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a b s t r a c t 

The inclusion of time-varying covariates into survival analysis has led to better predictions of the time 

to default in behavioural credit scoring models. However, when these time-varying covariates are en- 

dogenous, there are two major problems: estimation bias of the survival model and lack of a prediction 

framework for future values of both the event and the endogenous time-varying covariates. Joint mod- 

els for longitudinal and survival data is an appropriate framework to model the mutual evolution of the 

survival time and the endogenous time-varying covariates. To the best of our knowledge, this paper ex- 

plores for the first time the application of discrete-time joint models to credit scoring. Moreover, we 

propose a novel extension to the joint model literature by including autoregressive terms in modelling 

the endogenous time-varying covariates. We present the method via simulations and by applying it to US 

mortgage loans. The empirical analysis shows, first, that discrete joint models can increase the discrimi- 

nation performance compared to survival models. Second, when an autoregressive term is included, this 

performance can be further improved. 

© 2022 The Author(s). Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Payment default is a specific event in credit risk analysis and 

efers to the inability of a borrower to pay its debts in a timely 

ay. The Basel capital framework defines the event as the moment 

t which the borrower is past due more than 90 days in any credit

bligation ( BSBS, 2004 ) and is the standard definition used among 

ractitioners 1 Credit scoring models aim to estimate the probabil- 

ty of default (PD) for each borrower or potential applicant based 

n past payment behaviour. These models allow banks to quickly 

ssess the creditworthiness of new applicants (application scor- 

ng), monitoring the default risk of ongoing borrowers (behavioural 

coring) and help to calculate provisions and capital levels for both 

xpected and unexpected losses ( BSBS, 2017 ). We are interested in 

redicting when and who is going to default in the presence of 

ndogenous time-varying covariates for fixed-rate US mortgages. 

Survival approaches, widely used in credit risk modelling 

 Bellotti & Crook, 2014; Calabrese & Crook, 2020; Djeundje & 
∗ Corresponding author. 

E-mail address: victor.medina@ed.ac.uk (V. Medina-Olivares) . 
1 The Basel definition of the default has also a qualitative component that relies 

n the institution’s criteria. We only consider here the quantitative definition. 
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rook, 2019; Leow & Crook, 2014; Stepanova & Thomas, 2002 ), are 

exible enough to model when and who is likely to experience 

he event without the need to pre-define a performance period 

s required by classification approaches ( Thomas, Crook, & Edel- 

an, 2017 ). The ubiquitous survival model assumes a proportional 

azard for continuous-time, or proportional odds model for dis- 

rete time, both easily extended to handle time-varying covariates 

TVCs) only if these are exogenous ( Allison, 1982; Cox, 1972 ). TVCs 

re generally included in credit survival models to either increase 

he accuracy of the predictions ( Calabrese & Crook, 2020; Crook 

 Bellotti, 2010; Stepanova & Thomas, 2002 ) or enhance the un- 

erstanding of why borrowers default ( Dirick, Bellotti, Claeskens, 

 Baesens, 2019; Djeundje & Crook, 2018 ). However, in this con- 

ext there is little work that addresses, first, the distinction among 

he types of the TVCs included (exogenous or not) and, second, 

ow to model the time to default when we have endogenous TVCs 

see Section 2 for further details of exogenous versus endogenous 

VCs). 

A rapidly evolving field of statistical methodology, known as 

joint models for longitudinal and time-to-event data” (joint mod- 

ls, henceforth) ( Henderson, Diggle, & Dobson, 20 0 0; Rizopoulos, 

012; Tsiatis, Degruttola, & Wulfsohn, 1995 ), addresses the prob- 

em of endogeneity by modelling both the time to event and the 
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ndogenous TVCs 2 , simultaneously. This approach, in addition to 

voiding estimation biases by considering the mutual evolution of 

oth processes ( Tsiatis et al., 1995; Wulfsohn & Tsiatis, 1997 ), al- 

ows us to develop a dynamic risk prediction model that can make 

reater use of the newly collected data. Other research fields also 

how that joint models increase the model accuracy ( Rizopoulos, 

atfield, Carlin, & Takkenberg, 2014 ). 

We make two contributions to the literature. First, to the best 

f our knowledge, this is the first time joint models for discrete 

urvival data are investigated in credit risk prediction. Although a 

ecent work, Hu & Zhou (2019) , applies joint models for predict- 

ng early repayment events on mortgage loans and default events 

n a peer-to-peer data set, the authors consider survival time as 

ontinuous, which is the usual assumption in the joint model lit- 

rature ( Hickey, Philipson, Jorgensen, & Kolamunnage-Dona, 2016; 

awrence Gould et al., 2015 ) and in the variety of software avail- 

ble to estimate them (see Furgal, Sen, & Taylor (2019) for a com- 

arison among different computational approaches). In credit risk 

nalysis, however, there are three reasons why the discrete time 

pproach should be preferred over the continuous one. First, ac- 

ount records are observed monthly so events are intrinsically dis- 

rete. Therefore, the continuous approach would end up being an 

pproximation ( Tutz & Schmid, 2016 ). Second, many events natu- 

ally happen in the same month. The continuous approach implies 

hat there will be no tied events, however, with the discrete ap- 

roach, ties are perfectly fine. Finally, with the discrete approach, 

he probability predictions require simple summations over time- 

oints, rather than integrations which are complex when TVCs are 

ncluded ( Bellotti & Crook, 2013; Leow & Crook, 2016; Rizopoulos, 

012 ). This makes the model computationally efficient and capable 

f scaling to sample sizes like the one presented here with more 

han 285K observations. 

Second, in relation to the endogenous TVCs, it is standard in the 

oint model literature to address subjects’ heterogeneity via ran- 

om effects (see details Section 4 ). In our case, and making use of

he fact that the observations are equally-spaced and indexed by a 

iscrete variable (time), we propose to also include autoregressive 

erms to model the dependency among borrower’s observations. 

his longitudinal approach belongs to the category known as lin- 

ar mixed-effects models (LME) with serial correlation ( Hedeker & 

ibbons, 2006 ). It is motivated by, first, the serial correlation found 

n our application and, second, the possible implications for the 

redictions that this correction might have. The empirical autocor- 

elation functions (ACF, see Pinheiro & Bates, 2006 ) for the longi- 

udinal outcome used in this work showed autocorrelated residu- 

ls for two common LME specifications in the joint model litera- 

ure, namely random intercept and random intercept and slope (see 

ppendix A ). Although these are not joint models, they provide rel- 

vant bases for the existence of serial correlation in the longitudi- 

al outcome and therefore to support our proposal. 

We implement six models in total, all of them coded in the 

latform for statistical modelling Stan and available in the sup- 

lementary material. One, discrete survival model, provides our 

enchmark, and five other discrete joint models which differ in the 

pecification of random effects and the inclusion of the autoregres- 

ive term. The simulation analysis shows good convergence diag- 

ostics and recovery of the true parameter values. To estimate a 

coring model for mortgage loans, we use the Single Family Loan- 

evel Dataset from Freddie Mac that is publicly available. We per- 

orm a cross-validation analysis that shows, first, that the discrete 

oint models approaches can increase the discrimination perfor- 

ance compared to the discrete survival model. Second, when an 
2 To unify the jargons between the literature of joint models and credit scoring, 

he endogenous TVCs will be also termed here as longitudinal outcomes. 

d

p

t

c

2 
utoregressive term is included, this performance can be further 

mproved. These results are enhanced when more historical data 

re included in the prediction. 

The paper is organised as follows. In Section 2 , we describe 

he differences among exogenous and endogenous TVCs in the dis- 

rete survival context. Section 3 shows the relevant literature on 

oint models. Section 4 details the methodology for the discrete- 

ime setting with the extension of additional autoregressive terms, 

ow the inference and the individual survival predictions are per- 

ormed and assessed. Section 5 presents a simulation study of the 

iscrete joint model with autoregressive terms and Section 6 il- 

ustrates an application to US mortgages. The concluding remarks 

ollow in Section 7 . 

. Exogenous versus endogenous TVCs 

TVCs can be broadly categorised into two general classes: ex- 

genous and endogenous ( Kalbfleisch & Prentice, 2002; Rizopou- 

os, 2012 ). Exogenous TVCs are variables whose future paths are 

ot affected by the occurrence of the event (in our case default) 

r that are not correlated with variables that are omitted from 

he model but also affect the outcome. In contrast, endogenous 

VCs are variables whose path is influenced by the survival sta- 

us (default) of the individual and therefore carries direct infor- 

ation on the time to the default or that are correlated with 

mitted variables that also affect the occurrence of default. More 

pecifically, assume y 1 , . . . , y t is the sequence of observations until 

ime t of a generic TVC represented by { Y s } s ≤t . Denote the survival

ime as T and represent it by an indicator variable X t such that 

x 1 , . . . , x t ∗ ) = (0 , . . . , 0 , 1) if T = t ∗. Hence, the joint probability of

he stochastic process { X s , Y s } s ≤t can be written as 

 ({ X s , Y s } s ≤t ) = P (X t , Y t |{ X s , Y s } s<t ) 

P (X t−1 , Y t−1 |{ X s , Y s } s<t−1 ) · . . . · P (X 1 , Y 1 ) , 

here any term on the right hand side follows 

 (X t , Y t |{ X s , Y s } s<t ) = P (X t | Y t , { X s , Y s } s<t ) P (Y t |{ X s , Y s } s<t ) . 

he main difference between exogenous and endogenous TVCs is 

n the assumption of P (Y t |{ X s , Y s } s<t ) . For the former, it is assumed

hat Y t is independent of the survival status X s and thus the term 

 (Y t |{ X s , Y s } s<t ) does not affect the parameters estimation in the

azard P (X t | Y t , { X s , Y s } s<t ) . For the endogenous case though, that

oes not hold. 

Examples of exogenous TVCs in the credit modelling context 

re the macroeconomic variables such as the inflation rate, GDP 

nd unemployment rate ( Bellotti & Crook, 2009 ), where their paths 

ay influence the rate of default over time but their future values 

re not affected by a loan’s default. Some examples of endogenous 

ase are the spending and repayment amounts, outstanding bal- 

nce and arrears in instalments, among others. 

The consequence of including a TVC into a Cox model is that, 

or any individual, the probability of surviving longer than time t

iven that we have measured the TVC until t is a survival function 

hen the TVC is exogenous, meaning that the usual relationship 

etween the hazard and survival functions holds and the estima- 

ion is obtained by simply maximising the Cox’s partial likelihood 

 Cox, 1975 ). However, when the TVC is endogenous, the probabil- 

ty of surviving longer that t given that we have measured the TVC 

ntil t is equal to 1 (and is no longer a survival function) since we 

now that the individual is still “alive” at t and will, for sure, sur- 

ive longer than t (see Kalbfleisch & Prentice (2002) , chap. 6 for 

 detailed discussion). This mutual evolution between the survival 

ata and the endogenous TVC has direct implications for how the 

rediction and estimation are done and we can no longer rely on 

he standard Cox procedure, requiring, consequently, methodologi- 

al alternatives. The joint model approach addresses this problem 
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asically by assuming conditional independence between X t and Y t 
iven an underlying random effect U (see Section 4 ). 

. Literature review 

The inclusion of TVCs in the prediction framework changes the 

raditional approach of estimating the probability of an event oc- 

urring t ∗ months after origination into a dynamic one in which 

he borrower is event-free after t months and historical informa- 

ion is available. Mathematically, this is P (T > t ∗| T > t, { Y s } s ≤t ) . The

ast literature on credit scoring includes TVCs for prediction, either 

y keeping the last observed values or by estimating hazard mod- 

ls with lagged TVC values ( Bellotti & Crook, 2009; 2013; 2014; 

rook & Bellotti, 2010; Divino & Rocha, 2013; Malik & Thomas, 

010; Thackham & Ma, 2020; Wang, Crook, & Andreeva, 2020 ). 

owever, these papers do not control for potential endogeneity in 

he TVCs. 

Other approaches to include TVCs in dynamic prediction have 

een made: multistate intensity models ( Crook & Bellotti, 2010; 

jeundje & Crook, 2018; Leow & Crook, 2014 ), Markov chain mod- 

ls ( Crook & Bellotti, 2010; Thomas, Ho, & Scherer, 2001 ), Markov 

or discrimination ( Volkov, Benoit, & Van den Poel, 2017 ), lifecycle 

nd forward models ( Luong & Scheule, 2021 ), survival models with 

exible link functions ( Calabrese & Crook, 2020 ) and boosting al- 

orithms ( Xia, He, Li, Fu, & Xu, 2021 ). Yet all of these approaches

ave omitted the simultaneous estimation of the time-to-event pa- 

ameters and those relating to the TVC processes. 

In the literature on dynamic prediction not connected to credit- 

elated applications, there are mainly four approaches that address 

he relationship between endogenous TVCs and the survival pro- 

ess: backward modelling, latent class models, landmarking and 

orward modelling ( van Houwelingen & Putter, 2011 ). The back- 

ard approach estimates the conditional distribution { Y s } s ≤t | T = 

 

∗ and the marginal distribution of T = t ∗. Hence, Bayes’ theo- 

em gives the dynamic prediction ( Fieuws, Verbeke, Maes, & Van- 

enterghem, 2008 ). This approach, however, requires imputing cen- 

ored observations, which might be problematic for some survival 

istributions. 

In the latent class models, the assumption is that Y t and T are 

onditionally independent given an unobserved latent class whose 

redictive role is similar to the one in a survival model with frail- 

ies ( Henderson et al., 20 0 0; Proust-Lima & Taylor, 2009 ). For some

pplications, however, the assumption of different classes of sub- 

ects might not be suitable. Landmarking, on the other hand, es- 

imates the probability at t ∗ by building a Cox model only with 

he subjects at risk at t ( Van Houwelingen, 2007 ). However, since 

o joint modelling for T and Y t is performed, it does not offer a

ajor understanding of the underlying link between them. Finally, 

he forward approach, which we follow in this work, estimates the 

onditional distribution T |{ Y s } s ≤t directly through the hazard func- 

ion and the prediction is based on the posterior predictive distri- 

ution ( Rizopoulos, 2012; Tsiatis et al., 1995; Wulfsohn & Tsiatis, 

997 ). Rizopoulos, Molenberghs, & Lesaffre (2017) show predictive 

enefits of the forward modelling approach over landmarking due 

ainly to its flexibility when modelling the longitudinal outcome. 

Most of the literature on joint models comes from medical re- 

earch where the interest lies in the association between the re- 

eated measurements of a biomarker for a patient and her sur- 

ival time ( Tsiatis et al., 1995 ), but the approach can be applied

n any area where the link between both processes is of inter- 

st. The standard joint model is formed by two sub-models, one 

or the survival data and the other for the longitudinal outcome, 

oth assumed to be conditionally independent given a latent struc- 

ure. The survival process is commonly modelled by assuming a 

ox model and a linear mixed-effects model for the longitudinal 

art ( Rizopoulos, 2012 ). Both sub-models are associated through 
3

 functional form that could adopt many different structures (see 

ickey et al. (2016) ). A thorough review of this topic can be found

n Tsiatis & Davidian (2004) who clarifies the main assumptions 

mployed in the likelihood function. The textbooks Rizopoulos 

2012) and Fitzmaurice, Davidian, Verbeke, & Molenberghs (2008 , 

h.13–16) provide a comprehensive explanation of the technique, 

ts inference and possible extensions. Moreover, Alsefri, Sudell, 

arcía-Fiñana, & Kolamunnage-Dona (2020) gives a summary of 

he recent developments and issues. 

Although most of the literature assumes survival time as con- 

inuous, there are works that study the discrete case. Albert & Shih 

2010b) propose a two-stage approximation method for estimation 

n which the discrete hazard is modelled on the probit scale, which 

as extended later in Albert & Shih (2010a) to handle multiple 

ongitudinal outcomes. Jaffa, Woolson, & Lipsitz (2011) are more in- 

erested in the longitudinal process rather than the survival. They 

ntroduce a joint model with bivariate longitudinal outcomes ad- 

usted by informative right censoring using a discrete survival ap- 

roach, then extended in Jaffa, Gebregziabher, & Jaffa (2014) for a 

igh dimensional multivariate case. More in line with our work, 

arrett, Diggle, Henderson, & Taylor-Robinson (2015) propose an 

xact likelihood inference when the discrete hazard adopts a probit 

odel by using distributional properties of the skew normal fam- 

ly. They also include an unobserved stationary Gaussian process in 

he longitudinal model to bring more flexibility when the follow- 

p period is relatively long. Moreover, Bacci, Bartolucci, & Pandolfi

2018) assume a logit model for the discrete process, as in this 

ork, and consider random intercepts in the longitudinal model to 

hange over time according to an autoregressive process of order 

. In the present work, we follow a similar approach to Bacci et al.

2018) , but we propose instead to consider autoregressive terms 

xplicitly in the longitudinal process and not restricted to order 1. 

hat allows us to make prediction more straightforward and inter- 

retable since we directly estimate the influence of past longitudi- 

al observations on the forecast. Accordingly, the proposed model 

etermines a correlation structure that assumes both the subject- 

pecific correlation, through random effects, and that due to the 

atural evolution of the longitudinal outcome, through autoregres- 

ive terms. The goal is twofold. First, we control for the serial 

orrelation found in our application (see Appendix Appendix A ) 

nd that the aforementioned approaches do not consider. Second, 

e expect that by assuming a more flexible correlative structure, 

he predictive performance can be improved, as later confirmed in 

ection 6 . 

In the credit modelling context and as far as we know, there 

s only one published paper, Hu & Zhou (2019) , that applies joint 

odelling for behavioural scoring and supports the superiority 

ver the Cox model with TVCs in discrimination, for prediction 

ime windows of 2 and 3 months, and in calibration, for predic- 

ion time windows of 3 and 6 months. The authors point out that, 

ue to the complexity and lack of software, the joint models ap- 

roach has not been widely used until the recent decade with the 

ppearance of some statistical packages. They used the R package 

M ( Rizopoulos, 2010 ) which does not allow the inclusion of au- 

oregressive terms and only handles time as continuous. The po- 

ential of this approach in credit-related applications is also in- 

estigated in a Working Paper by Medina-Olivares, Lindgren, Cal- 

brese, & Crook (2022) . They estimate a discrete joint model but 

nlike this paper whilst it has more than one longitudinal outcome 

t omits autoregressive terms. They also suggest new ways to eval- 

ate individual survival predictions. 

Recent works in machine learning show interesting approaches 

elated to survival analysis. Luck, Sylvain, Cardinal, Lodi, & Bengio 

2017) and Katzman et al. (2018) use deep neural networks to ex- 

loit the ability to learn complex interactions of the covariates and 

how better performance than traditional survival analysis. How- 
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ver, these approaches are limited to time-fixed covariates. Alaa 

 van der Schaar (2017) and Bellot & Schaar (2018) , also using 

eep architectures, develop respectively, a non-parametric Bayesian 

odel and a tree-based Bayesian mixture model that can capture 

ubject-specific representations similar to joint models but the sur- 

ival prediction is restricted to the use of the last available mea- 

urement. Lee, Yoon, & Van Der Schaar (2019) , aware of this limita- 

ion, introduce a deep network architecture that learns high-level 

elationships between the longitudinal outcome and the survival 

rediction and shows better discrimination performance than the 

raditional joint models approach. The adoption of deep architec- 

ures in credit scoring though, has been restricted largely due to 

he low interpretability of the predictions which is required if the 

odel is used to make decisions since those who were rejected 

ust be given a reason for their rejection. The search of inter- 

retability mechanisms is a current research topic ( Dastile, Celik, 

 Potsane, 2020 ). 

. Methodology 

.1. Framework 

Assume we wish to model the time to default T i ∈ Z + for sub-

ect i ( i = 1 , . . . , N) in terms of time-invariant covariates z i and

 longitudinal outcome Y is that is observed at times s with s ∈ 

 0 , 1 , 2 , . . . , t i − 1 } where t i is the time where either the event or

he end of the follow-up happens. In theory, the number of ob- 

erved values for the longitudinal outcome can differ from the 

urvival times, but in our case we have equally spaced times 

nd no missing observations before t i , so we can unify the no- 

ation to Y i,s −1 with s = 1 , . . . , t i . As in Albert & Shih (2010a) , we

se s − 1 because we relate the survival time with the immedi- 

te previous observed value of the longitudinal outcome 3 Anal- 

gously to the notation introduced in Section 2 , we represent T i 
s a sequence of binary indicators X is which is 1 if the event 

appens at time s and 0 otherwise. The key assumption in the 

oint modelling approach is that X is and Y i,s −1 are conditional in- 

ependent given the random effects U i , i.e. P ({ X is , Y i,s −1 } s ≤t i 
) =

 

P ({ X is } s ≤t i 
| U i ) P ({ Y i,s −1 } s ≤t i 

| U i ) p(U i ) dU i and interest is now turned

n how to model each of the three elements of the integrand. 

For the survival part P ({ X is } s ≤t i 
| U i ) and following Allison (1982) ,

he probability that the event occurs at t i is given by 

 ({ X is } s ≤t i | U i ) = 

t i ∏ 

s =1 

[ p is ] 
X is [1 − p is ] 

1 −X is , (1)

here p is = P (X is = 1 | X is −1 = 0 , U i ) . Assuming a logit link function,

e can add the covariates as follows 

p is = logit 
−1 

(a 0 s + z T  
i 
γ + λ f f (U i , s )) , (2) 

here a 0 s represents the baseline event time distribution. Follow- 

ng Djeundje & Crook (2018) , we specify the baseline with cubic 

-spline functions, i.e. a 0 s = B (s ) T γ0 with B the vector of B-spline

unctions and γ0 the corresponding vector of regression coeffi- 

ients. Moreover, γ is the vector of coefficients for the covariates z i 
nd λ f is known as the association coefficient between the survival 

nd longitudinal processes. The function f relates both processes 

hrough the random effects U i and, eventually, the time s . As men- 

ioned before, f can adopt different structures ( Hickey et al., 2016 ). 

n this work we study a set of combinations detailed in Section 6.2 .

For the longitudinal part, assume that Y i,s −1 can be described 

y an underlying signal m i,s −1 and mutually independent noise 

erms εi,s −1 as Y i,s −1 = m i,s −1 + εi,s −1 . Further, denote as w i a vector 

f time-invariant covariates and as q i,s −1 a vector of time-varying 
3 We assume that no subjects experience a default at s = 0 . t

4 
xogenous covariates measured at time s − 1 . Then, assume that 

 i,s −1 can be decomposed into fixed effects, w T

 

i 
α + q T

 

is −1 
β, and 

andom effects, d T

 

is −1 
U i , where d i,s −1 is the design vector at time 

 − 1 . This leads to the following mixed-effect model ( Laird & Ware,

982 ) 

 i,s −1 = w T

 

i 
α + q T

 

i,s −1 
β + d T

 

i,s −1 
U i ︸ ︷︷ ︸ 

m i,s −1 

+ εi,s −1 , s = 1 , . . . , t i , (3) 

here the subject-level U i are assumed as mutually independent 

nd coming from a zero-mean multivariate Gaussian distribution 

f dimension d, U i ∼ N d (0 , �) . The error terms are assumed nor-

ally distributed εi,s −1 ∼ N (0 , σ 2 ) , mutually independent and in- 

ependent from the subject-level random effects U i . 

Suppose now that the longitudinal process described above is 

lso explained by an additional autoregressive structure of order p

 Hedeker & Gibbons, 2006 ), then Eq. 3 can be modified as 

 i,s −1 = w T

 

i 
α + q T  

i,s −1 
β + d T  

i,s −1 
U i + 

p ∑ 

r=1 

φr Y i,s −1 −r ︸ ︷︷ ︸ 
m i,s −1 

+ εi,s −1 , s = p + 1 , . . . , t i , 

(4) 

here φr ( r = 1 , . . . , p) represents the coefficient for the rth au-

oregressive term. Note that the endogenous variable is now cor- 

elated with both its own history and the subject-level random ef- 

ects, but the conditional dependence structure for Y i,s −1 given U i 

ollows a simple autoregression structure with conditional expec- 

ation m i,s −1 and conditional variance σ 2 (see Eq. 7 ). To make the 

odel well-specified, it is now assumed that none of the events 

ccurred in s ≤ p and Eqs. 1 and 2 are modified correspondingly 

nd detailed below. 

.2. Estimation of the joint model with autoregressive terms 

Denote the observed survival data for subject i ( i = 1 , . . . , N)

s X i = { X is : s = p + 1 , . . . , t i } and its longitudinal measurements

s Y i = { Y i,s −1 : s = 1 , . . . , t i } , and represent by D N = {Y i , X i : i =
 , . . . , N} the complete observed data 4 The parameters to estimate 

re the B-spline coefficients γ0 , the covariate coefficients γ , the as- 

ociation parameter λ f , the coefficients of the fixed effects α and 

, the set of autoregressive coefficients { φ} = { φr : r = 1 , . . . , p} ,
he covariance matrix of the random effects � and the variance 

f the error terms σ 2 . Denote the set of all these parameters 

s � = { γ0 , γ , λ f , α, β, { φ} , �, σ 2 } , thus the likelihood of the joint

odel with autoregressive terms L (�|D N ) is written as 

 (�|D N ) = 

N ∏ 

i =1 

∫ 
P (X i , Y i | U i , �) P (U i | �)d U i 

= 

N ∏ 

i =1 

∫ 
P (X i |Y i , U i , �) P (Y i | U i , �) P (U i | �)d U i . (5) 

ollowing the Gaussian assumption on U i , the last term of the in- 

egrand in Eq. 5 is 

 (U i | �) = P (U i | �) 

= (2 π) −d/ 2 det (�) −1 / 2 exp 

(
−U T

 

i 
�−1 U i / 2 

)
. (6) 

oreover, we apply the chain rule and the assumption that the 

rror terms are zero-mean Gaussian distributed, hence the second 

erm of the integrand in Eq. 5 is 
4 Note that all the covariates previously mentioned are also observed but we in- 

entionally omit them to avoid excess of notation. 
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t

 (Y i | U i , �) = P (Y i,t i −1 , ., Y i 0 | U i , �) 

= P (Y i,t i −1 | Y i,t i −2 , . . . , Y i 0 , U i , �) P (Y i,t i −2 , . . . , Y i 0 | U i , �) 

= 

t i −p ∏ 

s =1 

P (Y i,t i −s | Y i,t i −s −1 , . . . , Y i 0 , U i , �) P (Y i,p−1 , . . . , Y i 0 | U i , �) 

∝ 

t i −p ∏ 

s =1 

P (Y i,t i −s | Y i,t i −s −1 , . . . , Y i,t i −s −p , U i , �) 

= 

t i −p ∏ 

s =1 

(2 πσ 2 ) −1 / 2 exp 
(
−(Y i,t i −s − m i,t i −s ) 

2 / 2 σ 2 
)
, (7) 

here we know that Y i,t i −s ( s = 1 , . . . , t i − p) only depends on the

revious p lags and the terms Y i,p−1 , . . . , Y i 0 are not informative to 

he parameters. m i,t i −s is defined as in Eq. 4 . 

Note that for the first term of the integrand in Eq. 5 , 

 (X i |Y i , U i , �) , the conditional dependency on Y i will hold subject

o the chosen structure for the link function f (U i , s ) (see Eq. 2 ).

or example, if we consider the simple case where f (U i , s ) =
 T

 

i,s −1 
U i , then P (X i |Y i , U i , �) = P (X i | U i , �) , which is the common

ssumption used in joint modelling ( Rizopoulos, 2012 ). However, 

f f (U i , s ) = m i,s −1 with m i,s −1 following Eq. 4 , then we know that

 i,s −1 not only depends on the random effects but also on the pre- 

ious p lag values of the longitudinal outcome. Assume this last 

ase since generalises the other. Hence, following Eq. 1 we write 

 (X i |Y i , U i , �) = 

t i ∏ 

s = p+1 

[ p is ] 
X is [1 − p is ] 

1 −X is , (8)

here p is (see Eq. 2 ) 

p is = logit 
−1 

(
B (s ) T  γ0 + z T  

i 
γ + λ f m i,s −1 

)
. (9) 

Eqs. 6 –9 completely specify the likelihood in Eq. 5 . Concep- 

ually, this model could be estimated by maximising the log- 

ikelihood. The standard algorithms such as EM, Newton’s method 

r modifications of them with asymptotic approximations have 

een used in the literature for other joint models ( Rizopoulos, 

012 ). However, the Bayesian approach has some advantages in 

his context such as that approximations are not required and 

he computational implementation is easier and more flexible 

 Ibrahim, Chen, & Sinha, 2014 ). 

To complete the Bayesian model specification we define the 

rior distributions on the parameters P (�) . For γ , λ f , α, β, { φ}
nd σ , we use noninformative uniform priors across each parame- 

er’s domain. For the B-spline coefficients, γ0 , we assume a multi- 

ariate Gaussian distribution N (0 , υ2 I) , where υ is a hyperparame- 

er with a half-Cauchy prior with a scale of 25 (this is large enough

o be “noninformative” ( Gelman et al., 2013 )). For the prior of the 

ovariance matrix, �, we work on its decomposition between a 

ector of variances and a correlation matrix. For the variances we 

et noninformative uniform priors in the positive domain and for 

he correlation matrix the LKJ distribution with a regularisation pa- 

ameter 5 of 2 ( Lewandowski, Kurowicka, & Joe, 2009 ). 

We implement this and the other models specified in 

ection 4 in the platform for statistical modelling Stan with the 

o-U-Turn Sampler ( Hoffman & Gelman, 2014 ) which is a faster 

xtension to Hamiltonian Monte Carlo algorithm (HMC). The code 

or this work can be found in the supplementary material. 

.3. Individual survival predictions 

In this section we describe the methodology to predict how 

ikely is the default for a new subject k not originally included 
5 A regularisation parameter of 1 represents a jointly uniform distribution over 

ll possible correlation matrices. For values larger than 1, the mode of the LKJ dis- 

ribution is the identity matrix and as larger the value, the more sharply peaked at 

he mode. 

{
A  

w

c

5 
n the observed data D N . Assume that this new subject has not 

efaulted yet at least until time c and we collect the longitudi- 

al outcome up to time c − 1 . Denote this set of measurements 

y Y k = { Y k,s −1 : s = 1 , . . . , c} . We are now focus on the conditional

robability of surviving time c + 
c > c ( 
c ∈ Z + ) given that it has

urvived up to c, i.e. P (T k > c + 
c| T k > c, Y k , D N ) . For the purpose

f readability, denote this last term as πk (c + 
c| c) . 
However, since subject k is new to D N , we have no estimation 

f its random effects U k . One procedure to get the prediction is to 

nclude subject k into the training sample and rerun the estima- 

ion as described in Section 4.2 , but this would be computationally 

xpensive and not feasible if we apply it in a real-time fashion. 

 fast alternative is to adopt a first order approximation by us- 

ng empirical Bayes estimates for the random effects as explained 

elow (see Rizopoulos (2012) for a detailed description of the con- 

inuous time-setting). Formally, the conditional probability can be 

arginalised as 

k (c + 
c| c) = 

∫ 
P (T k > c + 
c| T k > c, Y k , �) P (�|D N )d�, (10)

here P (�|D N ) is the posterior distribution of the parameters 

iven the sample D N . The first term of the integrand can be writ- 

en as 

 (T k > c + 
c| T k > c, Y k , �) 

= 

∫ 
P (T k > c + 
c| T k > c, Y k , U k , �) 

×P (U k | T k > c, Y k , �)d U k . (11) 

oining together Eqs. 10 and 11 , the first order approximation 

s given by πk (c + 
c| c) ≈ P (T k > c + 
c| T k > c, Y k , ̂
 U k , 

ˆ �) . ˆ � de-

otes the posterior point-estimate, the random effects estimates 

olve ˆ U k = argmax U { log P (T k > c, Y k , U | ̂  �) } and the prediction is

erformed as 

ˆ k (c + 
c| c) = 

P (T k > c + 
c|Y k , ˆ U k , ˆ �) 

P (T k > c|Y k , ˆ U k , ˆ �) 

= 

∏ c+
c 
s = p+1 (1 − ˆ p ks ) ∏ c 
s = p+1 (1 − ˆ p ks ) 

= 

c+
c ∏ 

s = c+1 

(1 − ˆ p ks ) , (12) 

here ˆ p ks follows Eq. 9 . The standard error of the above expres- 

ion can be estimated through Monte Carlo simulation schemes as 

roposed in Rizopoulos (2011) and Proust-Lima & Taylor (2009) . 

.4. Performance measures 

We are interested in assessing the models by discrimination 

nd calibration performance in the presence of right-censoring and 

iven that we know that the loans have not yet defaulted up to a 

ime point c. The metrics come from the literature mentioned be- 

ow and we adapt the notation to the discrete case as follows. 

For discrimination, a common measure is the Area Under the 

OC curve (AUC) ( Fawcett, 2006 ) which is the area enclosed by the 

urve formed by the proportion of correctly predicted events ver- 

us the proportion of incorrectly classified events overall threshold 

alues. An AUC of 1 represents a perfect classifier and 0.5 a ran- 

om one. An alternative interpretation of the AUC between evalua- 

ion times c and c + 
c reads that for any random pair of subjects 

 i, j} the AUC can be formulated as ( Hanley & McNeil, 1982 ) 

UC 
c 
c = P(πi (c + 
c| c) < π j (c + 
c| c) |{ T i ∈ (c, c + 
c] } ∩ { T j > c + 
c} ) ,

here πi (c + 
c| c) follows Eq. 10 . For correcting by censored 

ases, we follow Rizopoulos et al. (2017) who propose to use 

https://mc-stan.org/
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Fig. 1. Distribution of the events in time for simulated data with 10,0 0 0 subjects. 

Fig. 2. Simulated longitudinal outcome versus time. Highlighted are 10 subjects 

that experience the event (dashed line) and 10 that are censored (dotted line). 
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m
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i

odel-based estimators of the censoring distribution by counting 

he concordant pairs of subjects as 

̂ UC 

c 

c = 

̂ AUC 1 (c, 
c) + 

̂ AUC 2 (c, 
c) + 

̂ AUC 3 (c, 
c) + 

̂ AUC 4 (c, 
c) , (13)

here each of the AUC components is estimated over the four sets 

f combinations of concordant pairs, �(l) 
i j 

, l = 1 , . . . , 4 , defined as

ollows 

1. �(1) 
i j 

: Subject i suffers the event between c + 1 and c + 
c, and

subject j survives longer than c + 
c, 

2. �(2) 
i j 

: Subject i is censored between c + 1 and c + 
c, and sub-

ject j survives longer than c + 
c, 

3. �(3) 
i j 

: Subject i suffers the event between c + 1 and c + 
c, and

subject j is censored between c + 1 and c + 
c, 

4. �(4) 
i j 

: Both subjects, i and j, are censored between c + 1 and 

c + 
c. 

We can now specify the estimates of each component of 

q. 13 as 

̂ UC l (c, 
c) = 

∑ N 
i 

∑ N 
j 	 = i I( ̂  πi (c + 
c| c) < ˆ π j (c + 
c| c)) · I(�(l) 

i j 
) · ˆ ν(l) 

i j ∑ N 
i 

∑ N 
j 	 = i I(�

(l) 
i j 

) · ˆ ν(l) 
i j 

, 

l = 1 , 2 , 3 , 4 

here I(·) is the indicator function, ˆ πi follows Eq. 12 and the 

erms ˆ ν(l) 
i j 

account for the probability that the pairs are compa- 

able. Thus, ˆ ν(1) 
i j 

= 1 , ˆ ν(2) 
i j 

= 1 − ˆ πi (c + 
c| T i ) , ˆ ν(3) 
i j 

= ˆ π j (c + 
c| T j )
nd ˆ ν(4) 

i j 
= (1 − ˆ πi (c + 
c| T i )) ̂  π j (c + 
c| T j ) . 

The calibration, which measures how accurate are the predic- 

ions, is commonly assessed in survival models by the expected 

rror of predicting future events ( Rizopoulos et al., 2017 ). The ex- 

ected prediction error is written as 

 P E (c + 
c| c) = E (L { N i (c + 
c) , πi (c + 
c| c) } ) 
here L (·, ·) is the loss function (Brier score, absolute error, igno- 

ance score, among others). N i (c + 
c) = I(T i > c + 
c) is the true

vent status at time c + 
c and the expectation is taken with re- 

pect to the distribution of the event times. As an error measure- 

ent, the lower is the value, the better the calibration. 

To account for censored cases, we follow Henderson, Diggle, 

 Dobson (2002) who propose an estimate of E P E (c + 
c| c) that

eads 

̂ PE (c + 
c| c) = n (c) −1 
∑ 

i : T i >c 

{ S i (c + 
c| c) + E i (c + 
c| c) + C i (c + 
c| c) } 

(14) 

here n (c) is the number of subjects at risk at time c and the

erms inside the sum are 

 i (c + 
c| c) = I(T i > c + 
c) L { 1 , ˆ πi (c + 
c| c) } 
 i (c + 
c| c) = δi I(T i ≤ c + 
c) L { 0 , ˆ πi (c + 
c| c) } 
 i (c + 
c| c) = (1 − δi ) I(T i ≤ c + 
c) 

[
ˆ πi (c + 
c| T i ) L { 1 , ˆ πi (c + 
c| c) } +

+ (1 − ˆ πi (c + 
c| T i )) L { 0 , ˆ πi (c + 
c| c) } ]
here δi is the censor index that equals 1 if the subject experi- 

nces the event and 0 otherwise. 

The loss function L we use in this work corresponds to the pop- 

lar Brier score ( Brier, 1950 ) defined as mean squared error for 

he probabilistic forecasts. Hence, ̂ EP E (c + 
c| c) ( Eq. 14 ), measures 

he mean square deviation at a time c + 
c with historical data 

ollected until c. Henderson et al. (2002) also propose to mea- 

ure the expected predicted error as an average over the interval 

 c + 1 , c + 
c] , following 

 

 E 

c 

c = 

∑ 

i : c<T i ≤c+
c δi w (c, T i ) ̂  EP E (T i | c) ∑ 

i : c<T ≤c+
c δi w (c, T i ) 
, (15) 
i 

6 
here w (c, T i ) = 

̂ KM (c + 1) / ̂  KM (T i ) are weights to compensate for

he loss of censored cases and 

̂ KM (·) is the Kaplan-Meier estima- 

or. One way of measuring useful statistics of Eq. 15 is to perform 

 Monte Carlo approach for the estimation of the conditional pos- 

erior probabilities πi (c + 
c| c) , as described in Rizopoulos (2011) , 

ut this is beyond the scope of this work. 

. Simulation 

We study the discrete joint model with autoregressive terms 

ntroduced in Section 4 via simulation. To explore the MCMC 

ampling behaviour of our implementation, we fit the model for 

hree sample sizes with 1,0 0 0, 50 0 0 and 10,0 0 0 subjects, re-

pectively, over a maximum of 36 periods (3 years), represent- 

ng 24,424, 124,184 and 245,789 observations respectively. Fig. 1 

llustrates the distribution of the events over time for the largest 

ample and Fig. 2 shows the evolution of the simulated longitu- 

inal outcome where we have highlighted 10 subjects that expe- 

ience the event (dashed line) and 10 that do not (dotted line). 

he setup for the simulation is motivated by the models applied in 

ection 6 . Although in the application we explore the discrete joint 

odel approach by fitting different link functions f (see Eq. 2 ), 

ere we study the case where f (U i , s ) = m i,s −1 with m i,s −1 follow-

ng Eq. 4 that corresponds to the most general one. 
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Table 1 

Estimations of joint model with autoregressive term over the different simulated samples. 

N = 1 , 0 0 0 N = 5 , 0 0 0 N = 10 , 0 0 0 

True Mean SD 5% 95% Mean SD 5% 95% Mean SD 5% 95% 

γ1 2.00 2.100 0.239 1.724 2.502 2.033 0.097 1.873 2.190 1.999 0.070 1.886 2.114 

γ2 1.00 1.056 0.198 0.733 1.389 0.984 0.076 0.859 1.110 0.941 0.053 0.854 1.028 

λ f 1.00 1.027 0.103 0.862 1.204 1.002 0.043 0.932 1.075 0.997 0.031 0.944 1.048 

α0 -0.30 -0.320 0.040 -0.387 -0.255 -0.292 0.017 -0.318 -0.264 -0.289 0.012 -0.308 -0.270 

φ 0.40 0.407 0.007 0.396 0.418 0.412 0.003 0.407 0.417 0.414 0.002 0.411 0.418 

σ 1.00 1.001 0.005 0.993 1.009 1.000 0.002 0.996 1.003 1.003 0.002 1.000 1.005 

σU 0 i 1.20 1.196 0.034 1.141 1.252 1.170 0.015 1.146 1.194 1.154 0.010 1.138 1.171 

σU 1 i 0.05 0.049 0.002 0.046 0.052 0.048 0.001 0.047 0.049 0.049 0.001 0.048 0.050 

ρU 01 
-0.20 -0.182 0.040 -0.246 -0.117 -0.179 0.018 -0.209 -0.150 -0.184 0.013 -0.205 -0.163 

Table 2 

Specification of the models. Id is the identifier of the model, Type is either survival or joint model, R-E specifies the random effects used (only intercept or intercept and 

slope), AR1 if the model has autoregressive term of order 1. f (U i , s ) is the link function (for the survival is the TVC) and m i,s −1 the longitudinal predictor. 

Id Type R-E AR1 f (U i , s ) m i,s −1 

M 0 Survival - - Y i,s −1 –

M 1 Joint Int No U 0 i α0 + U 0 i 
M 2 Joint Int Yes U 0 i α0 + U 0 i + φY i,s −2 

M 3 Joint Int-slope No α0 + U 0 i + U 1 i (s − 1) α0 + U 0 i + U 1 i (s − 1) 

M 4 Joint Int-slope Yes α0 + U 0 i + U 1 i (s − 1) α0 + U 0 i + U 1 i (s − 1) + φY i,s −2 

M 5 Joint Int-slope Yes α0 + U 0 i + U 1 i (s − 1) + φY i,s −2 α0 + U 0 i + U 1 i (s − 1) + φY i,s −2 

Table 3 

Summary of the posterior distributions of each model’s parameters with fold 1 kept out. 

Parameter M 0 M 1 M 2 

Mean 5% 95% Mean 5% 95% Mean 5% 95% 

fico -0.701 -0.819 -0.584 -0.698 -0.813 -0.583 -0.697 -0.816 -0.576 

cltv 0.515 0.334 0.705 0.544 0.361 0.732 0.542 0.367 0.728 

orig_upb -0.151 -0.294 -0.011 -0.183 -0.328 -0.037 -0.182 -0.323 -0.044 

dti 0.152 0.025 0.284 0.165 0.033 0.292 0.166 0.041 0.294 

n_borr -0.260 -0.513 -0.007 -0.268 -0.521 -0.019 -0.264 -0.510 -0.020 

loan_purpose -0.977 -1.246 -0.697 -0.992 -1.268 -0.717 -0.987 -1.265 -0.713 

λ f 1.456 1.135 1.778 0.345 0.150 0.550 1.053 0.480 1.703 

α0 -0.472 -0.495 -0.450 -0.206 -0.216 -0.195 

σU 0 i 1.209 1.193 1.226 0.504 0.496 0.512 

σ 0.935 0.932 0.937 0.787 0.785 0.789 

φ 0.587 0.584 0.591 

Parameter M 3 M 4 M 5 

Mean 5% 95% Mean 5% 95% Mean 5% 95% 

fico -0.700 -0.820 -0.581 -0.716 -0.842 -0.589 -0.701 -0.821 -0.581 

cltv 0.517 0.337 0.705 0.477 0.290 0.667 0.516 0.333 0.703 

orig_upb -0.156 -0.297 -0.015 -0.088 -0.233 0.060 -0.155 -0.300 -0.014 

dti 0.151 0.018 0.282 0.150 0.016 0.282 0.152 0.021 0.283 

n_borr -0.276 -0.536 -0.014 -0.288 -0.548 -0.029 -0.270 -0.527 -0.018 

loan_purpose -0.969 -1.239 -0.695 -0.969 -1.248 -0.686 -0.971 -1.246 -0.696 

λ f 1.165 0.781 1.572 3.555 2.587 4.541 1.317 0.895 1.771 

α0 -0.444 -0.465 -0.422 -0.278 -0.292 -0.264 -0.280 -0.294 -0.266 

σU 0 i 1.860 1.836 1.885 1.236 1.218 1.254 1.237 1.219 1.255 

σ 0.734 0.732 0.736 0.706 0.704 0.708 0.706 0.704 0.708 

φ 0.357 0.354 0.361 0.357 0.353 0.360 

σU 1 i 0.086 0.085 0.088 0.053 0.052 0.054 0.053 0.052 0.054 

ρU -0.782 -0.790 -0.775 -0.810 -0.817 -0.803 -0.811 -0.818 -0.804 

f

d  

Y

w  

e

z

T

t

i

w
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w

e

f

g

w

6 Approximately 4.5% of the subjects experienced the event over the 36 periods. 
The longitudinal outcome Y i,s −1 is described with one fixed ef- 

ect (intercept) and two random effects (intercept and slope) in ad- 

ition to an autoregressive process of order one ( p = 1 ), specifically

 i,s −1 = α0 + U 0 i + U 1 i (s − 1) + φY i,s −2 ︸ ︷︷ ︸ 
m i,s −1 

+ εi,s −1 

here (U 0 i , U 1 i ) T
 ∼ N 2 ( 0 , �) and εi,s −1 ∼ N (0 , σ 2 ) . We define the

vent process to depend on two time-invariant covariates z (1) 
i 

and 

 

(2) 
i 

p is = logit 
−1 

(a 0 s + γ1 z 
(1) 
i 

+ γ2 z 
(2) 
i 

+ λ f m i,s −1 ) . 
7 
he term a 0 s is generated from a cubic polynomial function so that 

he default rate is of the order of magnitude of the one observed 

n mortgage loans 6 

To assess convergence of the HMC inference in each setup, 

e sampled from 3 independent chains with overdispersed start- 

ng points per setup, each with 40 0 0 and 20 0 0 iterations for the

arm-up and sampling periods, respectively. In regard to the gen- 

ral diagnosis of the HMC inference, none of the chains suffered 

rom transitions that hit the maximum treedepth or were diver- 

ent. The energy Bayesian fraction of missing information (E-BFMI) 

as satisfactory for all transitions. Moreover, all the parameters 
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Table 4 

Mean difference of ̂ AUC 

c 

c ( Eq. 13 ) with respect to model M 0 (Cox model) and prediction window of 12 months ( 
c = 12 ). The Time (c) column represents c, the known 

history when making the prediction. The number in parentheses is the standard deviation of the cross-validation analysis (corrected by the overlapping training sets). The 

largest increment of the corresponding row is marked in bold. 

Time (c) ̂ AUC 
12 

c M 0 
 ̂ AUC 
12 

c 

M 1 M 2 M 3 M 4 M 5 JM 3 

6 0.732 0.068 (0.046) 0.067 (0.045) 0.021 (0.028) -0.010 (0.020) 0.021 (0.029) 0.017 (0.028) 

7 0.750 0.050 (0.052) 0.050 (0.050) 0.014 (0.028) -0.024 (0.024) 0.013 (0.036) 0.007 (0.028) 

8 0.796 0.025 (0.017) 0.025 (0.017) -0.003 (0.008) -0.059 (0.010) -0.013 (0.005) -0.013 (0.008) 

9 0.792 0.010 (0.017) 0.010 (0.016) -0.008 (0.020) -0.034 (0.011) -0.005 (0.006) -0.014 (0.017) 

10 0.791 0.004 (0.009) 0.004 (0.009) -0.012 (0.027) -0.012 (0.017) 0.007 (0.008) -0.020 (0.027) 

11 0.799 0.001 (0.013) 0.001 (0.013) -0.008 (0.033) -0.013 (0.029) 0.011 (0.018) -0.027 (0.034) 

12 0.790 0.009 (0.015) 0.008 (0.015) -0.011 (0.030) -0.032 (0.033) -0.003 (0.023) -0.039 (0.032) 

13 0.794 0.005 (0.018) 0.004 (0.017) 0.006 (0.023) -0.009 (0.023) -0.011 (0.023) -0.026 (0.023) 

14 0.778 0.002 (0.015) 0.002 (0.014) 0.041 (0.043) 0.042 (0.044) 0.000 (0.026) 0.002 (0.035) 

15 0.785 -0.002 (0.013) -0.003 (0.013) 0.046 (0.040) 0.060 (0.040) 0.004 (0.030) 0.006 (0.038) 

16 0.783 -0.006 (0.014) -0.007 (0.013) 0.050 (0.026) 0.075 (0.026) 0.006 (0.022) 0.004 (0.029) 

17 0.779 -0.009 (0.012) -0.010 (0.011) 0.057 (0.036) 0.089 (0.033) 0.018 (0.033) 0.009 (0.035) 

18 0.768 -0.008 (0.013) -0.008 (0.012) 0.066 (0.035) 0.105 (0.031) 0.029 (0.034) 0.013 (0.035) 

19 0.767 -0.006 (0.011) -0.007 (0.011) 0.061 (0.031) 0.105 (0.028) 0.032 (0.031) 0.018 (0.035) 

20 0.762 -0.009 (0.011) -0.009 (0.011) 0.060 (0.031) 0.111 (0.027) 0.035 (0.034) 0.015 (0.038) 

21 0.774 -0.006 (0.011) -0.007 (0.010) 0.054 (0.038) 0.104 (0.033) 0.037 (0.039) 0.020 (0.038) 

22 0.761 -0.006 (0.012) -0.006 (0.012) 0.069 (0.051) 0.123 (0.046) 0.055 (0.052) 0.035 (0.050) 

23 0.750 -0.007 (0.010) -0.008 (0.009) 0.073 (0.049) 0.132 (0.045) 0.062 (0.052) 0.035 (0.046) 

24 0.757 -0.016 (0.005) -0.016 (0.004) 0.062 (0.044) 0.124 (0.044) 0.053 (0.047) 0.109 (0.050) 

Table 5 

Mean difference of ̂  PE 

c 

c ( Eq. 15 ) with respect to model M 0 (Cox model) and prediction window of 12 months ( 
c = 12 ). The Time (c) column represents c, the known history 

when making the prediction. The number in parentheses is the standard deviation of the cross-validation analysis (corrected by the overlapping training sets). The largest 

reduction of the corresponding row is marked in bold. 

Time (c) ̂ PE 
12 

c M 0 
̂ PE 
12 

c 

M 1 M 2 M 3 M 4 M 5 JM 3 

6 0.367 -0.021 (0.009) -0.022 (0.009) -0.020 (0.008) -0.017 (0.008) -0.018 (0.008) -0.009 (0.009) 

7 0.397 -0.019 (0.007) -0.020 (0.007) -0.018 (0.007) -0.017 (0.007) -0.017 (0.006) -0.004 (0.007) 

8 0.428 -0.014 (0.008) -0.014 (0.009) -0.015 (0.009) -0.017 (0.009) -0.015 (0.009) 0.002 (0.009) 

9 0.467 -0.010 (0.006) -0.010 (0.006) -0.009 (0.006) -0.014 (0.006) -0.011 (0.006) 0.007 (0.006) 

10 0.487 -0.007 (0.004) -0.008 (0.004) 0.002 (0.007) -0.012 (0.004) -0.009 (0.004) 0.014 (0.004) 

11 0.530 -0.006 (0.003) -0.006 (0.003) 0.032 (0.022) -0.008 (0.003) -0.007 (0.003) 0.039 (0.016) 

12 0.590 -0.005 (0.002) -0.005 (0.002) 0.089 (0.022) 0.010 (0.007) -0.004 (0.002) 0.094 (0.021) 

13 0.617 -0.003 (0.001) -0.004 (0.001) 0.168 (0.059) 0.071 (0.040) 0.002 (0.003) 0.177 (0.067) 

14 0.680 -0.003 (0.001) -0.004 (0.001) 0.373 (0.135) 0.337 (0.131) 0.022 (0.013) 0.431 (0.176) 

15 0.744 -0.002 (0.002) -0.002 (0.002) 0.516 (0.250) 0.671 (0.322) 0.054 (0.038) 0.624 (0.337) 

16 0.805 -0.001 (0.003) -0.001 (0.002) 0.601 (0.315) 1.022 (0.471) 0.103 (0.073) 0.748 (0.434) 

17 0.806 0.000 (0.003) -0.001 (0.003) 0.668 (0.357) 1.389 (0.605) 0.161 (0.108) 0.859 (0.497) 

18 0.851 0.000 (0.003) -0.001 (0.003) 0.730 (0.368) 1.789 (0.710) 0.230 (0.141) 0.964 (0.510) 

19 0.911 0.000 (0.003) 0.000 (0.003) 0.691 (0.364) 1.968 (0.807) 0.257 (0.162) 0.916 (0.488) 

20 0.918 0.000 (0.004) -0.001 (0.003) 0.646 (0.342) 2.068 (0.885) 0.291 (0.173) 0.852 (0.459) 

21 0.951 0.000 (0.004) 0.000 (0.004) 0.591 (0.258) 2.135 (0.762) 0.305 (0.150) 0.762 (0.354) 

22 0.916 0.000 (0.004) 0.000 (0.004) 0.468 (0.245) 1.889 (0.810) 0.264 (0.155) 0.593 (0.328) 

23 0.919 0.002 (0.002) 0.002 (0.002) 0.386 (0.138) 1.783 (0.610) 0.247 (0.103) 0.487 (0.196) 

24 0.908 0.004 (0.002) 0.003 (0.003) 0.373 (0.127) 1.720 (0.553) 0.269 (0.116) 0.535 (0.179) 

∗For ease of visualisation, all values are multiplied by 100. 

Table 6 

Estimations of M 0 (Cox) for the largest simulated sample. 

M 0 

True Mean SD 5% 95% 

γ1 2.00 1.780 0.061 1.681 1.878 

γ2 1.00 0.836 0.049 0.756 0.918 

λ f 1.00 0.752 0.024 0.713 0.792 
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ad satisfactory effective sample sizes ˆ n eff, which plays a similar 

ole as the number of independent draws in the standard central 

imit theorem. Also, they all showed satisfactory potential scale re- 

uction factors ˆ R that measures the consistency between chains 

y quantifying the between-chain over the within-chain variability. 

ence, no problems were detected. Further details on HMC diagno- 

is and the problems associated to these metrics are presented in 

etancourt (2017) . 
8 
The final 60 0 0 sampling iterations per setup (2,0 0 0 per chain) 

re summarised in Table 1 by their means, standard deviations and 

%-95% posterior credible intervals in addition to the true generat- 

ng parameter values. 

The baseline hazard is generated from a cubic polynomial but 

odelled through cubic B-spline functions. We use three equally 

paced internal knots placed at the 25th, 50th and 75th per- 

entiles of the distribution of the event times. That implies 7 spline 
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Fig. 3. True baseline hazard a 0 s (solid line) and the corresponding estimations for 

the three sample size settings with their 5–95% posterior credible intervals. 

c

F

t

c

t

t

b

i  

s

i

n

a

m

6

6

a

t

i

l

i

t

f

n

i

l

a

o

p

t

a

s

c  

a

a

p

r

Fig. 4. Distribution of the defaults in time for the training sample. 

Fig. 5. The evolution in time of the difference between the implicit and granted 

interest rate. Highlighted are 10 borrowers that defaulted (dashed) and 10 who are 

censored (dotted). 
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oefficients to estimate (degree of 3, 3 knots and 1 intercept) 7 

ig. 3 shows the true baseline hazard a 0 s (solid line) and the es- 

imated 5–95% posterior credible intervals for the 3 settings 8 It 

an be seen that using this spline configuration the intervals of the 

hree settings cover the true value and when more data is added, 

he intervals are narrower, as expected. 

Since we know the data generation process, we can quantify the 

ias in the parameter estimates when the discrete survival model 

s used, as we did in Appendix B . The results from this analysis

how that the true parameter values are outside the 95% credible 

ntervals. However, in the empirical analysis shown below, we can- 

ot analyse the bias because we do not know the true data gener- 

tion process, but rather we can compare the predictions of each 

odel. 

. Application: credit scoring for US mortgages 

.1. Data 

We analyse the Single Family Loan-Level Dataset publicly avail- 

ble from Freddie Mac 9 . The dataset contains loan-level origina- 

ion and monthly performance for fixed-rate US mortgages and 

t is periodically updated. Freddie Mac provides a randomly se- 

ected sample dataset of 50,0 0 0 loans for each vintage year, start- 

ng from 1999 onwards. Due to computational limitations, we use 

he loans originated from October to December of the year 1999 

rom the sample dataset and follow their performance for the 

ext 36 months. The final number of loans in our training sample 

s 10,399 that corresponds to 285,462 observations. 2.3% of these 

oans defaulted in the period of analysis and Fig. 4 shows how they 

re distributed in time. 10 Appendix D shows descriptive statistics 

f the data. To the best of our knowledge, this is the largest sam- 

le size used in the literature on joint models. 

For the longitudinal outcome, we consider the difference be- 

ween the implicit interest rate and the fixed interest rate granted 

t origination since it nicely balances the scheduled versus the ob- 

erved information in the following way. Considering that the data 

ontains the original amount of the loan ( P 0 ), the fixed interest rate

nd the loan term, we can then calculate the original instalment 

mount ( A ) and the scheduled unpaid principal balance if neither 
7 We explored configurations with different number of knots but no major im- 

rovements were obtained. 
8 All effective sample sizes ˆ n eff of the HMC sampling are above 60 0 0. 
9 http://www.freddiemac.com/research/datasets/sf _ loanlevel _ dataset.page 

10 We use the definition of default that corresponds to the time when the bor- 

ower is 90 days or more past due. 

f  

i

u

p

9

n early nor delayed repayment is made. The implicit rate ( i ) is

hus calculated as the one that corresponds to the observed un- 

aid principal balance ( P t ) for the remaining period of the mort- 

age following Eq. 16 . That means that if the payments are made 

s scheduled, the implicit interest rate will be the same as the 

riginal fixed interest rate. Otherwise, if there is any unscheduled 

rincipal changes it will increase or decrease the implicit interest 

ate. 

 t = P 0 (1 + i ) t − A 

(1 + i ) t 

i 
+ 

A 

i 
(16) 

ig. 5 shows the evolution in time of the interest rate difference in 

hich, for illustrative purposes, we have highlighted ten borrow- 

rs who do and do not experience default (dashed and dotted line, 

espectively). We observe that in the first six months the series 

ither goes up or down. This happens because the data provider 

eports the current unpaid principal balance to the nearest $10 0 0 

or the first 6 months of each loan and it is also reflected in the

mplicit rate (if the rounded number is above or below the sched- 

led). 

We use the following time-invariant covariates in the survival 

rocesses ( Hu & Zhou, 2019; Wang et al., 2020 ) 

• fico is a number summarising the borrower’s creditworthiness 

(credit score) developed by FICO. Generally, the number dis- 

http://www.freddiemac.com/research/datasets/sf_loanlevel_dataset.page
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closed is the score known at the time of acquisition and is the 

score used to originate the mortgage. 
• cltv is the loan-to-value ratio based on the original mortgage 

loan amount plus any other mortgage loan amount divided by 

the mortgaged purchase price of the property. 
• orig_upb is the original unpaid principal balance of the mort- 

gage on the note date. 
• dti is the debt to income ratio based on the sum of the bor- 

rower’s monthly debt payments divided by the total monthly 

income used to underwrite the loan. 
• n_borr is the number of borrower(s) who are obligated to re- 

pay the mortgage. Either one borrower ( = 0 , 38% of the loans)

or more than one ( = 1 , 62% of the loans). 
• loan_purpose indicates whether the mortgage loan purpose is 

a refinance ( = 0 , 26% of the loans) or a purchase ( = 1 , 74% of

the loans). 

To measure how well each model performs in an out-of-sample 

cenario, we assess them by 5-fold cross-validation analysis. Since 

he default rate is low, the folds are created in such a way as to

reserve the overall default rate (see Appendix D ). 

.2. Models and results 

We estimate six models, all of them using the same time- 

nvariant covariates mentioned above. The differences come from 

he assumptions made about the link function f ( Eq. 2 ) and lon- 

itudinal outcome structure ( Eqs. 3 or 4 ), and are summarised in 

able 2 . M 0 is a discrete survival Cox model in which the interest 

ate difference is included as observed, i.e. as exogenous TVC. This 

odel corresponds to the standard approach in credit risk survival 

odelling ( Bellotti & Crook, 2013; Crook & Bellotti, 2010; Wang 

t al., 2020 ) and it serves as benchmark to the joint models. The 

ther five models come from combining random intercept or ran- 

om intercept and slope with or without autoregressive term as 

etailed in the table. 

For each model specification, we perform a 5-fold cross- 

alidation with 3 independent chains for the MCMC sampling pro- 

edure, i.e. 90 model estimations in total (6 specifications, 5 folds 

nd 3 chains), each of them with a warm-up period of 40 0 0 iter-

tions and 20 0 0 sampling draws. To make the computation more 

fficient, we implement each specification using the within chain 

arallelisation feature already available in the CmdStan interface 

see https://mc-stan.org/users/interfaces/cmdstan.html ) with 4 CPU 

ores of 16GB of memory 11 The computational resources were pro- 

ided by the Edinburgh Compute and Data Facility (ECDF, http: 

/www.ecdf.ed.ac.uk/ ) and the codes with explanatory comments 

re available with the supplementary material. With respect to 

he general diagnosis of the HMC inference, following the met- 

ics mentioned in Section 5 , no problems were detected. That 

s, none of the transitions were divergent or hit the maximum 

reedepth, all had satisfactory E-BFMI as well as the ˆ n eff and 

ˆ R 

or all the parameters (see Appendix Appendix J for further details 

n convergence). Moreover, to substantiate that the results are not 

trongly dependent on the choice of prior distributions described 

n Section 4.2 , we conducted a robustness study in Appendix Ap- 

endix I . 

Table 3 summarises the parameter estimations for the six mod- 

ls for one of the five cross-validation results (keeping fold 1 out in 

his case) 12 First, we observe that for almost all parameters their 

–95% posterior credible intervals do not include 0 and, second, 
11 As a reference, one run of one chain of 60 0 0 samples for model M 5 (the most 

omplex one) took 12 hours to finish. 
12 We only disclose this first fold since the results obtained in the others are con- 

istent with the results we have shown. 

t

N

v

10 
here is strong evidence that the autoregressive coefficient φ for 

odels M 2 , M 4 and M 5 is significant. Furthermore, the posterior 

ean of the parameters associated with the time-invariant covari- 

tes have fairly similar estimates among the six models with co- 

erent signs. For example, greater fico , meaning better creditwor- 

hiness, has lower probability of default. Moreover, the greater the 

ortgage loan with respect to the purchase price ( cltv ), the greater 

he probability of defaulting, analogous results for the debt to in- 

ome ratio dti . If there is more than one borrower responsible of 

aying the loan ( n_borr ), we observe that the probability of de- 

aulting is also lower and the same is obtained when the purpose 

f the loan is to purchase the mortgage instead of refinance it. 

he exception comes from orig_upb estimated by model M 4 where 

ts credible interval does include 0 and its estimated mean drops 

0% in relation to the others models. In addition, the posterior of 

he association parameter λ f shows differences among the models 

s expected, since the linking variables are not strictly comparable 

for example, constant versus linear tendency) but all the intervals 

re far from 0. The signs are all positive which can be interpreted 

s if the level of the difference between the implicit and the orig- 

nal interest rate increases, then also the probability of default in- 

reases. 

We measure the performance of the individual survival predic- 

ions under the discrimination and calibration metrics described 

n Section 4.4 . Both the AUC and the PE depend on the evalua-

ion times c and c + 
c. We study the predictions for the range of 

 ∈ [6 , 24] and 
c = 12 to analyse how the models behave when

ore information is collected in time. For instance, if c = 6 we use

he collected data until the sixth month and predict the probabil- 

ty of default for months 7 to 18. Further, all the predictions are 

one for the unknown fold, so the new collected data is not used 

or estimating the parameters of the models but rather to estimate 

he random effects that serve to the individual predictions as de- 

cribed in Section 4.3 . 

To compare the models against the benchmark ( M 0 ), we cal- 

ulate the difference in the AUC for all the values of c within their 

espective fold. Table 4 shows the means and standard deviations 13 

f the difference in the AUC considering the 5 folds. The number 

n the first column corresponds to c. We observe that for c be- 

ween 6 and 9, models M 1 and M 2 outperform the benchmark in 

erms of discrimination for the forecast window of 12 months but 

or greater c, both remain practically the same to M 0 . Moreover, 

or c ≤ 13 there is not a great difference for models M 3 , M 4 and

 5 with respect to M 0 , however, for c ≥ 14 , the discrimination in-

reases considerably, specially for M 4 , with an average increase of 

ore than 0.1 in the AUC. 

Table 4 also shows under the name JM 3 the results of the 

ontinuous-time version of M 3 . This model, unlike the joint mod- 

ls M 1 to M 5 , has been estimated with the R package JMbayes 

 Rizopoulos, 2014 ). This additional analysis aims to compare the 

erformance between discrete and continuous-time versions of the 

oint model without autoregressive terms. We note that, in gen- 

ral terms, the JM 3 model presents better discrimination than M 0 , 

hich is also shown in Hu & Zhou (2019) for a prepayment predic- 

ive model. Yet, for this data, the discrete-time version M 3 presents 

lightly better discrimination results (more details on this analysis 

n Appendix Appendix H ). 

Analogously, Table 5 shows the mean differences and standard 

eviations of PE with respect to M 0 , for the range of c and the fore-

ast window of 12 months. For ease of viewing, all the values are 

caled by a factor of 100. We observe, for c < 12 , that the calibra-

ion of the joint models are, in general, better than the benchmark, 
13 The standard deviation includes the additional correlation term detailed in 

adeau & Bengio (20 0 0) that accounts for the overlapping training sets in the cross- 

alidation. 

https://mc-stan.org/users/interfaces/cmdstan.html
http://www.ecdf.ed.ac.uk/
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Fig. 6. Empirical autocorrelation functions for the longitudinal outcome. On the 

left, the linear mixed-effect model with random intercept and, on the right, the 

linear mixed-effect model with random intercept and slope. 
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n particular, for models M 4 and M 5 . For c ≥ 12 , however, models

 3 and M 4 start to increase the expected predictive error in com- 

arison to M 0 . Model M 5 also increases the predictive error but not 

s much as models M 3 and M 4 which can be seen as a good bal-

nce between improvement in discrimination without affecting too 

uch the calibration. Furthermore, models M 1 and M 2 recover the 

ame performance levels as the benchmark. Finally, the calibration 

erformance of the continuous-time version of M 3 , JM 3 , follows a 

imilar trend to its counterpart without presenting sustainable im- 

rovements (see Appendix Appendix H ). 

Models M 3 , M 4 and M 5 show better discrimination than the 

enchmark when more historical information is collected but the 

ame is not true in terms of calibration. This discrepancy largely 

omes from the fact that this data is highly unbalanced, i.e. the 

umber of defaults is considerably lower than that of non defaults. 

nder these circumstances, it could happen that any model, for in- 

tance, that assigns a survival probability of 1 to all, still has a rel-

tively good calibration, so it is important to take this metric with 

aution and understand where the major contributions come from. 

Table 10 in Appendix E shows the 5–95% probability ranges es- 

imated by each model and separated by non-defaulters (value 0) 

ersus defaulters (value 1). We observe that, for c > 12 , the joint

odels M 3 , M 4 and M 5 start to have a broader range than the

enchmark for both labels, which is also when the differences in 

he calibration metric appear. In other words, the joint models can 

dentify better the defaulters versus the non-defaulters, since they 

ave better discrimination performance, and assign lower probabil- 

ties of surviving to the defaulters than the benchmark. However, 

hese models also assign lower probabilities to the non-defaulters 

nd, because of the large number of these cases in the data, the 

alibration is made worse. 

To investigate at what extend the models are sensitive to class 

mbalance, we re-estimate the models M 0 (benchmark) and M 5 

joint model with autoregressive term) by controlling the propor- 

ion of non-defaulters in the data. Appendix F shows the results for 

wo scenarios. The first one, randomly reduces the number of non- 

efaulters in such a way that 75% of the loans are non-defaulters 

nd, the second one, has equal number of defaulters and non- 

efaulters. From these results, we see that the calibration of the 

oint model shows major improvements to class imbalance com- 

ared with the Cox model, reducing the difference between them 

 
̂ P E 
12 

c M 5 ) for c ≥ 15 , in more than 50% when comparing to the

esults shown in Table 5 . 

Finally, to complement the comparative analysis, in 

ppendix Appendix K we compare the models from an eco- 

omic perspective. The results of this analysis reveal, first, that 

he joint models M 1 and M 3 show similar average costs as the 

ox model. Second, there are cost reductions when we include 

utoregressive terms in both the longitudinal and link parts ( M 5 ). 

. Concluding remarks 

The inclusion of TVCs into survival credit scoring models is 

idely applied in the literature to either improve the predictions 

r enhance the understanding of why borrowers default ( Bellotti 

 Crook, 2009; 2014; Calabrese & Crook, 2020; Dirick et al., 2019; 

ang et al., 2020 ). However, there are few works that focus on 

istinguishing the type of variable included ( Dirick et al., 2019; 

u & Zhou, 2019 ), thus treating endogenous and exogenous vari- 

bles equally. This practice can lead to two main problems if the 

VC is endogenous. First, from a statistical standpoint, we might 

ncounter biased parameter estimations ( Section 2 ). Second, from 

 forecast perspective, we lack a dynamic prediction framework 

hat takes advantage of the mutual evolution between the TVC and 

he survival time, forcing the prediction to keep the last observed 
11 
alue fixed or estimating the model with lagged values of the TVC 

 Bellotti & Crook, 2013; Crook & Bellotti, 2010; Wang et al., 2020 ). 

To address the inclusion of endogenous TVCs into survival scor- 

ng models, we explore the joint modelling approach and adapt it 

o handle features typical of credit risk applications. First, to the 

est of our knowledge, this is the first work that uses joint models 

n discrete time for credit scoring models. Second, from a method- 

logical angle and making use that observations are equally-spaced 

nd indexed by a discrete variable (time), we propose an extended 

oint model that incorporates autoregressive terms into the longi- 

udinal outcome. This extension is motivated by the autoregressive 

omponents seen in the data (see Fig. 6 in Appendix A ) and how,

y applying this extension, the accuracy on the predictions could 

e improved. 

In total, we implement six models, a traditional survival 

odel ( M 0 ) that is our benchmark and five joint models 

 M 1 , M 2 , M 3 , M 4 , M 5 ), all of them following the Bayesian approach,

oded in Stan, using CmdStan interface ( Stan Development Team, 

018 ) with withing chain parallelisation feature and available with 

he supplementary material. We study the most general case of 

he implementations ( M 5 ) via simulation analysis which shows 

atisfactory converging diagnosis for three independent sampling 

hains and true value recovery for different sample sizes. 

Furthermore, we apply all the models to US mortgage loans 

ata and compare them via cross-validation analysis. The results 

how that the joint models that assume the longitudinal outcome 

ith only random intercepts, either with or without autoregressive 

erm ( M 1 and M 2 , respectively), only improve the discrimination 

easure with respect to the benchmark when not much historical 

nformation of the new borrowers is known. However, the other 

hree joint models ( M 3 , M 4 and M 5 ) show a higher improvement

n terms of discrimination when more historical data is collected, 

pecially the model M 4 that includes autoregressive correction in 

he longitudinal outcome. 

In terms of calibration, we see that when using the historical 

ata up to the first year (12 months), the joint models are, in gen- 

ral, better than the benchmark. Moreover, when more historical 

ata are considered, models M 1 and M 2 preserve the same level of 

alibration as the benchmark. However, for models M 3 , M 4 and M 5 

he calibration error grows in comparative terms. This is mainly 

ecause these models estimate posterior probability distributions 

ith higher variability than the benchmark for the non-defaulters 

hen more historical data are considered and, given that these 

ata are highly imbalanced, greater variability in the probabilities 

s more detrimental to the overall quality of the calibration in com- 
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Fig. 7. Kaplan–Meier curves for each fold. 
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arison to the benchmark. Nevertheless, when we control for the 

lass imbalance, we see that this difference is considerably reduced 

 Appendix F ). 

In this paper, we include only one longitudinal outcome in 

he model with only one autoregressive term in the implementa- 

ions. A potential extension of this work might be to consider a 

ultivariate longitudinal case with different autoregressive orders, 

here more complex payment patterns can be recognised and in- 

luded into the time to default prediction. For example, being able 

o measure and incorporate correlations between the use of the 

redit card and the implicit interest rate through a bivariate longi- 

udinal model. 

However, a major drawback of this methodology is the compu- 

ational cost. Typically financial institutions estimate scoring mod- 

ls on big sample size, on the order of thousands or millions of 

ata. In order to scale this model by including a multivariate lon- 

itudinal process and make it feasible for real life applications, 

ome approximations in the estimation procedure can be applied. 

or instance, if the event and the multivariate longitudinal pro- 

esses are assumed to have a linear Gaussian association struc- 

ure, then it can be seen as a latent Gaussian model (LGM). Thus, 

he Bayesian inference can be approximated, for example, with the 

ntegrated nested Laplace approximation (INLA) ( Rue, Martino, & 

hopin, 2009 ). 

To conclude, use of joint models is a promising approach to 

nvestigate in credit risk applications in which we usually have a 

ariety of endogenous TVCs that could bring relevant predictive 

nformation. We believe our extension to include autoregressive 

erms can be further exploited to extract predictive behaviours and 

o better understand the dynamic nature of credit defaults. 
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ppendix A. Empirical autocorrelation functions 

ppendix B. Estimation of Cox model for joint model 

imulated data 

We use the largest simulated data detailed in Section 5 (10,0 0 0 

ubjects) and estimate a Cox model where the longitudinal out- 

ome is included as observed (see Table 2 ). We sampled from 3 

ndependent chains with overdispersed starting points, each with 

0 0 0 and 20 0 0 iterations for the warm-up and sampling periods,

espectively. We follow the same general diagnosis procedure de- 

cribed in Section 5 with respect to the HMC inference and no 

roblems were detected. Table 6 summarises the parameter esti- 

ations. For this model specification under this simulated data, 

e observed that the 5–95% credible intervals do not include the 

rue parameter value. This evidences the estimation bias in the pa- 

ameters when the data representation is well-described by a joint 

tochastic process between the survival and longitudinal variables, 

ut the latter is considered deterministically, as the Cox approach 

oes. 

ppendix C. Comparing simulations with and without 

utoregressive term 

We are interested in quantifying the relevance of adding at least 

ne autoregressive term in the longitudinal outcome when com- 

ared to the case with no autoregressive terms. To do so, we per- 

orm two simulations analysis. The first one uses the same simu- 

ated data from Section 5 (10,0 0 0 subjects) and estimate a joint 
12 
odel without the autoregressive term ( φ = 0 ), which is analo- 

ous to the specification M 3 in the empirical analysis. We call this 

odel ˜ M 3 . The second one simulates data as if it were generated 

y a joint model without an autoregressive term and estimate a 

oint model with an autoregressive term. We call this model ˜ M 5 . 

he results are shown in Table 7 . We observed that for both mod- 

ls, despite that they are misspecified for the data, the 5%-95% 

redible intervals for the parameters related to the event process 

nclude the true parameters. The differences come from the lon- 

itudinal part. We observed that ˜ M 3 tries to compensate for mis- 

pecification overestimating the fixed effect α0 , the variability of 

he random effects ( σU 0 i 
and σU 1 i 

) and the variability of the error 

erms ( σ ). However, when the data is generated by a joint model 

ithout an autoregressive term and we estimate a joint model 

ith an autoregressive term ( ̃  M 5 ), we observe that the parameters 

elated to the longitudinal outcome are closer to the true values. 

ppendix D. Descriptive statistics of the data 

Table 8 provides descriptive statistics for the numeric covari- 

tes. To ease the MCMC sampling, we standardise these covariates 

o have a zero-mean and standard deviation of 1. Table 9 gives the 

umber of loans and default rates for each fold and Fig. 7 shows 

he corresponding Kaplan-Meier curves. 

ppendix E. Survival probability ranges 

Table 10 shows the probability ranges (5-95%) for non- 

efaulters (value 0) and defaulters (value 1) for the 6 estimated 

odels. 

ppendix F. Calibration sensitivity analysis 

Our interest is to investigate how sensitive is the calibration of 

he joint model M 5 to the class imbalance in comparison to the 

enchmark. To this end, we perform a 5-fold cross-validation anal- 

sis similar to the one described in Section 6 but we now ran- 

omly reduce the non-defaulters proportion in the training folds 

f the empirical data (down-sampling). We perform the analysis 

or two different non-defaulters proportions, one corresponding to 

5% of the loans and the other to 50%. Table 11 shows the mean

ifferences and standard deviations of PE with respect to M 0 , for 

he range of c and the forecast window of 12 months for both class 

roportions. Although we observe that both models, M 0 and M 5 , 

re sensible to class imbalance showing improvements in their cal- 

bration when compared to the results shown in Table 5 , the joint 



V. Medina-Olivares, R. Calabrese, J. Crook et al. European Journal of Operational Research xxx (xxxx) xxx 

ARTICLE IN PRESS 

JID: EOR [m5G; November 4, 2022;16:1 ] 

Table 7 

Estimations of ˜ M 3 (joint model without AR1) for data coming from 

˜ M 5 (left) and estimations of ˜ M 5 (joint model with AR1) for data coming from 

˜ M 3 (right). 

˜ M 3 with data from 

˜ M 5 
˜ M 5 with data from 

˜ M 3 

True Mean SD 5% 95% True Mean SD 5% 95% 

γ1 2.00 1.989 0.070 1.873 2.107 2.00 2.086 0.084 1.949 2.225 

γ2 1.00 0.937 0.054 0.849 1.026 1.00 1.114 0.070 1.000 1.230 

λ f 1.00 0.990 0.032 0.937 1.043 1.00 1.021 0.051 0.939 1.105 

α0 -0.30 -0.473 0.019 -0.505 -0.442 -0.30 -0.291 0.012 -0.311 -0.271 

φ 0.40 0.00 0.008 0.002 0.004 0.011 

σ 1.00 1.044 0.002 1.042 1.047 1.00 1.002 0.001 1.000 1.005 

σU 0 i 1.20 1.945 0.014 1.921 1.969 1.20 1.168 0.010 1.152 1.184 

σU 1 i 0.05 0.090 0.001 0.089 0.092 0.05 0.050 0.001 0.049 0.051 

ρU 01 
-0.20 -0.196 0.011 -0.215 -0.177 -0.20 -0.175 0.013 -0.196 -0.154 

Table 8 

Descriptive statistics for numeric covariates in the dataset. 

Covariate N Mean SD Q 2 . 5% Q 25% Q 50% Q 75% Q 95% 

fico 10,399 710.70 52.50 619.00 672.00 716.00 753.00 786.00 

cltv 10,399 78.05 15.42 46.00 72.00 80.00 90.00 95.00 

orig_upb ∗ 10,399 122.35 53.49 48.00 80.00 115.00 155.00 228.00 

dti 10,399 33.79 10.50 16.00 27.00 34.00 41.00 50.00 

∗1,0 0 0 USD. 

Table 9 

Number of loans (N) and default rate (DFR) per fold. 

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 

N DFR (%) N DFR (%) N DFR (%) N DFR (%) N DFR (%) 

2036 2.50 2093 2.25 2092 2.15 2037 2.26 2141 2.15 

Table 10 

Survival probability ranges (5-95%) for non-defaulters (value 0) and defaulters (value 1) (see ˆ πk (c + 12 | c) in Eq. 12 ). The Time (c) column represents c, the known history of 

the subjects. 

Time (c) M 0 M 1 M 2 M 3 M 4 M 5 

0 1 0 1 0 1 0 1 0 1 0 1 

6 0.95-1.00 0.90-1.00 0.98-1.00 0.96-1.00 0.98-1.00 0.96-1.00 0.97-1.00 0.94-1.00 0.97-1.00 0.94-1.00 0.97-1.00 0.94-1.00 

7 0.95-1.00 0.89-1.00 0.97-1.00 0.95-1.00 0.98-1.00 0.95-1.00 0.97-1.00 0.94-1.00 0.97-1.00 0.93-1.00 0.97-1.00 0.94-1.00 

8 0.97-1.00 0.92-1.00 0.97-1.00 0.95-1.00 0.97-1.00 0.95-1.00 0.97-1.00 0.93-1.00 0.97-1.00 0.93-1.00 0.97-1.00 0.93-1.00 

9 0.97-1.00 0.93-1.00 0.97-1.00 0.95-1.00 0.97-1.00 0.95-1.00 0.97-1.00 0.93-1.00 0.98-1.00 0.94-1.00 0.97-1.00 0.93-1.00 

10 0.97-1.00 0.92-1.00 0.97-1.00 0.94-1.00 0.97-1.00 0.94-1.00 0.95-1.00 0.92-1.00 0.98-1.00 0.95-1.00 0.97-1.00 0.94-1.00 

11 0.96-1.00 0.91-1.00 0.97-1.00 0.93-1.00 0.97-1.00 0.94-1.00 0.92-1.00 0.80-1.00 0.97-1.00 0.92-1.00 0.97-1.00 0.93-1.00 

12 0.96-1.00 0.91-1.00 0.96-1.00 0.93-1.00 0.96-1.00 0.93-1.00 0.87-1.00 0.66-1.00 0.94-1.00 0.86-1.00 0.96-1.00 0.93-0.99 

13 0.96-1.00 0.91-1.00 0.96-1.00 0.93-1.00 0.96-1.00 0.93-1.00 0.80-1.00 0.51-1.00 0.87-1.00 0.67-1.00 0.95-1.00 0.89-0.99 

14 0.96-1.00 0.90-1.00 0.96-1.00 0.92-0.99 0.96-1.00 0.92-0.99 0.74-1.00 0.39-1.00 0.73-1.00 0.43-1.00 0.94-1.00 0.85-0.99 

15 0.95-1.00 0.90-1.00 0.96-1.00 0.92-0.99 0.96-1.00 0.92-0.99 0.70-1.00 0.21-1.00 0.55-1.00 0.12-1.00 0.92-1.00 0.77-0.99 

16 0.95-1.00 0.89-1.00 0.95-1.00 0.92-1.00 0.95-1.00 0.92-1.00 0.67-1.00 0.18-1.00 0.37-1.00 0.04-1.00 0.90-1.00 0.71-0.99 

17 0.95-1.00 0.89-1.00 0.95-1.00 0.92-0.99 0.95-1.00 0.92-0.99 0.66-1.00 0.16-1.00 0.24-1.00 0.01-1.00 0.87-1.00 0.62-1.00 

18 0.95-1.00 0.90-1.00 0.95-1.00 0.92-1.00 0.95-1.00 0.92-1.00 0.67-1.00 0.20-1.00 0.17-1.00 0.01-1.00 0.85-1.00 0.62-1.00 

19 0.95-1.00 0.91-1.00 0.95-1.00 0.92-1.00 0.95-1.00 0.92-1.00 0.69-1.00 0.21-1.00 0.14-1.00 0.00–1.00 0.84-1.00 0.56-0.99 

20 0.95-1.00 0.91-1.00 0.95-1.00 0.92-0.99 0.95-1.00 0.92-0.99 0.71-1.00 0.37-0.99 0.13-1.00 0.01-1.00 0.83-1.00 0.59-0.99 

21 0.95-1.00 0.91-0.99 0.95-1.00 0.92-0.99 0.95-1.00 0.92-0.99 0.74-1.00 0.37-0.99 0.14-1.00 0.01-1.00 0.83-1.00 0.58-0.99 

22 0.95-1.00 0.90-1.00 0.95-1.00 0.92-0.99 0.95-1.00 0.92-0.99 0.77-1.00 0.41-1.00 0.16-1.00 0.01-1.00 0.83-1.00 0.58-1.00 

23 0.95-1.00 0.91-1.00 0.95-1.00 0.92-1.00 0.95-1.00 0.92-1.00 0.78-1.00 0.45-1.00 0.19-1.00 0.02-1.00 0.83-1.00 0.59-1.00 

24 0.95-1.00 0.90-1.00 0.95-1.00 0.92-1.00 0.95-1.00 0.92-1.00 0.79-1.00 0.52-1.00 0.23-1.00 0.03-1.00 0.83-1.00 0.62-1.00 

m

e

b

A

w

t  

p

M

A

t

d

c

c

p

l

b

t

odel has fairly decreased the difference in the PE ( 
̂ P E 
12 

c M 5 ), 

specially for c ≥ 15 where the largest differences were observed 

efore. 

ppendix G. Comparison within the sample 

Table 12 shows the value of the log predictive density for the 

ithin-sample estimation. We observe that the joint models with 

wo random effects ( M 3 , M 4 and M 5 ) obtain higher values com-

ared to the joint models with only one random intercept ( M 1 and 

 ) and to the Cox model ( M ). 
2 0 

13
ppendix H. Comparison between continuous and discrete 

ime 

The purpose of this section is to measure the performance 

ifferences between the discrete-time joint model versus its 

ontinuous-time counterpart. To do so, we first note that the dis- 

rete joint model with autoregressive terms cannot be fully com- 

ared with its continuous version unless the autoregressive formu- 

ation is generalised to be handled in continuous time, which is 

eyond the scope of this paper. Therefore, instead, we work with 

he discrete joint model specification that does not include autore- 
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Table 11 

Mean difference of ̂  PE 

c 

c ( Eq. 15 ) between models M 5 and M 0 for prediction window of 12 months ( 
c = 12 ) considering two down-sampling settings; 75% and 50% of non- 

defaulters. The Time (c) column represents c, the known history when making the prediction. The number in parentheses is the standard deviation of the cross-validation 

analysis. The first two columns are the corresponding results from Table 5 and are copied here for ease of comparison. 

Time (c) No down-sampling 25%-75% 50%-50% 

̂ PE 
12 

c M 0 
̂ PE 
12 

c M 5 
̂ PE 

12 

c M 0 
̂ PE 
12 

c M 5 
̂ PE 

12 

c M 0 
̂ PE 
12 

c M 5 

6 0.367 -0.018 (0.008) 0.354 -0.010 (0.006) 0.348 -0.005 (0.003) 

7 0.397 -0.017 (0.006) 0.384 -0.009 (0.006) 0.379 -0.004 (0.003) 

8 0.428 -0.015 (0.009) 0.418 -0.007 (0.006) 0.414 -0.004 (0.004) 

9 0.467 -0.011 (0.006) 0.458 -0.005 (0.004) 0.455 -0.003 (0.002) 

10 0.487 -0.009 (0.004) 0.481 -0.004 (0.003) 0.478 -0.002 (0.002) 

11 0.530 -0.007 (0.003) 0.523 -0.003 (0.002) 0.521 -0.001 (0.001) 

12 0.590 -0.004 (0.002) 0.584 0.000 (0.002) 0.582 0.002 (0.000) 

13 0.617 0.002 (0.003) 0.611 0.005 (0.004) 0.609 0.007 (0.003) 

14 0.680 0.022 (0.013) 0.673 0.029 (0.030) 0.670 0.021 (0.010) 

15 0.744 0.054 (0.038) 0.737 0.067 (0.083) 0.734 0.040 (0.030) 

16 0.805 0.103 (0.073) 0.797 0.110 (0.152) 0.796 0.061 (0.053) 

17 0.806 0.161 (0.108) 0.798 0.165 (0.212) 0.797 0.089 (0.074) 

18 0.851 0.230 (0.141) 0.845 0.217 (0.263) 0.842 0.117 (0.092) 

19 0.911 0.257 (0.162) 0.905 0.237 (0.284) 0.903 0.124 (0.099) 

20 0.918 0.291 (0.173) 0.912 0.255 (0.289) 0.910 0.132 (0.103) 

21 0.951 0.305 (0.150) 0.946 0.250 (0.243) 0.946 0.131 (0.081) 

22 0.916 0.264 (0.155) 0.913 0.220 (0.239) 0.914 0.110 (0.085) 

23 0.919 0.247 (0.103) 0.914 0.184 (0.143) 0.914 0.099 (0.043) 

24 0.908 0.269 (0.116) 0.904 0.200 (0.153) 0.905 0.110 (0.055) 

∗For ease of visualisation, all values are multiplied by 100. 

Table 12 

Comparison of the log predictive density within the sample. The value in parentheses is the standard deviation. 

M 0 M 1 M 2 M 3 M 4 M 5 

log_lik -1364.52 (4.14) -1386.12 (4.08) -1384.18 (4.52) -1343.86 (7.66) -1222.42 (16.41) -1349.10 (7.35) 

Table 13 

Mean difference of ̂ AUC 

c 

c ( Eq. 13 ) and ̂ PE 

c 

c ( Eq. 15 ) with respect to the version 

of model M 3 in continuous time and prediction window of 12 months ( 
c = 12 ). 

The Time (c) column represents c, the known history when making the prediction. 

The number in parentheses is the standard deviation of the cross-validation analy- 

sis (corrected by the overlapping training sets). The best performance of the corre- 

sponding row is marked in bold. 

Time (c) ̂ AUC 
12 

c JM 3 
 ̂ AUC 
12 

c M 3 
̂ PE 

12 

c JM 3 
̂ PE 
12 

c M 3 

6 0.749 0.004 (0.002) 0.359 -0.011 (0.002) 

7 0.757 0.007 (0.002) 0.393 -0.014 (0.003) 

8 0.782 0.010 (0.002) 0.430 -0.016 (0.002) 

9 0.777 0.006 (0.005) 0.473 -0.016 (0.003) 

10 0.771 0.008 (0.005) 0.502 -0.013 (0.004) 

11 0.772 0.019 (0.009) 0.568 -0.007 (0.006) 

12 0.751 0.028 (0.012) 0.683 -0.005 (0.003) 

13 0.768 0.032 (0.010) 0.794 -0.009 (0.009) 

14 0.780 0.039 (0.012) 1.112 -0.059 (0.043) 

15 0.791 0.040 (0.006) 1.369 -0.109 (0.089) 

16 0.786 0.046 (0.007) 1.554 -0.148 (0.119) 

17 0.788 0.048 (0.006) 1.665 -0.190 (0.140) 

18 0.781 0.053 (0.007) 1.815 -0.233 (0.142) 

19 0.785 0.043 (0.007) 1.827 -0.225 (0.125) 

20 0.777 0.045 (0.008) 1.769 -0.205 (0.118) 

21 0.793 0.034 (0.004) 1.713 -0.171 (0.095) 

22 0.796 0.035 (0.006) 1.509 -0.125 (0.083) 

23 0.784 0.038 (0.005) 1.406 -0.101 (0.059) 

24 0.866 -0.047 (0.012) 1.443 -0.162 (0.058) 
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ressive terms (model M 3 ) and compare it with a similar model 

ormulated in continuous time. 

The continuous-time version of M 3 is estimated using the R 

ackage JMbayes ( Rizopoulos, 2014 ). Performance comparison is 

one analogous to Section 6 , i.e. using the discrimination and cal- 

bration metrics described in Section 4.4 . The results are shown 

n Table 13 where JM 3 denotes the continuous joint model. First, 

e observe that the joint model in continuous time obtains, in 

eneral, better discrimination performance than model M (see 
0 

14 
able 4 ), which is also seen in the early repayment model pre- 

ented in Hu & Zhou (2019) . However, the calibration performance 

s only better for the first evaluation periods and afterwards, it fol- 

ows a similar trend as the ones seen for the other joint models 

see Table 5 ). Second, in comparison with model M 3 , we note that 

he discrimination and calibration metrics are slightly better for 

he discrete-time model in practically all the evaluation periods. 

In terms of computational costs, we have measured the esti- 

ation times of the discrete-time and continuous-time versions. 

he continuous version needed 3.73 h and its discrete counter- 

art, 3.69 h. However, we must warn that these results should be 

aken with caution since both MCMC implementations are differ- 

nt which makes the comparison problematic. The JMbayes pack- 

ge uses a tailored MCMC procedure for this type of model and 

ur version does not, which opens new lines of future research. 

ppendix I. Robustness checks 

To study the robustness of the results shown in Table 3 , we 

e-estimate the model that has the most complex structure, M 5 , 

sing different priors. We keep the noninformative uniform pri- 

rs for γ , λ f , α, β and φ. Moreover, for the covariance matrix 

, we set the scale parameter of the LKJ distribution to 1, which 

orresponds to the uniform density over correlation matrices. In 

ddition, for both variability terms, σ and υ , instead of using a 

niform and a half-Cauchy priors, respectively, we use for both 

he inverse Gamma with shape 1 and scale 0.001, as suggested 

y Ibrahim et al. (2014 , Ch.7). Recall that σ is the standard de- 

iation of the error terms ( Eq. 4 ) and υ is the hyperparameter 

f the vector of B-spline coefficients γ0 ( Eq. 9 ). That is to say, 

nstead of assuming υ ∼ half-Cauchy (25) for γ0 ∼ N (0 , υ2 I) , we 

ssume υ ∼ inverse-Gamma (1 , 0 . 001) . To illustrate how different 

hese two distributions are, Table 14 shows various percentiles for 

ach of them. 
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Table 14 

Comparison of percentiles between half-Cauchy with a scale of 25 and a inverse-Gamma with shape 1 and scale 0.001. 

10% 25% 50% 75% 90% 

Half-Cauchy (25) 3.95961 10.35534 25.00000 60.35534 157.84379 

Inverse-Gamma (1 , 0 . 001) 0.00043 0.00073 0.00145 0.00351 0.00958 

Table 15 

Summary of parameter estimates of the model M 5 using different prior distributions 

and with fold 1 kept out. To ease comparison, the three columns below M 5 are 

copied from Table 3 and the three below 

˜ M 5 are the new results. 

Parameter M 5 
˜ M 5 

Mean 5% 95% Mean 5% 95% 

fico -0.701 -0.821 -0.581 -0.699 -0.820 -0.579 

cltv 0.516 0.333 0.703 0.514 0.339 0.703 

orig_upb -0.155 -0.300 -0.014 -0.154 -0.304 -0.012 

dti 0.152 0.021 0.283 0.150 0.022 0.283 

n_borr -0.270 -0.527 -0.018 -0.277 -0.528 -0.029 

loan_purpose -0.971 -1.246 -0.696 -0.970 -1.243 -0.706 

λ f 1.317 0.895 1.771 1.316 0.901 1.750 

α0 -0.280 -0.294 -0.266 -0.280 -0.293 -0.268 

σU 0 i 1.237 1.219 1.255 1.237 1.218 1.256 

σ 0.706 0.704 0.708 0.706 0.704 0.708 

φ 0.357 0.353 0.360 0.357 0.354 0.360 

σU 1 i 0.053 0.052 0.054 0.053 0.052 0.054 

ρU -0.811 -0.818 -0.804 -0.811 -0.819 -0.803 

Table 16 

Parameter estimates associated with the vector of B-spline functions of the model 

M 5 using different prior distributions and with fold 1 kept out. 

Parameter M 5 
˜ M 5 

Mean 5% 95% Mean 5% 95% 

υ 8.344 5.206 13.371 7.122 4.609 11.034 

γ01 -8.577 -9.605 -7.655 -8.534 -9.584 -7.638 

γ02 -8.047 -9.227 -6.880 -8.064 -9.193 -6.948 

γ03 -6.583 -7.475 -5.695 -6.550 -7.401 -5.713 

γ04 -6.245 -6.877 -5.617 -6.252 -6.870 -5.624 

γ05 -6.052 -6.893 -5.239 -6.051 -6.884 -5.244 

γ06 -6.209 -7.098 -5.350 -6.191 -7.053 -5.372 

γ07 -6.315 -7.051 -5.632 -6.318 -7.064 -5.657 

s

m

r

r

p

e

t

t

s

t

A

t

t

(

b

c  

e

h

C

v

t

Table 17 

Potential scale reduction factor ( ̂ R ) of the parameters of each model with fold 1 

kept out. 

Parameter M 0 M 1 M 2 M 3 M 4 M 5 

fico 1.000 1.000 1.000 1.000 1.000 1.000 

cltv 1.001 1.000 1.000 1.000 1.000 1.000 

orig_upb 1.000 1.000 1.000 1.000 1.000 1.000 

dti 1.000 1.000 1.000 1.000 1.000 1.000 

n_borr 1.000 1.000 1.000 1.000 1.000 1.000 

loan_purpose 1.000 1.000 1.000 1.000 1.000 1.000 

λ f 1.000 1.000 1.001 1.000 1.001 1.000 

α0 1.016 1.001 1.027 1.000 1.015 

σU 0 i 1.017 1.003 1.004 1.002 1.001 

σ 1.000 1.001 1.000 1.000 1.000 

φ 1.000 1.000 1.000 

σU 1 i 1.017 1.004 1.009 

ρU 1.012 1.008 1.004 
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Table 18 

Average cost of predictions on test set. 

Time (c) M 0 M 1 M 2 M 3 M 4 M 5 

6 0.1190 0.1294 0.1215 0.1573 0.1424 0.1414 

12 0.2235 0.2390 0.2499 0.2385 0.2106 0.1993 

18 0.3285 0.3227 0.3227 0.3430 0.3718 0.3181 

24 0.2734 0.2798 0.2741 0.3366 0.3743 0.3452 
In the Table 15 , under the name M 5 and to facilitate compari- 

on, we show again the results of the parameters associated with 

odel M 5 from Table 3 . Moreover, under the name of ˜ M 5 are the 

esults obtained using these new priors. We observe that the pa- 

ameter estimates remain consistent when using these different 

rior distributions. 

Likewise, in Table 16 we show the results for the hyperparam- 

ter, υ , and the B-spline coefficients γ0 . We can see that although 

here are differences between the estimates of the hyperparame- 

er υ when using both priors, the results corresponding to the B- 

plines coefficients remain practically the same, which agrees with 

he results in Table 15 . 

ppendix J. Convergence analysis 

One way to check the convergence of the MCMC sampling is 

o compare the behaviour of randomly initialised chains. This is 

he motivation of the potential scale reduction factor, known as ˆ R 

 Gelman et al., 2013 , Ch.11). This factor measures the consistency 

etween chains by quantifying the between-chain over the within- 

hain variability. A value of ˆ R = 1 means that all the chains are at

quilibrium and values greater than one indicates that the chains 

ave not converged to a common distribution. Gelman et al. (2013 , 

h.11) recommends stopping the sampling when 

ˆ R has reached a 

alue lower than 1.1 for each parameter, and Stan uses 1.05 as a 

hreshold. Table 17 shows the ˆ R obtained for the parameters of 
15 
ach model with fold 1 kept out. All values are below 1.05. The 

esults for the other 4 folds are consistent. 

ppendix K. Economic considerations 

The model comparison in Section 6 was performed using the 

wo most common dimensions, namely discrimination and cali- 

ration. In this section, our goal is to compare the models from 

n economic perspective. Following the work of Bellotti & Crook 

2009) , we determine the value of a prediction by assigning costs 

o misclassification. We know that the relative cost of categorising 

 good account as bad is lower than categorising a bad account as 

ood. To estimate the total cost of the predictions, we use the cost 

unction proposed in Bellotti & Crook (2009) that assigns: a cost of 

 to a correctly categorised account, a cost of 1 to a good account 

redicted as bad, and a cost of 20 to a bad account predicted as 

ood. 

For each model, we estimate the cut-off threshold that min- 

mises the total prediction cost on the training data and use it to 

ategorise the accounts in the test set. Table 18 shows the average 

ost on the test set (fold 1) for different evaluation periods. The re- 

ults reveal, first, that the joint models M 1 and M 3 show the same 

verage costs as the Cox model. Second, the joint models, M 3 and 

 4 , which do not have autoregressive terms in the link expression 

etween both processes ( Table 2 ), do not seem to experience eco- 

omic benefits relative to the Cox model. Finally, the model M 5 , 

hich includes autoregressive terms in both the longitudinal and 

he link parts, exhibits lower costs than M 3 and M 4 . Furthermore, 

or the evaluation periods 12 and 18, M 5 can also reduce the cost 

ompared to the Cox model and this is largely due to the autore- 

ressive term included in the survival predictor. 
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Supplementary material associated with this article can be 

ound, in the online version, at doi: 10.1016/j.ejor.2022.10.022 . 
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