed origi-

nally to deal with graphic applications, the creation and disposal of CUDA and OpenCL

made it possible to use GPUs for general-purpose parallel computing, thereby allowing

the acceleration of massive data-parallel applications (DU et al., 2012).

20

Similarly, the use of FPGAs became a complementary alternative due to the im-

plementation flexibility offered by High-Level Synthesis, which allows programmers to

express their designs with high-level programming languages (STONE; GOHARA; SHI,

2010). This way, the use of FPGA provides opportunities for further performance and

energy improvements, once it can cover other software behaviors not covered by CPUs

and GPUs, such as bit-level parallelism and low-precision arithmetic, still keeping lower

energy consumption levels (CRAVEN; ATHANAS, 2007).

To exploit both devices, conventional heterogeneous applications offload all their

compute-intensive tasks to the GPU or the FPGA, once these devices are more efficient

than CPUs in data-parallel workloads, leading the host CPU to remain idle while these

portions of the application are executed. To fully utilize the hardware resources, Collabo-

rative Computing emerged to enhance the benefits of heterogeneous systems by partition-

ing compute-intensive portions of applications (kernels) across the devices, as illustrated

in Figure 1.1, where collaborative execution is employed in CPU-GPU and CPU-FPGA

systems. However, rightly exploiting this environment is challenging, since each device

has its particular optimization techniques that must be cooperatively employed (HUANG

et al., 2019).

Figure 1.1: Collaborative execution.

CPU-GPU
Collaborative
Application

CPU

GPU

CPU
Kernel

GPU
Kernel

FPGA

FPGA
Kernel

CPU-FPGA
Collaborative
Application

CPU

CPU
Kernel

Source: the author

1.1 Challenge

Collaborative computing presents the challenge of fully utilizing the heteroge-

neous devices, since these devices can vary in terms of efficiency (e.g. high-end CPU

with low-end GPU/FPGA, low-end CPU with high-end GPU/FPGA), while applications

present different benefits from CPUs, GPUs or FPGAs. Considering a CPU-GPU system,

for instance, massive data-parallel applications are prone to have more benefits when ex-

ecuting on the GPU, so a workload evenly assigned between the CPU and the GPU will

21

lead the CPU to be the bottleneck of the execution. To illustrate it, Figure 1.2 shows

the execution timeline of a hypothetical application with this characteristic, and how the

workload balance influences execution time. Figure 1.2-A and B present CPU-only and

GPU-only executions, which do not achieve the lowest execution time possible, since the

devices are not used collaboratively. Figure 1.2-C shows an even workload (in terms of

code/data size to execute) balance between the CPU and the GPU. However, the GPU

completes the work before the CPU, since the GPU suits best the characteristics of the

data-parallel application considered. When 30% of the workload is assigned to the CPU,

in Figure 1.2-D, the CPU and the GPU take similar time to execute the parallel-region,

leading to a faster overall execution than evenly distributing the workload and when exe-

cuting on a non-collaborative execution such as Figure 1.2-A and B.

Figure 1.2: Balancing.

Time

Initialization

B

CA

CPUCPU

Parallel-Region Finishing

CPU

Workload balance: 100% on CPU; 0% on GPU)

Initialization

GPU

CPU

Parallel-Region Finishing

CPU

50% to each device

Initialization

CPU

GPU

CPU

Parallel-Reg. Finishing

CPU

30% on the CPU; 70% on the GPU

Time

Time

Initialization

GPU

CPU

Parallel-Region Finishing

CPU

0% on the CPU; 100% on the GPU

Time

D

CPU

Source: the author

However, collaborative applications’ programmers are usually not aware of the

hardware of the end-user, which prevents them from building applications capable of ex-

tracting all the benefits offered by the heterogeneous system, since specific hardware in-

formation is required to balanced the workloads as much as possible. The employment of

some optimization strategies can unlock these benefits. On the CPU side, Thread Throt-

tling can enable improvements to the collaborative execution. It consists in a technique

that exploits TLP scalability issues by artificially adjusting the number of threads on the

CPU and, consequently, varies execution time and energy consumption (LORENZON;

FILHO, 2019). This way, Thread Throttling is capable of help balancing the collaborative

execution of CPU-GPU and CPU-FPGA applications, enabling overall performance and

energy improvements to these systems. High-Level Synthesis optimization techniques

can further improve collaborative CPU-FPGA execution with the use of HLS-Versioning,

22

which consists in applying different HLS optimizations to the design, resulting in distinct

FPGA implementations for the same application. Thus, the energy-delay trade-offs pre-

sented by the different versions can offer another tuning point (ZHAO et al., 2019). A

synergistic employment of the aforementioned optimizations can improve the efficiency

of collaborative execution in CPU-GPU and CPU-FPGA systems.

1.2 Contributions

Considering the room for improvements that collaborative environments present,

this work exploits different optimization techniques in the heterogeneous devices to ex-

tend the benefits of CPU-GPU and CPU-FPGA collaborative execution. Given that, our

main contributions are investigating the benefits of applying:

• CPU Thread Throttling in CPU-GPU data-collaborative environments, for which

we propose an extension for the C++11 thread library capable of automatically

employing CPU Thread Throttling;

• CPU Thread Throttling and workload balance in CPU-FPGA data-collaborative en-

vironments, for which we propose a framework that applies CPU Thread Throttling

and selects near-optimal workload balance;

• CPU Thread Throttling and FPGA HLS-Versioning simultaneously in CPU-FPGA

task-collaborative environments, in which we compared a Design Space Explo-

ration to a heuristic approach;

Firstly, we considered the execution of data-collaborative applications over a CPU-

GPU heterogeneous system and investigate how the number of threads from the multi-

core CPU influences the overall performance and energy consumption of this system.

Then, we evaluate the benefits of applying the CPU Thread Throttling technique and how

the optimal number of threads is influenced by the workload balance, between the CPU

and the GPU, statically defined by the programmer. To illustrate it, Figure 1.3 shows

how CPU Thread Throttling can enhance performance and energy of a CPU-GPU col-

laborative execution. In Figure 1.3-A the lowest number of threads (#Threads) is used,

leading the CPU to take long to execute and, as a consequence, spending a high amount

of energy. The execution time is shortened when using the highest #Threads in Figure

1.3-B, but activating all CPU cores implies a rise in power dissipation, which results in

high energy consumption as well since the execution is now bottlenecked by the GPU. On

23

the other hand, when the execution is performed with an ideal #Threads (Figure 1.3-C),

we keep lower power dissipation by not activating some CPU cores while execution time

is still optimal. In this scenario, we propose an approach, based on the Hill-Climbing al-

gorithm, implemented over the C++11 thread library, capable of automatically selecting

a near-optimal number of threads aiming at reducing the energy-delay product (EDP) of

the collaborative applications in the CPU-GPU environment.

Figure 1.3: CPU-TT on CPU-GPU collaborative execution.

Ex
ec

ut
io

n
tim

e

CPU
GPU

Lowest
#Threads

Highest
#Threads

Ideal
#Threads

CPU
GPU CPUGPU

Po
w

er

 ↓P * ⇈t
= ↑E

 ⇈P * ↓t
= ↑E

 ↓P * ↓t
= ↓E

En
er

gy

B CA

Source: the author

Likewise, we investigate the influence of the CPU number of threads and the work-

load balance on a CPU-FPGA environment executing data-collaborative applications.

Given that both fronts can offer performance and energy gains, we propose a frame-

work capable of automatically finding a near-optimal number of threads and workload

balance in CPU-FPGA applications, allowing the framework administrator to select the

optimization goal between performance, energy, or EDP.

Finally, the benefits of employing optimizations at both CPU and FPGA will be

investigated on the CPU-FPGA heterogeneous system. Besides using Thread Throttling

at the CPU, HLS-Versioning is performed over the FPGA kernels. To evaluate the impact

of both techniques, a multi-tenant Cloud service is used as an object of study, in which

24

sequences of application requests result in execution-order dependencies between the ap-

plications. In such a scenario, it is shown that optimizing only the CPU or the FPGA

side results in much fewer improvements than optimizing at both fronts. Moreover, we

compare applying the optimizations to each individual kernel versus applying a single

optimization for all kernels, discussing the strengths and weaknesses of each approach.

1.3 Work Structure

The remainder of this work is structured as follows.

Chapter 2 presents a background in Collaborative Computing, CPU Thread Throt-

tling, and FPGA High-Level Synthesis, along with previous works in each field.

Chapter 3 presents experiments investigating the impact of the number of CPU

threads and the workload balance in CPU-GPU and CPU-FPGA data-collaborative appli-

cations.

Chapter 4 presents the proposed approaches to optimize CPU-GPU and CPU-

FPGA Data-Collaborative Computing environments.

Chapter 5 presents experiments investigating the impact of employing Thread

Throttling and HLS-Versioning in a CPU-FPGA task-collaborative environment.

Finally, Chapter 6 draws the conclusions of this work, summarizing the results

and contributions, as well as addressing possible future research.

25

2 BACKGROUND

This chapter will provide a background on the main concepts used in this disser-

tation alongside the state-of-the-art of: Collaborative Computing in Section 2.1, Thread

Throttling in Section 2.2, and FPGA High-Level Synteshis in Section 2.3. Then, Section

2.4 will show the contributions of this work over the state-of-the-art.

2.1 Collaborative Computing

Heterogeneous systems can be modeled as a set of interconnected comput-

ational resources with distributed address spaces and diverse functionalities

(ILIĆ; SOUSA, 2010). Figure 2.1 shows the architecture of a heterogeneous system con-

sisting of a host CPU along with accelerators and co-processors such as a GPU and other

devices. Traditional applications offload compute-intensive parts of the application to

these devices, while the CPU waits for them to finish and thus are idled, which limits

the efficiency and resource utilization. In this scenario, Collaborative Computing was

proposed to fill this gap by synergistically utilizing the CPU and the accelerators, and

partitioning the application’s workloads between the resources (ILIĆ; SOUSA, 2010).

Figure 2.1: Architecture of a heterogeneous systems.

Source: (ILIĆ; SOUSA, 2010)

Properly utilizing such an environment became a challenge, though, once GPUs

and FPGAs traditionally required vendor-specific programming models to use their de-

vices. OpenCL (STONE; GOHARA; SHI, 2010) changed that by standardizing the ex-

ecution in heterogeneous systems via its parallel programming standard, which abstracts

most of the architectural particularities required to use heterogeneous devices so far. Het-

erogeneous computing in OpenCL consists of a host CPU and some OpenCL certified

device, such as GPUs, FPGAs, or DSPs, for example. Its programming interface includes

26

the support of memory transfers, allocation management, device management by the ab-

straction "contexts" that involve the OpenCL devices present on the system, and run-time

compilation of the kernels, which are the compute-intensive portions of the program that

are offloaded to the devices.

Different approaches are used to take advantage of a heterogeneous environment

in a collaborative way. Figure 2.2 illustrates two of the main patterns of collaborative

execution. Using Task Partitioning, the application assigns distinct parallel tasks among

the devices, while using Data Partitioning the same task is performed in all devices, but

the data to be computed is split between the devices. For data partitioned applications,

GÓMEZ-LUNA et al. use a workload balance factor named alpha, which represents the

percentage of the partitioned data assigned to the CPU, while its complementary percent-

age represents the data assigned to the GPU or the FPGA.

Figure 2.2: Task Partitioning vs Data Partitioning.

Collaborative
Application

CPU

GPU

Data Assigned
to the CPU

Collaborative
Application

Data PartitioningTask Partitioning
CPU
Task

GPU
Task

Data Assigned
to the FPGA

FPGA

CPU

Source: the author

Several works utilize collaborative environments to propose optimizations using

Task and Data Partitioning approaches. They are discussed in the following subsections.

2.1.1 Data partitioning solutions

The work proposed by LEE et al. presents the single kernel multiple devices

(SKMD) system, a framework that transparently manages the collaborative execution

of data-parallel OpenCL kernels across asymmetric CPUs and GPUs. It performs code

transformation to enable data partition among the CPU and the GPU, evaluating transfer

costs, performance evaluation, and providing a seamless result merging after the execu-

tion. Figure 2.3 from this work compares linear data partitioning among the devices (a)

to the ideal partitioning (b) of a multi-GPU collaborative environment. In such an unbal-

anced system, the linear partition of the data among the devices (a) leads to worse perfor-

mance than the GPU-only execution, while the ideal partitioning (b) provides a speedup,

27

emphasizing the need of properly balancing the workload. The proposal achieves better

performance considering a system with a multi-core CPU and two GPUs compared to the

fastest device-only execution.

Figure 2.3: Comparison of linear partitioning and ideal data partitioning.

Source: (LEE et al., 2015)

The authors in (WANG; ANANTHANARAYANAN; MITRA, 2018) propose an

analytical framework called OPTiC that optimizes collaborative Computing on mobile

devices with thermal constraints. The framework automatically selects the workload par-

tition between CPU and GPU by managing the OpenCL work-group assignment to the

devices. It also applies frequency scaling to deliver optimal performance under mobile

thermal constraints. OPTiC provides 13.68% of performance gains over existing schemes

when executing CPU-GPU applications on an ARM-based platform.

CONG et al. aims at optimizing big data CPU-FPGA collaborative applications

by selecting the right strategy to coordinate CPU and FPGA execution. The conducted

case study uses an in-memory Samtool sort routine algorithm. They propose an adaptive

dataflow execution that combines data-level parallelism on the CPU and pipeline paral-

lelism between the CPU cores and the FPGA, making use of the CPU while offloading

the computation to the FPGA, and ultimately improving overall system resource utiliza-

tion. Experiments over an Intel Xeon CPU and a Xilinx UltraScale FPGA show that the

proposal was capable of providing a 2.64x reduction in overall execution time.

28

2.1.2 Task partitioning solutions

In (ZHOU; PRASANNA, 2017) the authors conduct a study on CPU-FPGA exe-

cution of graph analytics applications. They compared Vertex-Centric and Edge-Centric

paradigms, exploring the trade-offs based on their characteristics. Their proposal includes

the selection of the appropriate paradigm to execute the application and a graph partition-

ing scheme to enable efficient parallel computation of the graphs. Experiments using two

fundamental graph algorithms (Breadth-First Search and Single-Source Shortest Path)

running on an Intel Xeon CPU and an Altera Arria FPGA show up to 4.2x throughput

improvements over state-of-the-art FPGA-based designs.

The framework called GraphACT (ZENG; PRASANNA, 2020) addresses opti-

mizations for neural network training, specifically Graph Convolutional Networks, on

CPU-FPGA systems. The proposal integrates algorithm-architecture co-optimizations

considering computation and communication characteristics of different GCN algorithms,

choosing the one that is well suited for hardware execution. The framework uses a systolic

array-based FPGA design for efficient parallelization, integrating load-balancing model-

ing where tasks are properly assigned to the CPU and the FPGA. The approach achieves

speedups compared to other works while keeping low accuracy loss.

The work from MELONI et al. proposes a hardware/software solution for the ac-

celeration of neural networks, precisely Convolutional Neural Networks, on an ARM-

based SoC coupled with an FPGA. To cooperatively use the hardware, it offloads the

intensive CNN workloads to the FPGA, while hard-to-accelerate tasks, which present in-

tricate conditional statements or input/output operations, are executed on the ARM cores.

The proposed accelerator uses HLS pipelining capabilities to accelerate the FPGA work-

loads and vector engines to speedup ARM workloads, showing 18% performance gains

executing a specific CNN compared to state-of-the-art works.

DEIANA et al. also uses an ARM-FPGA SoC-based system, which proposes

an approach to map and schedule applications on heterogeneous and reconfigurable de-

vices. It presents a programming model to improve performance, power, or energy con-

sumption by exploiting FPGA optimization techniques and task partitioning the applica-

tion. For each generated task, the proposal generates multiple versions exploiting perfor-

mance/energy trade-offs from FPGA optimizations. The authors evaluate the work using

image and data-processing tasks, showing performance improvements in every schedul-

ing scenario when compared to other similar work.

29

The work in (WEI et al., 2017) aims at optimizing the throughput of streaming ap-

plications in CPU-FPGA heterogeneous systems. It takes into account latency constraints

and stringent power budgets inherent in streaming systems. The authors developed two

algorithms to map tasks onto the heterogeneous system and order the application’s exe-

cution considering its characteristics and architectural capabilities of the hardware. They

also employed pipelining to improve the throughput by overlapping the execution of dif-

ferent portions of the application and using frequency scaling to adjust the execution of

tasks for power saving.

2.1.3 Task and Data partitioning solutions

ILIĆ; SOUSA were pioneers in exploiting heterogeneous systems using a unified

execution model. The authors propose an execution environment with a CPU and a GPU

to execute matrix multiplication and the major of 3D FFT tasks. They used an OpenCL-

alike programming model that includes the use of the Task Abstraction, which provides a

seamless execution on the CPU and the GPU, a task scheduler that offers workload balanc-

ing based on an exhaustive search, as well as data partitioning capabilities. Experimental

results show performance benefits when executing matrix multiplication. Contrarily, FFT

had no performance benefits due to bandwidth limitations of the considered system.

(HUANG et al., 2019) was the first work to quantitatively evaluate collaborative

execution with OpenCL High-Level Synthesis on CPU-FPGA systems. It brings a com-

prehensive analysis for task and data collaborative strategies using two CPU-FPGA sys-

tems with distinct computational power running Chai benchmarks (GÓMEZ-LUNA et

al., 2017). Experimental results show that the CPU-FPGA collaborative execution out-

performs conventional CPU-only and FPGA-only in all tested benchmarks. The work

also provides findings on the strengths of each collaborative strategy. The use of data par-

titioning can enable better load balancing while keeping low communication overhead.

Using task partitioning can allow more kernel duplication (a typical optimization tech-

nique that enables parallel replicated tasks to execute simultaneously in the same FPGA

design).

30

2.2 CPU Thread Throttling

With the spread of CMPs, performance improvements in CPUs moved towards

TLP exploitation, so that multi-threaded applications could increase concurrency using

multiple simultaneous threads, ultimately reducing execution time. This strategy has lim-

itations, though, since in several applications improvements are not linear with respect

to the increase in the number of threads and, in many cases, simply using the highest

number of threads possible does not provide the best performance (CURTIS-MAURY et

al., 2006). Figure 2.4 shows scalability issues related to TLP exploitation in the appli-

cation SRAD from Rodinia suite, performance and energy improvements (i.e. reduction

in execution time and spent energy) for a 64-core (128-thread) AMD Threadripper CPU.

The X-axis comprises the number of threads used to execute the application, while the

Y-axis present the performance and energy improvements w.r.t the single-thread execu-

tion of the application. The most common programming approach is to use all available

hardware threads - 128 threads for this processor. This experiment show that performance

improvements stagnate when using more than 24 threads and energy improvements are

not optimal from that point due to the increase in power dissipation caused by activating

more processor cores.

Figure 2.4: TLP Scalability issues.

Source: the author

LORENZON et al. identified some of the reasons behind this behavior, such as:

off-chip bus saturation, which restricts the amount of data applications can move through

the cores; concurrent shared memory accesses, which are limited by the amount of mem-

31

ory ports offered by the hardware; and scalability issues due to application’s data synchro-

nization points. Therefore, utilizing more cores increases power dissipation, imposing

energy consumption penalties when it does not bring performance improvements. Thus,

artificially reducing the number of threads has proved to provide performance and energy

improvements in many applications using a technique called Thread Throttling. Several

works use this technique to optimize CPU execution.

The work from CURTIS-MAURY et al. present the challenges of achieving per-

formance and power advantages from CMPs in multi-threaded applications. It argues that

existent libraries at that time lack essential capabilities to take advantage from CMPs.

Hence they propose a user-level library framework for nearly optimal online adaptation

of multi-threaded code for low-power and high-performance execution. The framework

is a system that dynamically changes the number of threads to improve energy efficiency.

In (CURTIS-MAURY et al., 2008) the authors extend the framework to support Dynamic

voltage and frequency scaling (DVFS) to enable higher energy savings.

SULEMAN; QURESHI; PATT analyzes performance limiters of multi-threaded

applications. Their study found that data-synchronization and off-chip bandwidth were

two main bottlenecks on improving performance. For constraint-limited applications,

increasing the number of threads inflates the execution time and the power dissipation.

This way, the number of threads must be carefully picked to ensure a good trade-off

between performance and power. Given that, the authors propose a framework that can

adapt the number of threads considering contention for locks and memory bandwidth.

The framework uses CPU performance counters to collect run-time data and evaluate

application behavior, using OpenMP threading library to select an appropriate number of

threads for the application.

(LEE et al., 2010) is another work that applies Thread Throttling on multi-threaded

applications. The authors claim that statically determining the number of threads of the

application is very likely to be lacking for not catching dynamic conditions such as the

application input set, architectural peculiarities of the hardware, and the influence of other

processes on shared system resources. To address these issues, the authors present a dy-

namic compilation system that can automatically stitch the number of threads considering

dynamic conditions.

PUSUKURI; GUPTA; BHUYAN present an approach for dynamically select the

number of threads without needing source code recompilation. The authors claim that

some dynamic conditions cannot be inferred at compile time, such as OS thread migra-

32

tions, which can influence the optimal number of threads of the application. The proposed

framework executes a given parallel application binary multiple times with a different

number of threads for a short period (e.g., 100 ms), then searches for the appropriate

configuration to re-run the entire application.

PORTERFIELD et al. is another work that applies Thread Throttling at run-time.

But contrarily to the previous ones that primarily focus on reducing the execution time,

this work considers energy usage. They propose an adaptive run-time system that per-

forms automatic Thread Throttling based on online measurements of system power and

performance data.

SHAFIK et al. propose an adaptive and scalable energy minimization model for

OpenMP programs, where the programmer inserts directives in the sequential and parallel

parts of the code to enable energy minimization with specified performance requirements.

MARATHE et al. propose Conductor, a run-time system that dynamically selects

the ideal number of threads and DVFS state to improve performance under a power con-

straint for hybrid applications (MPI + OpenMP).

Nornir (SENSI; TORQUATI; DANELUTTO, 2016) is a run-time system that

monitors the application execution and adjusts the resources configurations (DVFS, num-

ber of threads, and thread placement) in order to satisfy either performance or power

dissipation requirements.

LORENZON; SOUZA; BECK propose the LAANT library that automatically ad-

justs the number of threads of OpenMP applications. In this approach, code must be

modified by the programmer to include additional function calls in each parallel region

of interest in the application. The library considers many aspects of the execution that

are only possible to be defined at run-time, such as the input set of the application, the

processor micro-architecture, and the distinct ideal number of threads each parallel region

may have in such conditions. The approach uses a low overhead Hill-Climbing algorithm

for training while the application is running to adjust the number of threads, to optimize

EDP. The authors extend LAANT in the work (LORENZON et al., 2018) by adding trans-

parency (i.e. not requiring any source-code modification or recompilation). They propose

Aurora, a framework capable of finding the ideal number of threads according to a given

metric defined a priori by the user. The framework achieves transparency since it relies on

extending the original OpenMP library, which allows the approach to adapt at run-time

the number of threads of default OpenMP applications.

33

2.3 FPGA High-Level Synthesis

High-level Synthesis development flow is an alternative to ease hardware develop-

ment compared to traditional hardware description languages, such as VHDL and Verilog.

For that, the HLS flow provides the development of designs by using high-level descrip-

tion languages (e.g., C/C++). The high-level description is then automatically translated

to the hardware description. This approach enables easy access to various hardware op-

timization possibilities. Different optimizations and their combinations result in distinct

versions of the same design, in the same way as distinct binaries are generated from the

same source code when using different compiler flags. Figure 2.5 exemplifies how a C++

high-level source code can generate distinct hardware implementations. The multiply-

accumulate operation performed by the loop can be implemented in different ways, using

few hardware resources when prioritizing low power dissipation, or using more hardware

when resources prioritizing low latency. Similarly, FPGAs offer different HLS optimiza-

tions such as Array Partitioning, Loop Unrolling, and Pipelining, which also present dis-

tinct variant resource consumption, processing cycles, and power dissipation, enabling

design space exploration (DSE) for developers. We call this property HLS-Versioning.

CPU-FPGA collaborative applications can also benefit from HLS-Versioning, once the

optimal HLS version for the FPGA kernel can vary according to the application charac-

teristics and how its workload is balanced among the CPU and the FPGA.

Figure 2.5: High-Level Synthesis.

Source: (TAKACH, 2016)

34

Finding the best combination of coarse-grained HLS optimizations can be a chal-

lenging process. The work in (PHAM et al., 2015) claims that is infeasible to explore the

entire design space in HLS-Versioning, due to time consuming process of HLS and the

exponential growth with respect to the number of design points. To address this problem

the work proposes a DSE framework that exploits loop-array dependencies to reduce the

evaluating time to evaluate optimal or near-optimal solutions.

ZHONG et al. propose a high-level performance estimation tool that enables rapid

and accurate performance prediction for FPGA-based accelerators. Their tool named Lin-

Analyzer relies on analysis techniques to avoid false data dependencies inside the high-

level code and performance estimation for the FPGA HLS optimizations (loop unrolling,

pipelining, and array partitioning) without generating RTL implementations. The tool

performs an early DSE and assists designers in evaluation optimization configuration that

best suits an application when mapped to the FPGA.

Efficiently designing applications with variable loop bounds (the number of itera-

tions can only be known at runtime) is challenging, since typical HLS optimizations such

as loop unrolling and pipelining cannot be applied. The work (CHOI; CONG, 2018) pro-

poses a HLS-based optimization framework capable of addressing this problem through

automatic code transformations that increase the utilization of computing resources by

using techniques such as partial unrolling with pipelining or loop early termination.

ZHAO et al. propose a framework capable of evaluating the effects multiple di-

rectives from HLS tools and analyzing their suitability in design description. It uses

pluggable analytical models, a recursive data collector, and a metric-guided DSE algo-

rithm to perform the analysis. Given different resource constraints, the framework finds

designs configurations with near-optimal performance, analyzing the trade-off relation-

ship between performance and area. Their proposal use only a few evaluation metrics and

prunes their DSE to reach the solution in a feasible time.

LIGNATI et al. propose a framework called MultiVers that uses automatic HLS

generation to enhance performance and reduce energy consumption in CPU-FPGA cloud

systems. It uses HLS to build libraries containing multiple versions of kernel requests

in the cloud environment. The framework chooses kernel versions according to the op-

timization goal selected by the cloud provider (a tuple expresses a linear combination

of performance, energy, and FPGA design area). According to this optimization goal,

an extended version of the framework (JORDAN et al., 2021) also elects an appropriate

allocation strategy for a multi-tenant cloud environment.

35

2.4 Contributions w.r.t. the State-of-the-Art

The studies presented in this dissertation extend the aforementioned Collabora-

tive Computing works, which already tackled application-specific solutions. Table 2.1

summarizes the comparison of this study w.r.t. the state-of-the-art. Contrarily to TT and

HLS works that focus on CPU-only and non-collaborative CPU-FPGA applications, re-

spectively, ours apply these techniques to optimizing generic CPU-GPU and CPU-FPGA

applications (not to a specific problem). Moreover, this study is orthogonal to task map-

ping and schedule approaches, which can be complementary used with our proposals.

Table 2.1: Comparison w.r.t. the State-of-the-Art.

Work
Thread

Throttling
High-Level
Synthesis

Collaborative
Execution

Generic
Solution

CURTIS-MAURY et al., 2006 x x
SULEMAN et al., 2008 x x

LEE et al., 2010 x x
PUSUKURI et al., 2011 x x

PORTERFIELD et al., 2013 x x
SHAFIK et al., 2015 x x

MARATHE et al., 2015 x x
SENSI et al., 2015 x x
PHAM et al., 2015 x x

ZHONG et al., 2016 x x
CHOI et al., 2018 x x
ZHAO et al., 2017 x x
LEE et al., 2015 x x

WANG et al., 2018 x x
CONG et al., 2015 x
ZHOU et al., 2017 x
ZENG et al., 2020 x

MELONI et al., 2018 x
DEIANA et al., 2015 x x

WEI et al., 2017 x
ILIC et al., 2010 x

HUANG et al., 2019 x x
This work x x x x

Source: the author

36

37

3 MOTIVATION TO EXPLOIT DATA-COLLABORATIVE CPU-GPU AND CPU-

FPGA ENVIRONMENTS

Collaborative computing was proposed to increase the efficiency of heterogeneous

systems by taking advantage of all hardware resources to perform the computation. How-

ever, as discussed in Chapter 2, extracting all the benefits of collaborative execution is

challenging, since many run-time behaviors cannot be known at programming time.

This chapter investigates some of the key parameters that can impact collaborative

execution, namely: the number of threads running on the CPU; and the workload balance

among the heterogeneous devices. In these experiments we aim at evaluating the potential

gains in terms of performance and energy obtained from applying CPU Thread Throttling

and workload balance. Therefore, we ran a set of collaborative applications in two distinct

heterogeneous systems, a CPU-GPU and a CPU-FPGA environment. To quantify the

influence of each of the parameters, we explored many combinations of the number of

CPU threads and workload balance factors for each of the applications.

The remainder of this Chapter is organized as follows. First, Section 3.1 intro-

duces the methodology used in the evaluation, specifying the execution environment and

Collaborative Computing benchmarks. Then, Sections 3.2 and 3.3 present the experimen-

tal evaluation investigating the optimization opportunities in CPU-GPU and CPU-FPGA

collaborative environments, respectively.

3.1 Methodology

3.1.1 Execution Environment

We performed our evaluation on the system described in Table 3.1, where GPU

and FPGA are connected via a PCI Express 3.0 x16, running on Ubuntu 20.04 Kernel

version 5.11, NVIDIA Driver v. 460.56 and Xilinx SDAccel tool. The applications were

compiled using g++ 9.3 and OpenCL Khronos ICD v. 2.2.11. We used the Linux monitor-

ing sensors application to get CPU power dissipation directly from the hardware counters

at run-time. The GPU power measurements were acquired using the NVIDIA System

Management Interface (SMI), which provides the power draw from the whole graphics

card. Since the used FPGA does not have specific power hardware counters, we ac-

38

quired power using the Xilinx Vivado tool, which provides the design’s power draw from

the Alveo U200 FPGA, considering 25°C of ambient temperature, medium profile heat

sink and 12.5% of toggle rate (switching activity). We evaluated the performance of the

benchmarks by considering the time taken to execute the entire application, and evaluated

energy consumption of the CPU-GPU and CPU-FPGA systems by integrating the overall

application execution time and the power dissipation of all the devices from the respective

systems.

Table 3.1: System specifications.

CPU / GPU / FPGA
AMD Ryzen

Threadripper 3990X
NVIDIA RTX
2070 SUPER

Xilinx
Alveo U200

Microarchitecture Zen 2 Turing UltraScale
Parallelism Avaliable 64 Cores(128 Threads) 2560 SPs 1182240 LUTs

Base Clock Frequency 2.9 GHz 1.6 GHz Variable
Technology Node 7 nm 12 nm 16 nm

Thermal Design Power 280 W 215 W 225 W
Source: the author

3.1.2 Benchmarks

We selected Collaborative Computing benchmarks from the Chai suite (GÓMEZ-

LUNA et al., 2017), which were specially developed for heterogeneous architectures, tak-

ing advantage of collaborative execution between CPU and OpenCL-compatible devices,

such as a GPU or a FPGA, using the data-partitioning technique. These applications ex-

ploit CPU thread parallelism using C++11 Standard Library (ISO, 2012), which is based

on C’s library POSIX Threads, while exploiting GPU and FPGA parallelism through ker-

nels implemented using the OpenCL standard (STONE; GOHARA; SHI, 2010). The

benchmarks are depicted in Table 3.2 along with a brief description.

The implementation provided by this suite offers the possibility of setting many

parameters from the applications via command-line arguments, such as the number of

executing threads (which we vastly explore in this work), the number of repetitions for the

warm-up, and timed program phases. It is also possible to specify the workload balance

parameter alpha, previously described in Section 2.1. In the experiments in this Chapter,

we used bash scripting to set the applications’ arguments, selecting the alpha and the

number of CPU threads to run each application.

39

Table 3.2: Chai benchmarks.
Benchmark Description

BS Bezier Surface
CED-D Canny Edge Detection
HSTI Image Histogram - Input
HSTO Image Histogram - Output
RSC-D Random Sample Consensus

PAD Padding
SC Stream Compaction

Source: the author

3.2 Optimization Opportunities in CPU-GPU Collaborative Environments

Intending to investigate the impact of selecting the number of CPU threads in

CPU-GPU collaborative applications, we ran each of the collaborative applications from

Table 3.2 using all possible CPU #Threads available in our system - from 1 to 128 threads

- and using α=0.5 (i.e. half of the workload assigned to the CPU and the GPU).

Figure 3.1 shows performance (blue line) and energy (gray line) improvements,

in the Y axis, when varying the CPU number of threads, in the X axis, of the CPU-GPU

collaborative applications. The improvements are w.r.t single-thread execution, where

values above 1.0 present a reduction in execution time (performance) and a reduction in

energy consumption - 2.0x improvement means that the application is running on half of

the execution time or using half of the energy, considering the collaborative environment

as a whole.

As it can be noticed, in Figure 3.1, the benchmarks present variant behaviors as the

number of threads in the CPU increases. HSTO, for example, achieves the greatest perfor-

mance when using 33 threads, while executing with only 1 thread results in the best energy

- since other #Threads result in energy degradation (values below 1.0). The increase in

power dissipation caused by activating more cores does not benefit HSTO in terms of

energy. Other applications such as BS, HSTI, PAD, and SC have similar behaviors but

on a smaller scale, achieving optimal energy consumption using fewer threads compared

to performance. Notably, none of the applications present optimal performance or energy

improvements (i.e. the best efficiency) when executing with the maximum number of

threads supported by the 128-threaded CPU. Once that is the most common approach in

parallel applications, these experiments stand out the opportunities for improvements to

the use of CPU Thread Throttling in collaborative applications.

40

Figure 3.1: CPU Thread Throttling Opportunities in CPU-GPU applications.

38

32

0 16 32 48 64 80 96 112 128

0

5

10

15

20

#Threads

Im
p

ro
v

em
en

ts
 o

v
er

 s
eq

.

BS

25

0 16 32 48 64 80 96 112 128

0.0

0.5

1.0

1.5

2.0

#Threads

Im
p

ro
v

em
en

ts
 o

v
er

 s
eq

.

CED-D

14

12

0 16 32 48 64 80 96 112 128

0

1

2

3

4

5

6

7

#Threads

Im
p

ro
v

em
en

ts
 o

v
er

 s
eq

.

HSTI

18

14

0 16 32 48 64 80 96 112 128

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

#Threads

Im
p

ro
v

em
en

ts
 o

v
er

 s
eq

.

PAD

1

33

0 16 32 48 64 80 96 112 128

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

#Threads

Im
p

ro
v

em
en

ts
 o

v
er

 s
eq

.

HSTO

32

32

0 16 32 48 64 80 96 112 128

0

5

10

15

20

#Threads

Im
p

ro
v

em
en

ts
 o

v
er

 s
eq

.

RSC-D

17

13

0 16 32 48 64 80 96 112 128

0

1

2

3

4

5

#Threads

Im
p

ro
v

em
en

ts
 o

v
er

 s
eq

.

SC

Performance

Energy

E
D

P
 i

m
p

ro
v

em
en

ts
E

D
P

 i
m

p
ro

v
em

en
ts

Source: the author

41

3.2.1 Influence of Workload Balance

This subsection presents the influence of the workload balance of the collaborative

application on selecting the #Threads. We run a set of experiments evaluating the EDP

improvements over the same baseline from the previous experiment - improvements w.r.t

using a single CPU thread for the CPU-GPU execution. Each benchmark was evaluated

with each #Thread possible using different workload balances, with three alpha levels

(0.3, 0.5, and 0.7). The experiments are normalized w.r.t. to the execution using one CPU

thread of the respective alpha being evaluated (e.g. EDP curves for α=0.3 were drawn

using 128 threads with α=0.3, and so on).

One can observe in Figure 3.2 that most benchmarks present different EDP regard-

ing the combination of #Threads and alpha. BS and HSTO, for instance, show optimal

EDP with distinct #Threads when alpha varies. BS has optimal EDP using 14 CPU threads

when α=0.3 and 38 threads when α=0.7; while HSTO shows optimal EDP with 13 and

30 threads in the same scenarios. These behaviors occur because in scenarios where more

data has to be computed by the GPU (α=0.3), the CPU naturally has a lower demand and

do not need to execute its workload as fast as possible. So when using a high #Threads

the CPU will finish its parallel-region earlier than the GPU and remain idle until the GPU

completes its processing. Instead, a lower #Threads can keep the same performance with

a lower energy consumption, since less CPU cores are activated, which ultimately im-

proves the EDP. In summarizing, a greater #Threads is more efficient when more work is

assigned to the CPU and a fewer #Threads when the GPU has a greater workload.

42

Figure 3.2: Influence of Workload Balance in CPU-GPU applications.

128

128

128

0 16 32 48 64 80 96 112 128

0

50

100

150

200

250

#Threads

E
D

P
 i

m
p

ro
v

em
en

ts

BS

0 16 32 48 64 80 96 112 128

0

5

10

15

20

25

30

#Threads

E
D

P
 i

m
p

ro
v

em
en

ts

SC

α=0.3

α=0.5

α=0.7

0 16 32 48 64 80 96 112 128

0

5

10

15

20

#Threads

E
D

P
 i

m
p

ro
v

em
en

ts

PAD

0 16 32 48 64 80 96 112 128

0

10

20

30

40

50

#Threads

E
D

P
 i

m
p

ro
v

em
en

ts

HSTI

0 16 32 48 64 80 96 112 128

0

50

100

150

200

250

300

#Threads

E
D

P
 i

m
p

ro
v

em
en

ts

RSC-D

0 16 32 48 64 80 96 112 128

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

#Threads

E
D

P
 i

m
p

ro
v

em
en

ts

HSTO

0 16 32 48 64 80 96 112 128

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2

#Threads

E
D

P
 i

m
p

ro
v

em
en

ts

CED-D

Source: the author

43

3.3 Optimization Opportunities in CPU-FPGA Collaborative Environments

This section investigates the impact of selecting the number of CPU threads in

CPU-FPGA collaborative applications, as well as analyzing the influence of the workload

balance to optimize the collaborative execution, using the same benchmarks and execu-

tion environment previously used in the CPU-GPU applications. This way, we ran each

collaborative application from Table 3.2 using all possible CPU #Threads available in our

system - from 1 to 128 threads - using 50% of workload balance factor (α=0.5).

Figure 3.3 shows in the Y-axis the performance (green line) and energy improve-

ments (blue line) in a CPU-FPGA environment when varying the number of CPU threads

of the application (X-Axis) - improvements w.r.t the execution over a single CPU thread

using 50% workload balance (α = 0.5) between CPU and FPGA.

As it can be noticed, the applications present variant behaviors as we vary the

number of threads in the CPU and the evaluated metric. On the CPU side, the execution

with the maximum possible number supported by the 128 threaded CPU does not present

optimal performance or energy improvements (i.e., the best efficiency) for many appli-

cations, such as HSTI, HSTO, and SC. Also, in these applications the optimal number

of threads is not the same for performance and energy. In BS, CED-D, PAD, and RSC-

D varying the #Threads does not influence performance and energy, since they present

and unbalanced execution using α = 0.5. This behavior occurs because this benchmarks

have greater performance on the CPU side, and thus the execution is bottlenecked by the

FPGA.

44

Figure 3.3: CPU Thread Throttling Opportunities in CPU-FPGA applications.

0 16 32 48 64 80 96 112 128

0.00

0.50

1.00

1.50

2.00

#Threads

Im
p

ro
v

em
en

ts
 o

v
er

 s
eq

BS

0 16 32 48 64 80 96 112 128

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

#Threads

Im
p

ro
v

em
en

ts
 o

v
er

 s
eq

HSTI

0 16 32 48 64 80 96 112 128

0.00

0.25

0.50

0.75

1.00

1.25

1.50

#Threads

Im
p

ro
v

em
en

ts
 o

v
er

 s
eq

HSTO

0 16 32 48 64 80 96 112 128

0.00

0.20

0.40

0.60

0.80

1.00

1.20

#Threads

Im
p

ro
v

em
en

ts
 o

v
er

 s
eq

CED-D

0 16 32 48 64 80 96 112 128

0.00

0.20

0.40

0.60

0.80

1.00

1.20

#Threads

Im
p

ro
v

em
en

ts
 o

v
er

 s
eq

RSC-D

0 16 32 48 64 80 96 112 128

0.00

1.00

2.00

3.00

4.00

5.00

#Threads

Im
p

ro
v

em
en

ts
 o

v
er

 s
eq

SC

Performance (α=0.5)

Energy (α=0.5)

0 16 32 48 64 80 96 112 128

0.00

0.20

0.40

0.60

0.80

1.00

1.20

#Threads

Im
p

ro
v

em
en

ts
 o

v
er

 s
eq

PAD

E
D

P
 i

m
p

ro
v

em
en

ts

Source: the author

45

3.3.1 Influence of Workload Balance

Extending the exploration around the influence of workload balance, this section

presents the impact of varying the workload balance from α=0.1 to α=0.9 with steps

of 0.1, while changing #Threads from 1 to 128. Figure 3.4 present the EDP of each

application normalized w.r.t. using 128 CPU threads and α=0.5.

At first glance, it is possible to notice that each application has different behavior.

HSTI presents an ideal EDP with α=0.1 and only #Threads=4, so it shows more benefits

when executing most of the kernel’s data in the FPGA. When using many threads, espe-

cially more than 64, EDP is negatively impacted, because Simultaneous Multithreading

(SMT) is activated to execute more than 1 thread per core, which does not provide per-

formance benefits in this case. In contrast, BS, CED-D, PAD, and RSC-D have similar

EDP regardless of the #Threads, but have huge improvements with the changing of the

workload balance. The more data is computed on the CPU, the more benefits in EDP

are achieved since the ideal EDP occurs when 90% of the data is computed by the CPU.

Lastly, HSTO and SC show a mixed behavior, where both workload balance and #Threads

influence EDP. Single-threaded execution of SC with α=0.1 provides better EDP than us-

ing all hardware threads available and α=0.9, which may indicate that FPGA suits best

for this application. However, the ideal EDP occurs when executing with 21 threads and

α=0.9, which clearly shows the need for tuning both #Threads and workload balance in a

collaborative scenario to minimize EDP.

46

Figure 3.4: Influence of Workload Balance in CPU-FPGA applications.

0 16 32 48 64 80 96 112 128

0

1

1

2

4

8

16

32

64

#Threads

E
D

P
 i

m
p

ro
v

em
en

ts

SC

α=0.1 α=0.2 α=0.3

α=0.4 α=0.5 α=0.6

α=0.7 α=0.8 α=0.9

0 16 32 48 64 80 96 112 128

0

1

1

2

4

8

16

32

64

#Threads

E
D

P
 i

m
p

ro
v

em
en

ts
BS

0 16 32 48 64 80 96 112 128

0.06

0.25

1.00

4.00

16.00

64.00

256.00

#Threads

E
D

P
 i

m
p

ro
v

em
en

ts

CED-D

0 16 32 48 64 80 96 112 128

0

1

1

2

4

8

16

32

64

#Threads

E
D

P
 i

m
p

ro
v

em
en

ts

PAD

0 16 32 48 64 80 96 112 128

0

1

4

16

64

256

#Threads

E
D

P
 i

m
p

ro
v

em
en

ts

HSTI

0 16 32 48 64 80 96 112 128

0.25

0.50

1.00

2.00

#Threads

E
D

P
 i

m
p

ro
v

em
en

ts

HSTO

0 16 32 48 64 80 96 112 128

0

1

1

2

4

8

16

32

64

#Threads

E
D

P
 i

m
p

ro
v

em
en

ts

RSC-D

Source: the author

47

3.4 Discussion

The experiments presented in this Chapter showed how the number of CPU

threads impacts performance and energy in CPU-GPU and CPU-FPGA collaborative exe-

cution. Also, for both systems, the optimal #Threads varies according to: the characteris-

tics of the application; the evaluated metric (performance/energy/EDP); and the workload

balance among the devices. Therefore, the challenge is twofold: it lies in finding the

optimal number of threads and workload balance; which vary according to the preferred

metric.

Facing these challenges, in Chapter 4 we propose approaches to optimize the col-

laborative execution by synergistically selecting the number of CPU threads while consid-

ering the workload balance of the application. Since many of the CPU-FPGA applications

have big performance/energy impact by the workload balance, our proposal for this envi-

ronment also adjusts the alpha parameter. Is important to point out that at this point of the

dissertation, we still do not optimize the FPGA side of the collaborative execution using

HLS optimizations, which will be considered in Chapter 5.

48

49

4 OPTIMIZATION OF DATA-COLLABORATIVE COMPUTING EXECUTION

USING CPU THREAD THROTTLING

This chapter presents the studies developed in this dissertation around approaches

to optimize Collaborative Computing environments. Precisely, we propose two optimiza-

tion approaches using CPU Thread Throttling considering the workload balance among

the heterogeneous system.

Section 4.1 proposes Energy-Aware CPU Thread Throttling Approach for CPU-

GPU Collaborative Environments (ETCG), an extension for the C++11 thread library

capable of automatically employ CPU Thread Throttling on CPU-GPU collaborative ap-

plications. It can be applied to any parallel application developed using C++11 thread

library by annotating code in the parallel-regions. It uses an approach based on the Hill-

Climbing algorithm to select a near-optimal number of threads aiming at minimizing the

EDP of an application in a CPU-GPU collaborative environment.

Section 4.2 proposes Energy-Aware Thread Throttling and Workload Balancing

Framework for CPU-FPGA Collaborative Environments (ETCF), which comprises a

framework that extends ETCG’s Thread Throttling capabilities to synergistically deter-

mine a near-optimal number of CPU threads and workload balance of CPU-FPGA col-

laborative applications (i.e., determining a near-optimal combination of #Threads and al-

pha). To perform Thread Throttling, ETCF uses the same C++11 thread library extension

proposed for ETCG, while using OpenCL to perform workload balancing. It also offers

to the framework administrator three optimization goals: performance; energy; and EDP,

which guide ETCF’s algorithm when selecting the #Threads and workload balance.

4.1 ETCG: Energy-Aware CPU Thread Throttling Approach for CPU-GPU Collab-

orative Environments

4.1.1 ETCG Overview

The ETCG is a function set implemented inside the C++ Thread Library that en-

ables transparent and run-time selection of a near-optimal number of CPU threads for

CPU-GPU architectures. ETCG aims at minimizing the EDP, balancing the trade-off be-

tween performance and energy consumption, considering the performance of the entire

50

CPU-GPU collaborative execution and the energy consumption of both devices. Despite

focusing on EDP, ETCG can be easily adapted to focus on performance or energy, indi-

vidually.

4.1.1.1 Execution Flow

Before detailing how ETCG performs the search for the near-optimal number of

CPU threads, we will explain in a higher level its execution flow, illustrated in Figure 4.1.

In this Figure, a collaborative execution is performed over a parallel region. Figure 4.1-C

shows the parallel region execution time, which is comprised a loop with 1000 iterations

in this example. The energy consumption of each iteration is depicted in Figure 4.1-A,

while Figure 4.1-B represents CPU and GPU proportion in the execution time of each

iteration, and, finally, Figure 4.1-D shows the two main ETCG phases: Learning Phase

and Execution Phase.

The Learning phase represents the iterations where ETCG is searching for the

ideal CPU #Threads, while the Execution Phase runs the rest of the application using

the number of threads found by ETCG (Figure 4.1-D). As we only vary the number of

threads in the CPU, only the CPU execution is affected by ETCG (Figure 4.1-B). As it can

be noticed in Figure 4.1-A and Figure 4.1-C, the first iterations of the parallel region take

more energy and time to execute since ETCG is converging to its near-optimal solution.

In the example, our approach takes only 7 iterations to converge to a near-optimal number

of threads.

Figure 4.1: ETCG execution flow.

Time

Learning

CPU

...

...

Execution
Execution 1 2 3 4 5 ... 1000

En
er

gy

... Time

A

B

C

D

CPU CPU CPU CPU

6

CPU

7

CPUCPU CPUCPU CPU CPU CPU CPU
GPU GPU GPU GPU GPU GPU GPU GPU

#Threads: α #T: β #T: γ #T: δ #T: ε #T: δ #T: δ #T: δ

Source: the author

It is essential to notice that a run-time approach needs to converge to its solution

in a feasible time since iterations using a #Threads far from the optimal degrade the ap-

51

plication’s EDP. Thus, an exhaustive search is prohibitive since: 1) it tests all the number

of threads, even those that present high EDP degradation; and, 2) its convergence time

may be longer than the parallel region execution or represent a considerable portion of its

total execution time, depending on the number of threads supported by the CPU and the

number parallel region iterations. Meanwhile, ETCG is suitable for run-time scenarios,

once its approach finds a near-optimal solution in few iterations.

Selecting the number of CPU threads when programming an application is also

not trivial, since the each one have variant behaviors according to their suitability to the

CPU and GPU, as previously shown in Figure 3.1. Given that, our approach takes ad-

vantage of optimizing the application considering the run-time performance and energy

measurements gathered during its Learning Phase. This phase comprises a Hill-Climbing

based algorithm searching for a near-optimal number of CPU threads, implemented in

a function inside our C++11 thread library extension, which collects the run-time per-

formance and energy presented using different #Threads in the initial iterations of the

parallel-region. Next, we detail how the programmer can use the ETCG’s set of functions

and how the search algorithm was implemented.

4.1.1.2 Search Algorithm

ETCG uses a Hill-Climbing-based heuristic to adjust the number of CPU threads,

which has already proven to be efficient by LORENZON et al., illustrated by Algorithm

1. The algorithm is divided into two phases: Initial and Search. The Initial phase serves

as a baseline to guide the Hill-Climbing algorithm, establishing the best starting point of

the search. The Search phase uses the Hill-Climbing logic to find the number of threads

that present the minimum EDP.

The Initial phase starts executing the parallel region (e.g. loop iteration) using the

maximum number of threads supported by the hardware (line 1). Then, it runs with half

of this number (line 2). For both executions, it collects energy and delay measurements

to evaluate their resulting EDP.

Then Search phase starts using the measurements gathered during the Initial phase

to start the Hill-Climbing algorithm. Summarizing, it compares the EDP of the execution

considering the maximum and half number of threads. It chooses the one with lower EDP,

which defines the initial range of search, then it continues searching inside this range.

To converge to the ideal number of threads, Search phase compares the EDP ob-

tained by executing the parallel region considering the current number of threads (current-

52

Measure) and the EDP obtained in the last iteration (lastMeasure). If there is a reduction

in EDP (line 10), it checks if the algorithm converges up-hill (increase in the number of

threads – line 13) or down-hill (decrease in the number of threads – line 11) and con-

tinues with the convergence. In other words, if the algorithm is in the up-hill direction,

it continues increasing the #Threads (line 14). Else, it decreases the #Threads (line 12).

Otherwise, if there is an increase in EDP (line 15), it evaluates the algorithm direction and

goes to the opposite direction. In Algorithm 1, step denotes the adjustment rate, which

reduces at each iteration of the algorithm until the end. The algorithm’s loop repeats its

procedure cutting step by half each iteration, while the step is higher than one. When step

reaches one, the algorithm returns the number of threads found.

Algorithm 1 Search Algorithm
1: Initial phase:
2: lastNT ← maxThreads
3: currentNT ← halfMaxThreads
4: lastMeasure← ExecuteNmeasure(lastNT)
5: currentMeasure← ExecuteNmeasure(lastNT)
6: step← halfMaxThreads÷ 2
7:
8: Search phase (Hill-Climbing):
9: while step > 1 do

10: if currentMeasure < lastMeasure
11: if currentNT < lastNT
12: nextNT ← currentNT – step
13: else
14: nextNT ← currentNT + step
15: else
16: if currentNT < lastNT
17: nextNT ← currentNT + step
18: else
19: nextNT ← currentNT – step
20:
21: lastNT ← currentNT
22: currentNT ← nextNT
23:
24: lastMeasure← currentMeasure
25: currentMeasure← ExecuteNmeasure(currentNT)
26:
27: step← step÷ 2
28:
29: return currentNT

53

Our implementation of the Hill-Climbing uses the half-interval search method to

reduce convergence time, meaning that the step length is reduced by half each iteration.

This way, the number of comparisons is O(log2 n), where n is the number of threads sup-

ported by the hardware, so a 128 threaded CPU would take only 7 executions to converge

to the result plus the Initial execution. Next, we show the ETCG integration to the C++

standard library and how ETCG can be applied to applications.

4.1.1.3 Integration to C++ library

C++11 Standard Library (ISO, 2012) inserted thread-management execution sup-

port inside C++ standard, so any application written in C++ could benefit from TLP ex-

ploitation without relying on external libraries. ETCG was incorporated into this library

so that the developer can use our approach by calling the implemented set of functions

into his source code. In this way, the program can achieve near-optimal execution, inde-

pendently from the hardware (CPU and GPU) at hand. We adapted the OpenMP approach

from LORENZON et al. to our C++ thread library extension, which provides rapid con-

vergence on searching for a near-optimal number of CPU threads.

The library extension is composed of three functions that implement the algorithm.

Function initETCG represents the Initial phase, while startParallelRegion and endParal-

lelRegion do the Search phase of the algorithm.

Next, we describe each function of the library in details:

• initETCG() function initializes variables and structures used to control the Hill-

Climbing algorithm. It also initializes the libraries used to collect information from

parallel regions’ behavior, such as the execution time and energy measurements.

• startParallelRegion() set the #Threads and initializes time and energy counters to

measure these metrics under the given #Threads.

• endParallelRegion() captures time and energy counters to evaluate metrics and run

an iteration of the Algorithm 1, adjusting the #Threads for the next iteration.

ETCG functions use the chrono library to measure execution time, which is part

of the C++ standard and therefore linked in compile time. Likewise, energy consumption

measurements are obtained directly from hardware counters present in modern proces-

sors. Intel counter statuses can be read using the Running Average Power Limit (RAPL)

library (HÄHNEL et al., 2012), while the Application Power Management library can be

used to read the counters of AMD processors (HACKENBERG et al., 2013).

54

4.1.2 Methodology

We evaluated ETCG using the same benchmarks from Chapter 3, and the CPU

and the GPU specified in Table 3.1, running upon the same OS and drivers, as well as

using the same compiler and tools to collect power data.

4.1.2.1 Compared scenarios

We used three scenarios to validate the proposal according to the TLP exploitation

when executing the benchmarks:

• Max #Threads: Used as the baseline, where #Threads is set to the maximum number

of supported threads that can be executed concurrently according to the hardware

available in the system (in our case, 64 cores with SMT can run 128 threads in

parallel). The max #Threads is used by default by many other parallel APIs, such

as OpenMP;

• Benchmark Default, where we do not provide the #Threads when launching the

program. Therefore, it runs with the default #Threads (4 threads), as programmed

in the original benchmarks without any modifications (and therefore how the regular

user would run these applications);

• ETCG, where the #Threads is defined after applying our Hill-Climbing based algo-

rithm as described in Section III;

• Oracle, which represents the optimal #Threads gathered offline from an exhaustive

search.

We evaluated ETCG in each scenario considering three different metrics: perfor-

mance, energy consumption, and EDP. For each scenario, we kept the workload balance

factor with α=0.5 (i.e., half of the data assigned to each device). Additionally, we exam-

ined the overhead imposed by the proposed search algorithm by comparing the conver-

gence time of ETCG with the exhaustive search.

55

4.1.3 Results

Figure 4.2: Performance improvements normalized w.r.t the baseline Max #Threads
(α=0.5).

BS CED-D HSTI HSTO PAD RSC-D SC avg

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

N
o
rm

al
iz

ed
 S

p
ee

d
u
p
*

(h
ig

h
er

 i
s

b
et

te
r)

Max #Threads Benchmark Default ETCG Oracle

Source: the author

Figure 4.2 shows the performance results considering the scenarios, described in

Section 4.1.2.1, normalized w.r.t. the Max #Threads scenario, which uses α=0.5. Com-

pared to the Max #Threads, our approach (ETCG) provides an average speedup of 2.56x.

The reason why performance improves when the number of threads decreases is that many

times the thread creation overhead is very significant. This overhead makes the CPU take

longer to run its portion of kernels’ data, while the GPU remains idle while waiting for

the CPU data to be processed. For the same reason, the Benchmark Default scenario also

shows performance improvements when compared to the Max #Threads scenario, since

some applications have low thread scalability (LORENZON et al., 2018).

We can observe that ETCG provides similar improvements compared to the Oracle

approach, with an average speedup of 2.56x, almost the same as the speedup obtained by

the Oracle (2.58x). BS shows the most significant disparity compared to Oracle, where

ETCG shows a 6% smaller speedup. Hence, ETCG is capable of providing near-optimal

performance with negligible search overhead.

Table 4.1 shows the #Threads provided by ETCG and Oracle’s exhaustive search.

It is noticeable in some benchmarks, as HSTI, RSC-D, and SC, both approaches provide

the same #Threads, but in most cases they diverge, once ETCG takes only a few search

steps to provide its solution and eventually fall into local minima (JOHNSON; JACOB-

SON, 2002). Despite that, its solutions are capable of reaching near-optimal results.

56

Table 4.1: #Threads found by Oracle and ETCG searches.
Benchmark BS CED-D HSTI HSTO PAD RSC-D SC

Oracle 38 25 14 19 15 32 13
ETCG 32 14 14 28 16 32 13

Source: the author

Table 4.2 shows the time taken to reach the solutions from Oracle and ETCG. The

Oracle’s exhaustive search suffers from a combinatorial explosion when searching for the

optimal #Threads, which results in a huge time to solution. Instead, ETCG is capable of

providing near-optimal #Threads in up to 6% of the time in the worst case and only 4.8%

on average. Hence, exhaustively searching for the solution proves to be unfeasible once

time to solution is crucial for a run-time approach such as ETCG.

Table 4.2: Time to solution (ms).

Benchmark
Total

Execution Time
Oracle

Search Time
ETCG

Search Time
ETCG/Oracle

Fraction
BS 2676 593 27 4.5%

CED-D 5335 749 45 6.0%
HSTI 9942 3729 147 3.9%
HSTO 7394 1258 68 5.4%
RSC-D 2855 654 31 4.7%

PAD 14310 3120 142 4.5%
SC 2186 560 25 4.5%

Average 6385 1523 69 4.8%
Source: the author

Figure 4.3: Energy consumption normalized w.r.t the baseline Max #Threads (α=0.5).

BS CED-D HSTI HSTO PAD RSC-D SC avg

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

N
o

rm
al

iz
ed

 E
n
er

g
y
*

(l
o
w

er
 i

s
b
et

te
r)

Max #Threads Benchmark Default ETCG Oracle

Source: the author

57

Figure 4.4: EDP normalized w.r.t the baseline Max #Threads (α=0.5).

3.54 5.54

BS CED-D HSTI HSTO PAD RSC-D SC avg

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

N
o

rm
al

iz
ed

 E
D

P
*

(l
o
w

er
 i

s
b
et

te
r)

Max #Threads Benchmark Default ETCG Oracle

Source: the author

Figure 4.3 and Figure 4.4 show the energy and EDP results compared to the Max

#Threads baseline (α=0.5). Figure 4.3 shows that the Thread Throttling provided by

ETCG reduces energy consumption compared to the Max #Threads. As previously shown

in Figure 4.2, Max #Threads does not provide the best performance, which reflects in en-

ergy results in Figure 4.3, since it takes longer to execute while increasing power dissipa-

tion. Considering that fact, since the Max #Threads execution keeps all CPU cores active,

it degrades overall energy consumption when performance improvements are small (the

trade-off between extra performance and power dissipation does not pay off). In the same

way, the Benchmark Default #Threads scenario is capable of providing a better energy ef-

ficiency than executing with the maximum #Threads, even though not presenting as good

results as ETCG.

Summarizing, ETCG’s heuristic is capable of automatically reaching similar

#Threads to Oracle, as previously mentioned in Table 4.2. CED-D and HSTO are ex-

amples where it does not occur, since they present a plateau in EDP results for a range

of #Threads (CED-D between 14 and 32 #Threads and HSTO from 13 to 30). Still,

ETCG provides solutions with less than 3% of EDP divergence compared to the Oracle

for all applications. In the end, ETCG provides a dynamic and flexible solution capa-

ble of achieving near-optimal results for performance and energy consumption metrics.

Appendix A presents tables with the experiments collected for the ETCG evaluation.

58

4.2 ETCF: Energy-Aware Thread Throttling and Workload Balancing Framework

for CPU-FPGA Collaborative Environments

4.2.1 ETCF Overview

The ETCF is an approach that improves the efficiency of CPU-FPGA execution.

ETCF extends ETCG, in which we explored Thread Throttling, to support the synergistic

selection of the workload balance (i.e. varying the alpha parameter of data-collaborative

applications). To achieve that, the framework offers three optimization goals to the ad-

ministrator: performance, energy, or EDP. Figure 4.5 depicts the ETCF framework. Given

an optimization goal, the framework is capable of detecting the near-optimal workload

balance and near-optimal number of threads to a given C++/OpenCL application.

The ETCF framework offers three optimization modes: ETCF Workload Balance

(ETCF-WB), ETCF Thread Throttling (ETCF-TT), and Full ETCF, which uses both tech-

niques (ETCF-WB + ETCF-TT). The framework administrator is responsible for choos-

ing one of these modes, as well as providing the optimization goal and the application

binary, as Figure 4.6 illustrates. Figure 4.6-A illustrates the ETCF-WB mode, which is

an offline approach that searches for a near-optimal workload balance of an application’s

data-parallel tasks, enabling the framework administrator to select the optimization goal

(i.e., performance, energy or EDP). This mode receives as input the optimization goal

and the OpenCL application. Figure 4.6-B shows ETCF-TT, an online approach that au-

tomatically selects a near-optimal number of CPU threads. It requires the insertion of

ETCF C++ functions into the code, which collects runtime data and adjusts the number

of threads according to the defined optimization goal. Figure 4.6-C illustrates Full ETCF

mode, which comprises both ETCF-WB and ETCF-TT. It can synergistically search for

the ideal workload balance and the number of CPU threads. As will be presented in the

results, this approach is capable of improving the gains when compared to the decoupled

use of ETCF-WB and ETCF-TT. This mode receives as input the optimization goal and

the C++/OpenCL application implemented inserting our ETCF-TT C++ functions. In the

next subsections, we discuss in detail all the aforementioned modes.

59

Figure 4.5: ETCF Overview.

Thread
Throttling

Data Assigned
to the CPU

Data Assigned
to the FPGA

Data Partitioning
Application

Binary
CPU

FPGA

Workload
Balance

ETCF

Optimization
Goal

Optimization
ModeFramework

Administrator

Source: the author

4.2.1.1 ETCF Workload Balance

ETCF-WB optimization mode optimizes the workload balance by using the data

partitioning collaborative technique (HUANG et al., 2019). As shown in Figure 4.6-A,

this mode requires the application binary and the optimization goal as inputs. The appli-

cations’ kernels need to be implemented in OpenCL (STONE; GOHARA; SHI, 2010),

which allows the application to partition the data to the different heterogeneous devices.

To dynamically adjust the workload balance at runtime, it will be required modifications

on the OpenCL API. In order to avoid such modifications, ETCF-WB comprises a soft-

ware tool that runs the application passing different values of α as argument, which de-

fines the amount of data assigned across the device (CPU/FPGA), while keeping a fixed

#Threads with the maximum supported by the CPU. In this way, our framework can

perform its search only by varying the application’s α argument at each search iteration

(application execution), without binary modifications. At each iteration energy and delay

measurements are collected to evaluate the metrics, according to the optimization goal

(i.e. execution time when using performance as optimization goal).

Given that some applications may demand huge completion time, we use an ap-

proach to quickly converge into a satisfactory solution, avoiding a combinatorial explo-

sion of testing any value ranging from 0 to 1. Figure 4.7 illustrates how our method is

able to rapidly find a near-optimal workload balance. In the first and second iteration,

our search algorithm runs the application using a workload balance of 0.1 and 0.9 (α),

60

Figure 4.6: ETCF Optimization Modes.

ETCF-TT

ETCF-WB

Optimization
Goal

Application
Binary Near-optimal α

and #Threads

ETCF-Full

ETCF C++
T. Throttling

functions

Application
Binary

offline

Application execution with
optimized W. Balance

and #Threads

ETCF-TT
online

Application execution with
optimized #Threads

Near-optimal
#Threads

Optimization
Goal

Application
Binary

Near-optimal
α (alpha)ETCF-WB

offline

Application execution with
optimized W. Balance

Optimization
Goal

A

B

C

ETCF C++
T. Throttling

functions

Source: the author

respectively, meaning that 10% of the data is assigned to the CPU and 90% to the FPGA,

and vice versa. These initials steps aim at detecting if one of the devices best fits the ap-

plication at hand. Then, we compare the results of both α values to see if they reached the

stop condition. The stop condition is achieved when a near-optimal workload balance is

found. For practical reasons, we consider a 5% difference on the optimization goal (e.g.,

performance, energy, etc) as the stop condition. For example, in a performance-targeted

scenario, if a measurement at a given α presents only 5% difference in execution time

compared to the previously tested α, the algorithm ends the search. However, in case nei-

ther initial values (i.e., 0.1 or 0.9) reached near-optimal workload balance, the next alpha

to be tested is defined by the alpha that provided the better metric. If 0.1 has a better

metric than 0.9, the algorithm will test α = 0.2; else it tests α = 0.8. The values are

progressively decreased/increased by 0.1 until they reach the stop condition.

61

Figure 4.7: ETCF Workload balance.

Ex
ec

ut
io

n
tim

e

CPU

FPGA

α=0.1 α=0.9 α=0.2

CPU

FPGA
CPU

FPGA

α=0.3

CPUFPGA

1st iteration 2nd iteration 3rd iteration 4th iteration

Parallel-region
execution time

α=0.1 < α=0.9
so tests α=0.2

α=0.2 to α=0.3
reduced < 5%

check if FPGA
best fits

check if CPU
best fits

Source: the author

4.2.1.2 ETCF Thread Throttling

Because CPU and FPGA can largely vary from one system to another, select-

ing the number of CPU threads at programming time is not trivial, as shown in Section

3.3. Given that, ETCF-TT optimization mode uses ETCG’s run-time ETCG approach

proposed in Section 4.1, which can automatically selects the number of CPU threads con-

sidering performance and energy the system presents at execution time, which may not

be known by the programmer.

4.2.1.3 Full ETCF

Since the optimal workload balance is influenced by the performance that the CPU

offers, our workload balance search provides its best performance when used together

with ETCF-TT. In light of this, ETCF also offers a full mode where both ETCF-WB and

ETCF-TT in a synergistic way. Full ETCF mode comprises the offline Workload Balance

mode using an application already optimized using ETCF-TT approach. Thus, it requires

as input the optimization goal, as the previous modes, but also a C++/OpenCL application

implemented inserting our ETCF-TT C++ functions. In this way, Full ETCF can acquire

the best performance each workload balance can offer at its ideal #Threads.

To enable the Full ETCF mode, the administrator just needs to use the ETCF-TT

set of functions on his application source-code, then insert the compiled program into

the ETCF-WB tool, which runs the application setting different workload balances (al-

62

pha). This way, both Thread Throttling and Workload Balance approaches are be applied

together, once ETCF-WB runs each iteration of the workload balance search using the

near-optimal #Threads for each given alpha.

4.2.2 Methodology

To evaluate ETCF, we used the same benchmarks from Chapter 3, and the CPU

and the FPGA specified in Table 3.1, running upon the same OS and drivers, as well as

using the same compiler and tools to collect power data.

4.2.2.1 Evaluation Scenarios

To validate our proposal, we used the following scenarios:

• Max #Threads, used as our baseline, where #Threads is set to the maximum number

of supported threads that can be executed concurrently according to the available

hardware in (in our case, 64 cores with SMT can run 128 threads in parallel), which

is the default approach in many other parallel APIs, such as OpenMP. We consid-

ered a hardware-unaware approach for the workload balance, so we kept an evenly

balance of the workload among the devices (α = 0.5);

• App. Default, where the default #Threads and α are kept (i.e. defined in the app.

programming code);

• Oracle, which represents the optimal scenario where #Threads and α are gathered

offline from an exhaustive search;

• ETCF-TT: ETCF Thread Throttling Mode, where the #Threads is defined after ap-

plying our Hill-Climbing based algorithm as described in Section III, and the work-

load balance is kept in α = 0.5;

• ETCF-WB: ETCF Workload Balance Mode, where the #Threads is set to the max-

imum number of supported threads, and the workload balance is produced by the

ETCF offline phase;

• ETCF-Full, ETCF-TT + ETCF-WB, where the #Threads is defined after applying

our Hill-Climbing based algorithm as described in Section III, and the workload

balance is produced by the ETCF offline phase.

63

The scenarios described above were evaluated considering three different metrics:

performance, energy consumption, and EDP. Additionally, we examined the overhead

imposed by the proposed search algorithm by comparing the time to solution (i.e., time

to define the optimal number of threads and workload balance) of ETCF framework with

the exhaustive search. We further investigated the influence of the #Threads changing

the workload balance, showing the impact on the EDP presented by each #Threads under

these circumstances.

4.2.3 Results

In this subsection, we configured ETCF with all available optimization goals to

evaluate ETCF-TT, ETCF-WB, and ETCF-Full modes. Figures 4.8, 4.9, and 4.10 show

the experimental results when ETCF framework has distinct optimization goals: perfor-

mance (A); energy consumption (B); and EDP (C). We evaluated each metric considering

the scenarios described in Section 4.2.2.1, where gains are normalized w.r.t Max #Threads

baseline scenario, which uses α=0.5 (50% of workload balance). For the sake of read-

ability, we used logarithmic scale in the Figure 4.10. Appendix B presents tables with the

experiments collected for the ETCF evaluation.

Figure 4.8: Performance improvements w.r.t the baseline Max #Threads (α=0.5).

BS CED-D HSTI HSTO PAD RSC-D SC avg

0

2

4

6

8

10

12

14

16

N
o
rm

al
iz

ed
 S

p
ee

d
u

p
*

(h
ig

h
er

 i
s

b
et

te
r)

Max #Threads α=0.5 App. Default ETCF-TT

ETCF-WB ETCF-Full Oracle

Source: the author

64

Figure 4.9: Energy consumption normalized w.r.t the baseline Max #Threads (α=0.5).

BS CED-D HSTI HSTO PAD RSC-D SC avg

0.0

0.5

1.0

1.5

2.0

2.5
N

o
rm

al
iz

ed
 E

n
er

g
y
*

(l
o
w

er
 i

s
b

et
te

r)

Max #Threads α=0.5 App. Default ETCF-TT

ETCF-WB ETCF-Full Oracle

Source: the author

Figure 4.10: EDP normalized w.r.t the baseline Max #Threads (α=0.5).BS CED-D HSTI HSTO PAD RSC-D SC avg

BS CED-D HSTI HSTO PAD RSC-D SC avg

0.004
0.008
0.016
0.031
0.063
0.125
0.250
0.500
1.000
2.000
4.000
8.000

N
o
rm

al
iz

ed
 E

D
P

*

(l
o
w

er
 i

s
b

et
te

r)

Max #Threads α=0.5 App. Default ETCF-TT

ETCF-WB ETCF-Full Oracle

Source: the author

4.2.3.1 ETCF-TT Mode

Compared to Max #Threads baseline, our Thread Throttling approach ETCF-TT is

able to provide an average speedup of 1.83x, with 27% and 35% reduction in energy con-

sumption and EDP, respectively. As mentioned in Section 4.1.3, the significant overhead

of the thread creation process causes performance penalties when the number of threads

increases. This makes the CPU taking longer to run its portion of kernels’ data, while the

FPGA remains idle waiting for the CPU data to be processed. Since Max #Threads takes

longer to execute than scenarios with a lower number of active threads, it spends more

energy, since all CPU threads remain active dissipating power.

The App. Default scenario can provide performance and energy benefits in some

applications such as HSTI, HSTO, and SC. This behavior is due to low thread scalability

65

(LORENZON et al., 2018) in these applications. On the other hand, other applications

such as CED-D and PAD present a lower performance using the default #Threads. This

occurs because the static #Threads defined by the programmer may not perform well in

all systems. In this scenario, a dynamic approach such as ETCF-TT is able to fit the

application for the hardware at hand, providing performance and energy improvements

on most of the applications.

4.2.3.2 ETCF-WB Mode

In terms of performance (Figure 4.8), on average, our workload balance approach

ETCF-WB outperforms the baseline Max #Threads in 2.73x, while consuming 42% less

energy and with a 54% reduction in EDP (Figures 4.9 and 4.10). As shown in Figure

4.10, scenarios with statically defined workload balance - such as Max #Threads, App.

Default, and ETCF-TT - do not provide the lowest EDP values for most benchmarks,

since the power of each device of the heterogeneous system (CPU/FPGA) can drastically

vary with the size of workload assigned. In this way, applications may execute faster

in one device than the other, which leads the faster device to remain idle until the other

finishes its processing. Similarly, if one device is more energy-efficient than the other for

some applications, it is worth assigning more data to the most efficient device to balance

the workload.

It can be observed that most of the experimented applications had an ideal work-

load balance different from the baseline (α=0.5), which led ETCF-WB to have similar

performance and energy results to the Oracle in applications such as BS and RSC-D.

4.2.3.3 ETCF-Full Mode

Given the improvements previously shown by ETCF-TT and WB modes, our

framework can further improve performance or energy consumption for applications

where both TT and WB approaches bring gains.

Figures 4.8, 4.9, and 4.10 show the gains provided when our ETCF-Full approach

is applied. It presents an average 6.67x performance improvement compared to the base-

line Max #Threads, while consuming 78% less energy and 93% lower EDP. These benefits

come from a well-balanced workload and properly #Threads set.

To investigate where such gains came from, we compare ETCF-Full to ETCF-TT

and ETCF-WB. Some applications, like HSTO, have similar improvements for ETCF-

66

Full and ETCF-TT, which induces that Thread Throttling is responsible for the majority

of the improvements. Other applications, such as BS and RSC-D, have similar improve-

ments on ETCF-WB and ETCF-Full, showing that most of the improvements come from

Workload Balance. However, the other four applications have greater improvements us-

ing ETCF-Full than a decoupled use of ETCF-TT and ETCF-WB, showing the benefits of

the synergistic optimization of both approaches.

4.2.3.4 ETCF-Full x Oracle Evaluation

As shown by the Figures 4.8, 4.9, and 4.10, compared to the Oracle, ETCF-Full

presents only 0.9%, 0.8%, and 0.2% performance, energy, and EDP degradation, showing

the effectiveness of ETCF on detecting near-optimal workload balance and number of

threads. Although providing slightly better results compared to ETCF-Full, the Oracle

demands huge time to solution (i.e., time to define the optimal number of threads and

workload balance), as shown in Table 4.3. Taking on average only 3.32% of the time

compared to the Oracle, ETCF-Full achieves solution close to the optimal (given by the

Oracle). When comparing the ETCF-WB to the Oracle, it only takes 1% or less of the

Oracle’s Time to Solution fraction to produce a solution, considering all applications.

ETCF-WB, even though being an offline method, can produce solutions requiring few

applications executions. Meanwhile, the purely online ETCF-TT can provide the near-

optimal #Threads taking only 0.057% of Oracle’s search time. The ETCF-TT demands,

on average, 6 kernel iterations to converge to a near-optimal #Threads, while the Oracle

requires 1152 application executions to define the solution.

Table 4.3: Time to solution (seconds).

App.
Total

Execution Time
Oracle

Search Time
ETCF-TT

Serach Time
ETCF-WB

Search Time
ETCF-Full

Search Time
BS 0.549 2048.242 0.215 15.824 4.001

CED-D 5.593 17088.238 0.060 134.977 29.718
HSTI 0.230 408.522 0.017 4.193 1.071
HSTO 0.509 829.780 0.069 8.073 2.393
PAD 0.358 923.354 0.073 7.459 2.048

RSC-D 1.971 9565.313 1.147 74.749 17.327
SC 0.322 513.563 0.025 4.782 1.327

Average 1.362 4482.430 0.229 35.722 8.269
Source: the author

67

4.3 Discussion

In this chapter we proposed ETCG, an approach to automatically determining a

near-optimal number of threads for the CPU in CPU-GPU collaborative environments. In

contrast to the optimal exhaustive search, ETCG achieves similar solutions in a feasible

time. Compared to the static use of the #Threads, it reduces EDP by up to 73%.

Moreover, we proposed ETCF, a configurable framework to improve performance,

energy, and EDP in CPU-FPGA collaborative environments by determining a near-

optimal workload balance between CPU and FPGA and the number of threads for the

CPU. As opposed to the optimal exhaustive search, ETCF achieves similar solutions in a

feasible time. Compared to the static use of the maximum number of threads, it increases

performance by 6.67x, while reducing energy and EDP by up to 78% and 93%.

68

69

5 ON THE BENEFITS OF APPLYING CPU THREAD THROTTLING AND HLS-

VERSIONING IN CPU-FPGA TASK-COLLABORATIVE ENVIRONMENTS

This chapter investigates the impact of applying optimizations on both CPU and

the FPGA devices in CPU-FPGA Task-Collaborative Environments. We use a multi-

tenant Cloud service as our object of study, in which we perform a DSE to evaluate the

benefits of applying Thread Throttling on the CPU kernels and HLS-Versioning on the

FPGA kernels.

In the preceding chapters, the optimizations were applied to single applications

that use the data-collaborative execution model, which enables an accessible workload

balance by proportionally partitioning the data among the devices (setting the alpha pa-

rameter). In contrast, the present chapter exploits the task-collaborative cloud environ-

ment where distinct CPU-only and FPGA-only kernels run concurrently - task and data-

collaborative execution models already discussed in Chapter 2. In such a scenario, it is

not trivial to workload balance kernels, once they present very different characteristics

w.r.t how they perform over the heterogeneous hardware, requiring resource provision-

ing algorithms to assign the kernels to the devices. Such strategies are out of the scope

of this dissertation, in which we stick to enhancing the performance and energy of the

collaborative execution by optimizing the individual kernels’ execution, considering pre-

established batches of kernels to be executed.

In multi-tenant Cloud Environments, the infrastructure resources, such as CPUs

and FPGAs, are shared between clients (tenants) using the Acceleration-as-a-Service

(AaaS) model (CHEN et al., 2014), as described in Figure 5.1. In such environments,

the tenants’ kernels compete over the CPU and FPGA resources while presenting exe-

cution precedence restrictions among them, which impedes them to run while another is

being served with the CPU or the FPGA resources, so they are mutually affected by their

execution time. Applying optimizations, such as Thread Throttling and HLS-Versioning,

vary the time and energy taken to execute the CPU and FPGA kernels, offering the oppor-

tunity to enhance these metrics considering the overall execution of sequences of kernels.

This way, the synergistic optimization of the CPU and FPGA kernels may help to achieve

the tight performance and energy requirements of cloud environments.

The remainder of this Chapter is organized as follows. First, Section 5.1 intro-

duces the methodology used in the evaluation, specifying the execution environment and

set of benchmarks. Then, Sections 5.2 presents the experimental evaluation investigating

70

Figure 5.1: Cloud’s Acceleration-as-a-Service model.
Tenants

C F F C

Kernel
Requests

FPGACPU

F F C F

C F C C

F C C F F F C F C C C F

Execution Batch

Cloud's
Compute Node

Source: the author

the optimization opportunities regarding the Thread Throttling and HLS-Versioning tech-

niques applied to our set of benchmarks. Section 5.3 presents a experimental grounding

considering the multi-tenant cloud environment. Finally, section 5.4 shows the results

acquired from the experiments.

5.1 Methodology

5.1.1 Execution Environment

The execution environment used to evaluate this approach was the same used to

evaluate ETCG and ETCF, already described in Section 3.1.1. That way, we used the

CPU and the FPGA specified in Table 3.1, running upon the same operating system (OS)

and drivers, as well as using the same compiler and tools to collect power data. For FPGA

kernels, specifically, we considered the Clock Frequency achieved in (CONG et al., 2018).

We used bash scripting to run all the experiments shown in the present chapter.

5.1.2 Benchmarks

We used benchmarks from the Rodinia suite (CHE et al., 2009), since it comprises

applications that exploit CPU thread parallelism using OpenMP (DAGUM; MENON,

1998), and exploit FPGA parallelism via high-level synthesis optimizations with kernels

implemented using the OpenCL standard (STONE; GOHARA; SHI, 2010). Contrarily to

the Chai suite, used in the experiments from the prior chapters, the Rodinia suite offers

well-known open-source HLS versions for their kernels. In the experiments, we used the

kernels presented in the table 5.1.

71

Table 5.1: Rodinia benchmarks.
Benchmark Description

Backprop
Back Propagation is a machine-learning algorithm that trains
the weights of connecting nodes on a layered neural network.

CFD
The CFD solver is an unstructured grid finite volume solver for
the three-dimensional Euler equations for compressible flow.

Kmeans
K-means is a clustering algorithm used extensively in data-mining
and elsewhere, important primarily for its simplicity.

KNN
K Nearest Neighbor finds the k-nearest
neighbors from an unstructured data set.

LavaMD
LavaMD calculates particle potential and relocation due to
mutual forces between particles within a large 3D space.

NW
Needleman-Wunsch is a non-linear global optimization
method for DNA sequence alignments.

PathFinder
PathFinder uses dynamic programming to find a paths on a 2-D grid
from the bottom to the top row with the smallest accumulated weights.

SRAD
SRAD is a diffusion method for ultrasonic and radar imaging
applications based on partial differential equations.

Source: the author

For Thread Throttling configuration, OpenMP provides an easy control of how

many concurrent threads will be launched to the execution via an OS environmental vari-

able, allowing us to explore the performance and energy consumption each combination

of #Threads has to offer. The CPU used in our experiments supports up to 128 concurrent

threads, so this is the amount of versions that will be exploited in CPU kernels. Con-

sidering the HLS-Versioning, FPGA Xilinx Vivado Tool also provides accessible paral-

lelism exploitation using High-Level Synthesis optimization pragmas, enabling different

techniques that result in kernel designs with variant trade-offs between performance and

energy. In our experiments, we use the 6 versions available for each kernel from Rodinia-

HLS repository (CONG et al., 2018), as depicted in Table 5.2.

72

Table 5.2: Rodinia FPGA HLS versions.
Version Description

V1 – Baseline
It comprises the ported kernels from the CPU implementation
without applying any optimization technique.

V2 – Tiling
It tiles the high-level code, transfer a data tile from main
memory to on-chip BRAM, and cache a data tile on-chip
for later accesses.

V3 – Pipeline
It implements the iterations of loop statements of the code
into a hardware pipeline.

V4 – Unroll
It unrolls loops without data dependencies between iterations,
implementing each one in parallel FPGA processing elements.

V5 – Double Buffer
By duplicating on-chip BRAM data, this optimization avoids
read-write dependencies, enabling the overlapping of
computation and memory accesses of different tiles.

V6 – Coalescing
It increases the bit width of memory access (coalescing) and
increases access length (bursting) by bonding several narrow
data into a single wider data.

Source: the author

5.2 Thread Throttling and HLS-Versioning opportunities

Before heading into the more complex experiments considering the multi-tenant

cloud execution, in this section we characterized the optimization opportunities of the set

of kernels we used regarding the Thread Throttling and HLS-Versioning techniques. As it

occurs in Cloud environments, we collected kernel’s run-time execution time and energy

consumption by running each one standalone with all possible configurations (i.e. run-

ning CPU kernels with all #Threads supported by the hardware and FPGA kernels with

all HLS optimizations available). Is important to point out that the evaluation performed

in this section represents a non-collaborative execution, since we measured the optimiza-

tion opportunities by running the kernels in CPU and FPGA in isolation, without any

interference between them.

Figure 5.2 shows the performance and energy improvements of all kernels w.r.t.

the single-thread execution in the Y-axis, and the number of threads used to run the kernels

in the X-axis. At a first glance, we can notice that the kernels present divergent behaviors

when increasing the #Threads. The Kmeans kernel present a great scalability, achieving

almost 60x performance improvements when using 64 threads, with a slightly lower per-

formance when SMT is enabled between 65 to 128 threads. Similarly, PathFinder showed

more than 40x performance and energy gains using 56 threads, although the workload

of this kernel achieves greater performance when using an even #Threads, a behavior al-

ready investigated by LORENZON et al.. The NW and SRAD kernels also presented

73

performance and energy improvements with the TLP exploitation, despite stagnating the

gains when using more than 16 threads. Backprop and NN reach best performance and

energy with only 8 threads. The LavaMD kernel has almost no benefit from TLP ex-

ploitation. Finally, CFD presented optimal performance and energy with single-thread

execution, showing degradation when using more than one thread. With such evaluation,

we can observe that Thread Throttling is capable of providing performance and energy

improvements for all the kernels, since none of them have optimal efficiency when using

the default maximum #Threads available.

Figure 5.2: TLP scalability of Rodinia CPU kernels.

0

0.5

1

1.5

2

2.5

3

3.5

4

0 16 32 48 64 80 96 112 128Im
p

ro
v
em

en
ts

 o
v
er

 s
in

g
le

-t
h
re

ad

Number of Threads

Backprop

Performance Energy

0

0.5

1

1.5

2

0 16 32 48 64 80 96 112 128Im
p

ro
v
em

en
ts

 o
v
er

 s
in

g
le

-t
h
re

ad

Number of Threads

NN

Performance Energy

0.986
0.988
0.99

0.992
0.994
0.996
0.998

1
1.002
1.004
1.006

0 16 32 48 64 80 96 112 128Im
p

ro
v
em

en
ts

 o
v
er

 s
in

g
le

-t
h
re

ad

Number of Threads

LavaMD

Performance Energy

0

2

4

6

8

10

12

0 16 32 48 64 80 96 112 128Im
p

ro
v
em

en
ts

 o
v
er

 s
in

g
le

-t
h
re

ad

Number of Threads

SRAD

Performance Energy

0

10

20

30

40

50

60

70

0 16 32 48 64 80 96 112 128Im
p

ro
v
em

en
ts

 o
v
er

 s
in

g
le

-t
h
re

ad

Number of Threads

KMeans

Performance Energy

0

10

20

30

40

50

60

0 16 32 48 64 80 96 112 128Im
p

ro
v
em

en
ts

 o
v
er

 s
in

g
le

-t
h
re

ad

Number of Threads

PathFinder

Performance Energy

0

0.2

0.4

0.6

0.8

1

1.2

0 16 32 48 64 80 96 112 128Im
p

ro
v
em

en
ts

 o
v
er

 s
in

g
le

-t
h
re

ad

Number of Threads

CFD

Performance Energy

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 16 32 48 64 80 96 112 128Im
p

ro
v
em

en
ts

 o
v
er

 s
in

g
le

-t
h
re

ad

Number of Threads

NW

Performance Energy

Source: the author

74

Regarding the FPGA execution, we evaluated the potential improvements of ap-

plying HLS-Versioning to the kernels. Figure 5.3 shows performance and energy gains of

HLS-generated versions of the kernels from our set of benchmarks using different HLS

optimization techniques. In the chart, the X-axis indicates different HLS versions for

each kernel, while the y-axis denotes the improvements with regard to performance and

energy compared to the non-optimized HLS version (v1). The experiments consider all

the 6 HLS-versions available for each of the Rodinia kernels (CONG et al., 2018), which

present incremental optimizations to each version. We can point out that not only different

kernels benefit from different optimizations, but also that the best choice for performance

is not always the best one for energy for the BP, CFD, SRAD, and NW kernels.

Figure 5.3: HLS-Versioning applied to Rodinia FPGA kernels.

1

2

4

8

16

v2 v3 v4 v5 v6 v2 v3 v4 v5 v6

NN PathFinder

Im
p

ro
v

em
en

ts
 o

v
er

 v
1

1

4

16

64

256

1024

v2 v3 v4 v5 v6 v2 v3 v4 v5 v6

LavaMD NW

Im
p

ro
v

em
en

ts
 o

v
er

 v
1

1

2

4

8

16

32

64

128

v2 v3 v4 v5 v6 v2 v3 v4 v5 v6

Kmeans SRAD

Im
p

ro
v

em
en

ts
 o

v
er

 v
1

1

2

4

8

16

32

v2 v3 v4 v5 v6 v2 v3 v4 v5 v6

BP CFD

Im
p

ro
v

em
en

ts
 o

v
er

 v
1 Performance Energy

Source: the author

75

One can notice that some kernels have more benefits when applying the CPU

Thread Throttling optimization, such as CFD, PathFinder, and NN, while other kernels

such as Kmeans and LavaMD present more benefits from the use of HLS-Versioning on

the FPGA, showing the complementarity of the optimizations considering the global sce-

nario.

In this way, exploring the benefits brought by both optimizations may bring sig-

nificant gains in CPU-FPGA systems. However, the problem of finding the best combi-

nation of where to execute (CPU or FPGA) and which version to use (with the possible

configurations of Thread Throttling or HLS) is further aggravated considering that se-

quences of many kernels must be executed. In multi-tenant Cloud services, used as our

object of study, several tenants that share the infrastructure resources make multiple ker-

nel requests, which have different priorities - further increasing the number of possible

solutions.

5.3 Experimental Grounding

The AaaS model (CHEN et al., 2014) used in multi-tenant Cloud Environments

determines the execution of their tenants’ kernels according to priorities and precedence

restrictions, so the batches from Figure 5.1 are not necessarily executed in a straightfor-

ward First-in, First-out (FIFO) fashion. Instead, such restrictions lead to workloads in

the format of Direct Acyclic Graphs (DAGs), in which each node of the graph represents

an individual kernel (HILMAN; RODRIGUEZ; BUYYA, 2020), as Figure 5.4 illustrates.

Distinct DAGs present independent kernels that can execute concurrently. AaaS Cloud’s

Kernel Library keeps different configurations for each kernel, along with their execution

time and power dissipation (CHEN et al., 2014; FAHMY; VIPIN; SHREEJITH, 2015).

These metrics are gathered beforehand by the Cloud’s managers, permitting them to ac-

cess this data to anticipate the kernels’ run-time behavior and select the most appropriate

configuration when launching kernel. For instance, our OpenMP CPU kernels can be con-

figured to execute with different #Threads via the OMP_NUM_THREADS environment

variable, and our set of FPGA kernels can be implemented using the different bitstreams

generated from the HLS-Versioning, which result in different execution times and energy

consumption, as previously shown in Section 5.2.

Given that, in this chapter we present a DSE over the CPU and FPGA configura-

tions (i.e., not affecting the workload DAG), once our study is orthogonal to scheduling

76

Figure 5.4: Cloud’s DAG workload scheme and Kernel Configuration.

CPU-FPGA
Compute Node

K11
CPU

K12
FPGA

K13
CPU

K14
FPGA

K15
CPU

K16
FPGA

Kernel
Library

Tenants Configurations
K11
K12
K13
...

1-N CPU Threads
1-N HLS Versions
1-N CPU Threads

...

Kernel

Single
Configuration

Fixed
configuration
for all kernels

Multiple
Configuration

Per-kernel
configuration

setup

CC F FF C

Execution Batch

Source: the author

works, so pre-established DAGs are considered. For this reason, we model the execu-

tion using binary tree-like DAGs, while walking through the nodes with a conventional

Breadth-First Transversal (BFS) algorithm. Our BFS algorithm starts at the root node and

launch all nodes at a given level to the CPU and FPGA execution queues, using a left to

right order. When a certain node concludes its execution, its children are launched using

the same procedure. Figure 5.5 exemplifies how kernels are assigned to the collaborative

devices. Two DAGs are presented in the example, which means their execution are totally

independent, and their kernels dispute over the shared CPU and FPGA resources. Be-

cause of that, the launch of K11 and K21 occurs concurrently, while K22 and K23, which

depends on K21, are launched just after K21 finish its execution.

Figure 5.5: Kernel allocation using our conventional BFS algorithm.

K11
CPU

K12
FPGA

K13
CPU

K21
FPGA

K22
FPGA

K23
CPU

DAG 2

K11CPU
FPGA K21 K22

K23 K13
K12

DAG 1 K12 and K13
are launched

K22 and K23
are launched

time

Source: the author

Figure 5.6 illustrates how an appropriate configuration of #Threads and HLS ver-

sion can benefit the entire DAG execution, using the same kernels from Figure 5.5 as an

example. In Fig 5.6-A, the default #Threads and HLS version are used. In Figure 5.6-B

Thread Throttling is applied to the K11 version, resulting in a reduction of the DAG ex-

ecution time, now limited by the FPGA execution time. Meanwhile, Figure 5.6-C shows

Thread Throttling applied to the kernel K11 but also HLS-Versioning employed in the

kernel K21, leading to a further reduction in execution time.

77

Figure 5.6: How different CPU/FPGA configurations affect overall execution.

K11 128tCPU
FPGA K21 v0 time

K11 16tCPU
FPGA time

K11 16tCPU
FPGA K21 v4 time

K23 K13
K22 K12

K23 K13
K22 K12

K13 K23
K12 K22K21 v0

A

B

C

Source: the author

To fully explore (i.e. find the right configuration for all kernels) the design space

offered by our experiments, an exhaustive search would be necessary. However, exploring

all possible combinations of kernel’s versions would result in a combinatorial explosion

when expanding the DAGs’ depth, as presented in Table 5.3, which considers our set of

kernel versions and our hardware setup. Given that, the exponential time complexity of

exhaustively searching for the solutions rapidly becomes unfeasible when increasing the

number of nodes on the DAG.

Table 5.3: Search complexity.
DAG depth Nº of nodes Nº of combinations Time to solution

2 6 2.1e4 14 minutes
3 10 1.6e7 37 days
4 14 1.3e10 329 years
5 18 9.6e12 974 millennia

Source: the author

In order to avoid this issue, we have limited our search space by exploiting the

kernel configurations, considering two approaches to select the kernel’s configurations:

Single Configuration and Multiple Configurations.

The Single Configuration approach consists in a DSE over the combinations of

CPU and FPGA configurations, using a fixed #Threads and HLS version for all nodes

in the DAG. For instance, we collect execution time and energy consumption of the sys-

tem when executing the DAG with all CPU nodes using 1 thread, and all FPGA nodes

using HLS version 1. Then we repeat the process until testing every combination of

#Threads and HLS versions. This way, our search space is proportional to the limited ker-

78

nel versions of the Cloud library, resulting in a linear search time complexity. The Single

Configuration DSE is used in this Chapter as a comparison to the Multiple Configuration

solution.

Meanwhile, in the Multiple Configurations approach we select the kernels’ con-

figurations individually, using a local search algorithm that aims at finding the kernel’s

version that provides the lowest EDP. For that, the algorithm orders the versions by the

EDP offered by each one, then selects the one that provides the lowest EDP, balancing

the trade-off between performance and energy consumption. It is also important to point

out that, despite using local EDP measurements when selecting the configuration, Exper-

imental Results in Section 5.4 will present Performance, Energy, and EDP on the whole

DAG execution, showing how the proper configuration of the kernels impacts the global

execution.

5.3.1 Evaluation Setup

We implemented our set of experiments inside a Linux bash script, which launches

the kernels for execution considering a pre-established order defined by the DAGs. The

DAGs were structured using the previous descriptions of the present section, in which we

randomly assigned the kernels from our set of benchmarks into the nodes of 100 paral-

lel DAGs, for a practical reason, with up to 100 depth levels each, where the number of

depth levels is also randomly defined by our script. To exploit the Single Configuration

approaches, we ran the given set of DAGs using the different combinations of #Threads

and HLS-versions. While for Multiple Configurations approach we search for the version

for the best EDP for the kernel of the given node, then launches this optimal version for

execution. For both approaches we used all the available CPU and FPGA versions for

our set of kernels, where each CPU kernel offers 128 possible configurations of #Threads

(from 1 to the maximum #Threads supported), while FPGA nodes offer 6 versions utiliz-

ing different HLS optimizations. To build a large sample of experiments, we repeated this

process 10.000 times, also for a practical reason, each one using distinct DAG structures

with different kernel assortments over the DAGs, and used the average execution time and

energy consumption in our evaluations.

In order to facilitate the presentation of our experimental results, we divided the

results from the Single and Multiple Configuration approaches into different experimen-

tal scenarios. Considering the Single Configuration Scenarios, #Threads and HLS ver-

79

sion are kept fixed for all CPU and FPGA nodes. While the Multiple Configuration

Scenario aims at investigating the influence of selecting the best Thread Throttling and

HLS-Versioning configurations for each node of the graph (i.e. each kernel may have a

different configuration w.r.t. the #Threads and HLS version). Our Single Configuration

Scenarios are given as follows:

• Baseline - the default in CPU-FPGA environments, in which OpenMP uses the

maximum #Threads available for the CPU - 128 threads in our setup -, and FPGA

HLS is performed without any optimizations such as Array Partitioning, Loop Un-

rolling or Loop Pipelining - version 1 (v1) in our experiments;

• Single Configuration - comprises the execution of all DAGs (CPU and FPGA ker-

nels) using fixed number of Threads and a unique HLS version.

Our Multiple Configuration Scenarios are given as follows:

• Multiple Configurations CPU-TT Only - only Thread Throttling is applied aiming

at minimizing the EDP resulted from the CPU nodes, while the FPGA HLS is still

performed without any optimization;

• Multiple Configurations HLS-V Only - only HLS-Versioning is performed at the

FPGA kernels and the version which produces the best EDP results is selected for

the execution of the FPGA nodes. The Thread Throttling configuration is kept in

128 threads;

• Multiple Configurations CPU-TT + HLS-V - both CPU Thread Throttling and HLS-

Versioning are performed on all DAG nodes to minimize EDP in the CPU-FPGA

Collaborative environment.

5.4 Results

This Section presents the results obtained through the DSE performed in our ex-

periments. Subsection 5.4.1 shows the improvements produced using Single Configura-

tions of #Threads and HLS versions across all nodes. After, Subsection 5.4.2 presents

the gains yielded by Multiple Configurations of #Threads and HLS versions for each

individual node. Finally, Subsection 5.4.3 compares Single and Multiple Configuration

approaches, discussing the strengths and weaknesses of each. Additionally, appendix C

presents tables with the experiments collected for this chapter.

80

5.4.1 Single Configuration Scenarios

Table 5.4 presents the EDP improvements of each combination of #Threads and

HLS version over the Baseline (values under 1 mean EDP degradation). Column 1 (HLS

Version 1) presents all configurations with the non-optimized HLS version. As can be

noticed, the configuration with 16 threads provided the best average solution across the

nodes, with 25.8% of EDP gains. Instead, the last row of the table show us the benefits

provided by the HLS optimizations, since #Threads are kept at the maximum hardware

threads available (i.e., 128 threads). For 128 threads, HLS version 4 provided the best

trade-off between performance and energy, with 3.276x EDP gains. Considering all re-

sults, the sweet spot of this scenario was using 16 threads and HLS version 4 in the CPU

and FPGA nodes, respectively, producing a 9.348x EDP gain over the baseline. Such be-

havior occurs because idle times can occur in one device when other dependent kernel is

running in the other device, so using kernel versions with highest EDP gains individually

does not necessarily reflect on the highest overall EDP improvements. Moreover, despite

providing, on average, the best single configuration result, some kernels may have differ-

ent optimal #Threads and HLS version than the average, giving room for improvements

that will be show next using Multiple Configurations in the following section.

Table 5.4: EDP gains (×) using Single Configuration exploitation.
HLS Version

#Threads 1 2 3 4 5 6
1 0.273 0.274 0.274 0.274 0.274 0.274
2 0.860 0.869 0.870 0.870 0.870 0.870
4 1.092 2.497 2.499 2.501 2.501 2.500
8 1.255 7.632 7.644 7.656 7.654 7.648

16 1.258 9.318 9.334 9.348 9.346 9.338
32 1.162 5.718 5.726 5.733 5.732 5.728
64 1.009 3.351 3.354 3.357 3.357 3.355

128 1.000 3.270 3.273 3.276 3.275 3.274
Source: the author

5.4.2 Multiple Configurations Scenarios

Figure 5.7 shows the benefits from using multiple configurations, in which Thread

Throttling and HLS-Versioning are applied to the individual kernels present on the DAGs.

The y-axis shows the improvements over the baseline (in terms of Performance, Energy,

81

and EDP), while the x-axis displays each multiple configuration scenario. Standard devi-

ations inherent to the samples are presented alongside the whiskers at the top of the bars.

For the sake of readability the chart is presented in logarithmic scale.

When considering the CPU-TT Only scenario, execution time of the DAGs are

not improved compared to the baseline, since applying Thread Throttling did not speed

up these applications. In contrast, Energy consumption is usually reduced when Thread

Throttling is applied, since it greatly decreases the power dissipation at only small penalty

in execution time. In summary, Thread Throttling provided 1.418x EDP improvements

on the DAGs’ overall execution, surpassing the 1.258x gain provided by using a single

configuration for the #Threads on all CPU nodes, as shown in Section 5.4.1.

Unlike the CPU-TT Only, the HLS-V Only scenario boosted the performance in

2.236x over the baseline. This behavior arises from reductions in execution time for

kernels that can benefit from HLS optimizations (i.e., kernels that can extract a high-

level of parallelism in the FPGA). We also note that the HLS-V Only scenario achieves

gains in performance higher than in energy. It occurs since performance gains comes

with the cost of increasing power dissipation, created by a higher FPGA resource usage

required from the optimized kernel versions. Overall, HLS-Versioning provided 3.367x

EDP improvements, outperforming the 3.276x gain provided by selecting the same HLS

version for all FPGA nodes (Single Configuration), as shown in Section 5.4.1.

Considering both Thread Throttling and HLS-Versioning, the CPU-TT + HLS-V

scenario provided the greatest benefits in performance (7.721x) and energy consumption

(5.366x), resulting in a 41.434x EDP improvement. Such substantial improvements came

from the synergistic effect of optimizing both CPU and FPGA kernels, exemplified in

Figure 5.6, since optimizing only at one device can limit the gains because of bottlenecks

caused by disproportionately long execution time of non-optimized kernels.

As a representative example, Table 5.5 details the first ten versions selected in

the CPU-TT + HLS-V scenario in 4 distinct DAGs. As already mentioned, those were

the versions that presented the best EDP for each individual node. We can point out that

for both CPU and FPGA versions are quite varied, ranging from 1 to 64 threads and HLS

version from 4 to 6, reinforcing the benefits of the multiple configuration approach. These

experiments show us that DAGs benefit from having different individual configurations, as

they comprise kernels with variant behavior (e.g., level of FPGA acceleration or optimal

#Threads) that will select different #Threads and different HLS versions.

82

Figure 5.7: Improvements provided by multiple configuration scenarios.

1

2

4

8

16

32

64

Multiple Config.

CPU-TT Only

Multiple Config.

HLS-V Only

Multiple Config.

CPU-TT + HLS-V

Im
p

ro
v

em
en

ts
 o

v
er

 b
as

el
in

e Performance Energy EDP

Source: the author

Table 5.5: Versioning Variation for CPU/FPGA kernels of t threads or HLS version v.
First N nodes

DAG 1 2 3 4 5 6 7 8 9 10
1 v6 24t 1t v6 v6 64t 15t v6 4t v5
2 3t v6 v4 3t v6 64t v6 64t 15t v4
3 56t v4 v4 4t v5 24t v6 4t 15t v6
4 v6 1t 4t v6 v5 3t 64t v6 v5 64t

Source: the author

5.4.3 Single vs Multiple Configuration

Finally, we compared both single and multiple configuration approaches, in or-

der to quantify the benefits of individually tuning the nodes (multiple configurations) in

contrast to setting a fixed configurations for all nodes (single configuration).

Figure 5.8 shows Performance, Energy, and EDP improvements over the base-

line, provided by the top 3 single configuration combinations compared to the best mul-

tiple configuration approach (CPU-TT+HLS-V), which applies both Thread Throttling

and HLS-Versioning techniques. As previously pointed out, single configuration with 16

threads + HLS v4 provided the biggest gains, with 9.348x EDP gains, but was still out-

paced over 4x by the Multiple Configuration CPU-TT+HLS-V approach, which yielded

41.434x EDP gains.

Single Configuration solutions have the clear advantage of its easy employment.

However, even when the approach reaches a sweet spot (in our experiments: 16 threads

+ HLS v4), it is not capable of outperforming the fine tuning of Multiple Configurations,

which demonstrably enables improvements in kernels, which the optimal #Threads and

83

Figure 5.8: Improvements from Single and Multiple Configuration scenarios.

1

2

4

8

16

32

64

Single Config.

8 threads +

HLS v4

Single Config.

16 threads +

HLS v4

Single Config.

32 threads +

HLS v4

Multiple Config.

CPU-TT +

HLS-V

Im
p

ro
v

em
en

ts
 o

v
er

 b
as

el
in

e Performance Energy EDP

Source: the author

HLS version, differ from the average value of Single Configuration. Consequently, the

Multiple Configurations proved to be the most robust approach to workload variations.

Our findings demonstrate that single configuration can provide up to 9.348x EDP

gains over the baseline, which considers the system’s maximum number of threads and

no-use of HLS pragmas. Instead, applying Thread Throttling and HLS-Versioning us-

ing multiple configurations for each kernel increases the EDP improvements to 41.434x,

while being more robust to workload changes.

In the end, to fully exploit the benefits of Thread Throttling and HLS-Versioning,

a solution that takes the global DAG execution is required. However, given the scalability

issues shown in Section 5.3, heuristics like the one proposed in this work are mandatory

to reach such a solution efficiently.

84

85

6 CONCLUSION

In this MSc dissertation, we investigated means to optimize the performance and

energy consumption of emerging Collaborative Computing in heterogeneous systems.

Such environments face the challenge of extracting all the benefits offered by such sys-

tems, once their devices present variable efficiency, preventing the programmers from

statically reaching optimal execution.

This work investigated, in Chapter 3, the impact of the number of CPU threads and

the workload balance of CPU-GPU and CPU-FPGA applications, where experimental

evaluation presented considerable exploration space available with both strategies. Find-

ings showed that the optimal number of threads depends on the application, the workload

balancing among the devices, and the optimization target metric (performance, energy, or

EDP). Also, to achieve the best results, CPU-FPGA applications are more dependent on

the workload balance than the CPU-GPU ones, since some applications better suit one of

the devices, so naively workload balancing stands far from optimal results.

To tackle the optimization opportunities of collaborative environments, we pro-

posed ETCG and ETCF, which comprise approaches capable of improving performance

and energy consumption of CPU-GPU and CPU-FPGA systems, respectively. ETCG

comprises a the C++ thread library extension to enable automatic CPU Thread Throttling

in CPU-GPU collaborative applications. It determines a near-optimal number of CPU

threads using a Hill-Climbing based algorithm, which can rapidly converge to the solu-

tion, avoiding a prohibitive exhaustive search for such run-time approach. Compared to

the static use of the maximum number of threads available, ETCG improves performance

in 2.56x, while reducing EDP by 52% on average, with up to 73% on the best case. ETCG

could also provide near-optimal results, standing a performance improvement only 6%

below from the offline exhaustive search (Oracle). Considering CPU-FPGA collabora-

tive applications, we proposed ETCF framework, which optimizes both number of CPU

threads and workload balance. The framework comprises the C++ thread library exten-

sion proposed on ETCG and a workload balance approach using OpenCL. It provides the

administrator the selection of each optimization and a optimization goal. Compared to the

static use of maximum number of CPU threads and evenly workload balancing, ETCF in-

creases performance by 6.67x, while reducing the energy consumption and EDP by 78%

and 93%, respectively.

86

The work also carried out an investigation on the benefits on optimizations on

task-collaborative environment, using a CPU-FPGA multi-tenant cloud environment as

object of study. Specifically, we employed Thread Throttling to the CPU kernels and

HLS-Versioning to the FPGA kernels. The resource provisioning restrictions from such

environments demand a collaboratively use of the heterogeneous system, so both opti-

mization techniques must be employed together. We modeled our experiments consid-

ering a DAG-alike execution arrangement, which is characteristic from the multi-tenant

environments. Hence, we elaborated two approaches to optimize the execution: using a

single configuration (number of CPU threads and HLS version) for all kernels in the DAG;

and using multiple configurations individually tuned for each kernel. Compared to using

the maximum number of CPU threads and non-optimized FPGA execution, single con-

figuration experiments provide 9.4x EDP improvements, while multiple configurations

boosted the EDP gains to 41.4x.

6.1 Future Work

The studies developed in this work opened up other potential research opportuni-

ties. The ETCG approach can be implemented and improved using threading APIs other

than C++11 and OpenMP, which could extend the number of supported applications. An-

other possible work is searching for a way of implementing a fully online version of the

ETCF framework, which could perform both Thread Throttling and workload balance at

run-time. For that, it will be required modifications on the OpenCL API to support the

dynamic adjustment of the data partitioning of the applications. Additionally, the final

study developed in this dissertation is likely the one with the most straightforward attain-

able future work, once this work stick to the DSE of the multi-tenant CPU-FPGA cloud

environment using an effortless heuristic to show the room for improvements available.

In this scenario, other heuristics may be considered taking the whole DAG execution into

account when evaluating which configuration to select at each kernel.

6.2 Publications

As a result of the work developed on the course of the Master’s program, the

following publications have been made.

87

• KNORST, T. et al. Etcg: Energy-aware cpu thread throttling for cpu-gpu collabora-

tive environments. In: IEEE. 2021 34th SBC/SBMicro/IEEE/ACM Symposium

on Integrated Circuits and Systems Design (SBCCI). [S.l.], 2021. p. 1–6.

• KNORST, T. et al. Etcf – energy-aware cpu thread throttling and workload balanc-

ing framework for cpu-fpga collaborative environments. In: IEEE. 2021 XI Brazil-

ian Symposium on Computing Systems Engineering (SBESC). [S.l.], 2021. p.

1–8.

• KNORST, T. et al. On the benefits of collaborative thread throttling and hls-

versioning in cpu-fpga environments. In: IEEE. 2022 35th SBC/SBMicro/IEEE/

ACM Symposium on Integrated Circuits and Systems Design (SBCCI). [S.l.],

2022. p. 1–6.

In addition, the author collaborated as a Master’s student in the following works:

• VICENZI, J. C. et al. Tripp: Transparent resource provisioning for multi-tenant

cpu-gpu based cloud environments. In: IEEE. 2021 XI Brazilian Symposium on

Computing Systems Engineering (SBESC). [S.l.], 2021. p. 1–8.

• JORDAN, M. G. et al. Erin: Energy-aware resource provisioning framework for

cpu-fpga multi-tenant environment. IEEE Design & Test, IEEE, 2022.

88

89

REFERENCES

BECK, A. C. S.; LISBÔA, C. A. L.; CARRO, L. Adaptable embedded systems. [S.l.]:
Springer Science & Business Media, 2012.

CHE, S. et al. Rodinia: A benchmark suite for heterogeneous computing. In: IEEE. 2009
IEEE international symposium on workload characterization (IISWC). [S.l.], 2009.
p. 44–54.

CHEN, F. et al. Enabling fpgas in the cloud. In: Proceedings of the 11th ACM
Conference on Computing Frontiers. [S.l.: s.n.], 2014. p. 1–10.

CHOI, Y.-k.; CONG, J. Hls-based optimization and design space exploration for
applications with variable loop bounds. In: IEEE. 2018 IEEE/ACM International
Conference on Computer-Aided Design (ICCAD). [S.l.], 2018. p. 1–8.

CONG, J. et al. Cpu-fpga coscheduling for big data applications. IEEE Design & Test,
IEEE, v. 35, n. 1, p. 16–22, 2017.

CONG, J. et al. Understanding performance differences of fpgas and gpus. In: IEEE.
2018 IEEE 26th Annual International Symposium on Field-Programmable Custom
Computing Machines (FCCM). [S.l.], 2018. p. 93–96.

CRAVEN, S.; ATHANAS, P. Examining the viability of fpga supercomputing.
EURASIP Journal on Embedded systems, Springer, v. 2007, p. 1–8, 2007.

CURTIS-MAURY, M. et al. Online power-performance adaptation of multithreaded
programs using hardware event-based prediction. In: Proceedings of the 20th annual
international conference on Supercomputing. [S.l.: s.n.], 2006. p. 157–166.

CURTIS-MAURY, M. et al. Prediction models for multi-dimensional power-performance
optimization on many cores. In: Proceedings of the 17th international conference on
Parallel architectures and compilation techniques. [S.l.: s.n.], 2008. p. 250–259.

DAGUM, L.; MENON, R. Openmp: an industry standard api for shared-memory
programming. IEEE computational science and engineering, IEEE, v. 5, n. 1, p.
46–55, 1998.

DEIANA, E. A. et al. A multiobjective reconfiguration-aware scheduler for fpga-
based heterogeneous architectures. In: IEEE. 2015 International Conference on
ReConFigurable Computing and FPGAs (ReConFig). [S.l.], 2015. p. 1–6.

DU, P. et al. From cuda to opencl: Towards a performance-portable solution for
multi-platform gpu programming. Parallel Computing, Elsevier, v. 38, n. 8, p. 391–407,
2012.

FAHMY, S. A.; VIPIN, K.; SHREEJITH, S. Virtualized fpga accelerators for efficient
cloud computing. In: IEEE. 2015 IEEE 7th International Conference on Cloud
Computing Technology and Science (CloudCom). [S.l.], 2015. p. 430–435.

GÓMEZ-LUNA, J. et al. Chai: Collaborative heterogeneous applications for integrated-
architectures. In: IEEE. 2017 IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS). [S.l.], 2017. p. 43–54.

90

HACKENBERG, D. et al. Power measurement techniques on standard compute nodes:
A quantitative comparison. In: IEEE. 2013 IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS). [S.l.], 2013. p. 194–204.

HÄHNEL, M. et al. Measuring energy consumption for short code paths using rapl.
ACM SIGMETRICS Performance Evaluation Review, ACM New York, NY, USA,
v. 40, n. 3, p. 13–17, 2012.

HILMAN, M. H.; RODRIGUEZ, M. A.; BUYYA, R. Multiple workflows scheduling in
multi-tenant distributed systems: A taxonomy and future directions. ACM Computing
Surveys (CSUR), ACM New York, NY, USA, v. 53, n. 1, p. 1–39, 2020.

HUANG, S. et al. Analysis and modeling of collaborative execution strategies for
heterogeneous cpu-fpga architectures. In: Proceedings of the 2019 ACM/SPEC
International Conference on Performance Engineering. [S.l.: s.n.], 2019. p. 79–90.

ILIĆ, A.; SOUSA, L. Collaborative execution environment for heterogeneous parallel
systems. In: IEEE. 2010 IEEE International Symposium on Parallel & Distributed
Processing, Workshops and Phd Forum (IPDPSW). [S.l.], 2010. p. 1–8.

ISO, I. Iec 14882: 2011 information technology—programming languages—c++.
International Organization for Standardization, Geneva, Switzerland, v. 27, p. 59,
2012.

JOHNSON, A. W.; JACOBSON, S. H. On the convergence of generalized hill climbing
algorithms. Discrete applied mathematics, Elsevier, v. 119, n. 1-2, p. 37–57, 2002.

JORDAN, M. G. et al. Erin: Energy-aware resource provisioning framework for cpu-fpga
multi-tenant environment. IEEE Design & Test, IEEE, 2022.

JORDAN, M. G. et al. Resource-aware collaborative allocation for cpu-fpga cloud
environments. IEEE Transactions on Circuits and Systems II: Express Briefs, IEEE,
v. 68, n. 5, p. 1655–1659, 2021.

KACHRIS, C.; SOUDRIS, D. A survey on reconfigurable accelerators for cloud
computing. In: IEEE. 2016 26th International conference on field programmable
logic and applications (FPL). [S.l.], 2016. p. 1–10.

KNORST, T. et al. Etcg: Energy-aware cpu thread throttling for cpu-gpu collaborative
environments. In: IEEE. 2021 34th SBC/SBMicro/IEEE/ACM Symposium on
Integrated Circuits and Systems Design (SBCCI). [S.l.], 2021. p. 1–6.

KNORST, T. et al. Etcf – energy-aware cpu thread throttling and workload balancing
framework for cpu-fpga collaborative environments. In: IEEE. 2021 XI Brazilian
Symposium on Computing Systems Engineering (SBESC). [S.l.], 2021. p.
1–8.

KNORST, T. et al. On the benefits of collaborative thread throttling and hls-
versioning in cpu-fpga environments. In: IEEE. 2022 35th SBC/SBMicro/IEEE/
ACM Symposium on Integrated Circuits and Systems Design (SBCCI). [S.l.], 2022.
p. 1–6.

91

LEE, J. et al. Skmd: Single kernel on multiple devices for transparent cpu-gpu
collaboration. ACM Transactions on Computer Systems (TOCS), ACM New York,
NY, USA, v. 33, n. 3, p. 1–27, 2015.

LEE, J. et al. Thread tailor: dynamically weaving threads together for efficient, adaptive
parallel applications. In: Proceedings of the 37th annual international symposium on
Computer architecture. [S.l.: s.n.], 2010. p. 270–279.

LIGNATI, B. N. et al. Exploiting hls-generated multi-version kernels to improve cpu-fpga
cloud systems. In: IEEE. 2021 26th Asia and South Pacific Design Automation
Conference (ASP-DAC). [S.l.], 2021. p. 536–541.

LORENZON, A. F.; FILHO, A. C. S. B. Parallel Computing Hits the Power Wall:
Principles, Challenges, and a Survey of Solutions. [S.l.]: Springer Nature, 2019.

LORENZON, A. F. et al. Aurora: Seamless optimization of openmp applications. IEEE
transactions on parallel and distributed systems, IEEE, v. 30, n. 5, p. 1007–1021,
2018.

LORENZON, A. F.; SOUZA, J. D.; BECK, A. C. S. Laant: A library to automatically
optimize edp for openmp applications. In: IEEE. Design, Automation & Test in Europe
Conference & Exhibition (DATE), 2017. [S.l.], 2017. p. 1229–1232.

MARATHE, A. et al. A run-time system for power-constrained hpc applications. In:
SPRINGER. International conference on high performance computing. [S.l.], 2015.
p. 394–408.

MELONI, P. et al. Neuraghe: Exploiting cpu-fpga synergies for efficient and flexible
cnn inference acceleration on zynq socs. ACM Transactions on Reconfigurable
Technology and Systems (TRETS), ACM New York, NY, USA, v. 11, n. 3, p. 1–24,
2018.

PHAM, N. K. et al. Exploiting loop-array dependencies to accelerate the design space
exploration with high level synthesis. In: IEEE. 2015 Design, Automation & Test in
Europe Conference & Exhibition (DATE). [S.l.], 2015. p. 157–162.

PORTERFIELD, A. K. et al. Power measurement and concurrency throttling for energy
reduction in openmp programs. In: IEEE. 2013 IEEE International Symposium on
Parallel & Distributed Processing, Workshops and Phd Forum. [S.l.], 2013. p.
884–891.

PUSUKURI, K. K.; GUPTA, R.; BHUYAN, L. N. Thread reinforcer: Dynamically
determining number of threads via os level monitoring. In: IEEE. 2011 IEEE
International Symposium on Workload Characterization (IISWC). [S.l.], 2011. p.
116–125.

SENSI, D. D.; TORQUATI, M.; DANELUTTO, M. A reconfiguration algorithm for
power-aware parallel applications. ACM Transactions on Architecture and Code
Optimization (TACO), ACM New York, NY, USA, v. 13, n. 4, p. 1–25, 2016.

SHAFIK, R. A. et al. Adaptive energy minimization of openmp parallel applications on
many-core systems. In: Proceedings of the 6th Workshop on Parallel Programming

92

and Run-Time Management Techniques for Many-core Architectures. [S.l.: s.n.],
2015. p. 19–24.

STONE, J. E.; GOHARA, D.; SHI, G. Opencl: A parallel programming standard
for heterogeneous computing systems. Computing in science & engineering, IEEE
Computer Society, v. 12, n. 3, p. 66, 2010.

SULEMAN, M. A.; QURESHI, M. K.; PATT, Y. N. Feedback-driven threading:
power-efficient and high-performance execution of multi-threaded workloads on cmps.
ACM Sigplan Notices, ACM New York, NY, USA, v. 43, n. 3, p. 277–286, 2008.

TAKACH, A. High-level synthesis: Status, trends, and future directions. IEEE Design
& Test, IEEE, v. 33, n. 3, p. 116–124, 2016.

VICENZI, J. C. et al. Tripp: Transparent resource provisioning for multi-tenant cpu-gpu
based cloud environments. In: IEEE. 2021 XI Brazilian Symposium on Computing
Systems Engineering (SBESC). [S.l.], 2021. p. 1–8.

WANG, S.; ANANTHANARAYANAN, G.; MITRA, T. Optic: Optimizing collaborative
cpu–gpu computing on mobile devices with thermal constraints. IEEE transactions
on computer-aided design of integrated circuits and systems, IEEE, v. 38, n. 3, p.
393–406, 2018.

WEI, X. et al. Throughput optimization for streaming applications on cpu-fpga
heterogeneous systems. In: IEEE. 2017 22nd Asia and South Pacific Design
Automation Conference (ASP-DAC). [S.l.], 2017. p. 488–493.

WU, J. et al. Cloud storage as the infrastructure of cloud computing. In: IEEE. 2010
International conference on intelligent computing and cognitive informatics. [S.l.],
2010. p. 380–383.

ZENG, H.; PRASANNA, V. Graphact: Accelerating gcn training on cpu-fpga
heterogeneous platforms. In: Proceedings of the 2020 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays. [S.l.: s.n.], 2020. p. 255–265.

ZHAO, J. et al. Performance modeling and directives optimization for high-level
synthesis on fpga. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, IEEE, v. 39, n. 7, p. 1428–1441, 2019.

ZHONG, G. et al. Lin-analyzer: A high-level performance analysis tool for fpga-based
accelerators. In: IEEE. 2016 53nd ACM/EDAC/IEEE Design Automation Conference
(DAC). [S.l.], 2016. p. 1–6.

ZHOU, S.; PRASANNA, V. K. Accelerating graph analytics on cpu-fpga heterogeneous
platform. In: IEEE. 2017 29th International Symposium on Computer Architecture
and High Performance Computing (SBAC-PAD). [S.l.], 2017. p. 137–144.

93

APPENDIX A — ETCG EXPERIMENTS

Table A.1: Execution time (s) of the applications at each scenario using α=0.3
Benchmark Max #Threads Bench. Default ETCG Oracle

BS 5.581 7.393 2.863 2.856
CED-D 5.940 5.481 5.344 5.204
HSTI 55.087 12.965 7.938 7.938
HSTO 13.472 9.033 7.328 7.310
PAD 7.327 3.207 2.710 2.631

RSC-D 27.668 42.772 11.853 11.425
SC 6.485 2.496 1.872 1.867

Source: the author

Table A.2: Execution time (s) of the applications at each scenario using α=0.5
Benchmark Max #Threads Bench. Default ETCG Oracle

BS 5.662 12.050 2.758 2.676
CED-D 6.307 5.773 5.474 5.335
HSTI 52.602 16.999 9.942 9.942
HSTO 13.063 10.666 7.490 7.394
PAD 7.494 4.041 2.855 2.855

RSC-D 28.528 73.650 14.310 14.310
SC 6.813 3.456 2.186 2.186

Source: the author

Table A.3: Execution time (s) of the applications at each scenario using α=0.7
Benchmark Max #Threads Bench. Default ETCG Oracle

BS 5.746 16.493 3.171 3.171
CED-D 6.817 6.018 5.497 5.497
HSTI 54.749 22.914 11.513 11.513
HSTO 12.986 11.239 7.483 7.483
PAD 7.836 4.665 2.973 2.973

RSC-D 28.575 93.559 17.404 16.929
SC 7.103 4.399 2.417 2.417

Source: the author

94

Table A.4: Energy consumption (J) of the applications at each scenario using α=0.3
Benchmark Max #Threads Bench. Default ETCG Oracle

BS 913.1 1037.6 520.5 520.5
CED-D 699.7 634.4 619.6 604.2
HSTI 6800.0 1618.3 1039.9 1039.9
HSTO 2903.4 1141.4 1060.6 1060.6
PAD 924.4 400.3 345.5 345.5

RSC-D 3851.4 5337.9 1925.4 1865.2
SC 837.2 322.0 292.9 292.9

Source: the author

Table A.5: Energy consumption (J) of the applications at each scenario using α=0.5
Benchmark Max #Threads Bench. Default ETCG Oracle

BS 906.8 1509.3 559.4 552.6
CED-D 747.5 680.2 635.9 625.0
HSTI 6533.7 2106.4 1297.8 1297.8
HSTO 3030.1 1310.4 1145.4 1117.1
PAD 937.3 502.1 388.9 387.3

RSC-D 4232.6 9085.0 2399.2 2399.2
SC 861.8 431.9 300.9 300.9

Source: the author

Table A.6: Energy consumption (J) of the applications at each scenario using α=0.7
Benchmark Max #Threads Bench. Default ETCG Oracle

BS 898.6 2046.8 641.0 637.5
CED-D 799.6 699.3 646.1 646.1
HSTI 6828.3 2832.1 1535.2 1518.3
HSTO 2994.5 1390.0 1200.3 1116.7
PAD 986.9 576.6 410.6 410.6

RSC-D 4546.0 11440.7 2977.3 2977.3
SC 904.1 555.9 339.3 339.3

Source: the author

95

APPENDIX B — ETCF EXPERIMENTS

Table B.1: Execution time (s) of the applications at each scenario.

App.
Max

#Threads
App.

Default
ETCF

TT
ETCF
WB

ETCF
Full Oracle

BS 1.771 1.766 1.754 0.561 0.561 0.549
CED-D 12.779 12.758 12.779 7.022 5.748 5.593
HSTI 0.454 0.31 0.262 0.45 0.231 0.23
HSTO 0.91 0.764 0.618 0.881 0.515 0.509
PAD 0.788 0.782 0.778 0.586 0.37 0.358

RSC-D 8.314 8.307 8.289 1.994 1.994 1.971
SC 0.53 0.382 0.379 0.502 0.33 0.322

Source: the author

Table B.2: Energy consumption (J) of the applications at each scenario.

App.
Max

#Threads
App.

Default
ETCF

TT
ETCF
WB

ETCF
Full Oracle

BS 183.3 167.5 181.6 67.6 65.7 63.8
CED-D 1419.2 1408.5 1413.7 804.4 1158.4 1127.2
HSTI 41.8 23.3 22.7 40.1 19.3 19.3
HSTO 167.1 90.5 99.7 145 78.1 72.3
PAD 81.6 80.9 80 57.2 40.1 38.9

RSC-D 773.5 758.4 752.5 211.9 210.2 190.6
SC 50.1 36.2 37.2 49.1 35.3 34

Source: the author

96

97

APPENDIX C — CHAPTER 5 EXPERIMENTS

Table C.1: Single Configuration results - 1 to 16 threads / HLS v1 to v6
Single
Config.

#Threads

Single
Config.

HLS Ver.

Average
Execution
Time (s)

Std.
Dev.

Average
Energy

Cons. (kJ)

Std.
Dev.

Average
System

Power (W)
1 1 3728.65 ±4.27% 255.91 ±4.31% 68.63
1 2 3727.41 ±4.28% 255.51 ±4.31% 68.55
1 3 3727.40 ±4.28% 255.43 ±4.31% 68.53
1 4 3727.40 ±4.28% 255.34 ±4.31% 68.51
1 5 3727.40 ±4.28% 255.37 ±4.31% 68.51
1 6 3727.40 ±4.28% 255.41 ±4.31% 68.52
2 1 2077.61 ±4.00% 145.89 ±3.98% 70.22
2 2 2066.65 ±4.14% 145.12 ±4.19% 70.22
2 3 2066.64 ±4.14% 145.04 ±4.19% 70.18
2 4 2066.64 ±4.14% 144.96 ±4.19% 70.14
2 5 2066.64 ±4.14% 144.97 ±4.19% 70.15
2 6 2066.64 ±4.14% 145.01 ±4.19% 70.17
4 1 2006.25 ±3.68% 118.98 ±3.89% 59.30
4 2 1194.88 ±4.00% 87.39 ±4.05% 73.14
4 3 1194.86 ±4.00% 87.31 ±4.05% 73.07
4 4 1194.85 ±4.01% 87.23 ±4.05% 73.01
4 5 1194.85 ±4.01% 87.25 ±4.05% 73.02
4 6 1194.85 ±4.00% 87.29 ±4.05% 73.05
8 1 2005.92 ±3.72% 103.56 ±3.89% 51.63
8 2 663.13 ±3.99% 51.51 ±3.99% 77.68
8 3 663.10 ±3.99% 51.43 ±3.99% 77.56
8 4 663.10 ±3.99% 51.36 ±3.99% 77.45
8 5 663.10 ±3.99% 51.37 ±3.99% 77.47
8 6 663.10 ±3.99% 51.41 ±3.99% 77.53

16 1 2005.89 ±3.71% 103.29 ±3.89% 51.49
16 2 581.63 ±3.79% 48.11 ±3.84% 82.71
16 3 581.60 ±3.79% 48.02 ±3.84% 82.57
16 4 581.60 ±3.79% 47.95 ±3.84% 82.44
16 5 581.60 ±3.79% 47.96 ±3.84% 82.46
16 6 581.60 ±3.79% 48.00 ±3.84% 82.54

Source: the author

98

Table C.2: Single Configuration results - 1 to 16 threads / HLS v1 to v6 - and Multiple
Configurations at the end.

Single
Config.

#Threads

Single
Config.

HLS Ver.

Average
Execution
Time (s)

Std.
Dev.

Average
Energy

Cons. (kJ)

Std.
Dev.

Average
System

Power (W)
32 1 2005.91 ±3.67% 111.80 ±3.89% 55.74
32 2 730.98 ±3.80% 62.37 ±3.93% 85.32
32 3 730.95 ±3.80% 62.29 ±3.93% 85.22
32 4 730.94 ±3.80% 62.21 ±3.93% 85.12
32 5 730.94 ±3.80% 62.23 ±3.93% 85.13
32 6 730.94 ±3.80% 62.27 ±3.93% 85.19
64 1 2005.99 ±3.70% 128.86 ±3.89% 64.24
64 2 903.91 ±4.02% 86.08 ±4.05% 95.23
64 3 903.87 ±4.02% 86.00 ±4.05% 95.14
64 4 903.86 ±4.02% 85.92 ±4.05% 95.06
64 5 903.86 ±4.02% 85.93 ±4.05% 95.07
64 6 903.86 ±4.02% 85.97 ±4.05% 95.12

128 1 2005.99 ±3.70% 129.96 ±3.89% 64.79
128 2 911.47 ±4.01% 87.47 ±4.04% 95.97
128 3 911.43 ±4.01% 87.39 ±4.04% 95.89
128 4 911.42 ±4.02% 87.32 ±4.04% 95.80
128 5 911.42 ±4.02% 87.33 ±4.04% 95.82
128 6 911.42 ±4.01% 87.37 ±4.04% 95.86
Mult. Config.
CPU-TT Only 1999.17 ±3.74% 91.65 ±3.90% 45.85

Mult. Config.
HLS-V Only 897.14 ±4.06% 86.32 ±4.10% 96.21

Mult. Config.
CPU-TT + HLS-V 259.78 ±3.58% 24.22 ±3.84% 93.23

Source: the author

	Agradecimentos
	Abstract
	Resumo
	List of Figures
	List of Tables
	List of Abbreviations and Acronyms
	Contents
	1 Introduction
	1.1 Challenge
	1.2 Contributions
	1.3 Work Structure

	2 Background
	2.1 Collaborative Computing
	2.1.1 Data partitioning solutions
	2.1.2 Task partitioning solutions
	2.1.3 Task and Data partitioning solutions

	2.2 CPU Thread Throttling
	2.3 FPGA High-Level Synthesis
	2.4 Contributions w.r.t. the State-of-the-Art

	3 Motivation to exploit Data-Collaborative CPU-GPU and CPU-FPGA Environments
	3.1 Methodology
	3.1.1 Execution Environment
	3.1.2 Benchmarks

	3.2 Optimization Opportunities in CPU-GPU Collaborative Environments
	3.2.1 Influence of Workload Balance

	3.3 Optimization Opportunities in CPU-FPGA Collaborative Environments
	3.3.1 Influence of Workload Balance

	3.4 Discussion

	4 Optimization of Data-Collaborative Computing Execution using CPU Thread Throttling
	4.1 ETCG: Energy-Aware CPU Thread Throttling Approach for CPU-GPU Collaborative Environments
	4.1.1 ETCG Overview
	4.1.1.1 Execution Flow
	4.1.1.2 Search Algorithm
	4.1.1.3 Integration to C++ library

	4.1.2 Methodology
	4.1.2.1 Compared scenarios

	4.1.3 Results

	4.2 ETCF: Energy-Aware Thread Throttling and Workload Balancing Framework for CPU-FPGA Collaborative Environments
	4.2.1 ETCF Overview
	4.2.1.1 ETCF Workload Balance
	4.2.1.2 ETCF Thread Throttling
	4.2.1.3 Full ETCF

	4.2.2 Methodology
	4.2.2.1 Evaluation Scenarios

	4.2.3 Results
	4.2.3.1 ETCF-TT Mode
	4.2.3.2 ETCF-WB Mode
	4.2.3.3 ETCF-Full Mode
	4.2.3.4 ETCF-Full x Oracle Evaluation

	4.3 Discussion

	5 On the benefits of Applying CPU Thread Throttling and HLS-Versioning in CPU-FPGA Task-Collaborative Environments
	5.1 Methodology
	5.1.1 Execution Environment
	5.1.2 Benchmarks

	5.2 Thread Throttling and HLS-Versioning opportunities
	5.3 Experimental Grounding
	5.3.1 Evaluation Setup

	5.4 Results
	5.4.1 Single Configuration Scenarios
	5.4.2 Multiple Configurations Scenarios
	5.4.3 Single vs Multiple Configuration

	6 Conclusion
	6.1 Future Work
	6.2 Publications

	References
	Appendix A — ETCG Experiments
	Appendix B — ETCF Experiments
	Appendix C — Chapter 5 Experiments

