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Neuronal signature of spatial decision-making during
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and Richard G. M. Morrisa,e,2
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A challenge in spatial memory is understanding how place cell firing contributes to
decision-making in navigation. A spatial recency task was created in which freely mov-
ing rats first became familiar with a spatial context over several days and thereafter were
required to encode and then selectively recall one of three specific locations within it
that was chosen to be rewarded that day. Calcium imaging was used to record from
more than 1,000 cells in area CA1 of the hippocampus of five rats during the explora-
tion, sample, and choice phases of the daily task. The key finding was that neural activ-
ity in the startbox rose steadily in the short period prior to entry to the arena and that
this selective population cell firing was predictive of the daily changing goal on correct
trials but not on trials in which the animals made errors. Single-cell and population
activity measures converged on the idea that prospective coding of neural activity can
be involved in navigational decision-making.

hippocampus j place cells j spatial navigation

A challenge in understanding spatial memory and spatial navigation is explaining how
the former contributes to the latter. It is generally accepted that place cells (PCs) in the
hippocampus constitute a “cognitive map” of the external space and that maps are used
for navigation (1, 2). An outstanding question is how these two aspects can be linked—
how information stored in the map can be accessed to guide choices about navigation.
Numerous neurobiological studies have shown that laboratory animals readily learn to
direct their spatial navigation accurately from one known place to another. This has
been observed in diverse tasks such as the Barnes Maze (3) and the watermaze (4), with
accurate navigation lost after hippocampal lesions. The cognitive map theory defines hip-
pocampal PCs as active only in a particular position in a specific environment. How
then can PCs corresponding to distal places A, B, or C contribute to appropriate naviga-
tion when the animal is starting his navigation from a remote start place S?
One solution might be to represent the animal’s location in vectorial terms with

respect to relevant landmarks or goals. This has found support in the discovery of
object vector cells in the rat entorhinal cortex (5) and goal-oriented vector fields of PCs
in the hippocampus of bats (6) and, recently, of rats (7). Modulation of in-place activ-
ity has been reported depending on future paths or goal locations (8–10). However,
this solution may not explain the decision-making aspect entailed in flexible choices,
such as the decision to go from place S to place A but not to other places. With respect
to decision-making, one suggestion is that occasional out-of-field neural activity might
be used. For example, the look-ahead activity of hippocampal CA3 PCs at decision
choice points has been reported in rats running in figure-of-8 mazes (11, 12). Activity
replay, a phenomenon first identified during sleep (13) or rest (14) after daytime expe-
rience, was later found to be involved in the out of-field reactivation of PCs during
awake navigation to a learned home-goal from random locations (15). Replay could
therefore be a possible way for the brain to selectively accesses spatial information
beyond the current location. It could sometimes reflect intended navigation and has
therefore been labeled as prospective replay. The role of replay during decision-making
has been actively debated in the literature, with different groups suggesting that
replayed events may reflect future paths (15, 16), paths to be avoided (17), new or
updated learning (18), or the remembering of past trajectories (19). Hence, we sought
to observe the neuronal signature of decision-making when rats learn and use newly
acquired information to navigate to distinct locations across different sessions.
Four key issues guided the experimental design. The first, following Pfeiffer and Fos-

ter (15), was to visually monitor enough cells simultaneously in an individual animal
because only a subset may participate in navigational planning. The second was to be
sure of recording from the same cells across days in order that firing on one day, when
the animal may learn to go to A, can be compared to that seen on another day when it
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encodes the new location that day and remembers to go to B or
C but not A. The widely used multiple single-cell tetrode
recording technique addresses the first issue with excellent tem-
poral resolution but is less suitable for the second because one
cannot be certain that a specific cell on day N is also recorded
on day N+1. Indeed, it is not uncommon for tetrodes to be
advanced slightly from day to day in search of additional cells.
The third issue was to devise a suitable behavioral task for the
navigation problem in which the animal must encode which of
the three distinct targets in a familiar spatial context is correct
on any day and direct its navigation appropriately to the most
recent correct location. The fourth issue is to ensure that the
chosen technique does not pose too heavy a constraint on the
behavioral protocol, with behavioral performance being mini-
mally influenced (20). The present study meets all four chal-
lenges. It uses an event arena in which rats are trained over
many days (28 or more) and thereby become familiar with the
testing context. They develop a stable spatial map whose PCs
can be repeatedly mapped during a daily 10-min exploration
phase. The target location of A, B, or C of the animal’s naviga-
tion from a start location S was varied from day to day. In
effect, the daily task is a spatial “recency” task in which one
location, but not the other two, is identified as the rewarded
target for that session. The study deploys calcium (Ca2+) imag-
ing, which has recently been used to monitor neuronal activity
during learning and neuronal reactivation (21, 22), as the
recording technique of choice. This provides high cell numbers
and ensures day-to-day reproducibility and stability, albeit at
the expense of temporal resolution. The Ca2+-transients were
monitored using a gradient refractive-index (GRIN) lens
directed at area CA1 of the hippocampus in freely moving rats.
Using both single-cell and manifold population analyses of cell
firing, we reveal a solution to the navigation problem.

Results

Calcium Imaging in Rat CA1. To record from freely moving rats
performing the spatial memory/navigational task, we used min-
iature endoscopes (miniscopes) originally introduced by the
Schnitzer group (23, 24). Successful recordings in CA1 have so
far been performed in mice, but we sought to adapt the tech-
nique to rats and were successful in recording from hundreds of
cells per animal (in this study, 1,146 neurons from 6 animals,
mean = 191 ± 43 SEM). A key step required in rat was to aspi-
rate beyond the fibers of the corpus callosum to invade also
some of the myelinated fibers of the alveus that would other-
wise limit the visibility of CA1 neurons from the GRIN lens
(Fig. 1A and SI Appendix, Fig. S1). This was achieved with care
resulting in minimal damage to stratum oriens. When the minis-
cope was fitted to its baseplate on each day (Fig. 1B), its view
through the GRIN lens that had been lowered during surgery to
the outer surface of the hippocampus allowed the imaging of
Ca2+-transients from pyramidal CA1 neurons (Fig. 1C and
SI Appendix, Fig. S2). It proved possible to record stably from
large numbers of neurons simultaneously with high signal to
noise (SI Appendix, Fig. S2A). After the raw camera videos were
processed (Fig. 1 D, Left), recordings were processed to identify
individual regions of interest (ROIs; Materials and Methods)
with the CaImAn constrained nonnegative matrix factorization-
extended (CNMF-E) algorithm (Fig. 1 D, Right). The Ca2+

activity associated with individual ROIs, which likely corre-
sponded to single cells, could be readily distinguished (Fig. 1E)
and monitored during distinct exploration, sample, and choice
phases of the daily behavioral task (see below). On the top rows

of Fig. 1F, the correspondence between CNMF-E traces and the
fluorescence profile of the resulting ROIs expressed as ΔF/F can
be seen. Individual Ca2+ events were detected from CNMF-E
traces (Fig. 1F). An ostensible virtue of Ca2+ imaging is the abil-
ity to monitor neurons across days by matching corresponding
ROIs and thus explore the consistency of cell firing and its
behavioral and spatial correlates across training sessions (24, 25).
We were able to obtain stable fields of view and record from the
same cells across periods of 4 sessions (Fig. 1G and SI Appendix,
Fig. S3A) and for as long as 30+ days (SI Appendix, Fig. S3B).
This stability is shown for two illustrative cells (nominally called
1 and 2 in Fig. 1 G, Middle) across sessions 18 to 21 of training.
Around 80% of neurons could be reliably found across sessions
(Fig. 1H). We confirmed that our recordings came from excit-
atory neurons expressing the calcium sensor GCaMP6f (26)
from the CamKII promoter. GCaMP6f expression overlapped
with the pan-neuronal marker NeuN but not with the inhibitory
neuron marker GAD67 (SI Appendix, Fig. S4). To our knowl-
edge, only one recent study (27) has been published using
single-photon calcium imaging in rat CA1. This confirmed the
presence of PCs, and our findings build on theirs as an applica-
tion of this technology to freely moving rats undertaking flexible
spatial choice behavior.

“Everyday Memory” Task. The concept of everyday memory
(28) is that a great deal of information is encoded incidentally
during daily life that is typically retained selectively for not
much more than a day. In our model of this phenomenon,
food-restricted rats were trained during a sample phase to
retrieve food pellets from a single sandwell in a square arena
whose location changed daily. There was no requirement to
learn, as it was not a trial requiring discrimination between two
choices, but the animals were rewarded at the daily location
that was encoded. This daily training was preceded each day by
an exploration phase of the entire arena in which the 3 possible
locations for this rewarded sandwell were initially empty (Fig.
1I). Access to the arena from a startbox (blue) was via an auto-
mated entry door. The exploration phase lasted 10 min during
recording sessions. The sample phase (6 trials) then began in
which the animals now found that one of the possible sandwell
locations had sand in it (green in Fig. 1I) that, were the animal
to dig, would reveal accessible food pellets. The food pellets are
large (0.5 g) such that the animals have a natural disposition to
carry them back to the startbox to eat. All animals quickly
returned to the startbox after retrieving each pellet one by one.
The other two possible sandwell locations were empty, with
food pellets in an underlying inaccessible compartment to
ensure uniform olfactory cues (29). After 45 min, the choice
phase (6 trials) began in which the animals were now con-
fronted by 3 identical-looking sandwells, of which only the one
used in the sample phase contained an accessible food reward
(win-stay). The animal’s path from the startbox around the
arena and among the sandwells was monitored on both sample
and choice trials. On the next session, one day later, the posi-
tion of the correct sandwell changed to a new location in a
quasi-random order. Over time, the probability that the ani-
mals would preferentially approach this sandwell during choice
trials improved (F = 2.88, df = 21, P = 0.034; Fig. l) such
that, by sessions 18 to 21 (shaded green; Fig. 1), the animals
reached an asymptote of performance of 90.6 ± 3.5% correct
(mean ± SEM, Student’s t test t = 11.61 relative to chance,
df = 7, P < 0.0001; here and throughout the text, full statistics
information is reported in SI Appendix, Table S1; Fig. 1J, and
SI Appendix, Fig. S5). The time taken by the animal to reach
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Fig. 1. Miniscope calcium imaging in rat CA1. (A) Schematic of rat hippocampus CA1 area. The hippocampus is overlaid dorsally by alveolar fibers and cal-
losal fibers. GCaMP6f is expressed in CA1 pyramidal neurons (depicted in green). (B) The GRIN lens is implanted to reach the outer surface of CA1 and
cemented to the animal’s skull. A baseplate is attached externally to allow the daily positioning of the miniscope and recordings from the same neurons
across multiple sessions. (C) Histological analysis confirmed the positioning of the GRIN lens as above stratum oriens of CA1. In green, own GCaMP6f fluo-
rescence; in blue, DAPI staining of nuclei. Scale bar, 250 μm. The dashed line indicates the position occupied by the GRIN lens. (D) FOV of rat CA1 seen as
recorded with the miniscope. The image displays the green fluorescence seen through the 535/50 filter from 475-nm illumination; note the occasional blood
vessels and some brighter or active cells in the frame. Scale bar, 100 μm. On the Right, projected ΔF/F of the video on the Left. After processing, the signal is
normalized in ΔF/F units, and maximum projection is shown to display active cells. (E) The CNMF-E algorithm was used to identify neurons. Representative
temporal traces for 12 cells of the animal in D; note that the beginning of the recording is shown. The corresponding cells are highlighted on the cell map
on the Left. (F) Event detection was performed with the OASIS algorithm from CNMF-E traces. The calculated ΔF/F profile of the applied mask is shown to
compare the data traces with the CNMF-E output. (G) Longitudinal registration across consecutive sessions (S18 to S21). Superposition of the projected ΔF/F
recordings for the four sessions confirms the consistency of the FOV. In the Middle, the corresponding FOV is presented; scale bar, 100 μm. In the two Insets,
two representative cells are shown as they are identified in the four sessions. (H) Pairwise comparison of common cells between sessions. A large propor-
tion of cells is detected and identified across multiple sessions. Average ± SEM, n = 6 animals. Note that the comparison of each session with itself is 1 by
definition. (I) Schematic of the behavioral task in the everyday arena. Each session is made of three phases, as follows: exploration in the arena (10 min),
sample phase (6 trials), and choice phase (6 trials). The text and Materials and Methods contain details. The startbox location from which the animal starts
and then returns to eat the rewards is depicted in light blue. Each session, the identity of the rewarded sandwell changes. Ca2+ recordings are typically lon-
ger and are synchronized with the behavioral video with a transistor-transistor logic (TTL) pulse. (J) Behavioral performance increased over sessions, as ani-
mals committed fewer errors in identifying the correct sandwell during choice trials. Average ± SEM. For each animal, the average number of errors in the
first three choice trials is expressed as performance that assumes a value of 0.5 at chance (Materials and Methods). The sessions highlighted in green are the
recorded sessions considered in this work. Session effect, P < 0.05, one-way ANOVA. Here and in all later instances, full statistical details are reported in SI
Appendix, Table S1. (K) Example trajectories of an animal performing in the choice phase at different stages of learning (S02, S09, and S19). Note how trials
become more directed and fewer errors are committed.
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the sandwell that was most recently correct also declined across
sessions (SI Appendix, Fig. S5A). In the last 2 sessions, a probe
trial was performed in which the sandwells were covered with
sand but had no accessible food reward. The animals tended to
focus their digging for food preferentially on the correct sand-
well (correct-incorrect effect, P < 0.001, two-way ANOVA;
SI Appendix, Fig. S5C). It is important to note that the learning
curve of Fig. 1J is not gradual learning of the spatial map of the
arena and the 3 possible sandwell locations; such context learn-
ing is likely accomplished in the earliest sessions. Instead, it is
the acquisition of the principle of using memory recall to
approach the most recently rewarded location (spatial recency
memory). Fig. 1K plots the paths taken by a representative ani-
mal at different stages of learning (in this example, sessions 2,
9, and 19). As the animal became more proficient in the task,
more direct paths were taken and fewer errors were committed.
Thus, the behavioral task created an ideal daily neuronal
recording session in which there is a defined starting location,
three geometrically distinct targets, and the opportunity to fol-
low directed navigational paths from the start to the most
recently valued target and back home again. We therefore

focused our attention on sessions 18 to 21 during which the
animals’ asymptotic performance in the task was recorded using
the miniscope.

Spatial Properties of Cells Recorded with Ca2+ Imaging. The
next step was to conduct Ca2+ imaging during all three phases
of the task (exploration, sample, and choice; Fig. 2). We con-
firmed observations from mouse experiments that miniscope
Ca2+ imaging enables the visualization of place fields in the
event arena. They were observed in individual cells during all
phases of the session (Fig. 2A). PCs have been identified in lin-
ear and multidimensional environments (30); we also consis-
tently observed many neurons displaying spatial selectivity
(SI Appendix, Fig. S6). Multiple factors including directed navi-
gation may induce global or rate remapping (31). To determine
if remapping was occurring between exploration and sample or
choice phases, the center of place fields identified in the explo-
ration phase were compared with the maximum activity during
sample and choice phases; there was no trend toward either
global or rate remapping, taking into account the lesser space
navigated during the training trials (Fig. 2B). Moreover, by
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Fig. 2. Features of space representation in rat
CA1. (A) Example cell showing the consistency of
event locations between exploration, sample, and
choice. On the Left, the position of the events of
the displayed cell (red dots) are superimposed on
the animal’s trajectory. On its Right, the corre-
sponding occupancy maps are shown for the
three phases. The light-blue box is the startbox,
and the dashed line indicates the arena limits. In
italic is the peak value for each map (events/sec-
ond). (B) x-y displacement of the maximum activ-
ity for all neurons in sample and choice phases
compared to the exploration phase. (C) Individual
cells display consistent location of their place
fields across consecutive sessions. Displayed is
one representative cell detected in S18 to S21. On
the Left is shown the position of the events color
coded by session. On the Right, corresponding
occupancy maps are shown for the four sessions.
(D) x-y displacement of the place center across
exploration sessions. The first session where a PC
is detected is taken as reference to calculate the
displacements for the other sessions. (E) Decod-
ing accuracy of a decoder trained on the explora-
tion phase activity. On the Left, location and nam-
ing of the three sandwell locations used in this
study. Top, the decoder correctly predicted when
the animals were located in one of the three sand-
wells. Violin plot, points are individual animals.
*P < 0.05, **P < 0.01, Student’s t test of data vs.
shuffle comparison. Bottom, performance of the
decoder using all of the cells detected (Left), only
PCs (Middle), or other spatially sensitive cells (non-
PCs, Right). **P < 0.01, Student’s t test of data vs.
shuffle. SI Appendix, Table S1 shows for full statis-
tics. (F) Cosine dissimilarity matrix for directed sam-
ple trials (trials 2, 3, 4, 5, and 6), and correct choice
trials (trials 1, 2, and 3) showing repeated neuronal
activity along the trajectory. Trajectories are repre-
sented on top of the graph. (G) Manifold represen-
tation of trials presented in F. The majority of vari-
ance is contained in the first two components C1
and C2. The s denotes the start of the trials in the
startbox, and the e denotes the end of the out-
bound part of each trial at the sandwell. Note the
repeated pattern assumed by the individual trial
manifolds (Right) indicating the repetitiveness of
the neural activity. The manifold assumes a circular
shape even though it only corresponds to the out-
bound trajectory between the startbox and the
sandwell (shown for choice trials), indicating a link
between the startbox activity and the sandwell
representation.

4 of 12 https://doi.org/10.1073/pnas.2212152119 pnas.org

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2212152119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2212152119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2212152119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2212152119/-/DCSupplemental


pooling data across sessions 18 to 21, we were able to observe a
reasonably thorough mapping of the two-dimensional (2D)
space of the entire event (SI Appendix, Fig. S6C).
Miniscope Ca2+ imaging offers the opportunity to examine

stability between sessions (Fig. 2C). The quantification across
sessions 18 to 21 showed most place-field centers displayed a
spatial drift of 10 cm or less in the two arena axes (Fig. 2D and
SI Appendix, Fig. S7), with the activity monitored across four
separate exploration sessions of 10 min each. Thus, neurons
did not significantly change the position of their place field
over these four consecutive days. A neuron was considered a PC
if the following four criteria were met: 1) the neuron fired more
than three times during the exploration phase; 2) when comput-
ing the mutual information between its Ca2+ events and the
animal’s position, the correlation was greater than the 99th per-
centile of the spatial information calculated for the shuffled data-
set; 3) there was no evidence of spike burstsl and 4) a minimum
number of entries in the place field (Materials and Methods con-
tains details). With these criteria, about a third of active cells
were classified as PCs (29 ± 5%; SI Appendix, Fig. S7D), which
is in line with previous reports in various environments by using
different recording techniques (23, 32–35). Overall, 59 ± 8% of
cells was classified as a PC in at least one session, which is in
agreement with ref. 23 (SI Appendix, Fig. S7E). The majority of
PCs had one place field, which is in agreement with previous
reports (23, 36, 37) (SI Appendix, Fig. S7F). An exact number is
likely influenced by the extent of effective behavioral sampling
of the arena and the stringency of the classification criteria.
The next step was to examine whether spatial information in

the activity of recorded neurons was sufficient to correctly pre-
dict the animal position. Using the data from the 10-min daily
exploration phases (Fig. 2E and SI Appendix, Fig. S8), we
trained a decoder to predict the animal position when at one of
the three empty sandwell locations. Fig. 2 E, Right, shows that
the probability of decoding the correct location of the animal
(data) was significantly above chance performance (shuffle).
Thus, the decoder correctly predicted the location of the sand-
wells from the unit activity (i.e., that the animal was located
there; t values = 2.96, 4.56, and 3.01 for sandwell 1, 2, and 3,
respectively; data vs. shuffle, df 8, all P < 0.02). As expected,
most of the spatial information was contained in what were clas-
sified as PCs; with a decoder using only the activity from PCs,
the performance was similar to the performance using all cells
(all cells vs. PCs, df 8, P = 0.43, one-way ANOVA multiple
comparisons) and above chance (data vs. shuffle, P < 0.001 in
both cases, one-way ANOVA multiple comparisons; Fig. 2 E,
Center, in the second row). In comparing the performance of all
cells with those of defined PCs, we also observed a trend for
some residual spatial information to be contained in this other
subpopulation of cells. However, among this group of cells, only
some may be contributing to performance (other cell data vs.
shuffle, P = 0.083, one-way ANOVA multiple comparisons,
nonsignificant).
The next issue was to examine if neurons were reliably reacti-

vated by traversing analog portions of space during repeated out-
bound and then inbound trajectories between the startbox and
the rewarded sandwell during sample and choice trials. The pair-
wise cosine dissimilarity was computed between the frames in
accurately directed outbound paths of sample trials (i.e., the ani-
mal reached the rewarded sandwell first) and correct choice trials.
Dissimilarity was lower in time points of corresponding positions,
as presented in Fig. 2F. The repeated pattern of low cosine dis-
similarity parallel to the diagonal indicates that as animals tra-
versed the same space, the activity of neurons in the sample and

choice phases was also similar. This repetition can be observed by
expressing their distance with a multidimensional scaling (MDS)
manifold representation (Fig. 2G). Each point on the manifold
represents the neural population vector at a particular time point
of the outbound path, and the distance between points represents
the relative cosine dissimilarity. For both sample and choice trials,
the intrinsic dimensionality (38, 39), a measure of the number of
dimensions required to describe the neural activity, was on aver-
age 1.91 ± 0.36 dimensions. Indeed, the first two components
contained most of the spatial information (Fig. 2 G, C1-C2 Inset;
SI Appendix, Fig. S9), while additional dimensions typically
included trial-to-trial variations such as whether a trial was correct
or incorrect (SI Appendix, Fig. S9A). The manifolds of the indi-
vidual trials displayed higher than chance correlation, especially
in the first two components (SI Appendix, Fig. S9D), indicating
that repeated traversals recruit similar activity along their length.
This likely represents, in part, the population of PCs along the
trajectory, but interestingly, the start of the manifold trials (the
last 10 s in the startbox) was close to the end-point in 2D space
(i.e., arrival at the rewarded sandwell), and the manifold assumes
a circular shape, especially in the C1-C2 plane (Fig. 1 G, Right,
and SI Appendix, Fig. S10). As the closer two points are to each
other in manifold space, the lower is their cosine dissimilarity;
these data point to the striking finding that the population neural
activity in the startbox is similar to that of the correct sandwell.

Neuronal Activity in the Startbox Is Predictive of Spatial
Decision-Making. We have seen that, over sessions 18 to 21,
the animals chose the sandwell to approach upon leaving the
startbox in choice tests at around 90% correct. The manifold
results presented above prompted us to gather further insight
into this initial part of the trial and, in particular, the last 10 s
in the startbox before leaving. Note that the animal has full
agency about when to leave after the door had opened. Fig. 3A
shows that mean event rate rose steadily during this 10-s
period. A decoder was then trained on the activity in the start-
box in 2-s time windows (Fig. 3B) to see if it would correctly
classify to which sandwell the animal was headed during choice
trials. The prediction accuracy rose to >80% as the moment of
entrance into the arena approached and was significantly higher
than chance when compared to shuffled data that were, as
expected for 3 sandwells, around 33% (Fig. 3C, breakdown of
individual animals is presented in SI Appendix, Fig. S11). The
decoder correctly identified the sandwell to which the animal
was heading before leaving the startbox on trials when the ani-
mal chose correctly but poorly when the animals’ choices were
incorrect (i.e., they searched at a nonrewarded sandwell first in
that trial). This prediction was highly significant for correct tri-
als (ANOVA, F = 43.84, df 3/14, P < 0.0001).

Interestingly, the prediction was not significant for incorrect
trials (P = 0.46 to shuffled data, one-way ANOVA multiple
comparisons). Decoding performance remained poor when we
reclassified the incorrect trials as leading to the appropriate sand-
well (but a sandwell that was nonrewarded on that session) (P <
0.0001 compared to correct trials, P = 0.49 compared to incor-
rect trials, one-way ANOVA multiple comparisons). Together,
these data indicate that startbox neural activity is not anticipat-
ing a different sandwell during incorrect choices but rather is
not discerning between possible choices at all; the resulting out-
come is perhaps a casual behavioral choice. However, if random,
this choice may sometimes lead to the correct sandwells, and
indeed, we noticed a small proportion of correct choice trials
where decoding performance was poorer (Fig. 3C). A trend for
better decoding performance on correct trials as a function of
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Fig. 3. Prospective coding during decision-making. (A) Neural activity increased as the moment of leaving the startbox approaches (dashed line). Mean
event rate (events per second) in the 10 s before leaving (blue shaded area). Individual animals are shown in light blue and the population average in blue.
(B) The success of decoding of the correct destination sandwell increases as the moment of leaving the startbox approaches (dashed line). Mean ± SEM is
resented in blue and shaded area, while the mean ± SEM for the control shuffled data are represented in gray and shaded area. (C) Decoding the perfor-
mance of the destination in choice trials from the startbox activity. The performance was highly accurate in correct trials compared to the shuffled data. In
incorrect trials, instead, the performance was much worse and at chance level. For incorrect trials, the decoder performance was inaccurate also when they
were relabeled with the first visited sandwell (incorrect actual) during those trials. ***P < 0.0001, one-way ANOVA comparison of means. (D) A representa-
tive example of cell events during the 0 s before leaving the startbox and the first 2 s of the trial in the arena. Cells are ordered by maximum activity. On
the Right, we plot the spatial content of the cell activity between �5.2 s and �1.6 s. Red dots are the position of the events when the cells were active in our
experiment (which includes the arena and the startbox). Importantly, during the display window, the animal was in the startbox. (E) Representative examples
of choice trials showing the repeated prospective coding of the different sandwells (SW) in the 10 s before leaving the startbox. Prospective coding corre-
sponding to the correct sandwell in each trial is displayed in green. Next to each graph, the frequency of each prospective coding is displayed as a histo-
gram. The first trial on Top corresponds to the trial displayed in D; the light-blue square indicated the portion of the trial presented for display purposes.
(F) Histogram of the angular distribution of the place centers for the cells active in the startbox divided by the identity of the rewarded sandwell (1, 2, or 3).
Individual histograms are presented in SI Appendix, Fig. S17. (G) Relative number of prospective coding events for the rewarded and nonrewarded sandwells
during correct trials. Black dots are individual animals and gray lines are individual sessions. **P = 0.0057, paired t test. (H) Number of prospective coding
for incorrect trials. ns = 0.3033 paired t test.
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the number of cells active in the startbox was observed, but over-
all performance was higher than 65% (SI Appendix, Fig. S12).
Interestingly, a lower but significant performance was observed
in later sample trials when the animal went to the appropriate
sandwell directly, indicating that even a small number of prior
exposures may be sufficient to drive memory encoding and a
coherent representation during retrieval (SI Appendix, Fig. S13 A
and B). This is unlikely to simply reflect the direction the ani-
mals were facing because we could not predict the animals’ goal
from the orientation of their head (SI Appendix, Fig. S14).
A high proportion of the cells active in the startbox was reac-

tivated when the animal was in the arena (t = 5.98, df 4, P =
0.0039, paired Student’s t test compared to cells active in the
startbox only; SI Appendix, Fig. S15 A and B). In particular,
startbox events were significantly more likely to map to the por-
tion of the arena occupied during sample and choice phases,
reflecting the paths taken to and from one of the three sand-
wells (t = 3.459, df = 4, P = 0.026, paired Student’s t test;
SI Appendix, Fig. S15 C and D). Moreover, the majority of start-
box cells (64 ± 12.5%, mean ± SEM) represented the animals’
outbound paths (with ∼22% PCs). Conversely, only 3.6 ± 0.2%
(mean ± SEM) were active during the inbounds path (of which
∼6.5% were PCs) but 39 ± 6% (mean ± SEM) were active in
both inbound and outbound paths (SI Appendix, Fig. S16). To
determine the information content at each time point during the
10 s before leaving the startbox, the locations of place fields in
the arena were plotted for the subset of cells active in the startbox
during this time window (displayed in Fig. 3D is the time win-
dow from �5.2 s through to �1.6 s). Fig. 3D shows exemplar
activity patterns at different time points before the animal left the
startbox on an individual trial at specific time points. This was a
trial in which the animal went to sandwell 3. The initial activity
corresponds to the correct sandwell and the trajectory leading to
it and then a momentary change of anticipation switching to
sandwell 2 (at �3.2 s) followed by a return to the commitment
to approach sandwell 3. Note that the rat was in the startbox
throughout this period (SI Appendix, Fig. S14F). This exemplar
pattern was quite common across different animals and sandwells,
and we therefore refer to this phenomenon as “prospective
coding,” as the temporal resolution of calcium imaging is
insufficient to use the term replay (Discussion). In Fig. 3E and
SI Appendix, Figs. S17 and S18, further examples are displayed
showing that different patterns of prospective coding occur over
time, corresponding to the correct sandwell location or correct
trajectory (in green) but also of the other two sandwells (black).
The direction to which startbox cells were pointing was quan-

tified as the average angle between the spatial location of the cell
events during exploration and the door of the startbox (Fig. 3F).
As expected, the distribution of startbox directions corresponded
to the angles of the directions to the three sandwells (Fig. 3 F,
Inset). This distribution changed between sessions due to the use
of different rewarded sandwells in a random but counterbal-
anced order (Kolmogorov-Smirnov comparisons between sand-
wells 1, 2, and 3: all D values are >0.19 with all P values of
<0.0001). In particular, the distribution peaked toward the
angle corresponding to the correct sandwell of that session (Fig.
3F and SI Appendix, Fig. S19). The number of prospective cod-
ing events in the startbox was strikingly higher on correct than
incorrect trials (Fig. 3 G and H; paired Student’s t test, repeated
measures, t = 5.41, df = 4, P = 0.0077). Note that the number
of prospective coding events associated with the other sandwells
was not zero—consistent with the pattern jumping around dur-
ing the startbox decision-making period. On incorrect trials, the
number of prospective coding events was similar for the correct

and incorrect sandwells (paired Student’s t test, repeated meas-
ures, t = 1.239, df = 3, P = 0.3023). On average, prospective
coding events corresponding to the recall of the correct sandwell
in the startbox were longer and recruited a larger number of cells
than those of the incorrect locations (paired Student’s t test,
repeated measures, t = 4.372 df = 4, P = 0.0119) (SI Appendix,
Fig. S20 A and B). Furthermore, the number of events for the
correct sandwell was relatively constant on all 6 trials in the
choice phase (SI Appendix, Fig. S20C). However, this was mark-
edly different for sample trials during which the animal has to
encode the new daily location, for which the first three trials are
closer to chance, while the last three show more frequent pro-
spective coding of the correct sandwell (SI Appendix, Fig. S20C).

Discussion

There are four main findings. First, calcium imaging of large
numbers of cells in freely navigating rats in an open arena has
confirmed years of electrophysiological data showing that PCs
and other cells with spatial selectivity can be observed, with no
global remapping of place field locations observed between
exploration, sample, and choice phases. Second, neural activity
in the startbox increases during the waiting period before a trial
starts with population coding activity preferentially correlating
with any correct target or path to which the animal is about to
run. Third, startbox activity is not predictive of the goal on tri-
als when the animal performs incorrectly. Fourth, population
coding of cell activity reveals that the activity in this time
period prospectively codes the trajectories to possible goal loca-
tions, with the correct goal location being overrepresented.
These data collectively reveal that neuronal activity correspond-
ing to possible destinations or the paths to them is reactivated
in the time period before a decision is made, which is a pattern
of neural activity that could inform decision-making by display-
ing alternative scenarios.

These observations were possible through the successful optical
recording with miniscopes in the CA1 hippocampal region of rats
performing a complex, naturalistic navigational task in a large
environment. The application of this technique to the rat required
the careful aspiration of a very small strip of myelinated alvear
fibers overlying the hippocampus, as well as those of the corpus
callosum (as used in the mouse; SI Appendix, Supplementary
Discussion), in such a manner as to leave stratum oriens undam-
aged (Fig. 1). In this way, there was minimal damage to the hip-
pocampus itself, CA1 cell imaging was feasible, and we realized
successful, reliable recordings over many days with stable regions
of interest. Rats typically exhibit a wider range of behaviors and
are better suited for demanding neuroscience protocols such as
those employed in the study of spatial and episodic memory
(40–42). Compared to electrophysiology, calcium imaging allows
the identification of neurons across different sessions and for pro-
longed periods of time (23), although at the expense of time reso-
lution and sensitivity. Ref. 37 also provides a detailed comparison
of data from the rat and mouse, and our joint introduction of the
technique to one of the most studied areas of the brain in one of
the main model organisms is particularly important.

Our first finding confirms that this technique is effective in
the detection of PCs in the rat. With our criteria (Materials and
Methods; 99% mutual information), a third of cells were classi-
fied as PCs, with the remaining population of cells also exhibit-
ing some degree of spatial selectivity (Fig. 2E). Different reports
estimate PCs to range from 20% (43) to 35% (35) to 80% (32),
although the number is markedly influenced by task factors,
which are the criteria used to define PCs and which cells can be

PNAS 2022 Vol. 119 No. 44 e2212152119 https://doi.org/10.1073/pnas.2212152119 7 of 12

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2212152119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2212152119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2212152119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2212152119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2212152119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2212152119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2212152119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2212152119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2212152119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2212152119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2212152119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2212152119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2212152119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2212152119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2212152119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2212152119/-/DCSupplemental


included in population encoding. Our results are broadly in line
with reports on rat hippocampus using electrophysiology in 2D
environments, despite certain parameters (such as rate of firing)
being different in optical recording. Shifts between environments
(2, 44, 45) or prominent changes in environmental cues (46) are
known to induce global, partial, or rate remapping of PCs.
Here, we did not observe global remapping between exploration,
sample, and choice trials, although we cannot exclude some level
of rate remapping in the firing rate of PCs between the different
phases. Indeed, in related experiments, it has been reported that
even the introduction of barriers in a well-known environment
can allow stable place fields to be maintained (16). With recep-
tive fields stable across days, this greatly expanded the neuronal
dataset with which to assess navigational trials and train a
decoder. In our experiment, place fields remained largely stable
across days (Fig. 2 C and D) as also reported in ref. 27. This sta-
bility is likely to be due to the animals’ extensive training in the
same arena. While large day-to-day variability has been reported
between early epochs of an environment (23), correlation in the
neural representation between sessions increased as the animals
became acquainted with the environment upon repeated presen-
tations (25).
Second, before the animals take any action to move toward

one of the sandwells, neural activity increases in frequency such
that, by the time animal chooses to leave the startbox, there is
enough information in population measures of activity to cor-
rectly predict the animal’s destination, at least for correct trials
(Fig. 3 B and C). Interestingly, similar measures on the first or
second sample trial, before the animals had fully encoded which
is the correct location that day, were poorer, but activity there-
after assumed a predictive pattern (SI Appendix, Fig. S20C).
Thus, spatial recency within a well learned context can be
encoded and accessed remarkably fast, which is reflected also in
the reduced number of behavioral errors after the initial sample
trials (Fig. 1J and SI Appendix, Fig. S5). In at least a fraction of
cells (65 ± 3%), the information contained in the startbox neuro-
nal activity reflects spatial information about one of the sandwell
locations or the outbound trajectory to reach it (SI Appendix,
Figs. S15 and S16 and Fig. 3 D–H). These observations are
consistent with a report by Komorowski et al. (47) that showed
that PCs may become engaged by the task on which animals
are trained such as the spatial recency task here .
Third, we observed that startbox activity was different on

behaviorally incorrect trials. The relatively higher representation
of the correct sandwells likely reflects a focus on the imminent
destination (Fig. 3 E–G). At the beginning of incorrect trials, and
in early sample trials, the proportions of prospective coding
events for the correct and incorrect sandwells were statistically
indistinguishable (Fig. 3H). This finding is consistent with the
results obtained using the decoder (Fig. 3C) where neither the
correct nor the actual destination could be decoded from the neu-
ral activity in the startbox on incorrect trials.
Fourth, population coding enabled the analysis of activity

patterns using state-of-the-art, multidimensional manifolds to
represent neural population activity in multidimensional spaces.
It was observed that two dimensions were sufficient to capture
most of the variance of the cosine dissimilarity in the neural
activity recorded in the animals’ trajectories to the sandwell. A
striking observation was that, on the outbound path of correct
choice trials, these visualizations assumed a circular appearance
suggesting a relationship between the population firing in the
startbox and at the correct sandwell. This was confirmed by
observing the spatial content contained in the activity of the
population of cells active in the startbox. Such representation

cannot be measured using only single cells and reflects a poten-
tial strength of calcium imaging. Compared to electrophysiol-
ogy, calcium imaging allows the identification of large numbers
of neurons across different sessions and for prolonged periods
of time (23, 24), although at the expense of time resolution
and sensitivity. While replay has been traditionally recorded by
means of electrophysiology because of its good temporal resolu-
tion, there have been reports of replay with calcium imaging
(21, 22). Although it is likely that replay detected with electro-
physiology and cell reactivation detected in this work represent
the same biological phenomenon, we deemed it prudent to
refer to our finding as prospective coding.

These observations of spatially predictive activity collectively
support findings that suggest that prospective coding could be
used to guide future behavior (48, 49). While some authors
have proposed this, other reports have argued that replay may
rather reflect past memory, as past trajectories seem to be over-
represented in reward-switch tasks (19). Here, we find that pro-
spective coding not only maps onto future, correct trajectories
but also includes momentary mapping onto the other sandwells
during decision-making in the startbox (Fig. 3 D–H). Our pro-
posal is that such activity can sometimes serve to anticipate pos-
sible scenarios during decision-making. Accordingly, different
outcomes may be weighed during decision-making to guide
correct goal-directed behavior.

The behavioral task used, now referred to as everyday mem-
ory, has the defining characteristic of the episodic encoding of
information (e.g., during nondiscrimination sample trials) that
can be accessed for a period but is typically forgotten quickly—a
common everyday experience. By session 18, the animals were
completely familiar with the spatial context and likely had a con-
solidated representation in long-term memory of the environ-
ment. Their task was to update each day which area of space
mattered—spatial recency. The free choice and the flexibility of
this task are extra factors to encourage the animal to think about
the desired destination. When the choice is more forced by the
configuration of the task, as in the case of radial mazes (19), the
replay of past trajectories may be preferred to avoid choosing a
wrong arm that precludes access to the rewards by not allowing
rerouting, in analogy to what has been reported in experiments
with fear conditioning (17). Indeed, the data by Gillespie et al.
(19) show that, after repeated trials, the representation of the
rewarded arm increases. Our data therefore support a role for
prospective coding to inform decision-making rather than only
guide future behavior, as also theoretically suggested by others
(50, 51). Prospective coding by hippocampal CA1 cells may
hence prioritize paths that are most immediately relevant for
on-going behavior (52). This would also explain how prospec-
tive coding can even construct mental scenarios that have never
actually been experienced (11). It has been reported that differ-
ential activity along common paths can reflect a future choice
(8, 9). However, most cells we identified in the startbox were
also active in the arena at some point; it is possible that the dif-
ferent configuration of our behavioral setup does not promote
differential firing because there are no obliged common tracks
reaching the various sandwells. Indeed, cells only active in the
startbox were a smaller proportion of the total (SI Appendix,
Fig. S15A), and their activity may be differentially regulated by
the animal’s destination (9). An alternative possibility is that
via the prospective coding of different trajectories, the brain is
performing evidence accumulation until some threshold is
reached, possibly with conjunctive coding by other brain
regions, e.g., in anticipation of a reward (53). Indeed, Fig. 3E
suggests that as the decision point approaches, the number of
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prospective coding events for the correct sandwell increase.
Future work will elucidate this aspect.
There are limitations to our observations. One is that, due to

technical reasons, it is difficult to reconstruct sequences of
recorded neurons or to ascertain their ordered activity below
the frame-rate detection of 20 Hz. Accordingly, we use the neu-
tral term of content of neural activity rather than considering
them as sequences. One additional caveat is sensitivity, such
that realistically isolated action potentials are not detected by
GCamp6f. This likely results in an underestimation of the
number of prospective coding events and of the number of cells
involved. Nonetheless, we find that a third of cells active in the
startbox at the beginning of trials are common in any other trial
(SI Appendix, Fig. S13 C–E). This should affect all activity in
an equal manner, so we doubt it introduces significant bias to
our analysis; if anything, our results provide a conservative esti-
mate of the frequency of such prospective coding events.
In conclusion, we have presented an application of miniscope

imaging of the rat CA1 to the study of decision-making in spatial
navigation. This offered the possibility of comparing the neuronal
activity across multiple sessions in which animals encode the
most recent rewarded location and engage in memory prospective
coding to go to it. Before any action is taken to navigate toward
one of the possible destinations, the activity corresponding to
three possible locations or trajectories is prospectively coded by
hippocampal neurons. Our results suggest that such coding may
be used by the animals to recall alternative destinations and, pos-
sibly, to evaluate their suitability. Our data provide information
regarding the role of prospective coding during remembering/
action planning. Future directions will further clarify how the
animals use this information to plan and simulate possible paths
and how the choice is made from these possibilities. Furthermore,
it will be interesting to test how allocentric or egocentric spatial
features of the task influences prospective coding.

Materials and Methods

Animal Subjects. Lister-Hooded rats (n = 8) were 2 to 3 mo old at the start of
the experiments. Animals were purchased from Charles River and group housed
until surgery; after surgery, animals were housed in single cages. During the
behavioral task, they were food deprived to 85 to 90% of the free-feeding weight
against a growth curve, with free access to water, on a 12:12-h light-dark cycle
with training in the light phase. Care of the animals complied with the UK Ani-
mals (Scientific Procedures) Act conducted under a Project License (PPL
P7AA53C3F). Two animals were excluded from the recordings due to insufficient
quality of the field of view (FOV; low number of detected cells). One further ani-
mal (H0487) could only be recorded in sessions 18 and 19 due to technical
issues and was excluded from the analysis on prospective coding because we
could not compare the three possible destinations.

Immunohistochemistry. At the end of the experiments, the animals were
anesthetized with 200 mg/mL pentobarbital and perfused transcardially with
cold PBS (phosphate buffer saline; P4417 Sigma Aldrich) and 4% formaldehyde
in PBS (Sigma Aldrich 441244). Heads were postfixed for 24 h in formaldehyde,
and then the brains were extracted and postfixed overnight. They were trans-
ferred in 20% sucrose PBS and cut with a cryostat (Bright Instruments). After
being washed in PBS, slices were permeabilized in PBS supplemented with 10%
NDS (normal donkey serum; Sigma Aldrich D9663) and 0.1% Triton X-100
(Sigma Aldrich T8787) for 30 min, and then incubated in PBS supplemented
with 10% NDS 0.1%, Triton X-100, mouse anti-GAD67 antibody (Sigma Aldrich
MAB5406 clone 1G10.2) 1:1,000, and guinea pig Anti-NeuN (SYSY 266 004)
1:500 overnight at room temperature. The next day, three washes with PBS with
0.1% Triton X-100 were performed, and then slices were incubated in PBS with
0.1% Triton, 1:200 donkey anti-mouse Alexa 647 (Thermo Fisher A-31571) and
1:200 anti-guinea pig Alexa 555. After three washes in PBS, the slices were
mounted in Fluoroshield with DAPI (Sigma Aldrich F6057).

Microscopy. Multichannel images were acquired using a Nikon A1R Ti:E
inverted confocal microscope with 1AU pinhole dimension, using a 40× Plan
Apo/numerical aperture (NA) 1.25 oil objective (histological staining) or 10×
Plan Flour/NA 0.3 (GCaMP6f/DAPI acquisition). Sequential acquisition of the
four channels was performed with the laser lines DAPI 402 nm, GCaMP6f
488 nm, NeuN/Alexa555 562 nm, GAD67/Alexa647 639 nm, and 450/50; and
with 525/50 and 595/50 filter cubes. Histological sections stained with DAPI
were images with a Leica DMR upright microscope with Retiga 2000R camera
using an epifluorescence mercury lamp and PL FLUOTAR 10×/0.30 and PL
FLUOTAR 20×/0.50 objectives.

Surgical Procedures. Surgical procedures were performed under sterile condi-
tions and according to best practice. Animals were maintained under 3 to 2% iso-
flurane (Covertus absis01) reversible anesthesia and 0.5 mL rimadyl (Zoetis)
administered as an analgesic at the beginning of each surgery. In the first surgery,
1 μL of AAV1.CaMKII.GCaMP6f.WPRE.SV40 (UPenn Vector Core, then Addgene
100834-AAV1) diluted with sterile PBS (Sigma-Aldrich) to a final concentration of
5.7 1012 vg/mL was injected in the CA1 region of each hemisphere (stereotaxic
coordinates from bregma AP (Antero-Posterior) 3.6, ML (Medio-Lateral) ± 2.2, DV
(Dorso-Ventral) 2.2 from dura) at 100 nL/min using an automated injection pump
and a Hamilton syringe equipped with a Nanofil needle (World Precision Instru-
ments). The GRIN lens was implanted 7 to 10 d after the first surgery. In the sec-
ond surgery, three surgical screws were implanted in the skull (Screws and More,
DIN 84 A2 M1 × 3). A circular craniotomy was performed with a trephine for
microdrill (Fine Science Tools 18004-18) at AP 3.8, ML 2.4. A cylindrical volume
of cortical tissue was then aspirated manually with a sterile blunt needle in the
27G to 30G range. Constant irrigation with cold saline is performed during aspi-
ration to prevent swelling and clean blood. A small portion of alveolar (antero-
posterior) and callosal (coronal) fibers was then removed with the same blunt
needle with mild aspiration to expose but leave undamaged the outer surface
of the hippocampus (corresponding to CA1 stratum oriens). Cold saline irriga-
tion and soaked sterile gelatin sponge (we successfully used Pfizer Gelfoam or
Delta Surgical [Newcastle Under Lyme] Gelita-Spon GS-110) were used to keep
the hole clean until complete stop of the bleeding. A 1-mm-wide, 9-mm-long
GRIN lens (Inscopix) was then lowered with a 5-degree angle in position AP
3.8, ML 2.4, DV 1.9 from dura (the dura is measured before the aspiration).
Two stainless-steel rods (0.09-mm diameter; CrazyWire UK) are attached to side
of the GRIN lens with superglue before implantation, with around 3 mm of
rods protruding from the surface of the GRIN lens. A thin layer of surgical sili-
cone (KWIK-SIL, World Precision Instruments) was applied to the sides of GRIN
lens to prevent cement to enter in contact with the brain tissue. The GRIN lens
was cemented in place with Super Bond dental cement (Prestige Dental) to
cover the skull and included the skull screws.

Calcium Recordings. The Inscopix nVista system was used to perform calcium
imaging experiments. At least 3 weeks after the GRIN lens implantations, the
animals were anesthetized temporarily and the FOV checked with the Inscopix
miniscope. The baseplate support for the miniscope was scored with a scalpel
blade to provide better attachment with SuperBond cement. With the miniscope,
the optimal position for the baseplate above the skull was determined by look-
ing for the FOV containing neurons. Some brighter neurons are usually seen
along with capillaries, and some neural activity could be sometimes detected by
very briefly lowering the anesthesia depth to 0.5 to 1% isoflurane before raising
it again. The baseplate was then cemented in place with SuperBond using the
pre-existing layer of cement. Scoring the previous cement surface with a scalpel
blade is recommended to ensure optimal adhesion. After the cement had hard-
ened, the miniscope could be removed with the baseplate now anchored to the
animal skull. A small piece of duct tape can be used to prevent dirt and dust to
enter the cavity between the baseplate and the lens while not recording.

When recording, the miniscope is positioned on the baseplate and secured
with a miniature screw attached to the baseplate, taking care that the animal
movement does not displace the miniscope from the correct position. Proper
handling of the animals is fundamental in our experience, and extensive habitu-
ation is required so that the miniscope can be attached to the animals’ head
without the need to completely immobilize them or use anesthesia. Rather, a
mild restraint of the animal’s head at jaw level, without causing distress, is often
enough to enable the positioning of the miniscope. The miniscope cable was
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connected to a commutator on the ceiling that enables full animal rotation. The
commutator was connected to the nVista imaging system (v 3.0) that controls
the miniscope functioning and stores the recorded data. Because we were
recording from a large 2D area (1 to 2 m wide), the cable should be long
enough to allow easy access to the whole arena. To prevent the cable being
uncomfortable, elastic wires were used to connect the two extremities of the
cable. On the first day of recording, the exact FOV was chosen by fine tuning the
eFocus parameter on the miniscope that controls the focus of the internal lens.

Ca2+ recordings were collected at 20 Hz for a 1,061 × 800-pixel FOV using
the Inscopix nVista imaging system (v3.0) and synchronized with the camera
behavior via an electronic signal in one of the GPIO channels timestamping the
time of a small light-emitting diode (LED) light in the camera FOV at the begin-
ning and end of the recording. The camera has a pixel size of 0.82 μm.

Apparatus. All experiments were conducted using a modified event arena (29)
that was 1-m × 1-m square. The walls (40 cm high) are transparent, and the
floor is composed of 20-cm × 20-cm removable white tiles (for regular cleaning
purposes). Three Plexiglas sandwells (6-cm diameter, 4-cm depth) that contained
the hidden reward pellets were placed in one or a subset of the panels with
holes. To mask the smell of the food, the sandwells were filled with clean rodent
bedding material. Each sandwell had a spherical plastic bowl that enabled
rewarded sandwells to contain one or more reward pellets (BioServ F0171)
(0.5 g). Nonrewarded sandwells contained an equal number of reward pellets
in a space underneath, thereby serving as inaccessible food. These plastic
bowls had holes ensuring that the rewarded and nonrewarded sandwells con-
tained the same number of reward pellets at approximately the same depth in
the sand and thus should exude the same smell. Extensive randomizing and
counterbalancing were also arranged to minimize olfactory artifacts, as follows:
1) the sandwells used in the encoding trial were not used for the recall trial of
the same session; 2) all sandwells were used as rewarded or nonrewarded
sandwell across days; and 2) the arena floor was regularly wiped with a 70%
alcohol-impregnated towel between sessions, and before recall and probe tri-
als. Animals entered the arena from a single startbox located nominally in the
south. Two intramaze cues were positioned inside the arena on the west and
east walls, namely, a multicolor toy and a clean yellow mustard dispenser,
respectively. Two prominent extramaze cues were present outside the arena.

Habituation. Rats were first taught to dig for food in sandwells inside their
home cages. In a first habituation session in the arena, the rats were permitted
to explore the arena with two intra-arena cues and surrounding extra-arena cues
for 10 min. They were also habituated to being put in a startbox and given a
0.5-g food pellet to eat. When the pellet was eaten (typically around 30 s), the
rats were allowed 10 min access to the arena. On the second and third habitua-
tion, one 0.5-g pellet was placed on top of the sandwell; rats collected the pellet
and took it back to the startbox; rats were then allowed to retrieve other food pel-
lets buried close to the surface of the sandwell. If rats had difficulties in retriev-
ing the hidden food pellets, they were helped by exposing one further pellet in
front of them.

Behavior. Rats were trained in a modified form of the event arena task (29). In
this task, animals learn to retrieve food pellets from one of the three sandwells
in the everyday arena, whose position changes from one session to the next
(sandwell 1, 2, or 3). The task is divided in three parts. During exploration. ani-
mals explore the arena for 10 min without any reward present and the sandwells
are empty. During encoding (sample phase) one sandwell chosen at random is
rewarded and contains 0.5-g food pellets. Animals are trained to retrieve six pel-
lets from the sandwell, entering the arena from the startbox after the door
opens, retrieve one pellet from the sandwell, and return to the startbox to con-
sume it. During the choice trial, all sandwells were filled with bedding and
appeared identical on the outside. The correct sandwell had pellets in the acces-
sible bowl, while the other sandwells had their equal number of pellets in the
nonaccessible compartment. The choice trial was performed 30 min after the
end of the sample trial. During the choice phase, the animals retrieved six pel-
lets, returning to the startbox to eat each one. A 0.5 s, a 2,300-Hz tone was
played 5 s before the door opened.

Data Analysis.
Behavior performance. For each trial, latency and the number of errors were
quantified. Latency is the time that occurred between the moment that the ani-
mal leaves the startbox to when it starts digging at the correct sandwell. The
number of errors is the number of incorrect sandwells the animal dug at before
reaching the correct sandwell, and in this experiment, we can assume values 0
(the correct sandwell is the first choice) or 1 or 2 (the animal dug at all sandwells
before reaching the correct one). The performance was defined as

Performance = 1� n
nmax

, [1]

where n is the number of errors. Hence, if the animal performs at chance it
results in Performance = 0.5, as shown in Eq. 2.

EðnÞ = ∑iniPðniÞ = 0ð1=4Þ + 1ð1=2Þ + 2ð1=4Þ = 1 [2]

Single-photon calcium imaging. For each subsequent Ca2+ recording, the
Inscopix data processing software (IDPS; Inscopix v1.6) environment was used to
denoise the recording by applying a low and high filter spatial bandpass (σ low =
0.0005 and σ high = 0.5). IDPS was then used to correct motion artifacts by
using a rigid motion correction algorithm (54, 55). Preprocessed recordings
were then imported into the CNMF-E python application programming inter-
face (API) (56), their cell ROIs identified and their respective calcium transients
computed as the change in fluorescence over baseline fluorescence as ΔF/F =
(F � F0)/F0, where F0 is the mean fluoresce over the trace. All ROIs and their
respective traces were manually inspected, with any duplicates or artifacts dis-
carded. Neural events were then computed from the calcium traces using the
Online Active Set method to Infer Spikes (OASIS) package (57, 58). For each
animal, calcium traces were manually assessed for levels of noise and a unique
noise threshold applied (typically an “s_min” parameter of between 0.2 and
0.3 was used). Longitudinal registration was performed in the IDPS. Individual
recordings from the same sessions were first aligned generating one dataset
for each session (S18 to S21) and then the four datasets were aligned
together. Correct alignment was verified by screening a random subset of an
individual set from the correspondence table generated by the system.
Animal positional tracking. Behavioral recordings of the task are performed
with a camera placed on the ceiling (black and white, 20 fps). A small LED light
outside the arena was used for the alignment and switched on briefly while an
electrical signal was sent to one of the nVista GPIO channels. The ON time can
be easily detected by a change in intensity in the corresponding pixels. Rat posi-
tional trajectories were tracked using the Python image recognition deep convo-
lutional neural network Deeplabcut (DLC) (59).
Training dataset. A training set of 180 distinct frames of the animals in the
arena in all stages (60 frames from 3 rats) were extracted based on k-means
derived quantization. This involved downsampling the video and modeling indi-
vidual frames as vectors and then randomly selecting frames from different clus-
ters. Each frame in the dataset was then manually labeled using the point
between the animal’s ears as reference.
Network training. A 50-layer deep pretrained convolutional neural network
(ResNet-50) was then refined by training it for 500,000 iterations on the training
dataset and evaluated using the mean average Euclidean error between
manually labeled frames and those predicted by DLC. Accuracy was also
manually checked and corrected by referring to a DLC-labeled video. The
position of the animal is translated using one corner of the arena as the refer-
ence origin.
PC identification. Spatial tuning was inferred using custom Python scripts. For
each neuron, the Kraskov Spatial Information (SI) was calculated between the
binarized event train and the vector of the animals binned spatial activity
(obtained by binning the arena into 4- × 4-cm spatial bins). A neuron was classi-
fied as a PC if it met the following criteria: 1) the neuron had at least three
events during the imaging stage, 2) the animal traversed bins in which the neu-
ron was active at least three times, 3) a neural event occurred in at least 20% of
traversals, and 4) the neurons’ SI exceeded the 99th percentile of a distribution
of SI for 5,000 shuffled neural event trains.
Place fields. A neuron’s place field was defined by calculating its rate map and nor-
malizing by the animal’s occupancy map and then selecting all contiguous bins that
surrounded the place field center (i.e., the bin with maximum activity). Place field
size was then calculated as the number of 4-cm bins squared in the place field.
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Decoders. A Gaussian naive Bayes (GNB) python algorithm from Sckit-learn was
used for sandwell classification using neural activity first within the arena and
subsequently from within the startbox. In both cases, neural event trains were
convolved with a Gaussian kernel (σ = 200 ms, window width of 4σ) to obtain
a time series of instantaneous event rates.
Sandwell classification arena. For sandwell classification within the arena, sand-
well regions were first defined as the area within a 5-cm radius of the well center.
All exploration sessions were concatenated and sandwell activity isolated to produce
an N × T matrix of instantaneous event rates (X), where N is the number of neu-
rons that are active across all sessions and at least one sandwell and T is the
amount of time the animal spent in the sandwell. Then X was labeled with the ani-
mal’s corresponding sandwell (y) at each point in time. The number of observations
for each sandwell class was balanced by downsampling the number of samples for
each well to that of the least visited and repeated 10 times to enable random sam-
pling of the sandwell activity. Finally, a 10-fold cross-validation strategy was con-
ducted with a 70:30 train: test split. For each training set, GNB assumes that the
class-conditional densities, P (xi j y), are normally distributed (as shown in Eq. 3,
with μy and σy the mean population vector and stanard deviation for class y,
respectively). Finally, the Maximum A Posteriori estimation (as shown in Eq. 4) was
used for each sample, yielding a predicted sandwell for each point in time:

Pðxi j yÞ = 1ffiffiffiffiffiffiffiffiffiffi
2πσ2

p exp �ðxi � μyÞ2
2σ2y

!
, [3]

and

ŷ = argmax PðyÞ∏n
i=1 Pðxi j yÞ: [4]

SB classification of sandwell. Using correct sample and choice trials, a GNB
decoder was trained to identify the animal’s prospective sandwells (the sandwell
that the animal was about to visit). For each trial (six sample, six choice), the startbox
activity was isolated as the 10-s period before the animal left the startbox and
entered the arena. Trial activity was merged into a single matrix (Trial × N × TSB)
and temporally split into 5 × 2-s windows, starting with a delay of �10 to �8
(τ = �10 to �8) and finishing at –2 to 0, where 0 is the point at which
the animal left the startbox and entered the arena. For each 2s window (Trial × N ×
TSB,τ), a GNB decoder was run using a 10-fold cross validation strategy using a
70:30 train: test split. Correct trials were subsequently compared to incorrect trials
using the temporal window of τ =�2 (the time during which the animal was most
likely to be looking out into the arena) and a 1,000-fold cross-validation strategy.

Performance was evaluated by calculating the fraction of correctly predicted
sandwells based on the actual label. Furthermore, the F1-score was calculated
from the precision (the number of true positive results divided by the number of
all positive results) and recall (the number of true positive results divided by the
number of all samples that should have been identified as positive); see Eq. 4.

F1 = 2 ×
ðprecision × recallÞ
ðprecision + recallÞ [5]

Finally, for each training set, a comparable control was computed. This was
achieved by training the GNB using X labeled with shuffled sandwell classes.
Decoder performance was then tested on the same test sets as described above,
generating a performance or F1-score expected at chance level (∼33%).
Cosine distance. For each animal, all neurons that were active in the outbound
trajectory of correct sample or choice trials were collated into the data structure
(trial × N × Toutbound correct) and their neural event trains convolved with a Gaussian
kernel (σ = 200 ms, window width of 4σ) to obtain a time series of instantaneous
event rates. The cosine distance adjacency matrix DC ∈ T × T was subsequently
computed by treating each point in time as neural population vector (xi) with
dimension N and calculating its cosine distance from all other time points within
and across all trials (as shown in Eq. 5).

DCðxi, xi+nÞ = 1� xi � xi+n
jxijjxi+nj [6]

MDS. Dimensionality reduction or neural manifold learning takes a high dimen-
sion neural activity matrix, X ∈ N × T , and transforms it into the low dimension
mapping Y ∈ k × T (where k ≪ N). Classical MDS is a linear dimensionality
reduction algorithm based on based on the MATLAB cmdscale function applied

to the previously computed cosine distance matrix DC ∈ T × T to yield the lower
dimension embedding Y ∈ k × T . This is computed through the minimization
of a strain parameter that aims to preserve the relative cosine distances of DC in
the manifold embedding Y. In parallel to this, an eigen-decomposition of the
distance matrix DC is performed, with the resultant eigenvalues (or dimensions)
sorted according to how much of the variance they explained with the top three
dimensions selected for visualization.
Event rate. For correct and incorrect sample and choice trials, neurons that were
active in the 10-s period before the animal left the startbox up until 2 s into the
arena were isolated and the event rate over time calculated. Event rate was calcu-
lated as the number of events per seconds.
Fraction of cell firing inside trajectory. The arena was first binned into 4- ×
4-cm spatial bins. A “trajectory mask” was then constructed using sample
and choice trials, selecting bins that the animal traversed when leaving
from the startbox to each of the three sandwells and back. The trajectory
mask was then applied to all sessions and stages with any spatial activity
outside the trajectory mask considered to be part of the “arena mask” (note,
only bins that were visited were not included in the analysis). The fraction
off cells firing inside the trajectory was subsequently calculated as the frac-
tion of times a cell fired in the trajectory mask vs. the arena mask, normal-
ized by the animal’s bin occupancy.
Angle of cell firing. For each trial of sample and choice, we selected the cells
active in the 10 s before leaving the startbox. We calculated the angle of cell fir-
ing θ as the average angle between the startbox door and the events recorded
in the arena. Following convention in circular statistics, the origin was in the
nominal east direction and positive angles were calculated anticlockwise so that
a cell firing on the wall on the right of the door of the startbox has θ = 0°. The
distribution was calculated for the cells active in the startbox in trials where the
correct sandwell was 1, 2, or 3.
Cell trajectory classification. For each trial of sample and choice, we selected
the cells active in the 10 s before leaving the startbox. For each cell, we plotted
the event positions of the neuron activity in the arena as recorded in the pretrain-
ing, sample, and choice phases. Each instance of prospective coding (cell, time)
was classified as one of the sandwells if the event position was located either on
the sandwell or in the trajectory between the startbox and the sandwell. In a
minority of instances where pretraining events differed from the sample/choice
(4.9%), mainly because of additional events outside the possible trajectories, only
the sample and choice events were considered. Where the events mapped onto
an area that did not correspond to any of the sandwells, the prospective coding
event was classified as other (3.9%) and were not taken into account in the final
calculations. The fraction of prospective coding for the correct sandwell was calcu-
lated as ncorrect/(ncorrect+nincorrect) where n is the number of prospective coding
occurrences. Compound prospective coding events was considered if multiple
cells represented the same sandwell (either as goal or trajectory) and were part of
consecutive prospective coding events (≤100 ms), i.e., two prospective coding
events were considered to be part of the same compound event if they were hap-
pening on the same time frame or the following one after binning at 100 ms.
Clustering into compound prospective coding events was linearly additive; if cod-
ing events occurred at t, t+100ms, or t+200ms, a single compound prospective
coding event of length = 3 was considered.

Software. Confocal and microscope images were open and processed with Fiji/
ImageJ v2.1 (NIH); linear transformation of brightness and contrast was applied
uniformly and equally to all compared images or channels. Calcium video process-
ing was performed as described above using IDPS v1.6 and publically available or
custom Python code. Statistical analysis was performed with GraphPad Prism v7.

Note. While this manuscript was in preparation, an independent report of cal-
cium imaging in rats running along a linear track was published (27). This report
showed that a high proportion of cells can be PCs in such an apparatus. Our
study confirms this finding by using a rigorous mutual information criterion to
identify PCs and goes on to deploy this imaging technology to gather insight
into hippocampal function during decision-making.

Spatial recency within a well-learned context can be encoded and accessed
remarkably fast. These observations complement those in another report, which
was published while this manuscript was in preparation, to the effect that hippo-
campal representations can emerge after only a limited number of trials (48).
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Data, Materials, and Software Availability. All study data are included
in the article and/or SI Appendix. The data are available at https://
datashare.ed.ac.uk/handle/10283/4760. The software used for data analy-
sis is available at https://github.com/rufusmitchellheggs/Neural-Predictive-Spatial-
Coding (60).

ACKNOWLEDGMENTS. We are grateful to all current and former members of
the R.G.M.M. and S.R.S. laboratories for fruitful discussion and support. We
also thank Mark Schnitzer (Stanford) and his laboratory colleagues for their
expert opinion on the projects and support on the analysis. The Inscopix team

members were fantastic, in particular Diane Damez-Werno’s insight during the
initial phase of this project. Thanks also to Emma Wood and Matt Nolan (Edin-
burgh) and to Paul Dudchenko (Stirling) for useful insight and discussion. We
also thank Giuseppe Gava (Imperial College, Oxford) for his expert guidance
on PC identification. This work was financially supported by a Wellcome Trust
Advanced Investigator Grant to R.G.M.M. (Grant 207481/Z/17/Z). For the
purpose of open-access, the corresponding author has applied a CC BY
public copyright license to the Authors Accepted Manuscript arising from
this submission.

1. J. O’Keefe, J. Dostrovsky, The hippocampus as a spatial map. Preliminary evidence from unit
activity in the freely-moving rat. Brain Res. 34, 171–175 (1971).

2. R. U. Muller, J. L. Kubie, The effects of changes in the environment on the spatial firing of
hippocampal complex-spike cells. J. Neurosci. 7, 1951–1968 (1987).

3. C. A. Barnes, Memory deficits associated with senescence: A neurophysiological and behavioral
study in the rat. J. Comp. Physiol. Psychol. 93, 74–104 (1979).

4. R. G. M. Morris, P. Garrud, J. N. P. Rawlins, J. O’Keefe, Place navigation impaired in rats with
hippocampal lesions. Nature 297, 681–683 (1982).

5. Ø. A. Høydal, E. R. Skytøen, S. O. Andersson, M. B. Moser, E. I. Moser, Object-vector coding in the
medial entorhinal cortex. Nature 568, 400–404 (2019).

6. A. Sarel, A. Finkelstein, L. Las, N. Ulanovsky, Vectorial representation of spatial goals in the
hippocampus of bats. Science 355, 176–180 (2017).

7. J. Ormond, J. O’Keefe, Hippocampal place cells have goal-oriented vector fields during navigation.
Nature 607, 741–746 (2022).

8. E. R. Wood, P. A. Dudchenko, R. J. Robitsek, H. Eichenbaum, Hippocampal neurons encode
information about different types of memory episodes occurring in the same location. Neuron 27,
623–633 (2000).

9. J. A. Ainge, M. Tamosiunaite, F. Woergoetter, P. A. Dudchenko, Hippocampal CA1 place cells encode
intended destination on a maze with multiple choice points. J. Neurosci. 27, 9769–9779 (2007).

10. R. M. Grieves, E. R. Wood, P. A. Dudchenko, Place cells on a maze encode routes rather than
destinations. eLife 5, e15986 (2016).

11. A. S. Gupta, M. A. A. van der Meer, D. S. Touretzky, A. D. Redish, Hippocampal replay is not a
simple function of experience. Neuron 65, 695–705 (2010).

12. A. Johnson, A. D. Redish, Neural ensembles in CA3 transiently encode paths forward of the animal
at a decision point. J. Neurosci. 27, 12176–12189 (2007).

13. M. A. Wilson, B. L. McNaughton, Reactivation of hippocampal ensemble memories during sleep.
Science 265, 676–679 (1994).

14. M. P. Karlsson, L. M. Frank, Awake replay of remote experiences in the hippocampus. Nat.
Neurosci. 12, 913–918 (2009).

15. B. E. Pfeiffer, D. J. Foster, Hippocampal place-cell sequences depict future paths to remembered
goals. Nature 497, 74–79 (2013).

16. J. Widloski, D. J. Foster, Flexible rerouting of hippocampal replay sequences around changing
barriers in the absence of global place field remapping. Neuron 110, 1547–1558.e8 (2022).

17. C.-T. Wu, D. Haggerty, C. Kemere, D. Ji, Hippocampal awake replay in fear memory retrieval.
Nat. Neurosci. 20, 571–580 (2017).

18. D. Dupret, J. O’Neill, B. Pleydell-Bouverie, J. Csicsvari, The reorganization and reactivation of
hippocampal maps predict spatial memory performance. Nat. Neurosci. 13, 995–1002 (2010).

19. A. K. Gillespie et al., Hippocampal replay reflects specific past experiences rather than a plan for
subsequent choice. Neuron 109, 3149–3163.e6 (2021).

20. G. Chen, J. A. King, Y. Lu, F. Cacucci, N. Burgess, Spatial cell firing during virtual navigation of
open arenas by head-restrained mice. eLife 7, e34789 (2018).

21. A. Malvache, S. Reichinnek, V. Villette, C. Haimerl, R. Cossart, Awake hippocampal reactivations
project onto orthogonal neuronal assemblies. Science 353, 1280–1283 (2016).

22. A. D. Grosmark, F. T. Sparks, M. J. Davis, A. Losonczy, Reactivation predicts the consolidation of
unbiased long-term cognitive maps. Nat. Neurosci. 24, 1574–1585 (2021).

23. Y. Ziv et al., Long-term dynamics of CA1 hippocampal place codes. Nat. Neurosci. 16, 264–266 (2013).
24. D. J. Cai et al., A shared neural ensemble links distinct contextual memories encoded close in

time. Nature 534, 115–118 (2016).
25. A. Attardo et al., Long-term consolidation of ensemble neural plasticity patterns in hippocampal

area CA1. Cell Rep. 25, 640–650.e2 (2018).
26. T. W. Chen et al., Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature 499,

295–300 (2013).
27. H. S. Wirtshafter, J. F. Disterhoft, In vivo multi-day calcium imaging of CA1 hippocampus in freely

moving rats reveals a high preponderance of place cells with consistent place fields. J. Neurosci.
42, 4538–4554 (2022).

28. R. G. M. Morris, Elements of a neurobiological theory of hippocampal function: The role of synaptic
plasticity, synaptic tagging and schemas. Eur. J. Neurosci. 23, 2829–2846 (2006).

29. T. Bast, B. M. da Silva, R. G. M. Morris, Distinct contributions of hippocampal NMDA and AMPA
receptors to encoding and retrieval of one-trial place memory. J. Neurosci. 25, 5845–5856 (2005).

30. J. O’Keefe, Place units in the hippocampus of the freely moving rat. Exp. Neurol. 51, 78–109
(1976).

31. P. Latuske, O. Kornienko, L. Kohler, K. Allen, Hippocampal remapping and its entorhinal origin.
Front. Behav. Neurosci. 11, 253 (2018).

32. A. A. Fenton et al., Unmasking the CA1 ensemble place code by exposures to small and large
environments: More place cells and multiple, irregularly arranged, and expanded place fields in
the larger space. J. Neurosci. 28, 11250–11262 (2008).

33. A. P. Maurer, S. L. Cowen, S. N. Burke, C. A. Barnes, B. L. McNaughton, Phase precession in
hippocampal interneurons showing strong functional coupling to individual pyramidal cells.
J. Neurosci. 26, 13485–13492 (2006).

34. Z. N. Talbot et al., Normal CA1 place fields but discoordinated network discharge in a Fmr1-null
mouse model of fragile X syndrome. Neuron 97, 684–697.e4 (2018).

35. E. J. Markus, C. A. Barnes, B. L. McNaughton, V. L. Gladden, W. E. Skaggs, Spatial information
content and reliability of hippocampal CA1 neurons: Effects of visual input. Hippocampus 4,
410–421 (1994).

36. A. T. Keinath et al., Precise spatial coding is preserved along the longitudinal hippocampal axis.
Hippocampus 24, 1533–1548 (2014).

37. X. Mou, J. Cheng, Y. S. W. Yu, S. E. Kee, D. Ji, Comparing mouse and rat hippocampal place cell
activities and firing sequences in the same environments. Front. Cell. Neurosci. 12, 332 (2018).

38. P. Grassberger, I. Procaccia, Characterization of strange attractors. Phys. Rev. Lett. 50, 346–349
(1983).

39. R. Mitchell-Heggs, S. Prado, G. P. Gava, M. A. Go, S. R. Schultz, Neural manifold analysis of brain
circuit dynamics in health and disease. arXiv [Preprint] (2022). https://arxiv.org/abs/2203.11874
(Accessed 10 October 2022).

40. I. Q. Whishaw, A comparison of rats and mice in a swimming pool place task and matching to
place task: Some surprising differences. Physiol. Behav. 58, 687–693 (1995).

41. V. Hok, B. Poucet, �E. Duvelle, �E. Save, F. Sargolini, Spatial cognition in mice and rats: Similarities
and differences in brain and behavior.Wiley Interdiscip. Rev. Cogn. Sci. 7, 406–421 (2016).

42. H.-P. Lipp, D. P. Wolfer, Genetically modified mice and cognition. Curr. Opin. Neurobiol. 8,
272–280 (1998).

43. L. T. Thompson, P. J. Best, Place cells and silent cells in the hippocampus of freely-behaving rats.
J. Neurosci. 9, 2382–2390 (1989).

44. J. K. Leutgeb et al., Progressive transformation of hippocampal neuronal representations in
“morphed” environments. Neuron 48, 345–358 (2005).

45. T. J. Wills, C. Lever, F. Cacucci, N. Burgess, J. O’Keefe, Attractor dynamics in the hippocampal
representation of the local environment. Science 308, 873–876 (2005).

46. M. I. Anderson, K. J. Jeffery, Heterogeneous modulation of place cell firing by changes in context.
J. Neurosci. 23, 8827–8835 (2003).

47. R. W. Komorowski, J. R. Manns, H. Eichenbaum, Robust conjunctive item-place coding by
hippocampal neurons parallels learning what happens where. J. Neurosci. 29, 9918–9929 (2009).

48. B. E. Pfeiffer, Spatial learning drives rapid goal representation in hippocampal ripples without
place field accumulation or goal-oriented theta sequences. J. Neurosci. 42, 3975–3988 (2022).

49. H. F. �Olafsd�ottir, F. Carpenter, C. Barry, Task demands predict a dynamic switch in the content of
awake hippocampal replay. Neuron 96, 925–935.e6 (2017).

50. B. E. Pfeiffer, The content of hippocampal “replay”. Hippocampus 30, 6–18 (2020).
51. H. F. �Olafsd�ottir, D. Bush, C. Barry, The role of hippocampal replay in memory and planning.

Curr. Biol. 28, R37–R50 (2018).
52. M. G. Mattar, N. D. Daw, Prioritized memory access explains planning and hippocampal replay.

Nat. Neurosci. 21, 1609–1617 (2018).
53. A. Johnson, M. A. van der Meer, A. D. Redish, Integrating hippocampus and striatum in decision-

making. Curr. Opin. Neurobiol. 17, 692–697 (2007).
54. E. A. Mukamel, A. Nimmerjahn, M. J. Schnitzer, Automated analysis of cellular signals from

large-scale calcium imaging data. Neuron 63, 747–760 (2009).
55. S. L. Resendez et al., Visualization of cortical, subcortical and deep brain neural circuit dynamics

during naturalistic mammalian behavior with head-mounted microscopes and chronically
implanted lenses. Nat. Protoc. 11, 566–597 (2016).

56. P. Zhou et al., Efficient and accurate extraction of in vivo calcium signals from microendoscopic
video data. eLife 7, e28728 (2018).

57. J. Friedrich, P. Zhou, L. Paninski, Fast online deconvolution of calcium imaging data. PLOS
Comput. Biol.13, e1005423 (2017).

58. A. Giovannucci et al., CaImAn an open source tool for scalable calcium imaging data analysis. eLife
8, e38173 (2019).

59. A. Mathis et al., DeepLabCut: Markerless pose estimation of user-defined body parts with deep
learning. Nat. Neurosci. 21, 1281–1289 (2018).

60. F. Gobbo et al., Neuronal signature of spatial decision-making during navigation by freely moving
rats by using calcium imaging. GitHub. https://github.com/rufusmitchellheggs/Neural-Predictive-
Spatial-Coding. Deposited 7 October 2022.

12 of 12 https://doi.org/10.1073/pnas.2212152119 pnas.org

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2212152119/-/DCSupplemental
https://datashare.ed.ac.uk/handle/10283/4760
https://datashare.ed.ac.uk/handle/10283/4760
https://github.com/rufusmitchellheggs/Neural-Predictive-Spatial-Coding
https://github.com/rufusmitchellheggs/Neural-Predictive-Spatial-Coding
https://arxiv.org/abs/2203.11874
https://github.com/rufusmitchellheggs/Neural-Predictive-Spatial-Coding
https://github.com/rufusmitchellheggs/Neural-Predictive-Spatial-Coding

