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Abstract— This article explores the utilization of the 

processing power of GPUs using CUDA computation for 

real-time aggregation of multi-sensor data and detection of 

3D objects using parallel clustering algorithms. The purpose 

is to implement an algorithm that fuses raw lidar point cloud 

data and 2D camera image object detections to produce 3D 

object clusters in a lidar point cloud. Most of the 

computation has been implemented using CUDA parallelism 

to investigate the capability of GPU devices in this task, 

which is a common challenge in automated driving. The 

results indicate that processing times can be optimized within 

the algorithm, which is crucial when considering the large 

amounts of data provided by lidar and camera-based 

systems. The algorithm can perform inference on the Jetson 

Xavier AGX at rates of ~20 to ~220 ms depending on the 

number of objects and their corresponding point amounts in 

the KITTI dataset. 

 
Keywords—3D object detection, CUDA, sensor data fusion, 

automated driving 

I. INTRODUCTION 

A. Parallel Computation 

With the constant increase in processing power of 
modern computation devices, engineers can design and 
implement increasingly complex and computationally 
demanding algorithms, which is an especially significant 
subject in the field of automated vehicles, where real-time 
processing of data is crucial. For this reason, the 
European AI4DI project is adopting a holistic view of 
developing generic artificial intelligence algorithms that are 
then optimized in a different industrial domain. In this case, 
we are focusing on developing AI for the benefits of the 
transport industry. In demanding computation tasks, GPU 
devices are often utilized due to them enabling efficient 
parallelization of repetitive calculations, which can 
significantly speed up data processing. Neural networks are 
an example of the effective utilization of parallel 
computing due to their repetitive calculations, which are 
exponentially sped up by distributing the operations across 
the GPU threads. Although neural networks are currently a 
very popular field of science, there are many other 
possibilities for the efficient utilization of the parallel 
computation power of GPUs. In automated driving, the 
real-time computation of vehicle sensor data is a critical 
safety requirement. With continuously improving sensor 
technology, the amount of data that needs to be processed 
by an automated vehicle is also increasing constantly. This 
demands more computation power and solutions that allow 
quick processing of high-resolution camera images and 
large lidar point clouds, for example.  

 
 

Edge AI computing is an increasingly important part of 
automated driving due to the growing versatility of deep 
learning applications for vehicle sensor data. These 
embedded systems often combine compactness and power 
efficiency and maximize GPU capacity for optimized 
running of AI applications. These devices come in several 
variations of computation power and intended use cases. 
One popular example in the field of robotics is the Nvidia 
Jetson product line [1]. Jetson devices offer a range of 
developer tools to optimize and deploy AI applications in 
demanding industrial environments. 

B. 3D Object Detection in Automated Driving 

The task of 3D object detection is a challenging and 
critical subject in automated driving. The environmental 
perception of an autonomous vehicle must be reliable to 
enable safe automated vehicle operation, especially in 
crowded and narrow urban spaces where other road users 
can blend into the surroundings, and sometimes appear 
suddenly in front of the vehicle from behind obstacles. The 
vehicle should be able to detect other road users robustly, 
but also do it in real-time to react quickly enough. A 3D 
object detector neural network might be able to correctly 
detect and classify objects from the near vicinity of the 
vehicle, but if the neural network model is so 
computationally expensive that the vehicle computer takes 
several hundreds of milliseconds to process the data, the 
chance of collision and a serious accident increases greatly. 

Data fusion can be implemented to process the output 
of multiple sensor types to extract information that would 
not be available from simply using a single sensor. In 
automated driving, there are varying targets on the road 
that have multiple characteristics and features. Some of 
these features are more perceivable to specific sensor types 
such as cameras, while other features of the same object are 
perceived better by a different sensor such as a lidar. State-
of-the-art 2D image-based object detectors such as the 
Yolov4 network [2] have reached remarkable performance 
levels, and they are useful tools in autonomous driving 
tasks that make use of camera data. 2D object detection 
often tends to be less computationally expensive than 3D 
object detection. Fusing the data of a lidar sensor and a 2D 
image object detector can provide the benefits of execution 
speed and accuracy of 2D detection and combine that 
directly with 3D spatial information provided by a lidar, 
without implementing deep learning point cloud detectors. 

The following sections II and III present the basis and 
implementation for an example method that utilizes 2D 
image object detections and lidar point clouds, fusing their 
data together through CUDA (Compute Unified Device 
Architecture) accelerated algorithms [3]. Sections IV and V 
present the results that demonstrate the efficiency of 
applying CUDA operations on common point cloud and 
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image operations such as coordinate transformations, point 
projection and distance-based clustering in order to achieve 
3D object clusters with fused camera and lidar data. 

II. RELATED WORK 

A. Current Methods for Object Detection 

Neural networks have gained great momentum in the 
past decade due to the emergence of big data and increases 
in computation power. The current era of deep learning 
advancements has provided several capable object 
detection models, with Yolov4 being a state-of-the-art 
example of a 2D image detector. It achieves 43.7% average 
precision (AP) and 65.7% AP50 accuracies for the COCO 
dataset [2]. 

For 3D object detection, several deep learning methods 
exist [4]. A detector that uses a single point cloud as an 
input usually either performs inference directly on the 
individual points, voxelization on the scene first, or uses a 
combination of the two. Popular 3D detectors such as PV-
RCNN and Point-RCNN by S. Shi et al. [5][6] report their 
test results using high-end GPUs like the Titan RTX and 
the Tesla V100. In actual applications of autonomous 
driving, the computing is often performed using an 
embedded GPU, which most likely does not match the 
performance of high-end desktop GPUs. Another well-
known 3D detector, PointPillars [7], addresses this fact in 
its test results. PointPillars is also one of the 
computationally lighter 3D detectors. Nvidia has released a 
TensorRT optimized model of PointPillars, which is 
claimed to perform at an inference rate of approximately 
27.5 milliseconds, translating to approximately 36 FPS [8]. 

B. Object Detection using Embedded AI devices 

Embedded AI devices such as the Nvidia Jetson 
product line do not necessarily match higher-end desktop 
GPUs in terms of computing capacity and CUDA cores, 
but their advantage regarding deep learning lies in the 
device-specific optimization of neural network models 
through libraries like TensorRT [9]. The Nvidia TensorRT 
library offers tools to modify existing and trained neural 
network models in ways that speed up calculations on the 
GPU device and depending on the network architecture can 
greatly accelerate neural network inference. While the 
Yolov4 network is a relatively computationally heavy 2D 
object detector, TensorRT can speed up its inference 
significantly. One such software library is the TkDNN 
library [10]. The TkDNN authors claim that the optimized 
Yolov4 runs at approximately 22 FPS on the Jetson Xavier 
AGX with a network resolution of 608x608. 

III. 3D OBJECT CLUSTERING METHOD 

The algorithm used in this study uses a lidar point cloud 
and its corresponding 2D image object detection boxes as 
an input. The 2D detection boxes can be the result of any 
kind of detection algorithm, but in this study we used the 
Yolov4 detector accelerated by the TensorRT library. 
Another requirement for the data fusion between the 
camera and the lidar is the calibration matrix between the 
two sensors. This can be obtained in various ways, but for 
this study, we used the genetic algorithm of [11], which is 
implemented specifically for this purpose. The object 
clustering algorithm itself consists of two major phases: 
pre-processing and parallel multi-object 3D clustering. A 
diagram of the full system is shown in Fig. 1. 

A. Pre-processing 

Firstly, there is pre-processing, which includes CUDA 
accelerated combination of the 3D lidar point cloud data 
and the 2D image object detection data. The pre-processing 
phase first applies an approximate progressive 
morphological filter (APMF) to remove ground points from 
the lidar point cloud. The APMF is also the only phase that 
does not make use of CUDA kernels, but instead uses the 
implementation provided by the Point Cloud Library (PCL) 
[12][13]. After removing ground points, CUDA 
calculations are used to apply the appropriate coordinate 
transformations to transform the lidar point cloud to the 
coordinate system of the camera, and then to project the 
points on the 2D image. After this, projected points that fall 
inside proportionally shrunken 2D image detections boxes 
(magenta boxes in Fig. 5 and Fig. 6) are used to determine 
the starting points for the 3D object clustering in the lidar 
point cloud. 

B. Parallel Multi-Object 3D Clustering 

From the pre-processing phase the algorithm has 
acquired the 3D starting points for the clustering in the 
original lidar point cloud. The multi-object clustering 
iteration is presented in Fig. 2. The clustering works by 
checking each point in the original lidar point cloud. If a 
point has been marked to be part of an object cluster, a 

 

Fig. 2:  Pseudocode of the multi-object clustering iterations. α defines 
the neighbour search box size, P is the lidar point cloud with ground 

points filtered out, δ is the limit of iterations, and C is a point cloud of 

object clusters. 

 

 

Fig. 1. Full detection system using a camera and a lidar 

sensor. the orange phases use CUDA accelerated calculation. 

 



  

CUDA kernel-based distance search is performed for all 
other lidar points. If any of the other lidar points are closer 
to the cluster point than a specific threshold α, then those 
points are tagged as part of the same object cluster. More 
precisely, a single iteration checks all lidar points in the 
observed cloud and launches CUDA distance searches at 
every point which belongs to an object cluster. The 
operations inside a single CUDA thread are shown in Fig. 
3. Instead of clustering each object one by one, the objects 
are clustered simultaneously, with more lidar points added 
to each cluster every cycle. This cycle is repeated until 
either a pre-determined iteration limit δ is reached, or there 
are no more points added to any of the object clusters 
during an iteration. To make calculations faster the z-axis is 
ignored, and the distance calculation inside the CUDA 
kernel only considers the x and the y coordinates of points, 
as the ground points have previously been filtered out. The 
distance check is done using conditional checks of points 
residing inside a square search area. This was more 
computationally efficient than Euclidean or Manhattan 
distance calculations in large quantities. The algorithm 
outputs 3D point clusters representing the objects of 
interest, which were originally given by the 2D image 
detector, which in this case was Yolov4. The neighbour 
search inside the CUDA kernels is visualized in Fig. 4. 

IV. TEST ARRANGEMENTS 

A. Datasets used in the evaluation 

To gain an understanding of the computational 
performance of the 3D clustering, the algorithm was 
applied to two separate datasets, and various information 
about the calculation times was collected. The KITTI 
dataset was used to place the measurements into the 
context of a popular public dataset. The KITTI 3D object 
detection dataset contains lidar measurements from a 
Velodyne HDL-64E sensor [14]. Due to the design of the 
algorithm, the amount of lidar points yielded by the sensor 
has the most significant impact on the performance times 
data-wise, and a custom dataset was also collected using a 
higher resolution lidar that provided more 3D points to 
process. Examples of the 3D object clustering are shown in 
Fig. 5 and Fig. 6. 

The custom dataset was collected using a Luminar 
Hydra sensor and a Basler Ace colour camera that were 
installed on top of an autonomous research vehicle 

 

 

Fig. 5:  Example of the 3D clustering on the custom dataset. 

Fig. 6:  Example of the 3D clustering on the KITTI dataset. 

Fig. 4:  Example of a box neighbour search in the CUDA 

multi-object clustering algorithm. The size of the grey search 

box depends on α in Fig. 1, blue points are already included 
in a cluster, red points are not part of any cluster, and green 

points are about to be included in the blue cluster. 

 

 

Fig. 3:  Pseudocode of distance search in a single CUDA thread. 

A single thread handles a single point from cloud P by checking 
if it is already a part of any cluster. If not, a distance check 

based on α is performed, and point c is handled accordingly. 

 



  

[15][16]. The custom dataset was collected in winter 
conditions and was used to obtain computation 
performance data from a real-world implementation for 
reference.  

B. Methods of performance evaluation 

The 3D clustering performance was measured by 
collecting various details from every measurement frame. 
In this context, a measurement frame refers to a camera 
image and its corresponding point cloud. In KITTI this 
included the 7841 training images and their point clouds, 
and in the custom dataset there were 7804 similarly 
corresponding images that were processed. 

The performance was evaluated with regard to the 
number of objects that the algorithm attempted to cluster in 
the image, and the number of iterations that the multi-
object clustering in Fig 2. executed. The processing time 
was collected for all numbers of iterations and object 

amounts, and the mean values were calculated to represent 
the average processing time for different situations. In 
addition to this, the processing times were evaluated with 
regard to the total number of points clustered in the image 
over all the objects. The processing times were further 
divided to separate the pre-processing durations, and the 
multi-object clustering durations. The algorithm was tested 
on both datasets on a Jetson Xavier AGX and an RTX 2070 
Super GPU. A CPU version of the algorithm was also 
implemented for reference and evaluated using an Intel i7 
10750H processor. The algorithm is not suitable for a 3D 
bounding box formulation in a similar way to how a neural 
network might be, since the algorithm in this study relies 
on distance-based searches and does not consider the 
possible shapes of the objects. As a result, KITTI 
accuracies are not included in this study. However, to gain 
some reference, a test was conducted where each obtained 
cluster was matched to a KITTI ground truth 3D box by 

 

 

Fig. 7:  Processing time performance results on both datasets. The first graph column is average processing time by detected object amount. 

The second is average processing time by algorithm iteration amount. The third is processing times by clustered point amount. 



  

calculating the mean of the 3D cluster and checking 
whether the mean resides inside a KITTI ground truth box. 

V. RESULTS 

Using the KITTI medium difficulty and only 
considering the car and pedestrian classes, the above 
ground truth test provided a 90.1 % accuracy for cars and 
82.6 % accuracy for pedestrian, meaning that most of the 
clusters acquired in the KITTI dataset were relevant for the 
processing performance evaluation. The results are 
presented in Fig. 7. From Fig. 2, the xy-coordinate search 
range parameter α was set to 0.2 meters for the pedestrian 
class, and 0.3 meters for the car class. Pedestrians often 
huddle together more than vehicles, which is why α was set 
to a lower value for pedestrians. A smaller α reduces the 
chance falsely clustering lidar points which do not actually 
belong to the object, but to the object next to it. The 
iteration limit δ was set to 15 for vehicles, and to 5 for 
pedestrians. The iteration limit is set to enable full 
clustering of an object based on α. If α is set to 0.3 meters, 
in 15 iterations the clustering could select points from as 
far as 4.5 meters from the starting point. This is a sufficient 
range to cluster most passenger cars. Similarly, the α and δ 
of pedestrians result in a maximum clustering range of 1 
meter. The processing times of Fig. 7 were obtained using 
Yolov4 with an input size of 512x512 and half-precision 
floating point calculations. 

The inference times of Yolo are not included in the 
graphs as they remained constant. Average inference times 
for various Yolo input sizes in the KITTI training data are 
shown in Tab. I. The CPU tests were conducted using 
multithreading to maximize processor usage. 

TABLE I.  YOLOV4 AVERAGE KITTI INFERENCE TIMES IN TKDNN 

 512x512 608x608 800x800 

Xavier AGX 38.9 ms 52.3 ms 85.0 ms 

RTX 2070 

Super 
11.8 ms 16.0 ms 23.6 ms 

 

 Fig. 8 is shown as a reference for the difference in lidar 

point amounts between the KITTI dataset and the custom 

dataset. The most important limiting factor in the 

processing is the GPU capacity, including the number of 

CUDA cores available for parallel computing. The RTX 

2070 Super has 2560 of these, while the Xavier AGX only 

has 512. This means that as the number of objects being 

clustered and the amount of point comparisons increases, 

there is more bottlenecking as the CUDA functions have 

to wait for device resources to be freed. In the KITTI 

dataset there is a large drop in processing times when the 

object amounts are the highest. This goes against intuition, 

and upon closer inspection it is explained by the KITTI 

dataset containing only a handful of frames where there 

are ~20 objects detected in these measurements, and in 

these specific frames the objects were mostly pedestrians, 

which also meant that the algorithm was able to cluster the 

objects quicker, which on the other hand distorts the graph 

as is seen in the top-left graph and the second top-left 

graph in Fig. 7. The other graphs of processing times with 

regard to the number of objects and the number of 

iterations show a rather consistent correlation. The 

processing times of the RTX 2070 Super are on average 

approximately twice as fast as those of the Xavier AGX 

on both datasets. The performance of the CPU is many 

times slower. The third column shows a very uneven 

development of the processing times with the total amount 

of points in a single frame. This is expected behaviour, 

because the numbers of objects and iterations have the 

biggest impact on how many CUDA kernels and point 

comparisons are executed during the pass of the algorithm. 

Since the point distance comparisons are done in parallel, 

the number of points obtained during a single algorithm 

iteration does not affect the computing times in the same 

way as in the first two columns of graphs. There is still a 

general increase in the times with increasing total point 

amounts, which is better observed by plotting the local 

average with the ten previous values. The single slowest 

inference performance of the Xavier AGX was 219 ms on 

the KITTI data, and 287 ms on the denser Luminar 

data. On the other hand, we see from the graphs that the 

majority of the inferences perform at a clearly faster rate. 

 

VI. CONCLUSIONS AND FUTURE WORK 

Optimizing artificial intelligence algorithms is crucial, 
since automated vehicles are dealing with high resolution 
lidars and cameras onboard. The amount of data has been 
increasing more than available computation power, which 
is partly due to the limited amount of power available in 
electric vehicles. Therefore, the performance and 
optimization of the algorithms remains an unsolved 
problem, even though high-power computation units are 
available today.  

Fig. 8:  Histograms of the clustered lidar point amounts for both datasets using the 512x512 Yolov4 network as a basis. 

Total points clustered in image Total points clustered in image 

 



  

We presented a novel approach for a GPU-accelerated 
3D object detection pipeline. In this section, we would like 
to raise some prospective considerations to deploy this 
pipeline efficiently in a wide range of vehicles. These 
comprise thoughts on the deployment at the deep edge, as 
well as the benefit of heterogeneous accelerator 
architectures, potentially enabling task offloading. 
However, when introducing these architectural changes, it 
is crucial to implement metrics quantifying the impact on 
functional, such as the accuracy, as well as non-functional 
indicators, such as latency and power consumption. Based 
on these metrics, possible trade-offs can be evaluated for 
different setups. Some concluding directions are provided 
in the following paragraphs. 

A. Edge GPU device selection 

For power-efficient on-board computation, the selection 

of a suitable device is decisive. Accordingly, we compared 

the performance of an RTX 2070 Super GPU with the 

edge GPU device Jetson Xavier AGX, which is a more 

realistic option for automated vehicle deployment. 

Although the edge platform is capable of running the 

proposed algorithms sufficiently, the edge platform 

performs increasingly worse during peak loads with a 

higher number of objects. To alleviate this disadvantage, 

Nvidia’s next generation edge device Jetson AGX Orin is 

a promising candidate for high-end edge computing. 

Based on the latest Ampere GPU architecture, it is 

equipped with 2048 CUDA cores and 64 Tensor Cores 

[17], resembling the specification of the RTX 2070 Super 

GPU (2560 CUDA cores, 320 Tensor Cores). 

B. Co-processors for 2D object detection inference 

As shown in section V, the amount of available GPU 

resources, such as the number of available CUDA cores, 

significantly impacts the performance of the presented 3D 

object clustering algorithm. Accordingly, offloading the 

mandatory 2D object detection models from the GPU to 

another processor could be beneficial. Heading for a more 

heterogeneous partitioning architecture, low-end co-

processors, such as Coral Edge TPU or Intel’s Visual 

Processing Unit (VPU), could be employed to reduce the 

load on the GPU. However, these accelerators are more 

limited due to less memory and computation units, which 

consequently requires the use of more lightweight object 

detection architectures, e.g. the TinyYolov4 or Yolov5 

Nano [18] models, which must be deployed to the updated 

target platform. Due to our inherent component-based 

architecture of the overall pipeline, this partitioning does 

not imply direct changes for the 3D clustering algorithm, 

but still requires the evaluation of end-to-end performance 

metrics. 

C. Hardware invariant 3D object detection clustering 

While the current version of the algorithm benefits from 

the parallelism of the implementation CUDA, other 

frameworks for accelerated parallel computation could be 

leveraged. High-level APIs, capable of abstracting 

underlying hardware architecture, could be used to 

increase the portability of the component. Depending on 

the level of abstraction, the algorithm could be 

implemented with the Vulkan API [19], adding low 

overheads for deployment on supported CPUs and GPUs. 

Alternatively, it could be investigated whether the 

algorithm can be written in common machine learning 

frameworks such as TensorFlow using operators for tensor 

computation. Afterwards, the graph is exported to a 

standardized representation such as ONNX and is finally 

inferred on the target device using the ONNX runtime 

with an arbitrary supported engine provider (e.g. 

OpenVINO or TensorRT), which manages the accelerated 

computation.  
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