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SUMMARY

Many natural hazards exhibit inverse power-law scaling of frequency and event size, or an

exponential scaling of event magnitude (m) on a logarithmic scale, e.g. the Gutenberg-Richter

law for earthquakes, with probability density function p(m) ∼ 10−bm. We derive an analytic

expression for the bias that arises in the maximum likelihood estimate of b as a function of

the dynamic range r. The theory predicts the observed evolution of the modal value of mean

magnitude in multiple random samples of synthetic catalogues at different r, including the bias

to high b at low r and the observed trend to an asymptotic limit with no bias. The situation is

more complicated for a single sample in real catalogues due to their heterogeneity, magnitude

uncertainty and the true b-value being unknown. The results explain why the likelihood of large

events and the associated hazard is often underestimated in small catalogues with low dynamic

range, for example in some studies of volcanic and induced seismicity.

Key words: theoretical seismology, statistical methods, statistical seismology

1 INTRODUCTION

Many natural hazards (earthquakes, floods, storms, volcanic eruptions, avalanches) exhibit a power-

law relationship between frequency and some physical variable of event size, such as energy, seis-
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2 G.-M. Geffers, I.G. Main and M. Naylor

mic moment, volume, height (Turcotte, 1997). As a consequence of the large dynamic range of

these event sizes, such power-law relationships are commonly expressed in the form of an expo-

nential relationship between frequency and a logarithmic measure of size. The classic example

of this is the Gutenberg-Richter (GR) frequency-magnitude relationship (Gutenberg & Richter,

1944), which has a probability density function (pdf ) of the form

p(m) ∼ 10−bm = e−λm, (1)

where m is magnitude, b is the GR ‘b-value’ and λ is its equivalent to the base e.

The scale-free form of the GR distribution must have a finite, yet uncertain upper bound to

maintain the finite flux of seismic moment or strain energy, bounded by the finite tectonic strain

rate we observe in the deformation field of the Earth, or equivalents such as flux of magma, sedi-

ment supply, or rainfall and in other applications to natural hazards (for volcanic eruptions, land-

slides and floods respectively). Main & Burton (1984) used this finite flux constraint to derive

a modified version of the GR law with an exponential taper in the pdf at large seismic moments

(rather than magnitudes). Most commonly, this tapered or modified Gutenberg-Richter (MGR) law

is defined concisely by a cumulative frequency distribution of the form

F (M0) ∼ M−β
0 exp(−M0/Mθ), (2)

where M0 is the seismic moment and Mθ is a ‘corner moment’ where the cumulative frequency

F (M) has dropped to a value 1/e less than that expected by the unbounded GR model (Kagan,

1991). The term β is the equivalent of the b-value in the magnitude-frequency relation and β =

2b/3.

The most commonly-applied method of estimating the b-value is the maximum likelihood

estimate (MLE) derived analytically by Aki (1965) in the form

b̄ =
log10 e

m̄−mc

. (3)

where m̄ is the mean magnitude and mc is the threshold for complete reporting of smaller events.

Here, we present a new theory for the convergence of the b-value obtained from equation 3,

based on random sampling of the mean magnitude m̄ with respect to the number of events n and

the dynamic range r of observations for the case of an exponential FMD for a randomly-sampled
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Frequency-size distribution parameters as a function of dynamic range 3

finite sample. As an intermediary step, we use a maximum likelihood solution for the modal value

in the mean magnitude obtained from a random sample of n events, and obtain the same result

as Ogata & Yamashina (1986), who used the expectation value in their derivation. The dynamic

range is the difference between the largest observed magnitude ω and mc and is inherently linked

to, but not proportionately correlated with the sample size n, with an additional degree of freedom

due to the random sampling rather than a one to one correlation assumed in the theoretical curves

we show later. Dynamic range is important in its own right because it defines the useful scale

of observations, and the extent to which models can be tested in competition with one another.

In many applications in seismology, dynamic range is restricted in practice to a relatively narrow

range, particularly for volcanic and induced seismicity. We then derive the consequent convergence

of the Aki-estimated b-value, denoted bAki, as a function of n and r. We test this model against

randomly sampled catalogues with known underlying parameters, and against real data. We find

the theory matches the observations well, and hence can be used to estimate the associated bias

to high b-values in the common situation where the number of events and the dynamic range

are small. This correction is important because high b-values result in an underestimation of the

extrapolated likelihood of events larger than ω. In principle, the results could be applied in a similar

way to other hazards with power-law frequency-size distributions that can be expressed in the form

of equation 1.

2 THEORY

The probability density function for an exponential distribution with a scale factor 1
λ

for a variable

x ≥ 0 is

p(x) = λe−λx. (4)

The probability density function for the mean x̄ in a sample of size n taken from an exponential

distribution takes the form

p(x̄) =
λnnn

Γ(n)
xn−1e−nλx (5)

where Γ(n) = (n − 1)! is the gamma function. Therefore, when n = 1, this is the standard
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4 G.-M. Geffers, I.G. Main and M. Naylor

Figure 1. Plot of equation 5, where λ = 1
n , so that x̄ = 1.00 for an infinite sample. The peak probability

(mode or maximum likelihood) occurs between x̄ = 0 for n = 1 and x̄ = 1 for an infinite sample.

exponential probability density function (Figure 1), where the most likely outcome (the mode)

occurs at x̄ = 0. When n is large, p(x̄) approaches a Gaussian distribution with a mode centred on

the true mean x̄. Prior to this the mode is less than the mean magnitude but greater than zero.

The maximum likelihood for the mean value of x̄ in a finite sample is defined by the crite-

rion dp(x̄)
dx

= 0. This expresses the mean magnitude that is most likely to be sampled in a given

population of trials, for example in the analysis of synthetic catalogues produced by random sam-

pling of an underlying GR distribution. Substituting equation 5 for p(x̄) using the product rule for

differentiation then gives

λnnn

Γ(n)

d(x̄n−1e−nλx̄)

dx
=

λnnn

Γ(n)

[
(n− 1)x̄n−2e−nλx̄ − x̄n−1λne−nλx̄

]
= 0. (6)

The term outside the brackets is a constant, so the term in brackets must be zero. After taking out

a common factor xn−2e−nλx, we have

x̄n−2e−nλx̄
[
(n− 1)− x̄λn

]
= 0. (7)

This implies a single maximum in p(x̄) when

x̄ =
(n− 1)

λn
. (8)
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Frequency-size distribution parameters as a function of dynamic range 5

We recover x̄ = 0 at n = 1 and x̄ = 1
λ
= x̄∞ for an infinite sample. The convergence for x̄

then takes the form

x̄ = x̄∞
(n− 1)

n
. (9)

Equations 9 and 3 together are equivalent to equation 7 of Ogata & Yamashina (1986), albeit

derived by the maximum likelihood solution (near the mode in a finite sample) rather than the

expectation value (near the mean). It confirms that we expect the most likely sample mean to start

at zero in a sample of n = 1 and trend in a non-linear fashion asymptotically to x̄ = x̄∞ from

below.

Equation 9 specifies the convergence of the most likely mean magnitude in a finite sample of

events above mc as a function of the number of events n. However, the focus here is the dynamic

range r = ω−mc where ω is the largest magnitude in a sample. We acknowledge the inherent con-

nection between n and the dynamic range, where often (although not exclusively), small dynamic

range will also have low n and account for dynamic range in the next section.

Accounting for a finite minimum in x

If we have a finite threshold such that x ≥ xmin, then equation 9 is rescaled to

x̄− xmin = (x̄∞ − xmin)
(n− 1)

n
. (10)

In this section, we calculate a relationship between the total number of events in a sample

above the threshold xc and the dynamic range, assuming the total number of events in the largest

sampling bin n(ω−dm, ω) = 1. We do this by calculating the total number of events in the sample

for different threshold magnitudes 0, mc and ω − dm. In the case of a zero lower threshold, the

integral of the probability density function is then

I0 =

∫ ∞

0

λe−λxdx = e−0 − e−∞ = 1. (11)

This equation proves the functional form of equation 4 is correct, i.e. unit total probability is

achieved when the pre-exponential factor equals the exponent λ, so the pdf is specified by a single

variable. In the case of a finite magnitude threshold mc and finite sampled largest magnitude ω,

the cumulative probability is
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6 G.-M. Geffers, I.G. Main and M. Naylor

Imc =

∫ ω

mc

λe−λxdx = e−λmc − e−λω (12)

and for the largest bin

Iω−δm =

∫ ω

ω−δm

λe−λxdx = e−λ(ω−δm) − e−λω. (13)

The ratio of the two cumulative probabilites Imc and Iω−dm must be equal to the ratio of the

numbers of events in the two samples nmc and nω−dm. Given we know nω−dm = 1 and nω−mc

nω−dm
=

Imc

Iω−dm
by proportion, we have

nmc =
e−λmc − e−λω

e−λ(ω−dm) − e−λω
=

eλ(ω−mc) − 1

eλdm − 1
. (14)

Substituting this solution for n(λ,mc, ω, dm) into equation 10, the mean magnitude then converges

according to

m̄−mc = (m̄∞ −mc)
[
1−

( eλdm − 1

eλ(ω−mc) − 1

)]
. (15)

The magnitude bin defining the largest single event dm is considered a free parameter since it

may also depend on the uncertainty in ω and the proximity of the neighbouring bin. Equation 15

therefore has three free parameters, λ, dm and m̄∞. It is easy to show from equation 15 that as ω

tends to infinity, m̄ will tend to m̄∞ asymptotically from below as dynamic range increases, with

a resulting increase in accuracy and decrease in finite sample bias. We can relate the left-hand side

of equation 15 to the Aki b-value by restating equation 3 in the form

λAki =
1

m̄−mc

. (16)

Combining equations 15 and 16 then gives the following relationship

1

λAki

=
1

λ

[
1−

( eλdm − 1

eλ(ω−mc) − 1

)]
. (17)

This formula can be used to correct for the systematic bias involved in the assumption that the

mean magnitude m̄ is a good approximation for the expectation value ⟨m⟩ for an infinite sample

in the derivation of Aki (1965). Important to note is that the mean magnitude will be influenced to

some extent through magnitude binning (Marzocchi et al., 2020), however, when bins are 0.1 or

less, the bias is generally negligible (as in the current case). The bias in the estimate λAki is then

the difference between λAki and λ. Again, it is easy to show analytically from equation 17 that
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Frequency-size distribution parameters as a function of dynamic range 7

λAki converges asymptotically to λ systematically from above, and hence b-values in data samples

with small dynamic range are likely to be biased to high values.

3 METHODS AND DATA

The data used to test the hypotheses developed above include both synthetic and real earthquake

magnitude data. For the synthetic data, we create 100 realisations on the real number line, of both

‘perfect’ GR and MGR catalogue data with the following parameters: n = 100 000, mmin = 0.5

and b-value = 1.0. For the MGR distribution, we take mθ = 5.0 because this is representative of

small to medium magnitude earthquakes, compared to, for example, mθ ∼ 8.5 for the tectonic,

global Harvard Centroid Moment Tensor (CMT) catalogue (Bell et al., 2013). The 95% confi-

dence intervals on the randomly sampled data are obtained from the scatter of the Monte Carlo

simulations, and compared to the errors obtained for the real data using equations 18 and 19 below

which represent estimates of the irreducible random errors in m̄ and b, and hence the precision of

the estimate. Our estimate of confidence intervals for the synthetic data may not be ideal in the

case of small samples, where a chi-square distribution might be preferable, but we preferred to

apply a consistent method, recognising that the confidence intervals may not be ideally accurate

in the smaller samples.

For the real earthquake catalogues, we have chosen two very different examples – The Geysers

geothermal (induced) earthquake catalogue in California and the Southern California (tectonic)

catalogue. Geffers et al. (2022) previously showed that The Geysers data are likely to exhibit an

MGR preference at large dynamic ranges (and therefore large sample sizes), whereas in Southern

California, GR is strongly preferred. This allows us also to examine the effect of the epistemic

uncertainty caused by lack of knowledge of the underlying form of the distribution. In the fol-

lowing results section, we compare the outcomes for the synthetic GR and MGR data to those

from The Geysers and Southern California data, and examine the extent to which equation 17 de-

scribes the data. The Geysers catalogue contains over 60 000 events in the complete part of the

catalogue, where the magnitude of completeness mc = 1.25 as estimated by the b-value stability

method (Wiemer & Wyss, 2000; Cao & Gao, 2002). This method was also used to estimate mc for
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8 G.-M. Geffers, I.G. Main and M. Naylor

Southern California, given as 3.28. This leaves 9023 events remaining in the complete part of this

catalogue. The largest observed magnitude in The Geysers catalogue is 5.01 and 7.30 for Southern

California. This results in maximum observed dynamic ranges of 3.76 and 4.02, respectively.

To estimate the best fit free parameters in equations 15 and 17 for the synthetic data, we

used the non-linear least-squares curve fit function scipy.optimize.curve fit in Python. The curve fit

function then returns optimal values for the parameters. We find a secondary local mode that is

an artefact of small samples containing fewer than 3 data points, described in more detail in the

results section, so these outcomes are discarded before fitting the data.

For the case of the real catalogues, using the curve fit function is problematic because it as-

sumes that residuals are random, which can result in poor fits to the actual data. Therefore, we

opted for a different approach when fitting equations 15 and 17 to the real data. The parame-

ters m̄∞ and λAki (equivalent of bAki) were estimated instead from the value of the data point at

largest dynamic range. This assumes that convergence is reached within the observed catalogue

data. Having fixed these values at asymptotic convergence, we vary dm to the optimal incremental

magnitude bin size which will fit equations 15 and 17 as closely as possible to the real catalogue

data.

The primary sampling error in m̄ at 95% confidence is

δm̄ = ±1.96(m̄−mc)√
n

. (18)

After propagating this error in m̄ (using equation 3) for a finite sample of n, Aki (1965) showed

the equivalent uncertainty in the estimated value of b, i.e. b̂ is

δb = ±1.96b̂√
n

. (19)

These error estimates represent the irreducible, random errors in our estimates of m̄ and b. We

consider an estimate of the mode in b̂ to be accurate when the systematic error or bias b̂ − b ≤

0.1, and to be precise when δb ≤ 0.1. In the case of the real data, the true values of m̄ and b are

not known, so we cannot define an accuracy. The equivalent (rounded) criteria for the estimates of

mean magnitude are a bias ˆ̄m − m̄∞ ≤ 0.05 and a precision δm ≤ 0.1
ln(10)

≤ 0.05. Strictly exact

equivalence occurs when δm ≤ 0.1
ln(10)

but pragmatically we choose the approximation 0.1
2

here
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Frequency-size distribution parameters as a function of dynamic range 9

in rounding to the nearest multiple of 0.05. In the case of the synthetic data, there are multiple

catalogues, and the resulting data scatter provides a more complete range of uncertainties. In this

case, the confidence intervals are estimated from the random data scatter. These reflect better the

total uncertainty, including the epistemic uncertainty resulting from lack of complete knowledge

in a single finite sample.

In the synthetic data, the true b-value is taken to be 1.0, consistent with many examples in the

published literature where there is a good dynamic range of data (Frohlich & Davis, 1993; Kagan,

1999). However, in the real data, both the true distribution of the data and the true underlying b-

value remains unknown, inevitably introducing a systematic uncertainty which we need to account

for. Therefore, for the real data, we assume that convergence is reached within the data available

here and that convergence to the asymptotic value of m̄∞ and b is established at least approximately

at largest dynamic range for both m̄ and b. We acknowledge that this pragmatic assumption could

lead to an unavoidable residual bias not accounted for in our analysis of the real data below. The

estimated values of b and mθ in the real data are obtained using equations 4 and 5 in Geffers et al.

(2022), using the method of Kagan (2002) to define maximum log-likelihood functions for the

distribution for a finite sample of n observations. The resulting best estimates β (equivalent of b)

and Mθ (equivalent of mθ) are obtained for the real data and are shown in Table 1.

4 SYNTHETIC AND REAL CATALOGUE RESULTS

We now present the results of the hypothesis test on both synthetic and real earthquake catalogue

examples, using the theory and methods described in the previous two sections. The figures in this

section all follow the same visual representation – the catalogue data are shown as blue circles,

where red circles indicate discarded data (n ≤ 3), orange circles indicate data with n > 50 and

the solid black line represents the sampled mode from the remaining data. All of the discarded

mean magnitude data with n = 1 in any sample plot on a straight line (shown in brown in the

case of synthetic data in Figure 2) and represent a hard edge to the range of possibilities – a

clear artefact of such small samples. This logic extends to the choice of n ≤ 3 to avoid artefacts

from a secondary local mode summarised in section 3. The area in light blue represents the 95%
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10 G.-M. Geffers, I.G. Main and M. Naylor

Figure 2. a) and c): mean magnitude as a function of dynamic range for GR and MGR data, respectively.

b) and d): b-values as a function of dynamic range for GR and MGR data, respectively. The straight brown

line in all plots indicates an upper bound to the mean magnitude in a sample of 1. The solid black line shows

the mode for the plotted synthetic data (blue circles) and the bright green curve represents equation 15 in

a) and c) and equation 17 in b) and d). The vertical dotted line represents the point at which both accuracy

and precision are reached and the horizontal, dotted line represents the optimal values for convergence of m̄

or b obtained from the curve fit. Red circles indicate discarded data where a sample n ≤ 3. Orange circles

indicate data where a sample n > 50.

confidence intervals of the outcomes determined by (a) the scatter in the results for the synthetic

data or (b) the error estimates given in equations 18 and 19 of m̄ and b for the single samples in the

real data, also at 95% confidence. Faint, horizontal lines indicate the optimal convergence values

of m̄ and b returned from fitting equations 15 and 17.

In Figure 2a) and b), the data are randomly sampled from a GR distribution with b = 1. In Figure

2a), m̄ converges from below as a function of dynamic range and there is good agreement between

the mode and that predicted by equation 15 in bright green. For a dynamic range of ∼ 1.4 and up,

the mode already lies within ± 0.05 units of m̄∞. Figure 2b) shows the corresponding Aki b-values

as a function of dynamic range. The best fit (equation 17) converges extremely quickly to b = 1.0

± 0.1, similar to the mode, before a dynamic range of 1.0 is even observed. This convergence is

somewhat faster than in the case of the mean magnitude because of the approximation involved
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Frequency-size distribution parameters as a function of dynamic range 11

Figure 3. Presented as explained in the caption to Figure 2. a) and c): Mean magnitude as a function of

dynamic range for The Geysers and Southern California data, respectively. b) and d): b-values as a function

of dynamic range for The Geysers and Southern California data, respectively. Light blue shading represents

the 95% confidence intervals from equations 18 and 19. The vertical dotted line represents the point at

which precision is reached and the horizontal, dotted line represents the optimal values for convergence of

m̄ or b.

in rounding described above. In the case of data randomly sampled from an MGR distribution,

the dynamic range observed in the synthetic data where both accuracy and precision are attained

is considerably smaller than for the GR data, due to the effect of the ‘corner’ magnitude mθ and

the associated roll-off in frequency for larger events. In Figure 2c) and d), the data are randomly

sampled from an MGR distribution with b = 1 and a corner magnitude of mθ = 3.5. The best fit

for m̄ and b is very close to the observed modes although this time, in the case of the b-value, a

dynamic range of around 1.3 is required for convergence to b = 1.0 ± 0.1 again, convergence to

the benchmark value is slightly faster than in the case of the mean magnitude (Figure 2c) which

requires a dynamic range of 1.6 to fall within ± 0.05 units of m̄∞.

In the case of The Geysers data, the last datapoint in Figure 3a) is ignored in the fit, as appears

to be an outlier, and hence may bias the fit to the other estimates. For both m̄ and b in the case of

The Geysers (Figure 3a and b), the convergence of the best fits to equations 15 and 17 respectively,
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12 G.-M. Geffers, I.G. Main and M. Naylor

Table 1. Threshold dynamic ranges for accuracy ra and precision rp at 95% confidence as a function of mc,

m∞, and the assumed or estimated b-value and corner magnitude mθ. The bias or precision respectively

are defined when they are equal to 0.05 units in m̄ and 0.1 units in b (Figure 2). The accuracy cannot be

estimated for the real data because the underlying values are not known.

Figure Data ra(m̄) rp(m̄) ra(b) rp(b) mc estimated m̄∞ estimated b-value estimated mθ

2a) and b) synthetic GR 3.6 4.0 3.0 3.8 1.0 1.43 1.00 3.5

2c) and d) synthetic MGR 1.7 2.6 1.7 2.0 1.0 1.42 1.00 3.5

3a) and b) The Geysers - 2.0 - 2.2 1.25 1.66 1.02 ∼ 4.6

3c) and d) Southern California - 3.0 - 2.7 3.28 3.70 1.04 ∼ 7.0 - 7.5

are very close to the predicted mode (specifically the maximum likelihood value) of the single

sample catalogues across all dynamic ranges. Notably, in the case of m̄, the fit overestimates the

modal m̄ between dynamic ranges of 1.5 and 3.5, most likely due to the variability of real data

associated with catalogue heterogeneity. We estimate m̄∞ is ∼ 1.66 and the associated b-value at

convergence is b ∼ 1.0. On the contrary, the best fits do a less good job in fitting to the Southern

California data shown in Figure 3c) and d). This is also likely due the larger variability in the real

data. The best fit parameters obtained in Figure 3 are for a) b = 1.5, dm = 0.05, b) b = 1.01, dm =

0.11, c) b = 1.05, dm = 0.01 and d) b = 1.03, dm = 0.012.

Table 1 presents a summary of the threshold dynamic ranges required for accuracy and pre-

Table 2. Convergence of the precision in the estimated b-value (δb) as a function of dynamic range for

GR and MGR sampled data compared to Southern California and The Geysers data, respectively. For the

synthetic data, δb is estimated from the scatter in outcomes at 95% confidence, denote δbS and for the real

data from equation 19, also representing 95% confidence, denoted δbR. The rows in bold state the ratio of
δbS
δbR

.

Figure Data r = 1.0 r = 2.0 r = 3.0 r = 4.0

2a) and b) synthetic GR 1.0 0.65 0.4 0.06

3b) and d) Southern California 1.1 0.45 0.15 0.02

ratio δbS
δbR

0.9 1.4 2.7 3.0

2c) and d) synthetic MGR 0.65 0.2 0.06 -

3a) and b) The Geysers 0.95 0.2 0.05 -

ratio δbS
δbR

0.7 1.0 1.2 -
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Frequency-size distribution parameters as a function of dynamic range 13

cision of m̄ and b for both the synthetic and real datasets, including their estimated values of

convergence for m̄ and b. The increase in precision for both the synthetic (δbS) and real (δbR) with

respect to r is shown in Table 2. In all cases, precision increases with respect to r. The synthetic

data emulating the Southern California example converges more slowly than that for the real data,

indicating that the total error may be underestimated by equation 19, by a factor in the range 0.9 -

3.0. For the Geysers data, convergence in δbS and δbR is more similar to that expected from equa-

tion 19, with a ratio near 1.0. Notably, the bias discussed here is mostly related to small r and n,

and becomes less significant with increased r. While this may represent a minority of all studies

of the earthquake frequency magnitude relation, these are over-represented in the case of volcanic

and induced seismicity where the dynamic ranges are much smaller.

5 DISCUSSION

In our analytical theory, we have used a similar approach to that of Ogata & Yamashina (1986) who

also used equations 4 and 5 to derive equation 9, as in this paper. However, there are differences.

For example, we use a maximum likelihood solution for the mode of the distributions of mean

magnitudes rather than the expectation value estimated from the mean value of a randomly selected

set of mean magnitudes, but it is reassuring that the same result can be obtained from different

methods. We then recast equation 9 in terms of dynamic range, and examine how well this equation

fits results from a finite size sample with a maximum observed magnitude ω. We also consider the

assumption that the mean sampled magnitude is a good approximation for the expectation value,

which in a finite sample is generally not the case. The maximum observed magnitude in the cases

here are those that emerge from finite samples of either the real data or the generated synthetic

data, i.e. we have not limited this correction a priori by setting a specific upper bound before the

sampling.

The analysis of the synthetic data has shown that the convergence of the mode in the mean

magnitude expected in a finite sample (equation 15) in the case of an exponential FMD is in very

good agreement with the observed value (Figure 2). While the trends are broadly similar, this is not

as clearly the case for real data. Nevertheless, the analysis of The Geysers data seem to follow this
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14 G.-M. Geffers, I.G. Main and M. Naylor

trend more closely than in the case of Southern California, where the picture is much more vari-

able, leading to much larger uncertainties compared to The Geysers, most likely due to catalogue

heterogeneity. Additionally, the real catalogues are already subject to larger uncertainties because

the errors in both m̄ and b for a single sample are not representative of the overall uncertainty

one might expect on repeating the experiment many times (Marzocchi & Jordan (2017) provide a

detailed discussion on caveats associated with handling different sources of uncertainties).

In the case of the synthetic data, we know that b = 1.0. However, in the case of the real catalogue

data, we do not know one ‘true’ value of b, even though Geffers et al. (2022) have previously

suggested that of The Geysers catalogue is likely to have a b-value close to 1.0. This falls within

the b-values estimated in prior literature, ranging from b ∼ 0.8 to 1.3 (Henderson et al., 1999;

Convertito et al., 2012; Kwiatek et al., 2015; Leptokaropoulos et al., 2018). Similarly, b ∼ 1.0 for

Southern California (Kamer & Hiemer, 2015). These independent estimates are in agreement with

the asymptotic b-values estimated in Table 1 of this study.

The improvement in accuracy of the estimated b-value in synthetic cases as a function of

dynamic range (Table 1) can be attributed to the improvement in the estimated mean magnitude as

sample sizes increase, captured in equation 17 and in agreement with Ogata & Yamashina (1986)

who state that the bias in b is ‘not small’ when n is small. This also concurs with the reduced bias

in the b-value with respect to dynamic range as portrayed by Figure 6 in Marzocchi et al. (2020).

Table 1 highlights the fact that one can obtain answers that are accurate but not precise, precise

but not accurate, or accurate and precise, depending on dynamic range and the nature of the input

catalogues. Table 2 suggests that the uncertainty expressed in equation 19 may be an underestimate

of the total variability in the results for the multiple realisations of the synthetic data for the same

underlying distribution. Comparing the convergence of the b-value shown in Figures 2 and 3 as a

function of dynamic range to previous studies (Marzocchi et al., 2020; Geffers et al., 2022), we

show agreement that the bias reduces strongly if there are 3 orders of dynamic range available. In

the case of synthetic GR data, we show that this decreases further with more dynamic range but it

is unrealistic to expect such large dynamic ranges to be observed in any given real catalogue. The

bias implied by the trend on the graphs for the real data is of a similar order of magnitude to that
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Frequency-size distribution parameters as a function of dynamic range 15

of the synthetics, but this will definitely be affected by binning forced by magnitude precision in

the case of the real data. Hence, it looks as if this additional bias may be smaller or similar to, but

not significantly larger than, that of the finite sampling, at least for small to intermediate dynamic

ranges. At larger dynamic range, the real data does show a residual systematic bias that cannot be

accounted for by the ideal theory alone.

The theory for the sampled synthetic data explicitly assumes events are independent and

identically-distributed (iid) in the case of a perfect, homogeneous catalogue of magnitudes with

zero measuring uncertainty. However, in a real catalogue, the magnitude estimates are subject to

uncertainty, and are measured indirectly from an evolving network with a finite number of stations

with a finite sample of the radiation pattern, which in turn leads to much larger variability in the

the convergence trend and often a lack of convergence to a flat asymptote. It is worth noting that

the catalogues used here have not been declustered, as most declustering techniques (Gardner &

Knopoff, 1974; Gerstenberger et al., 2020) do not preserve the uncorrelated magnitude distribution

because they systematically remove smaller magnitude events.

There is some clear dynamic range dependent natural variability in the trends of the real data

beyond that which can be explained by the theory in the case of the real catalogues, including at

larger dynamic ranges (Figure 3). Our interpretation is that this is most likely due to a mixture of

catalogue inhomogeneity, magnitude uncertainties and binning (Bender, 1983; Marzocchi et al.,

2020) for the real data. These effects propagate into slower convergence to the asymptotic value

for an infinite sample within the finite range observed. The ideal synthetic test data suffer from

none of these complications. Further work is required to isolate the contributions to the trends in

the dynamic range dependent variability shown on Figure 3.

Finally, we note that Yaghmaei-Sabegh & Ostadi-Asl (2021) have independently examined the

issue of convergence in the MLE of b-value of finite samples, focusing only on the sample size n.

Here, our results demonstrate that it is equally important to consider the effect of dynamic range.
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16 G.-M. Geffers, I.G. Main and M. Naylor

6 CONCLUSION

The mean magnitude of an earthquake catalogue converges to an asymptotic limit from below

in random samples, consistent with a hypothesis derived analytically from the expected modal

values in the sampled mean magnitude in such samples. In real data, the trend is broadly similar,

but in detail substantially more variable. In this case, the true b-value is unknown, the catalogue

magnitudes have a finite error, and the catalogue is likely to be heterogeneous, explaining many of

the uncertainties involved in fitting equations 15 and 17.

The dominant factor controlling the bias of high b-values is the convergence of the mean mag-

nitude with respect to dynamic range, where the mode of the data matches the maximum likelihood

expected in a random sample, when enough data and dynamic range are observed. In samples with

a small dynamic range, the estimated mean magnitude is systematically and significantly under-

estimated, hence leading to an overestimate of the b-value as dynamic range reduces. While the

bias is smaller than the scatter in the data, it is still likely to produce systematically high b-values

on average from small catalogues with narrow dynamic range. Furthermore, we have shown that a

stable estimate of m̄ is a prerequisite for obtaining a stable b-value estimate.

Overall, this novel analysis indicated that many published studies in the literature use dynamic

ranges where we would expect significant bias in the b-value, resulting in a systematic error (un-

derestimation) in the likelihood of large events in a larger sample, and hence an underestimation of

the associated hazard obtained by extrapolation to larger event sizes, as may be the case when us-

ing equation 19 on both GR or MGR data in the synthetic cases. This study highlights once again

the importance of having enough data in any study involving power law scaling of a physical

source size, and hence an exponential distribution in a logarithmic magnitude parameter.

It is prudent to adopt a cautious interpretation of b-values and their importance and significance

in seismic hazard analysis. There is no ‘one size fits all’ answer to how many events or what dy-

namic range is required in specific catalogues for an accurate or precise estimate of b. Nonetheless,

the b-value estimates become more accurate and precise as the sample size and its dynamic range

increases. These conclusions are not restricted to the applications in earthquake hazard, because

a range of natural hazards exhibit power-law frequency-size distributions as described in the in-
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troduction, resulting in an exponential frequency-magnitude relation. Hence, the same issues of

convergence, accuracy and precision in finite samples will apply and should be taken into account.
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