
This document is downloaded from the
VTT’s Research Information Portal
https://cris.vtt.fi

VTT
http://www.vtt.fi
P.O. box 1000FI-02044 VTT
Finland

By using VTT’s Research Information Portal you are bound by the
following Terms & Conditions.

I have read and I understand the following statement:

This document is protected by copyright and other intellectual
property rights, and duplication or sale of all or part of any of this
document is not permitted, except duplication for research use or
educational purposes in electronic or print form. You must obtain
permission for any other use. Electronic or print copies may not be
offered for sale.

VTT Technical Research Centre of Finland

Optimizing 3D object detection for embedded systems in automated
vehicles using sensor data fusion and CUDA computing
Miekkala, Topi; Kutila, Matti; Schneider, Mathias; Höß, Alfred

Published in:
2022 IEEE 18th International Conference on Intelligent Computer Communication and Processing (ICCP)

Accepted/In press: 22/09/2022

Document Version
Peer reviewed version

Link to publication

Please cite the original version:
Miekkala, T., Kutila, M., Schneider, M., & Höß, A. (Accepted/In press). Optimizing 3D object detection for
embedded systems in automated vehicles using sensor data fusion and CUDA computing. In 2022 IEEE 18th
International Conference on Intelligent Computer Communication and Processing (ICCP) IEEE Institute of
Electrical and Electronic Engineers.

Download date: 11. Dec. 2022

https://cris.vtt.fi/en/publications/77f96e22-b278-471a-ba86-340b3a8d7799

Abstract— This article explores the utilization of the

processing power of GPUs using CUDA computation for

real-time aggregation of multi-sensor data and detection of

3D objects using parallel clustering algorithms. The purpose

is to implement an algorithm that fuses raw lidar point cloud

data and 2D camera image object detections to produce 3D

object clusters in a lidar point cloud. Most of the

computation has been implemented using CUDA parallelism

to investigate the capability of GPU devices in this task,

which is a common challenge in automated driving. The

results indicate that processing times can be optimized within

the algorithm, which is crucial when considering the large

amounts of data provided by lidar and camera-based

systems. The algorithm can perform inference on the Jetson

Xavier AGX at rates of ~20 to ~220 ms depending on the

number of objects and their corresponding point amounts in

the KITTI dataset.

Keywords—3D object detection, CUDA, sensor data fusion,

automated driving

I. INTRODUCTION

A. Parallel Computation

With the constant increase in processing power of
modern computation devices, engineers can design and
implement increasingly complex and computationally
demanding algorithms, which is an especially significant
subject in the field of automated vehicles, where real-time
processing of data is crucial. For this reason, the
European AI4DI project is adopting a holistic view of
developing generic artificial intelligence algorithms that are
then optimized in a different industrial domain. In this case,
we are focusing on developing AI for the benefits of the
transport industry. In demanding computation tasks, GPU
devices are often utilized due to them enabling efficient
parallelization of repetitive calculations, which can
significantly speed up data processing. Neural networks are
an example of the effective utilization of parallel
computing due to their repetitive calculations, which are
exponentially sped up by distributing the operations across
the GPU threads. Although neural networks are currently a
very popular field of science, there are many other
possibilities for the efficient utilization of the parallel
computation power of GPUs. In automated driving, the
real-time computation of vehicle sensor data is a critical
safety requirement. With continuously improving sensor
technology, the amount of data that needs to be processed
by an automated vehicle is also increasing constantly. This
demands more computation power and solutions that allow
quick processing of high-resolution camera images and
large lidar point clouds, for example.

Edge AI computing is an increasingly important part of
automated driving due to the growing versatility of deep
learning applications for vehicle sensor data. These
embedded systems often combine compactness and power
efficiency and maximize GPU capacity for optimized
running of AI applications. These devices come in several
variations of computation power and intended use cases.
One popular example in the field of robotics is the Nvidia
Jetson product line [1]. Jetson devices offer a range of
developer tools to optimize and deploy AI applications in
demanding industrial environments.

B. 3D Object Detection in Automated Driving

The task of 3D object detection is a challenging and
critical subject in automated driving. The environmental
perception of an autonomous vehicle must be reliable to
enable safe automated vehicle operation, especially in
crowded and narrow urban spaces where other road users
can blend into the surroundings, and sometimes appear
suddenly in front of the vehicle from behind obstacles. The
vehicle should be able to detect other road users robustly,
but also do it in real-time to react quickly enough. A 3D
object detector neural network might be able to correctly
detect and classify objects from the near vicinity of the
vehicle, but if the neural network model is so
computationally expensive that the vehicle computer takes
several hundreds of milliseconds to process the data, the
chance of collision and a serious accident increases greatly.

Data fusion can be implemented to process the output
of multiple sensor types to extract information that would
not be available from simply using a single sensor. In
automated driving, there are varying targets on the road
that have multiple characteristics and features. Some of
these features are more perceivable to specific sensor types
such as cameras, while other features of the same object are
perceived better by a different sensor such as a lidar. State-
of-the-art 2D image-based object detectors such as the
Yolov4 network [2] have reached remarkable performance
levels, and they are useful tools in autonomous driving
tasks that make use of camera data. 2D object detection
often tends to be less computationally expensive than 3D
object detection. Fusing the data of a lidar sensor and a 2D
image object detector can provide the benefits of execution
speed and accuracy of 2D detection and combine that
directly with 3D spatial information provided by a lidar,
without implementing deep learning point cloud detectors.

The following sections II and III present the basis and
implementation for an example method that utilizes 2D
image object detections and lidar point clouds, fusing their
data together through CUDA (Compute Unified Device
Architecture) accelerated algorithms [3]. Sections IV and V
present the results that demonstrate the efficiency of
applying CUDA operations on common point cloud and

Topi Miekkala

VTT Techincal Research Centre of Finland Ltd.

Tampere, Finland

topi.miekkala@vtt.fi

Matti Kutila

VTT Techincal Research Centre of Finland Ltd.

Tampere, Finland

matti.kutila@vtt.fi

Optimizing 3D object detection for embedded systems in automated

vehicles using sensor data fusion and CUDA computing

Mathias Schneider

Technical University of Applied Sciences

Amberg-Weiden, Germany

mat.schneider@oth-aw.de

Alfred Höß

Technical University of Applied Sciences

Amberg-Weiden, Germany

a.hoess@oth-aw.de

image operations such as coordinate transformations, point
projection and distance-based clustering in order to achieve
3D object clusters with fused camera and lidar data.

II. RELATED WORK

A. Current Methods for Object Detection

Neural networks have gained great momentum in the
past decade due to the emergence of big data and increases
in computation power. The current era of deep learning
advancements has provided several capable object
detection models, with Yolov4 being a state-of-the-art
example of a 2D image detector. It achieves 43.7% average
precision (AP) and 65.7% AP50 accuracies for the COCO
dataset [2].

For 3D object detection, several deep learning methods
exist [4]. A detector that uses a single point cloud as an
input usually either performs inference directly on the
individual points, voxelization on the scene first, or uses a
combination of the two. Popular 3D detectors such as PV-
RCNN and Point-RCNN by S. Shi et al. [5][6] report their
test results using high-end GPUs like the Titan RTX and
the Tesla V100. In actual applications of autonomous
driving, the computing is often performed using an
embedded GPU, which most likely does not match the
performance of high-end desktop GPUs. Another well-
known 3D detector, PointPillars [7], addresses this fact in
its test results. PointPillars is also one of the
computationally lighter 3D detectors. Nvidia has released a
TensorRT optimized model of PointPillars, which is
claimed to perform at an inference rate of approximately
27.5 milliseconds, translating to approximately 36 FPS [8].

B. Object Detection using Embedded AI devices

Embedded AI devices such as the Nvidia Jetson
product line do not necessarily match higher-end desktop
GPUs in terms of computing capacity and CUDA cores,
but their advantage regarding deep learning lies in the
device-specific optimization of neural network models
through libraries like TensorRT [9]. The Nvidia TensorRT
library offers tools to modify existing and trained neural
network models in ways that speed up calculations on the
GPU device and depending on the network architecture can
greatly accelerate neural network inference. While the
Yolov4 network is a relatively computationally heavy 2D
object detector, TensorRT can speed up its inference
significantly. One such software library is the TkDNN
library [10]. The TkDNN authors claim that the optimized
Yolov4 runs at approximately 22 FPS on the Jetson Xavier
AGX with a network resolution of 608x608.

III. 3D OBJECT CLUSTERING METHOD

The algorithm used in this study uses a lidar point cloud
and its corresponding 2D image object detection boxes as
an input. The 2D detection boxes can be the result of any
kind of detection algorithm, but in this study we used the
Yolov4 detector accelerated by the TensorRT library.
Another requirement for the data fusion between the
camera and the lidar is the calibration matrix between the
two sensors. This can be obtained in various ways, but for
this study, we used the genetic algorithm of [11], which is
implemented specifically for this purpose. The object
clustering algorithm itself consists of two major phases:
pre-processing and parallel multi-object 3D clustering. A
diagram of the full system is shown in Fig. 1.

A. Pre-processing

Firstly, there is pre-processing, which includes CUDA
accelerated combination of the 3D lidar point cloud data
and the 2D image object detection data. The pre-processing
phase first applies an approximate progressive
morphological filter (APMF) to remove ground points from
the lidar point cloud. The APMF is also the only phase that
does not make use of CUDA kernels, but instead uses the
implementation provided by the Point Cloud Library (PCL)
[12][13]. After removing ground points, CUDA
calculations are used to apply the appropriate coordinate
transformations to transform the lidar point cloud to the
coordinate system of the camera, and then to project the
points on the 2D image. After this, projected points that fall
inside proportionally shrunken 2D image detections boxes
(magenta boxes in Fig. 5 and Fig. 6) are used to determine
the starting points for the 3D object clustering in the lidar
point cloud.

B. Parallel Multi-Object 3D Clustering

From the pre-processing phase the algorithm has
acquired the 3D starting points for the clustering in the
original lidar point cloud. The multi-object clustering
iteration is presented in Fig. 2. The clustering works by
checking each point in the original lidar point cloud. If a
point has been marked to be part of an object cluster, a

Fig. 2: Pseudocode of the multi-object clustering iterations. α defines
the neighbour search box size, P is the lidar point cloud with ground

points filtered out, δ is the limit of iterations, and C is a point cloud of

object clusters.

Fig. 1. Full detection system using a camera and a lidar

sensor. the orange phases use CUDA accelerated calculation.

CUDA kernel-based distance search is performed for all
other lidar points. If any of the other lidar points are closer
to the cluster point than a specific threshold α, then those
points are tagged as part of the same object cluster. More
precisely, a single iteration checks all lidar points in the
observed cloud and launches CUDA distance searches at
every point which belongs to an object cluster. The
operations inside a single CUDA thread are shown in Fig.
3. Instead of clustering each object one by one, the objects
are clustered simultaneously, with more lidar points added
to each cluster every cycle. This cycle is repeated until
either a pre-determined iteration limit δ is reached, or there
are no more points added to any of the object clusters
during an iteration. To make calculations faster the z-axis is
ignored, and the distance calculation inside the CUDA
kernel only considers the x and the y coordinates of points,
as the ground points have previously been filtered out. The
distance check is done using conditional checks of points
residing inside a square search area. This was more
computationally efficient than Euclidean or Manhattan
distance calculations in large quantities. The algorithm
outputs 3D point clusters representing the objects of
interest, which were originally given by the 2D image
detector, which in this case was Yolov4. The neighbour
search inside the CUDA kernels is visualized in Fig. 4.

IV. TEST ARRANGEMENTS

A. Datasets used in the evaluation

To gain an understanding of the computational
performance of the 3D clustering, the algorithm was
applied to two separate datasets, and various information
about the calculation times was collected. The KITTI
dataset was used to place the measurements into the
context of a popular public dataset. The KITTI 3D object
detection dataset contains lidar measurements from a
Velodyne HDL-64E sensor [14]. Due to the design of the
algorithm, the amount of lidar points yielded by the sensor
has the most significant impact on the performance times
data-wise, and a custom dataset was also collected using a
higher resolution lidar that provided more 3D points to
process. Examples of the 3D object clustering are shown in
Fig. 5 and Fig. 6.

The custom dataset was collected using a Luminar
Hydra sensor and a Basler Ace colour camera that were
installed on top of an autonomous research vehicle

Fig. 5: Example of the 3D clustering on the custom dataset.

Fig. 6: Example of the 3D clustering on the KITTI dataset.

Fig. 4: Example of a box neighbour search in the CUDA

multi-object clustering algorithm. The size of the grey search

box depends on α in Fig. 1, blue points are already included
in a cluster, red points are not part of any cluster, and green

points are about to be included in the blue cluster.

Fig. 3: Pseudocode of distance search in a single CUDA thread.

A single thread handles a single point from cloud P by checking
if it is already a part of any cluster. If not, a distance check

based on α is performed, and point c is handled accordingly.

[15][16]. The custom dataset was collected in winter
conditions and was used to obtain computation
performance data from a real-world implementation for
reference.

B. Methods of performance evaluation

The 3D clustering performance was measured by
collecting various details from every measurement frame.
In this context, a measurement frame refers to a camera
image and its corresponding point cloud. In KITTI this
included the 7841 training images and their point clouds,
and in the custom dataset there were 7804 similarly
corresponding images that were processed.

The performance was evaluated with regard to the
number of objects that the algorithm attempted to cluster in
the image, and the number of iterations that the multi-
object clustering in Fig 2. executed. The processing time
was collected for all numbers of iterations and object

amounts, and the mean values were calculated to represent
the average processing time for different situations. In
addition to this, the processing times were evaluated with
regard to the total number of points clustered in the image
over all the objects. The processing times were further
divided to separate the pre-processing durations, and the
multi-object clustering durations. The algorithm was tested
on both datasets on a Jetson Xavier AGX and an RTX 2070
Super GPU. A CPU version of the algorithm was also
implemented for reference and evaluated using an Intel i7
10750H processor. The algorithm is not suitable for a 3D
bounding box formulation in a similar way to how a neural
network might be, since the algorithm in this study relies
on distance-based searches and does not consider the
possible shapes of the objects. As a result, KITTI
accuracies are not included in this study. However, to gain
some reference, a test was conducted where each obtained
cluster was matched to a KITTI ground truth 3D box by

Fig. 7: Processing time performance results on both datasets. The first graph column is average processing time by detected object amount.

The second is average processing time by algorithm iteration amount. The third is processing times by clustered point amount.

calculating the mean of the 3D cluster and checking
whether the mean resides inside a KITTI ground truth box.

V. RESULTS

Using the KITTI medium difficulty and only
considering the car and pedestrian classes, the above
ground truth test provided a 90.1 % accuracy for cars and
82.6 % accuracy for pedestrian, meaning that most of the
clusters acquired in the KITTI dataset were relevant for the
processing performance evaluation. The results are
presented in Fig. 7. From Fig. 2, the xy-coordinate search
range parameter α was set to 0.2 meters for the pedestrian
class, and 0.3 meters for the car class. Pedestrians often
huddle together more than vehicles, which is why α was set
to a lower value for pedestrians. A smaller α reduces the
chance falsely clustering lidar points which do not actually
belong to the object, but to the object next to it. The
iteration limit δ was set to 15 for vehicles, and to 5 for
pedestrians. The iteration limit is set to enable full
clustering of an object based on α. If α is set to 0.3 meters,
in 15 iterations the clustering could select points from as
far as 4.5 meters from the starting point. This is a sufficient
range to cluster most passenger cars. Similarly, the α and δ
of pedestrians result in a maximum clustering range of 1
meter. The processing times of Fig. 7 were obtained using
Yolov4 with an input size of 512x512 and half-precision
floating point calculations.

The inference times of Yolo are not included in the
graphs as they remained constant. Average inference times
for various Yolo input sizes in the KITTI training data are
shown in Tab. I. The CPU tests were conducted using
multithreading to maximize processor usage.

TABLE I. YOLOV4 AVERAGE KITTI INFERENCE TIMES IN TKDNN

 512x512 608x608 800x800

Xavier AGX 38.9 ms 52.3 ms 85.0 ms

RTX 2070

Super
11.8 ms 16.0 ms 23.6 ms

 Fig. 8 is shown as a reference for the difference in lidar

point amounts between the KITTI dataset and the custom

dataset. The most important limiting factor in the

processing is the GPU capacity, including the number of

CUDA cores available for parallel computing. The RTX

2070 Super has 2560 of these, while the Xavier AGX only

has 512. This means that as the number of objects being

clustered and the amount of point comparisons increases,

there is more bottlenecking as the CUDA functions have

to wait for device resources to be freed. In the KITTI

dataset there is a large drop in processing times when the

object amounts are the highest. This goes against intuition,

and upon closer inspection it is explained by the KITTI

dataset containing only a handful of frames where there

are ~20 objects detected in these measurements, and in

these specific frames the objects were mostly pedestrians,

which also meant that the algorithm was able to cluster the

objects quicker, which on the other hand distorts the graph

as is seen in the top-left graph and the second top-left

graph in Fig. 7. The other graphs of processing times with

regard to the number of objects and the number of

iterations show a rather consistent correlation. The

processing times of the RTX 2070 Super are on average

approximately twice as fast as those of the Xavier AGX

on both datasets. The performance of the CPU is many

times slower. The third column shows a very uneven

development of the processing times with the total amount

of points in a single frame. This is expected behaviour,

because the numbers of objects and iterations have the

biggest impact on how many CUDA kernels and point

comparisons are executed during the pass of the algorithm.

Since the point distance comparisons are done in parallel,

the number of points obtained during a single algorithm

iteration does not affect the computing times in the same

way as in the first two columns of graphs. There is still a

general increase in the times with increasing total point

amounts, which is better observed by plotting the local

average with the ten previous values. The single slowest

inference performance of the Xavier AGX was 219 ms on

the KITTI data, and 287 ms on the denser Luminar

data. On the other hand, we see from the graphs that the

majority of the inferences perform at a clearly faster rate.

VI. CONCLUSIONS AND FUTURE WORK

Optimizing artificial intelligence algorithms is crucial,
since automated vehicles are dealing with high resolution
lidars and cameras onboard. The amount of data has been
increasing more than available computation power, which
is partly due to the limited amount of power available in
electric vehicles. Therefore, the performance and
optimization of the algorithms remains an unsolved
problem, even though high-power computation units are
available today.

Fig. 8: Histograms of the clustered lidar point amounts for both datasets using the 512x512 Yolov4 network as a basis.

Total points clustered in image Total points clustered in image

We presented a novel approach for a GPU-accelerated
3D object detection pipeline. In this section, we would like
to raise some prospective considerations to deploy this
pipeline efficiently in a wide range of vehicles. These
comprise thoughts on the deployment at the deep edge, as
well as the benefit of heterogeneous accelerator
architectures, potentially enabling task offloading.
However, when introducing these architectural changes, it
is crucial to implement metrics quantifying the impact on
functional, such as the accuracy, as well as non-functional
indicators, such as latency and power consumption. Based
on these metrics, possible trade-offs can be evaluated for
different setups. Some concluding directions are provided
in the following paragraphs.

A. Edge GPU device selection

For power-efficient on-board computation, the selection

of a suitable device is decisive. Accordingly, we compared

the performance of an RTX 2070 Super GPU with the

edge GPU device Jetson Xavier AGX, which is a more

realistic option for automated vehicle deployment.

Although the edge platform is capable of running the

proposed algorithms sufficiently, the edge platform

performs increasingly worse during peak loads with a

higher number of objects. To alleviate this disadvantage,

Nvidia’s next generation edge device Jetson AGX Orin is

a promising candidate for high-end edge computing.

Based on the latest Ampere GPU architecture, it is

equipped with 2048 CUDA cores and 64 Tensor Cores

[17], resembling the specification of the RTX 2070 Super

GPU (2560 CUDA cores, 320 Tensor Cores).

B. Co-processors for 2D object detection inference

As shown in section V, the amount of available GPU

resources, such as the number of available CUDA cores,

significantly impacts the performance of the presented 3D

object clustering algorithm. Accordingly, offloading the

mandatory 2D object detection models from the GPU to

another processor could be beneficial. Heading for a more

heterogeneous partitioning architecture, low-end co-

processors, such as Coral Edge TPU or Intel’s Visual

Processing Unit (VPU), could be employed to reduce the

load on the GPU. However, these accelerators are more

limited due to less memory and computation units, which

consequently requires the use of more lightweight object

detection architectures, e.g. the TinyYolov4 or Yolov5

Nano [18] models, which must be deployed to the updated

target platform. Due to our inherent component-based

architecture of the overall pipeline, this partitioning does

not imply direct changes for the 3D clustering algorithm,

but still requires the evaluation of end-to-end performance

metrics.

C. Hardware invariant 3D object detection clustering

While the current version of the algorithm benefits from

the parallelism of the implementation CUDA, other

frameworks for accelerated parallel computation could be

leveraged. High-level APIs, capable of abstracting

underlying hardware architecture, could be used to

increase the portability of the component. Depending on

the level of abstraction, the algorithm could be

implemented with the Vulkan API [19], adding low

overheads for deployment on supported CPUs and GPUs.

Alternatively, it could be investigated whether the

algorithm can be written in common machine learning

frameworks such as TensorFlow using operators for tensor

computation. Afterwards, the graph is exported to a

standardized representation such as ONNX and is finally

inferred on the target device using the ONNX runtime

with an arbitrary supported engine provider (e.g.

OpenVINO or TensorRT), which manages the accelerated

computation.

REFERENCES

[1] Nvidia Corporation, “Embedded Systems with Jetson”, [online]

https://www.nvidia.com/en-us/autonomous-machines/embedded-
systems/, accessed: 2022-01-31.

[2] A. Bochkovskiy, C.-Y. Wang, H.-Y. M. Liao, “YOLOv4: Optimal

Speed and Accuracy for Object Detection”, Apr. 2020.

[3] Nvidia Corporation, “CUDA Toolkit”, [online]

https://developer.nvidia.com/cuda-toolkit, accessed: 2022-01-31.

[4] R. Qian, X. Lai, X. Li, ”3D Object Detection for Autonomous

Driving: A Survey”, Jun. 2021.

[5] S. Shi, C. Guo, L. Jiang, Z. Wang, J. Shi, X. Wang, H. Li, “PV-

RCNN: Point-Voxel Feature Set Abstraction for 3D Object
Detection”, Dec. 2019.

[6] S. Shi, X. Wang, H. Li, “PointRCNN: 3D Object Proposal

Generation and Detection from Point Cloud”, Dec. 2018.

[7] A. H. Lang, S. Vora, H. Caesar, L. Zhou, J. Yang, O. Beijbom,

“PointPillars: Fast Encoders for Object Detection from Point

Clouds”, De. 2018.

[8] Nvidia Corporation. “PointPillars inference with TensorRT”,

[online] https://github.com/NVIDIA-AI-IOT/CUDA-PointPillars,

accessed: 2022-02-01

[9] Nvidia Corporation, “Nvidia TensorRT”, [online]

https://developer.nvidia.com/tensorrt, accessed: 2022-01-31.

[10] M. Verucchi, G. Brilli, D. Sapienza, M. Verasani, M. Arena, F.

Gatti, A. Capotondi, R. Cavicchioli, M. Bertogna, M. Solieri, “A

Systematic Assessment of Embedded Neural Networks for Object
Detection”, 25th IEEE International Conference on Emerging

Technologies and Factory Automation, vol 1, pp. 937-944, 2020.

[11] Y. Liu, “WPI LiDAR – Camera calibration toolbox”, [online]

https://github.com/YechengLyu/WPI-LiDAR-Camera-Calibration-

Toolbox, accessed: 2022-01-31.

[12] K. Zhang, S.-C. Chen, D. Whitman, M.-L. Shyu, J. Yan, C. Zhang,

“A Progressive Morphological Filter for Removing Nonground

Measurements From Airborne LIDAR Data”, IEEE Trans.
Geoscience and Remote Sensing, vol. 41, no. 4, pp. 872–882, Apr.

2003.

[13] R. B. Rusu, S. Cousins, “3D is Here: Point Cloud Library (PCL)”,

IEEE International Conference on Robotics Automation, May 2011.

[14] A. Geiger, P. Lenz, C. Stiller, R. Urtasun, “Vision meets Robotics:

The KITTI Dataset”, The International Journal of Robotics

Research, Vol. 32, Issue 11, pp. 1231-1237.

[15] Level Five Supplies, Luminar Hydra Specifications, [online]

https://levelfivesupplies.com/wp-content/uploads/2020/08/Luminar-

Hydra-Datasheet.pdf, accessed: 2022-01-31.

[16] Basler a2A2590-60ucBAS Specifications, [online]

https://www.baslerweb.com/en/products/cameras/area-scan-

cameras/ace2/a2a2590-60ucbas/, accessed: 2022-01-31.

[17] NVIDIA Corporation, “NVIDIA Jetson AGX Orin – Data Sheet”,

Version DS-10662-001_v0.2, 2021, [online]

https://developer.nvidia.com/embedded/secure/jetson/agx_orin/jets

on_agx_orin_ds-10662-001_v0.2.pdf

[18] Glenn Jocher et al. (2021). ultralytics/yolov5: v6.0 - YOLOv5n

'Nano' models, Roboflow integration, TensorFlow export, OpenCV
DNN support (v6.0). Zenodo.

https://doi.org/10.5281/zenodo.5563715

[19] The Khronos Vulkan Working Group, “Vulkan 1.3.204 - A

Specification”, Version 1.3.204, 2022, [online]

https://www.khronos.org/registry/vulkan/specs/1.3/pdf/vkspec.pdf

