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We study how the classical Hamilton’s princi-
pal and characteristic functions are generated
from the solutions of the quantum Hamilton–

Jacobi equation. While in the classically forbidden
regions these quantum quantities directly tend to the
classical ones, this is not the case in the allowed regions.
There, the limit is reached only if the quantum fluc-
tuations are eliminated by means of coarse-graining
averages. Analogously, the classical Hamilton–Jacobi
scheme bringing to the motion’s equations arises from
a similar formal quantum procedure.
Quanta 2022; 11: 42–52.

1 Introduction

Quantum Theory must approach Classical Theory asymp-
totically in the limit of large quantum numbers. This is
equivalent to say that when ℏ → 0, the laws of Quan-
tum Mechanics (QM) must reduce to those of Classical
Mechanics (CM). These are modern formulations of the
Bohr’s Correspondence Principle [1], assumed as a postu-
late of the Old Quantum Theory, and later confirmed in
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various aspects by the Quantum Mechanics. Intuitively,
the principle is justified by an image like Fig. 1 and repro-
duced in many texts, see for instance [2], where the quan-
tum probability distribution function |ψ(x)|2 for a high-
level state of a harmonic oscillator is reported together
with the probability distribution for the corresponding
classical particle at the same energy. This latter quan-
tity is defined as proportional to 1/v(x), where v(x) is the
particle’s velocity. The figure suggests an empiric rule
to obtain the classical quantity as the limit of the corre-
sponding quantum one: firstly, consider large quantum
numbers, and subsequently, eliminate the fluctuations by
substituting some kind of averages to the exact values of
the quantum function.

This empiric criterion is purely qualitative; moreover,
the probability distribution is a basic concept in QM, but
not in CM. Finally, this classical probability diverges at
the turning points. Therefore, we would like to have a
more precise way to compare quantities, that are funda-
mental in both cases, and such that the classical quantity
is the limit of the corresponding quantum one, for ℏ→ 0.
The Ehrenfest’s theorem [3] states that the quantum expec-
tation values of the coordinate and momentum operators
evolve with time according to the classical Hamilton equa-
tion, if the force is replaced by its average. This seems
a bridge between QM and CM. However, the theorem
does not concern the limit ℏ → 0, is true only for free
particles or linear forces and, in general, it approximately
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Figure 1: The comparison between the quantum probability
distribution |ψ(x)|2 (blue line) of the n = 40 state of a harmonic
oscillator and the corresponding classical distribution (yellow)
at the same energies.

holds only if the quantum fluctuation are small [4]. Be-
tween the various formulations of CM, the nearest one
to the Schrödinger version of QM is based on the Clas-
sical Hamilton–Jacobi Equation (CHJE) [5]. The link is
given by the Quantum Hamilton–Jacobi Equation (QHJE),
which appears looking for solutions of the Schrödinger
equation in exponential form. The QHJE is the starting
point for the Wentzel–Kramers–Brillouin (WKB) approx-
imation [6–8]. Modern reviews of the WKB method, also
named as Jeffreys–Wentzel–Kramers–Brillouin (JWKB)
or phase-integral method, are presented in [9–11]. In the
framework of the usual Copenhagen interpretation of QM,
the QHJE is fully equivalent to the Schrödinger equation,
and reduces to the CHJE for ℏ→ 0.

As for this latter equation, its solutions are the Hamil-
ton’s principal and characteristic functions. These are
fundamental quantities in CM, in that they allow either
to completely solve the dynamical problem, in case of
complete integrals [5], or to investigate the properties
of families of trajectories, corresponding to special solu-
tions [12–16].

Therefore, it seems natural to compare the solutions of
the classical Hamilton–Jacobi equation, with the corre-
sponding ones for the quantum case. This can be done for
each number of degrees of freedom. For simplicity, we
will consider here the one-dimensional conservative case.
The QHJE appears when the particle’s wave function at
the energy E in a potential V(x) is searched in the form:

ψ(x, E, t) = A e
i
ℏS (x,E,t) (1)

where S (x, E, t) is a complex quantity, and A is a constant.
When Eq. (1) is inserted into the Schrödinger equation:

iℏ
∂ψ

∂t
=

[
−
ℏ2

2m
∂2ψ

∂x2 + V(x)
]
ψ , (2)

the QHJE results:

−
∂S
∂t
=

1
2m

(∂S
∂x

)2

− iℏ
∂2S
∂x2

 − V(x) . (3)

The time dependence can be separated, by writing:

S (x, E, t) = W(x, E) − Et , (4)

Then, Eq. (3) becomes the time-independent QHJE:

1
2m

(
dW
dx

)2

−
iℏ
2m

d2W
dx2 = E − V(x) . (5)

Like S (x, E, t), the function W(x, E) is in general a
complex quantity.

In (5), the energy E is considered as a fixed parameter,
and therefore according to the common usage, the deriva-
tives with respect to x are written as ordinary derivatives.
In this paper, these will be usually indicated by means of
primes, for example, dW

dx = W′(x, E). In the last section
of this paper, we will need also the derivatives of W(x, E)
and S (x, E, t) with respect to E.

By setting ℏ = 0, Eqs. (3) and (5) become the classical
time-dependent and time-independent Hamilton–Jacobi
equations, respectively, whose solutions S C(x, E, t) and
WC(x, E) are the Hamilton’s principal and characteris-
tic functions [5], also named the action and abbreviated
action, respectively [17].

Therefore, a solution S (x, E, t) of the QHJE (3) will be
in analogy called quantum Hamilton’s principal function
(or quantum action), and a solution W(x, E) of Eq. (5)
will be called quantum Hamilton’s characteristic function,
(or quantum abbreviated action).

In order to investigate how the classical mechanics
arises in this approach from the quantum one, is seems
natural to compare these quantum actions with the corre-
sponding classical quantities.

This problem was already touched in [18], according
to a method that for some aspects can be considered as
the exact version of the WKB approach. The aim of the
present paper is to more completely investigate this point.

The usual WKB method constructs approximate so-
lutions of Eq. (5), by expanding W(x, E) in powers of
ℏ, and neglecting terms of higher orders than ℏ2. The
resulting semi classical wave function has an exponen-
tial expression in the classically forbidden region (c.f.r.),
and a trigonometric one in the classically allowed region
(c.a.r.). It usually fits very well the exact wave function,
except near the turning points, where it diverges.

The method presented in [18] differs from the WKB
one in that it makes use of exact solutions of Eq. (5). In
this way, the wave functions are precisely represented
along the entire x-axis, turning points included. In the
following, we briefly resume the method, referring to the
quoted references for the details.
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2 The Method

Eq. (5) is a second order non-linear equation for W(x, E),
but it can also be seen as a first order equation for the
derivative W′(x, E). This quantity was named by Leacock
and Padgett [19, 20] the quantum momentum function
p(x, E). It is an ordinary complex function, not to be
confused with the quantum operator momentum, which
does not appear in the following:

p(x, E) = W′(x, E) =
ℏ

i
ψ′(x, E)
ψ(x, E)

. (6)

With this definition, (5) becomes a Riccati equation for
p(x, E):

iℏp′ = (p)2 − 2m(E − V(x)) . (7)

Leacock and Padgett demonstrated that the exact quantum
energy levels can be obtained, without solving (7), from
the condition: ∮

p(x, E)dx = 2nπℏ , (8)

where the integration is done along a closed path in the
complex x-plane, enclosing the turning points.

After p(x, E) is found from (7), the solution of (5) is:

W(x, E) =
∫

p(x, E)dx . (9)

By setting ℏ = 0, Eq. (7) becomes the equation for the
classical momentum pC:

pC(x, E) = ±
√

2m(E − V(x)) , (10)

whose integration gives the classical abbreviated action:

WC(x, E) =
∫

pC(x, E)dx (11)

When ℏ = 0, the QHJE becomes the CHJE, and there-
fore the quantum abbreviated action W(x, E) generates in
some way the classical corresponding one WC(x, E). Sim-
ilarly, its derivative, i.e. the quantum momentum function
p(x, E), has to become the classical momentum pC(x, E).

The quantum abbreviated action W(x, E) is therefore
the suitable quantity to investigate, being the fundamental
function in the QHJ formulation of QM. Indeed, from
it, the quantum action S (x, E, t) is obtained by means of
Eq. (4), and subsequently, the wave function is given by
Eq. (1).

As discussed in [18], Eqs. (5) and (7) admit many solu-
tions, generating the same wave function through Eqs. (4)
and (1). The simplest, special ones, are obtained as shown
in [21], by analysing the polar structure of (7). We will
indicate these special solutions as WS (x, E) and pS (x, E),

respectively. For low-lying states, these solutions can
often be found by simple inspection. For instance, it is
immediate to verify that a special solution of (7) for the
ground state of a harmonic oscillator of mass m and fre-
quency ω is pS = imωx, with the corresponding action
WS =

1
2 imωx2.

The special solutions so found are the same as obtained
from the complex logarithm of the wave function, by
means of Eqs. (1) and (4).

As shown in [18], in the forbidden regions the imag-
inary classical actions are the limits of the special solu-
tions WS (x, E) and pS (x, E) for ℏ→ 0. In the classically
allowed regions instead, when we try to connect these
solutions with the corresponding classical quantities, we
immediately run into serious difficulties.

In the absence of magnetic field, the wave functions
can be taken as real [22]. Then, the quantum momen-
tum function pS (x, E), as computed from (6) is a purely
imaginary quantity (more exactly, it is a complex quan-
tity with a real part everywhere zero, apart from delta
singularities at the nodal points of the wave function, see
below). The classical momentum instead is imaginary
inside the classically forbidden regions, but it is real in the
classically allowed ones. Analogously, the reduced quan-
tum action WS (x, E), as computed from (1), is a complex
quantity, with an imaginary part logarithmically diverging
at the nodal points, and a real part discontinuously jump-
ing from 0 to πℏ(modπℏ) at every variation in sign of the
wave function (these jumps produce the delta singularities
of Re[pS (x, E)]). The classical reduced action WC(x, E)
is instead a continuous real function inside the classically
allowed regions, and imaginary outside.

Therefore, WC(x, E) and pC(x, E) inside the classical
regions, cannot be the limits of the special solutions
WS (x, E) and pS (x, E), but have instead to be generated
by the real parts of two complex continuous functions
whose imaginary parts vanish when ℏ → 0. As shown
in [18], these functions can be obtained from the general
solutions WG(x, E) and pG(x, E) of Eqs. (5) and (7).

According to the previous considerations, as in the
usual WKB method, we have to differently treat Eq. (5)
in the classically forbidden and allowed regions. Let us
consider the simplest case of a potential V(x) such that
the classical region, indicated as II, is located between the
turning points x1 and x2. The forbidden regions x < x1
and x > x2 are indicated as I and III, respectively. The
energy eigenvalues come from the condition (8) and the
corresponding imaginary quantum momentum functions
pS ,I,III(x, E) in I and III are found from (7) as explained
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above. By integrating, we get:

WS ,I,III(x, E) = iYS ,I,III(x, E) =
∫

pS ,I,III(x, E)dx .

(12)
Therefore, in the forbidden regions the time-independent
wave functions have the respective exact exponential
WKB-like representations:

ψI,III(x, E) = AI,IIIe−YS (x,E)/ℏ = AI,IIIe−
1
ℏ

∫
pS (x,E)dx .

(13)
AI,III are constants, to be fixed later. In the classical
region, we need instead the general complex solution of
Eq. (5), of the form:

WG(x) = X(x) + iY(x) . (14)

This general solution WG(x, E) can be built starting from
the special solutions WS (x, E) and pS (x, E), by applying
a known theorem for the Riccati equation [23]. It states

that if one special solution pS (x, E) of (7) is known, the
equation can be completely integrated and the general
solution is given by:

pG(x) = pS (x) +
1
v(x)

, (15)

where v(x, E) is the general solution of an associated
linear differential equation, which in our case is:

v′(x) −
(
2i
ℏ

)
pS (x)v(x) =

i
ℏ
. (16)

The result is:

pG(x) = pS (x) +
e−

2i
ℏ

∫ x
0 pS (x)dx

i
ℏ

∫ x
0 e−

2i
ℏ

∫ x
0 pS (x)dxdx +C0

, (17)

whose integration gives:

WG(x) = WS (x) +
ℏ

i
log

[
i
ℏ

∫ x

0
e−

2i
ℏ

∫ x
0 pS (x)dxdx +C0

]
+C1 . (18)

C0 and C1 are two complex constants. The real part of (18) is:

X(x) = Re[WS (x)] + ℏArg
[

i
ℏ

∫ x

0
e−

2i
ℏ

∫ x
0 pS (x)dxdx +C0

]
+ Re[C1] . (19)

For various potentials, the integrals in (17) and (18) can be analytically done [18]. For instance, the special solution
of (7) for the quantum momentum function of the n state of the harmonic oscillator (ho) is [21]:

pho,n
F,S (x) = i

mωx −
2n
√

mωℏHn−1

(√
mω
ℏ x

)
Hn

(√
mω
ℏ x

)
 , (20)

where Hn is the n-th Hermite polynomial.
Therefore, according to (17), the corresponding general solution is:

pho,n
G (x) = pho,n

S (x) +
e

mωx2
ℏ

H2
n

(√
mω
ℏ x

) [
i
ℏ

∫ x
0

e
mωx2
ℏ

H2
n

(√
mω
ℏ x

)dx +Cho,n
0

] . (21)

By integrating (20) and (21) one obtains, respectively, the special solution of (5):

Who,n
S (x) = iYho,n

S (x) = i
(
1
2

mωx2 − ℏ log
[
Hn

(√
mω
ℏ

x
)])

, (22)

apart for an unessential integration constant, and the corresponding general one:

Who,n
G (x) = Who,n

S (x) +
ℏ

i
log

 i
ℏ

∫ x

0

e
mωx2
ℏ

H2
n

(√
mω
ℏ x

)dx +Cho,n
0

 +Cho,n
1 . (23)

The C’s are constants. The real part of last expression is:

Xho,n(x) = ℏ Arg
[
Hn

(√
mω
ℏ

x
)]
+ ℏ Arg

 i
ℏ

∫ x

0

e
mωx2
ℏ

H2
n

(√
mω
ℏ x

)dx +Cho,n
0

 + Re[Cho,n
1 ] . (24)
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The real part of pG(x, E) can analogously be computed
from (21).

For each value of the integer n, the integrals in (21)–
(24) can be analytically done, and the results can be ex-
pressed in terms of elementary function and the error
function of imaginary argument, which is connected to
the Dawson integral [24, p. 228].

For a general Hamiltonian, by inserting in (1) the
WG(x, E) analytically or numerically computed from
Eq. (18), with the constants C0 and C1 chosen as
described in [18], one has the exact solution of the
Schrödinger equation in the classical region.

The same results can be obtained by means of a differ-
ent, mainly numerical procedure [25].

In the classically allowed region, when (14) is put into
(5) and the real and imaginary parts are separated, the
following equations are obtained for the real X(x, E) and
the imaginary part Y(x, E) of W(x, E) (the dependence on
E here and in the following equations will be understood):

X′2(x) − Y ′2(x) + ℏY ′′(x) = 2m (E − V(x)) (25)

X′(x)Y ′(x) −
1
2
ℏX′′(x) = 0 . (26)

Last equation gives:

Y(x) = ℏ log
[ √
|X′(x)|

]
. (27)

By putting (27) into (25), the following equation results:

4X′4(x) − 3ℏ2X′′2(x) + 2ℏ2X′(x)X′′′(x)
4X′2(x)

= 2m(E−V(x)) .

(28)
This third order differential equation is rigorously equiva-
lent to the Schrödinger equation [4, p. 232].

When ℏ = 0, last equation becomes the CHJE for
X(x, E), while Y(x, E) vanishes according to (27). This
confirms that in the c.a.r. the classical reduced action
WC(x, E) is generated, in the classical limit, by the real
part X(x, E) of the quantum action W(x, E), as claimed
above.

With the suitable Cauchy data [25], the non-linear equa-
tion (28) can be numerically integrated, giving the same
results as (19). The solution is a continuous function
X(x, E), different from the step function which is the real
part of the special solution WS (x, E). By putting it and
Y(x, E) from Eq. (27) into (14), one obtains the quantum
action W(x, E), and from this latter, the time independent
complex wave function (1):

A
√

X′(x)
exp

[ i
ℏ

X(x)
]

(29)

with a complex constant A. Eq. (28) is equivalent to
Eq. (3.6) of Ref. [9], which is written in a different form
and obtained through another approach, and (3.7) there
is equal to (29). There too it is claimed that knowing any
solution of (28), one has the exact solution (29) of the
Schrödinger equation, but no attempt is done to get this
solution.

By suitably choosing the constants and combining (29)
and its conjugate, the wave function in the classically
allowed region can be written in the WKB like form:

ψII(x) =
AII
√
|X′(x)|

sin
[
X(x)
ℏ
+
π

4

]
(30)

where AII is a real constant.
The constant π

4 in (30) is chosen in order to put the
wave function in the WKB-like expression. This latter
has the classical reduced action Wc(x, E) in place of the
quantum function X(x, E).

The comparison between (30) and the corresponding
WKB expression confirms that the real part of the quan-
tum reduced action [X(x, E)] generates the classical re-
duced action WC(x, E) in the limit ℏ→ 0, and its deriva-
tive X′(x, E) generates the classical momentum pC(x, E).

In the classically forbidden regions, outside the turning
points, the wave function has instead the exponential
representation (13), but this time the functions YI,III(x, E)
are numerically computed from Eq. (25), with X(x) = 0:

− Y ′2(x) + ℏY ′′(x) = 2m (E − V(x)) (31)

When ℏ = 0, this equation reduces to the CHJE in the
forbidden region.

The real constants Ai in (13) and (30) are to be fixed
by the continuity of the wave function and its first order
derivative at the turning points. The numerical version
of the method is independent from the analytic one, and
allows finding the allowed energy values too. Indeed,
in [26] it has been shown that a value of the parameter E in
(28) and (31) is an energy eigenvalue, if with this choice
it is possible to construct a normalizable wave function,
continuous with its derivative, by matching together at the
turning points the functions (13) and (30), by a suitable
choice of the Ai. Obviously, this is the usual quantization
condition for the Schrödinger equation.

This method to find the energy eigenvalues has been
successfully applied to various Hamiltonians, and gives
the eigenvalues with the same precision as the usual ap-
proaches [26, 27].

Eqs. (13) and (30) give a WKB-like representation of
the wave function along the entire x-axis. However, (13)
and (30) are exact, and exactly reproduce the wave func-
tion at the turning points too, where the WKB expressions
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(x)X
C(x)W

x

Figure 2: The real part X(x, E) of the quantum abbreviated
action for the state n = 2 of a harmonic oscillator (blue) and
the corresponding classical quantity WC(x, E) (orange). The
figure refers to a semi-period of oscillation of the classical
particle, from the left turning point to the right one.

diverge. Moreover, it is important to note that the rep-
resentation (30) of the wave function in the c.a.r. is not
possible by using the real part of the special solution
WS (x, E), which is a step function.

Eq. (30) shows that the real part X(x, E) of the quantum
reduced action is a fundamental quantity in QM, being
the phase of the wave function in the classical region,
while its derivative X′(x, E) controls the amplitude.

The detailed study of the solutions of our equations for
the harmonic oscillator and the hydrogen atom is given
in [18, 25] and for the quartic oscillator in [26], and will
not be repeated here. In Fig. 2 we simply present a graph
comparing the real part X(x, E) of the quantum reduced
action for the state n = 2 of the harmonic oscillator, with
the corresponding classical quantity WC(x, E), at the same
energy.

The two functions refer to a semi-period of oscillation
of the classical particle, from the left turning point x1 to
the right one, x2. As Eq. (28) does not contain X(x, E),
but only its derivatives, a constant can be added to X(x, E),
and the same holds for WC(x, E). Therefore, the value of
the two functions in x1 is arbitrary and is chosen equal to 0.
The choice of the other two conditions needed to solve the
Cauchy problem for Eq. (28) is explained in the quoted
references. As seen from the figure, both the functions
X(x, E) and WC(x, E), are monotonically increasing from
the value 0 in x1 to (n + 1/2)πℏ in x2. The quantum
function follows the profile of the classical one, waving
around it, and the number of ripples increases with n.
These ripples cause peaks in the real part Re[p(x, E)] =
X′(x, E), as seen from Fig. 3.

In Fig. 4 are plotted the functions sin[Xho,n(x)/ℏ+π/4]
(green line), 1/

√
X′(x) (orange line) and finally their prod-

(x)]Re[p
Cp (x)

x

Figure 3: The real part p(x, E) of the quantum momentum
function for the state n = 2 of a harmonic oscillator (blue)
and the corresponding classical momentum pC(x, E) (orange).
The figure refers to a semi-period of oscillation of the classical
particle, from the left turning point to the right one.

ψ(x)

sin[X(x)/ħ+π/4]

(x)1 / X'

x

Figure 4: The yellow line is the function sin[Xho(x)/ℏ + π/4].
The green line is the function 1/

√
X′(x). Their product gives

the wave function for the n = 2 state of the harmonic oscillator,
inside the classically allowed region (blue line).

uct (blue line) which according to Eq. (30), exactly repro-
duces the n = 2 wave function for the harmonic oscillator.

3 The Classical Limit

In order to investigate the classical limit, it is again neces-
sary to distinguish the classically forbidden regions from
the allowed one.

As for the c.f.r., the special solutions WS (x, E) and
pS (x, E) directly generate the classical reduced action
and momentum, respectively. For a generic Hamilto-
nian, this can be seen from Eq. (31) which reduces to
the CHJE (with V(x) > E), when ℏ = 0. The way in
which the limit is approached for the harmonic oscillator
can be seen from (22), to be compared with the classical
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Im[W  (x)]ho
S

Im[W  (x)]ho
C

x

Figure 5: The imaginary part of the quantum abbreviated ac-
tion WhoS (x, E) in the classically forbidden region III (blue
line), for the n = 20 state of the harmonic oscillator, as
compared with the corresponding classical quantity Who

C (x, E)
(dashed, orange). The two curves are practically superim-
posed.

action WC(x, E):

Who,n
C (x, E) = i

1
2

x
√

m2ω2x2 − 2mE

−i
E
ω

log
[
mω2x + ω

√
m2ω2x2 − 2mE

]
.

(32)

To both the actions (22) and (32), a constant can be added,
so that the two functions can be chosen as equal for a par-
ticular value of x. The numerical values of the imaginary
parts of the two functions are plotted in Fig. 5, which
refers to n = 20. As seen from the figure, the numer-
ical values are very close, and their relative difference
tends to vanish for large x. This implies that the classical
imaginary momentum too in the c.f.r. is generated by the
quantum momentum function as given by Eq. (20).

As for the c.a.r., we note that in Eqs. (16) and (17),
the dependence on ℏ is non-analytical, therefore, the ex-
pansion in power series of this quantity is not possible.
Anyway, a clear indication of what happens in the limit
can be obtained by using numerical computations with
increasing values of the quantum number n. Some re-
sults are presented in Fig. 6, where the real part of the
quantum abbreviated function for the harmonic oscillator
with n = 60, is reported. As seen from the figure, while
increasing n, the real part X(x) of this function seems
to tend more and more in this scale to the classical ac-
tion WC(x). Actually, however, it maintains a waving
behavior around this latter, so acquiring in the limit an
infinite number of ripples. The oscillations’ amplitude
tends to become constant while increasing n, while their
number increases. This can be seen from Fig. 7, where
the difference X(x, E) −WC(x, E) is plotted.

X(x)

CW (x)

x

Figure 6: The real part X(x, E) of the quantum abbreviated
action for the state n = 60 of a harmonic oscillator (blue)
and the corresponding classical quantity WC(x, E) (dashed,
orange). The figure refers to a semi-period of oscillation of the
classical particle, from the left turning point to the right one.
The two functions are chosen equal to 0 in the left turning point.
In the scale of the figure, the two curves seem overlapping, but
in reality the quantum one waves around the classical.

CX(x) - W (x)

x

Figure 7: The difference X(x, E) −WC(x, E) between the real
part X(x, E) of the quantum abbreviated action for the state n =
60 of a harmonic oscillator and the corresponding classical
quantity WC(x, E), in the classically allowed region. While
increasing n, the amplitude of the oscillations tends to become
constant, and their number increases.

As for the quantum momentum function, its real part
Re[pG(x)], which is reported in Fig. 8 for n = 60, presents
oscillations of finite heights, due to the ripples in the real
part of the quantum abbreviated action.

The number of these oscillations increases with n, as
can be seen by comparing Fig. 8 for n = 60 with Fig. 3 for
n = 2. The presence of a number of peaks and oscillations
going to infinite, demonstrates that the quantum functions
cannot directly tend in strict mathematical sense to the
corresponding classical quantities. The figures however
suggest investigating what happens if the oscillations are
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p(x)

x

Figure 8: The real part p(x, E) of the quantum momentum
function for the state n = 60 of a harmonic oscillator, in the
classically allowed region.

Re[p(x)]

Cp (x)

x

Figure 9: The red points represent the coarse-grained averages
of the real part p(x, E) of the quantum momentum function for
the state n = 60 of a harmonic oscillator, in the classically
allowed region. The black line is the corresponding classical
momentum pC(x, E).

eliminated by means of a coarse-graining procedure. This
means to divide the interval between the turning points
in a number of sub-intervals, and in each of these the
average value is substituted to the exact values of the
functions.

In Fig. 9, the result of such operation on the real part
of pG(x) for n = 60 is plotted: the red dots represents the
mean values of this function, computed averaging it in
20 subintervals of the x-axis, between the turning points.
As seen from the figure, the dots are distributed along the
curve of the classical momentum pC(x), which is repre-
sented by the black line. As for the imaginary part of the
quantum momentum function, it symmetrically oscillates
around zero, so that its mean values in each small subin-
terval tends to zero; in addition, it is also proportional
to ℏ according to Eq. (27), and therefore vanishes in the

classical limit. The quantum momentum function for
ℏ→ 0 in the c.a.r. so becomes purely real, and generates
the classical momentum if its exact values are averaged
by means of the coarse-graining. The same happens to
its integral, i.e. the quantum abbreviated action. Similar
computations for various Hamiltonians show the same
behavior. The diverging number of fluctuations in the
limit ℏ → 0 explains why the WKB series expansion
does not converge to the quantum characteristic function.

An analogous investigation can be done in order to see
if the classical equations of motion are generated by a
sort of quantum counterpart.

In the Hamilton–Jacobi formulation of the Classical
Mechanics, as well known, the relation between x and t,
i.e. the motion’s equation in the form t = t(x), is obtained
by equating to a constant β the derivative of the action
S C(x, E, t) with respect to the energy E [5]. This proce-
dure is usually considered as the result of a canonical
transformation to a null Hamiltonian function. However,
the same equation appears by separating the variables and
integrating the equation expressing the energy conserva-
tion. For a semi period of the harmonic oscillator, this
gives:

1
ω

arcsin
[√

m
2E

ωx
]
= t + β (33)

By inverting this equation one obtains the usual form of
the motion’s equation x = x(t, E, β). In order to see what
happens by formally applying this classical procedure to
QM, we have to differentiate the quantum action S (x, E, t)
with respect to the energy E:

∂S (x, E, t)
∂E

=
∂W(x, E)

∂E
− t . (34)

It is possible to obtain a linear differential equation for
this quantity, by differentiating the Riccati equation (7)
with respect to E. The result however contains integrals of
the quantum momentum function (22), which is already
given by a complicated expression. The final formulae
are therefore too cumbersome to be useful, so that we
prefer to adopt the numerical procedure.

We already know that in the classical limit, the complex
quantum quantities in the c.a.r. become real functions.
Therefore, we only need the derivative with respect to the
energy E of real part X(x, E) of the quantum abbreviated
action W(x, E). We will indicate this derivative with the
subscript E, i.e:

XE(x, E) =
∂X(x, E)
∂E

. (35)

The equation for this quantity is obtained by differentiat-
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∂

∂

X(x,E)

E

x

Figure 10: The derivative with respect the energy E of the
real part of the quantum abbreviated action for the n = 50
state of the harmonic oscillator, as computed by the numerical
integration of Eq. (36).

ing Eq. (28) with respect to E. The result is:

4mX′(x)3 = 4X′(x)4X′E(x) + 3ℏ2X′E(x)X′′(x)2

−ℏ2X′(x)
(
3X′′(x)X′′E (x) + X′E(x)X′′′(x)

)
+ℏ2X(x)2X′′′E (x). (36)

In this equation, the explicit dependence on E is under-
stood, and the primes indicate the derivatives with respect
to x, as elsewhere in this paper. Eq. (36) is a differen-
tial equation for XE(x, E), giving the dependence of this
quantity on the coordinate x, at fixed energy. The func-
tion X(x, E) here and its derivatives with respect to x, are
computed by previously integrating Eq. (28).

Fig. 10 reports the typical results of the numerical
integration of (36). The figure refers to the state with
quantum number n = 50 of the harmonic oscillator. The
curve is the derivative XE(x, E) of the real part X(x, E)
of the quantum abbreviated action W(x, E), with respect
to the energy E. As seen from the figure, this derivative
is a highly oscillating function, whose oscillations are
contained between two monotonic increasing functions.
The number of these oscillations goes to infinity when
increasing n.

From Fig. 10 it is clear that equating to a constant the
r.h.s. of (34) gives a multi-valued relation between x
and t. Indeed, graphically it means to find the intersec-
tions between the graph in the figure and the horizontal
lines with y-coordinates t + β.

However, if we eliminate the oscillations by means of
a coarse-graining, we obtain the red points in Fig. 11.
The black curve represents the derivative ∂WC(x,E)

∂E of the
classical abbreviated action WC(x, E) for the harmonic
oscillator, given by the l.h.s. of (33). As seen from the
figures, the averaged quantum values follow quite well

∂

∂
CW (x,E)

E

x

Figure 11: The red points are the coarse-grained averages of
the function reported in Fig. 10. The black line is the derivative
with respect to the energy of the classical abbreviated function
WC(x, E).

the corresponding classical curve. Therefore, the formal
application of the classical procedure to the quantum
action, going to the classical limit after the elimination of
the quantum oscillations by means of the coarse-graining,
gives the classical equation of motion.

The results presented show that the fundamental quan-
tities of the Hamilton–Jacobi formulation of Classical
Mechanics, i.e. the action and the abbreviated action, are
generated in the c.a.r. by the real parts of the correspond-
ing quantum functions, while the imaginary parts vanish.
The quantum functions in these regions present a number
of oscillation increasing with the quantum number n, and
going to infinity in the classical limit. Therefore, the clas-
sical quantities in the c.a.r. cannot be the limit of the quan-
tum corresponding quantities, in the strict mathematical
sense. In order to obtain the classical quantities from the
quantum ones, these latter have to be previously smoothed
by eliminating the quantum oscillations by means of the
coarse-graining averages, and are these smoothed func-
tions that tend to the classical ones. The same happens for
the quantum momentum function, which generates the
classical momentum. The classical equation of motion
arises in an analogous way, from the formal multivalued
quantum relation, obtained by applying to the quantum
action the classical Hamilton–Jacobi procedure.

As the true description of the motion is given by the
quantum mechanics, it is clear that the macroscopic ob-
jects apparently follow the laws of the classical mechanics
due to the fact that the macroscopic measure instruments,
perform a coarse-graining averages, eliminating the in-
trinsic quantum oscillations. The empiric rule inferred by
Fig. 1 is in this way confirmed and clarified.
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