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Enhanced Multi-Scale Feature Cross-Fusion
Network for Impedance-optical Dual-modal

Imaging
Zhe Liu, Graduate Student Member, IEEE , Renjie Zhao, Graham Anderson, Pierre Bagnaninchi, Yunjie

Yang, Member, IEEE

Abstract— The intrinsic issue of low spatial resolution of Electrical
Impedance Tomography (EIT) is a long-standing challenge that
hinders the capability of performing quantitative analysis based
on EIT image. Our recent work demonstrates an impedance-optical
dual-modal imaging framework and a deep learning model named
Multi-Scale Feature Cross Fusion Network (MSFCF-Net) to realize
information fusion and high-quality EIT image reconstruction. How-
ever, this framework’s performance is limited by the accuracy of
the mask image obtained from an auxiliary imaging modality. This
paper further proposes a two-stage deep neural network, which is
the enhanced version of the MSFCF-Net (named En-MSFCF-Net), to
automatically improve mask image and conduct information fusion
and image reconstruction. Compared to MSFCF-Net, En-MSFCF-Net demonstrates the superior ability to correct the
inaccurate mask image, leading to a more accurate conductivity estimation. Furthermore, the En-MSFCF-Net also
maintains the best shape preservation and conductivity prediction accuracy among given learning-based and model-
based algorithms. Both qualitative and quantitative results indicate that En-MSFCF-Net could make dual-modal imaging
more robust in real-world situations.

Index Terms— Dual-modal imaging, electrical impedance tomography, mask image correction, image reconstruction, deep
learning, information fusion

ABBREVIATIONS

En-MSFCF-Net Enhanced Multi-Scale Feature Cross Fu-
sion Network

MSFCF-Net Multi-Scale Feature Cross Fusion Net-
work

VFEN Voltage Feature Extraction Network
MCN Mask Correction Network
RN Reconstruction Network
EIM Electrical Impedance Map
SEIM Sparse Electrical Impedance Map
DMFF Dual-Modal Feature Fusion Modules.

There are two types of DMFF and they
are labelled as DMFF-V1 and DMFF-V2
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I. INTRODUCTION

ELectrical Impedance Tomography (EIT) is a tomographic
imaging modality that can reconstruct the conductivity

distribution of the sensing region through current injection
and boundary voltage measurements [1]–[3]. In recent years,
its advantages of non-destructiveness, non-radiation and high
temporal resolution have made EIT a promising method for
continuous monitoring of industrial processes or tissue status
[4] [5]. For instance, cell viability can be inferred by measur-
ing the conductivity distribution with miniaturized EIT sensors
[6]. However, a wider adoption of EIT is limited by its image
quality, which is one of the crucial problems to be solved.

In the past decades, many model-based EIT image recon-
struction algorithms have been reported to improve the EIT
image quality. A prevailing type is based on regularization,
such as sparse regularization [7] [8], Total Variation (TV)
regularization [9]–[11], and Group Sparsity regularization [12]
[13]. These methods introduce carefully-designed global or
local prior information into the EIT inversion, attempting to
find a solution close to the ground truth. They are often based
on the linearized EIT model, which intrinsically introduces
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Fig. 1. Impedance-optical dual-modal imaging framework.

modelling errors. In addition, the system (or sensitivity) matrix
of the EIT linearized model is ill-conditioned, making the
corresponding inverse problem ill-posed. Recently, due to the
fast development of computational techniques and artificial in-
telligence, deep-learning-based methods have been introduced
to solve the EIT image reconstruction problem, which can be
generally divided into three categories. The first type is the
pure learning-based methods, which directly learn the non-
linear inversion of EIT in an end-to-end manner [14]–[17].
In addition to the network design, its performance is mainly
determined by the quality of the dataset. The second type
combines the learning algorithm with model-based algorithm
[18]–[20]. These methods utilize the non-linear fitting of
the learning approach while retaining a certain degree of
interpretability. The last type treats deep learning as a post-
processing algorithm [21]. When the prior information of the
imaging targets is sufficient, learning-based methods are usu-
ally superior to model-based methods in background artefact
suppression, shape preservation, and conductivity prediction
accuracy. However, the EIT image quality improvement is
still circumscribed as the aforementioned methods are mainly
single-modal.

To further promote EIT development, multi-modal methods
have also been proposed, which incorporate complementary
information from other imaging modalities into EIT inversion.
However, there is limited literature investigating multi-modal
methods. For instance, Gong et al. proposed to incorporate
structural information from CT or preliminary EIT recon-
structions into the EIT inversion process using group lasso
[22]. Liu et al. reported a group lasso based dual-modal
reconstruction method and their grouping method is based
on the semantic segmentation of the prior image [23]. The
segmentation algorithm needs to be carefully chosen and
tuned for a specific application, and its complexity is even
higher than the reconstruction algorithm in some cases. Liu
et al. further reported a kernel-based, segmentation-free dual-
modal image reconstruction algorithm, which can alleviate the
burden of selecting and tuning the segmentation algorithm
meanwhile preserving inclusion’s structure [24]. In addition,
Li et al. combined CT with EIT through Cross Gradient
regularization [25] and Liang et al. integrated ultrasound image
into EIT [26] [27]. Apart from these model-based image
reconstruction algorithms, Liu et al. presented a pioneering

study on learning-based dual-modal EIT imaging [28]. These
multi-modal methods show the potential of improving EIT
image quality by introducing auxiliary imaging information.

In our previous work [28], an impedance-optical dual-
modal imaging framework (see Fig. 1) was proposed and
demonstrated noticeable improvements in the quality of EIT
images. Specifically, it is proved that the accuracy of the
mask image is crucial to the image reconstruction quality,
and the accurate mask images cannot always be acquired
in practice due to the measurement error of the optical
sensor, the imaging circumstance, and the imperfection of
the guidance image processing algorithm. Thus, a method to
ensure the mask images as accurate as possible is expected.
In later analysis, we will prove that the adverse impact on the
target structure originating from the inaccurate mask image
can not be satisfactorily addressed based on the MSFCF-Net
trained with inaccurate mask images. Therefore, a two-stage
deep neural network which is the enhanced version of the
MSFCF-Net (En-MSFCF-Net) is proposed to compensate for
the inaccuracy of the mask image and perform information
fusion and image reconstruction. We call En-MSFCF-Net a
two-stage network because its functionality can be divided into
two sequential stages. The advantages of the proposed method
is summarised as:

• En-MSFCF-Net introduces a new network structure for
dual-modal EIT image reconstruction, separating the
inaccurate mask correction and conductivity estimation
into two sequential operations. Compared with MSFCF-
Net, which corrects the inaccurate mask and estimates
conductivity simultaneously, such a function-separated
network can better recover the structures when trained
with inaccurate mask images.

• Compared with the given model-based and learning-based
algorithm, the proposed En-MSFCF-Net can generate
the results with the best structure preservation and most
accurate conductivity estimation.

The remainder of this paper is organized as follows. Section
II introduces the principle of EIT and the new En-MSFCF-Net.
Section III describes the dataset and network training. Section
IV presents simulation and experimental results. Section V
concludes this paper and discusses the future work.

II. METHODOLOGY

A. Principle of EIT
EIT comprises two sub-problems, i.e. the forward and in-

verse problems. The relationship between conductivity σ ∈ Rn

and boundary voltage measurement V ∈ Rm is described as
follows:

V = F(σ), (1)

where F is the nonlinear forward mapping. The inverse prob-
lem of EIT can be expressed as:

σ = F−1(V ), (2)

where F−1 is the inverse mapping of F. In this study, m = 104
and n = 3228. As we conduct the time-difference imaging,
we focus on the following modified inverse mapping F :

∆σ = F(∆V ), (3)
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Fig. 2. Architecture of the En-MSFCF-Net. ’Res Unit’ does not change the input feature map’s height, width and the number of channels. D
denotes the number of channels of the feature map and ceil(·) represents round up function. Res1(N) only change the number of channels of the
input feature map while keeping its height and width. Zero padding layer in Res2(N) applies left and top padding for the feature map, and the stride
of the convolutional layer after it is set as 2. Thus, Res2(N) can change the number of channels of the input feature map while its height and width
will be reduced to half. The size of the feature map after each residual block is illustrated in VFEN.

Fig. 3. Examples of (b) EIM and (c) SEIM. (a) is the true conductivity
image corresponding to (b) and (c).

where ∆σ ∈ Rn and ∆V ∈ Rm are defined as:

∆σ = −(σo − σr)./σr, (4)

∆V = (Vo − Vr)./Vr, (5)

where ./ represents element-wise division. Subscripts ’o’ and
’r’ represent the corresponding quantity at the observation time
point and the reference time point.

B. Enhanced Muti-Scale Feature Cross Fusion Network
(En-MSFCF-Net)

The architecture of En-MSFCF-Net is illustrated in Fig.
2. It consists of three subnetworks, i.e., Voltage Feature Ex-
traction Network (VFEN), Mask Correction Network (MCN)
and Reconstruction Network (RN). The VFEN extracts latent

information of the ∆V and the extracted high-dimensional
features are shared with MCN and RN. VFEN adopts the
same residual blocks (Res1(N) and Res2(N)) as those in the
backbone networks of the MSFCF-Net. To reduce the network
complexity, the number of residual blocks and residual units
(Res Unit) in an individual residual block is reduced. Com-
pared with MSFCF-Net, the voltage data ∆V is rearranged
as a 64× 64 matrix named Sparse Electrical Impedance Map
(SEIM) rather than a 104-element vector. VFEN eliminates
the fully connected layers in MSFCF-Net and further reduces
the network’s complexity. For the circular 16-electrode EIT
sensor, Hu et al. proposed Electrical Impedance Map (EIM)
of the size 16× 16, which is more suitable for learning-based
EIT reconstruction as it uses the symmetric property of the
EIT sensor and naturally integrates more spatial information
[15]. To better adapt the shape of the voltage data to the
network input, we enlarge the original EIM and define the
aformentioned SEIM as Is ∈ R64×64. Is

4(i−1)+1,4(j−1)+1

denotes the voltage data value on the electrode pair (ej , ej+1)
when injecting currents into electrode pair (ei, ei+1), where
i or j = 1, 2, ..., 16, e16+1 ≜ e1. The voltage data
is not collected on the activation electrodes. According to
the reciprocal theory [29], we define Is

4(j−1)+1,4(i−1)+1 =
Is
4(i−1)+1,4(j−1)+1. The rest elements of Is are set as zeros.

An example of EIM and SEIM is illustrated in Fig. 3. It is
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Fig. 5. Architecture of the RN. The black numbers represent the size of
the feature map after each residual block. Except to DMFF-V1, DMFF-
V2 and MSFF, other network components are annotated in Fig. 2.

obvious that SEIM keeps the properties of the EIM, although
it is sparser.

The MCN corrects the input inaccurate mask image by
combining voltage information from VFEN. Inspired by the
FC-UNet which is proposed to generate the mask image for
EIT reconstruction [16], MCN employs an UNet structure as
shown in Fig. 4. Suppose the input inaccurate mask image and
the true accurate mask image are denoted by I im ∈ R64×64 and
Iam ∈ R64×64, the MCN directly predicts the difference mask
image Idm ≜ Iam−I im since the residual is easier to learn [30].
Afterwards, the corrected mask image represented by Icm ≜
Ĩdm + I im and voltage features extracted by VFEN will be
fed into RN to perform final EIT image reconstruction, where
Ĩdm = Ĩdm

(
Is, I im

)
∈ R64×64 accounts for the predicted

difference mask image by VFEN and MCN.
For RN, the number of residual blocks and the number of

residual units in a single residual block also diminish like
VFEN to reduce the network complexity (see Fig. 5). The
Dual-Modal Feature Fusion Modules (DMFF, which includes
DMFF-V1 and DMFF-V2; see Fig. 6) and Multi-Scale Feature
Fusion Modules (MSFF; see Fig. 7) have similar architectures
as those in MSFCF-Net [28]. However, their number of resid-
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Fig. 6. Architecture of the DMFF. The dark red block means the
attention modules described in [31]. It represents a channel attention
module followed by a spatial attention module for DMFF-V1 and denotes
a channel attention module for DMFF-V2. Mv stands for feature maps
extracted from the voltage data and Mm means feature maps extracted
from the mask image. D denotes the number of channels of the
feature map and ceil(·) represents round up function. Other network
components are described in Fig. 2.

ual units is also reduced. The output of RN is the predicted
EIT image (denoted by Ĩeit ∈ R64×64), which is the two-
dimensional version of ∆σ. Unless specially specified, all con-
volutional layers in the En-MSFCF-Net would not change the
height and width of their input feature maps and all transposed
convolutional layers always enlarge twice the height and width
of their input feature maps (kernel size: 2× 2; stride: 2). It is
worth mentioning that the architecture of the En-MSFCF-Net
can be further optimized by decreasing its complexity while
maintaining its performance, or by introducing more advanced
architecture or attention mechanism to improve its perfor-
mance. However, this is beyond the scope of this research
since the main objective is to demonstrate the effectiveness
of the two-stage network framework, which corrects the mask
image followed by the conductivity estimation.

In practical implementation, I im, Is, Idm, Ĩdm, Ĩeit and
the true reconstructed EIT image Ieit are denoted by tensors
of size C × 64 × 64, where C = 1 is the channel number.
For mask images and EIT images, pixels outside the circular
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sensing region are filled by zero and pixels inside the sensing
region are visually displayed to emphasize the shape of
the sensing region throughout this paper. In this study, En-
MSFCF-Net is trained with two stages. The VFEN and MCN
are preliminarily trained at the first stage and then the whole
network is trained at the second stage. Given a training set
Ψ =

{
Is
k, I

im
k , Idmk , Ieitk

}U

k=1
, U is the number of samples, the

loss function for the first stage and the second stage can be
formulated as (6) and (7), respectively:

Ls1 =
1

U

∑
(Is,Iim,Idm)∈Ψ

∥∥∥Idm − Ĩdm
(
Is, I im

)∥∥∥2
+

λ1

2
∥(θ1, θ2)∥2 , (6)

Ls2 =
1

U

∑
(Is,Iim,Idm,Ieit)∈Ψ

[∥∥∥Idm − Ĩdm
(
Is, I im

)∥∥∥2
+

∥∥∥Ieit − Ĩeit
(
Is, I im

)∥∥∥2]+
λ2

2
∥(θ1, θ2, θ3)∥2 , (7)

where θ1, θ2, and θ3 represent the network parameters of
VFEN, MCN and RN respectively. λ1 and λ2 denote the l2
regularization parameters for the first training stage and second
training stage. The learned θ1 and θ2 at the first training stage
is utilized to initialize VFEN and MCN at the second training
stage.

III. DATA GENERATION, AUGMENTATION AND NETWORK
TRAINING

A. Dataset Building
The dataset adopted in this study is constructed by using

COSMOL Multiphysics. A 2D 16-electrode sensor is first
modelled (see Fig. 8), then different types of inclusions are
added to it, forming a variety of conductivity distributions.
Four types of inclusions are considered, including one-circle
object with multi-level conductivity (from 0.002 S/m to
1.998 S/m; see examples in row one and row two, column
one in Fig. 9), two-circle objects with fixed conductivity (one
is 4 S/m and the other is 0.002 S/m; see an example in row
three, column one in Fig. 9), embedded-circle object with fixed
conductivity (the embedded circlular region is 1 S/m and the
outer ring is 0.1 S/m; see an example in row four, column one
in Fig. 9), and layered-square object with fixed conductivity
(one layer is 1 S/m and the other layer is 0.1 S/m; see an
example in row five, column one in Fig. 9). For all cases,
the background conductivity is set as 2 S/m and objects are
randomly distributed in the circular sensing area of the EIT.
Accurate mask images are generated by setting one in the
inclusion region and setting zero in the background. Following
the settings, we generated 19,000 samples, and each sample
includes a frame of voltage measurements (arranged as SEIM),
an accurate mask image, and a true conductivity image. There
are 5,000 one-circle samples, 4,000 two-circle samples, 5,000
embedded-circle samples and 5,000 embedded square samples.
For each type of data, randomly selected 10% samples are used
as the test set, randomly selected 10% samples from the rest
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Fig. 7. Architecture of the MSFF. D denotes the number of channels of
the feature map. Ml means the small-scale feature map and Mh means
the large-scale feature map. Other network components are described
in Fig. 2. and Fig. 4.

data are adopted as the validation set, and the remaining data
serves as the training set. Eventually, there are 1,900 samples
for testing, 1,710 samples for validation, and 15,390 samples
for training.

B. Data Augmentation

Data augmentation is adopted during the En-MSFCF-Net
training and testing. Since deep learning models are robust to
voltage noise to some extent as shown in [28], there are enough
training samples, and the diversity of samples is properly
controlled, we take a static way to augment voltage data. In
the training process, we separately add additive Gaussian noise
with Signal-to-Noise Ratio (SNR) of 50 dB and 40 dB to a
quarter of training and validation sets for each type of data. In
[28], the MSFCF-Net is proved more sensitive to the inaccu-
rate mask image compared with noisy voltage data. Therefore,
for the mask image augmentation, we adopt a dynamic way
in training to introduce more diverse inaccurate mask images.
For each mask image in the training and validation set, we
perturbed the boundary of the accurate mask image (this will
result in the inaccurate mask image) with a probability of 50%
before feeding it into the network. The concrete perturbation
method is stated as follows. First, we randomly select some
points on the boundary of the inclusions in the accurate mask
image. According to the number of inclusions, the number of
randomly selected points are set as 6 for one-circle samples,
embedded-circle samples, and layered-square samples, and set
as 10 for two-circle samples. Then, for each selected point,
we either set its eight-neighboring pixels as one or its four-
neighboring pixels as zero with a probability of 50%.

In the testing process, additive Gaussian noise with Signal-
to-Noise Ratio (SNR) of 50 dB, 40 dB and 30 dB is separately
added into the voltage data of the whole noise-free test set,
forming four test sets. For each one of the four test sets, half
of mask images are randomly selected to be perturbed using
the method stated in the previous paragraph.

C. Network Training

We use Pytorch to implement the En-MSFCF-Net and adopt
AdamW [33] to realize optimization. The training and testing
of the En-MSFCF-Net is conducted on a server equipped with
GeForce RTX 2080 GPU. For the first training stage, the hyper
parameters are set as follows: the learning rate is set as 0.001
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Fig. 8. Simulated 2D 16-electrode impedance sensor.

and the penalty parameter λ1 for l2 regularization is set as
0.0001. The maximum number of training epochs is set as 150
and the batch size is set as 128. For the second training stage,
the learning rate is set as 0.0005 and the penalty parameter
λ2 for l2 regularization is 0.00005. The maximum number of
training epochs is set as 200 and the batch size is set as 96. To
avoid overfitting, early-stopping is employed in each training
stage. The tolerance is set as 10 for the first training stage
and set as 15 for the second training stage. Ultimately, the
first training stage stops at epoch 141 and the second training
stage stops at epoch 163.

Comparative neural networks are also implemented by using
the Pytorch and optimized with AdamW [33]. The same data
augmentation method used in the training and testing of the
En-MSFCF-Net is also adopted. VD-Net only involves voltage
data augmentation while the MSFCF-Net involves both voltage
data augmentation and mask image perturbation. For VD-Net,
the learning rate is set as 0.001 and the penalty parameter for
l2 regularization is selected as 0.0001. For MSFCF-Net, the
learning rate is set as 0.0005 and the penalty parameter for
l2 regularization is set as 0.00005. The tolerance of the early
stopping is set as 15 for both networks. Eventually, The VD-
Net experiences 134 epochs and the MSFCF-Net experiences
136 epochs.

IV. RESULTS

In this section, the proposed En-MSFCF-Net is evaluated
by simulation and real experimental data. Its performance
is compared with TV regularization algorithm [32], Cross
Gradient based method [25], VD-Net [14] and MSFCF-Net
[28].

A. Simulation Results
1) Quantitative Metrics: As the true conductivity distribution

is known in simulation study, various metrics is chosen to
quantitatively evaluate the algorithm performance. Relative
Image Error (RIE, a positive number) and Mean Structural
Similarity Index (MSSIM, ranging from 0 ∼ 1) [34] are
selected as the indicators to evaluate the quality of individual
reconstructed EIT image. RIE measures how accurate the
conductivity values of a predicted EIT image are compared
with those of the ground truth EIT image. The lower the

RIE, the more accurate the estimated conductivity values will
be. MSSIM measures the degree of the structural similarity
between the predicted EIT image and the ground truth EIT
image. The higher the MSSIM, the more similar the predicted
structure will be to the true structure. The definitions of RIE
and MSSIM are expressed as:

RIE =
∥σP − σG∥

∥σG∥
(8)

MSSIM =
1

HW

∑
h

∑
w

(2µPµG + C1) (2δPG + C2)

(µ2
P + µ2

G + C1)
(
δ2P + δ2G + C2

)
(9)

where subscripts P and G represents the marked quantities
are related to the predicted EIT image and the ground truth
EIT image, respectively. σP and σG denotes the vectored
version of the predicted EIT image and the ground truth
EIT image. h and w are position indexes of an image,
and H and W are height and weight of an image. µP =
µP (h,w), µG = µG(h,w), δP = δP (h,w), δG = δG(h,w),
and δPG = δPG(h,w) are the local means, standard deviations
and the cross-covariance for image P and G. C1 = (K1L)

2,
K1 = 0.01; C2 = (K2L)

2, K2 = 0.03. L is set as 1. In
addition, to evaluate algorithm’s performance on a dataset,
Mean RIE (M-RIE) and Mean MSSIM (M-SSIM) are adopted,
which are defined as the average RIE and MSSIM over all
images for a specified dataset.

2) Results and Discussion: First, we compare algorithms on
individual samples by visual comparison. The reconstructed
images and corresponding quantitative metrics are shown in
Fig. 9. The samples are selected from the test set with voltage
data of SNR = 50 dB. Results of each algorithm occupy two
columns. Images in the left column are reconstructed EIT
images, and images in the right column are error images which
are the absolute difference between the predicted EIT images
and the ground truth EIT images. Fig. 10 shows the input
mask images for MSFCF-Net and En-MSFCF-Net (first row,
i.e. I im), the difference mask images predicted by the En-
MSFCF-Net (second row, i.e. Ĩdm), and the corrected mask
images generated by En-MSFCF-Net (third row, i.e. Icm).
The results in Fig. 9 and Fig. 10 obviously indicate the
En-MSFCF-Net can effectively correct the inaccurate mask
images, which leads to a more precise conductivity predication
and a more robust structural preservation. Especially, when
the mask image is accurate (see Phantom 1), the En-MSFCF-
Net applies little changes to the input mask image. The best
performance of the En-MSFCF-Net can also be reflected by
RIE and MSSIM. Contrarily, the results based on TV are the
worst because they cannot accurately predict the conductivity
values, meanwhile losing most structural information. The
Cross Gradient-based algorithm introduces some structural in-
formation. However, it only incorporates boundary information
while cannot make any improvements on the accuracy of the
conductivity prediction and background artefact suppression.
Although VD-Net makes an improvement compared with TV,
it reconstructs a wrong image for Phantom 5. However, both
MSFCF-Net and EN-MSFCF-Net do not make such mistake
because the prior information provided by the mask image can
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Fig. 9. Visual comparison of different algorithms on five representative phantoms (for each algorithm, left column: reconstruction; right column:
error image). Phantoms are labeled by Phantom 1 - Phantom 5 from top to bottom.

Fig. 10. Input mask images (first row), predicted difference mask
images (second row) and corrected mask images (third row) corre-
sponding to phantoms in Fig. 9.

help constrain the EIT solution space, thus generating a more
reliable solution. Since the En-MSFCF-Net can acquire a more
accurate mask image for reconstruction through mask image
correction, its results are better than those of MSFCF-Net.

Fig. 11 and Fig. 12 further demonstrate the superiority of
the proposed En-MSFCF-Net. Fig. 11 displays the enlarged
inclusion at the bottom right of the Phantom 3. It is shown
that TV is hard to locate this inclusion and the shape of the
inclusion predicted by VD-Net is inaccurate. The boundary
of the inclusion can be roughly identified by the Cross
Gradient-based method. It is more evident this algorithm
cannot improve the accuracy of the conductivity prediction
and background artefact suppression, which is consistent with
our previous conclusion. In comparison with the result of
MSFCF-Net, En-MSFCF-Net reconstructs such inclusion with
more homogeneous conductivity and a clearer boundary. We

select two line segments (indicated by red line segments) in
Phantom 1 and show the 1D profiles of them. The results are
illustrated in Fig. 12. For the bottom-line segment profiles,
the results of TV and Cross Gradient are not shown because
the background artefacts of the images generated by TV
and Cross Gradient are more severe than those generated by
learning-based algorithms. The results of the En-MSFCF-Net
are closest to the ground truths. In summary, by introducing
the mask image, the MSFCF-Net and En-MSFCF-Net can
better suppress the background artefacts while increasing the
accuracy of the conductivity prediction. Moreover, as the En-
MSFCF-Net can correct the inaccurate mask image, it can
gain the most precise conductivity predictions and the most
accurate inclusion structure among the given algorithms.

Table I quantitatively compares the learning models’ perfor-
mance on the four test sets and Table II shows the quantitative
metrics of the three learning-based models on different types
of data with the SNR of 50 dB. From Table I, the MSFCF-Net
and En-MSFCF-Net illustrate superior robustness on voltage
noise because of the mask image. In addition, the M-RIE of
En-MSFCF-Net is lower and the M-MSSIM is higher than
those of the MSFCF-Net, which is due to the mask correction
capability of En-MSFCF-Net. Table I displays the results from
a holistic perspective while Table II offers a more detailed
result. It indicates that En-MSFCF-Net outperforms all models
on each type of data. These results verify the conclusion drawn
from the previous analysis.

To demonstrate the effectiveness of the En-MSFCF-Net pro-
cessing samples with inaccurate mask images, we trained the
En-MSFCF-Net on the dataset with accurate mask images. The
method of the voltage data augmentation remains unchanged.
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Fig. 11. Visual comparison of algorithms on an enlarged inclusion.
Pink circle defines the true boundary of the inclusion and pink arrow
indicate the inclusion reconstructed by Cross Gradient regularization.
(a) the result of TV; (b) the result of Cross Gradient; (c) the result of
VD-Net; (d) the result of MSFCF-Net; (e) the result of En-MSFCF-Net.
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Fig. 12. Visual comparison of algorithms on red lines in (a). (a) is the
true conductivity image of the Phantom 1 in Fig. 9. (b) is the results on
the top line and (c) is the results on the bottom line.

Then the previously trained En-MSFCF-Net and this new
model are tested on two test sets. One contains mask images
that are all accurate and the other contains mask images that
are all inaccurate. The SNR of all voltage data of the two test
sets is set as 50 dB. Thus, there are four types of combinations
concerning the trained model types and test set types. The
results are shown in Table III. Obviously, if the En-MSFCF-

Net is trained with accurate mask images and tested on the
dataset with accurate mask images, the results are the best.
If we use dataset with inaccurate mask images to attack the
model trained with the accurate mask images, the performance
decreases, which is consistent with the conclusions in [28].
However, if we train the En-MSFCF-Net with inaccurate mask
images, the advert influence of the inaccurate masks alleviates,
which can be indicated by the descent of the M-RIE and
ascent of the M-MSSIM. Combined with the results in Table I
and II, we can conclude that the En-MSFCF-Net trained with
inaccurate mask images can effectively address the situation
suffering inaccurate mask images and its performance is better
than the MSFCF-Net trained with inaccurate mask images.

Finally, it is worth mentioning another two challenging
circumstances the dual-modal imaging may face. The first is
that the optical sensor cannot recognize some imaging targets,
which leading to such targets not appearing in both mask
images and reconstructed EIT images. The second is that
targets in the mask image are noticeably smaller or larger
than the real ones. We do not deal with these situations
by the En-MSFCF-Net as the first case already violates the
concept of dual-modal imaging. The latter case will introduce
considerable incorrect information, which causes the mask
image not to provide enough useful information.

B. Experiment Results

1) Dual-modal Imaging System : The same dual-modal sen-
sor in [28] is used to collect the real-world experimental data.
For the impedance sensor, the adjacent-injection adjacent-
measurement protocol [35] is adopted and the frequency of the
injected current is set as 10 kHz. As discussed previously, the
dual-modal sensor simultaneously provides a frame of voltage
measurements and a guidance image for each imaging.

2) Experimental Phantoms: The experiments are carried out
at the room temperature (∼ 20 ◦C) and we made use of
three distinct phantoms. The background medium was chosen
as Phosphate Buffered Saline (PBS) whose conductivity is
measured to be 1.47 S/m. The first phantom is a 3D printed
cylinder which was fabricated via stereolithography (SLA),
using black photopolymer resin (FormLabs Inc., MA) (see
the first row in Fig. 13). The height and the diameter of the
cylinder are 1 mm and 2 mm, respectively. As the black resin
is almost non-conductive, the relative conductivity change of
it is around 1. The second phantom is a fresh cylindrical
mango tissue whose height and the diameter are 1 mm and
3 mm (see the second row in Fig. 13). [36] studies the
conductivity change of the mango juice with the increasing
of the temperature. It is shown that the conductivity of the
mango juice at the room temperature is around 0.12 S/m.
Therefore, we can reasonably infer that the solid mango tissue
at the room temperature is lower than 0.12 S/m and the
relative conductivity change is around 1. The last phantom
is a cylindrical gel whose height and diameter are 1 mm and
5 mm, respectively (see the third row in Fig. 13). The gel was
carefully made in lab to adjust its conductivity. We diluted the
Phosphate Buffered Saline (PBS) by adding distilled deionized
water. The conductivity of the resulting solution was measured
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to be 0.92 S/m. Then gelatin powder was added to the liquid
to form a gel. Thus, The relative conductivity change of the
gel is around 0.3741.

3) Results and Discussion: The image reconstruction results
are shown in Fig. 13. The input mask images for MSFCF-Net
and En-MSFCF-Net are illustrated in column six and they
are generated by the guidance image processing algorithm.
The guidance images are almost like images in the column
one of the Fig. 13, but they only occupy the EIT sensing
region. For the mask image generation, we first convert the
guidance image into its gray-scale version, then apply the
threshold method to segment the inclusion. The resulting
binary image is further refined by morphological operation.
Finally, the mask image is acquired by down-sampling the
refined binary image to the EIT image size. The images
in column seven and eight are predicted difference mask
images and corrected mask images by En-MSFCF-Net. As
the input mask images are approximately accurate, the pixel
values of the predicted mask images are very small. For the
gel result of each algorithm, the average conductivity in a

light pink circular region is also indicated in Fig. 13. From
this figure, it is clear that the VD-Net cannot recover the
shape of the phantoms, which is the defect of the single-
modal learning-based algorithm. In addition, for gel imaging,
it also predicts wrong conductivity values. For TV, it predicts
relatively correct conductivity values except the black resin
phantom, however the background artefacts are very sever and
its ability to preserve the phantom shape is low. For Cross
Gradient, although it shows some structural features of the
phantoms, the image quality is similar to that generated by
TV. As the mask image is approximately accurate, the quality
of the results of the MSFCF-Net and En-MSFCF-Net is similar
and they outperform other algorithms. Additionally, as shown
in simulation study, the phantom in the image generated by
En-MSFCF-Net is more homogeneous than that in the image
generated by MSFCF-Net. This indicates the En-MSFCF-Net
can better recover the conductivity distribution because the
phantoms in the experiment are homogeneous.

To further verify the mask correction ability of the En-
MSFCF-Net, the inaccurate mask images of the experimental
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Phantom Cross Gradient VD-Net MSFCF-Net En-MSFCF-Net Input Mask Image Difference Mask Image Corrected Mask Image
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Figure 1: Experimental results. All results are correct.

Figure 2: Perturb the  input mask image
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Fig. 13. Visual comparison of different algorithms on experimental data. The first row is the results of the black resin imaging, the second row is
the results of the mango imaging, and the last row is the results of the gel imaging.
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Figure 1: Experimental results. All results are correct.

Figure 2: Perturb the  input mask image
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Fig. 14. Image reconstruction results of learning-based dual-modal
algorithms based on experimental data with inaccurate mask images.

phantoms are generated from the mask images in the seventh
column of the Fig. 13 by simulation. The generated mask
images are illustrated in the first column of Fig. 14 and they
serve as the input of the learning-based dual-modal algorithms.
The image reconstruction results of the En-MSFCF-Net and
MSFCF-Net, and the mask correction results of the En-
MSFCF-Net are also shown in Fig 14. For the gel imaging,
though the inaccurate mask images affect the accuracy of
the conductivity prediction, the decrease of the prediction
accuracy is tolerable for both En-MSFCF-Net and MSFCF-
Net. The average value in the light pink circular region varies
within 0.02 for these two algorithms. Nevertheless, from this
figure, we can draw the same conclusion as in the simulation
study that: En-MSFCF-Net can better address the inaccurate
mask image issue than MSFCF-Net.

V. CONCLUSION AND FUTURE WORK

We report a two-stage convolutional neural network named
En-MSFCF-Net for impedance-optical dual-modal imaging.
This network corrects the inaccurate mask image followed
by the conductivity estimation. The results of simulation and
experiments demonstrate that:

• Benefit from the mask correction, the En-MSFCF-Net can
effectively process input data with inaccurate mask image

compared with other given algorithms. Visual results di-
rectly show that En-MSFCF-Net can preserve inclusions’
boundary and internal conductivity homogeneity.

• Quantitative metrics also indicate the superiority of the
En-MSFCF-Net. The RIE of En-MSFCF-Net is com-
monly 0.5 lower than that of model-based algorithms and
the MSSIM of En-MSFCF-Net is usually 0.6 higher than
that of model-based algorithms. Compared with learning-
based methods, En-MSFCF-Net still achieves the lowest
RIE and M-RIE, and highest MSSIM and M-MSSIM on
both individual sample and dataset level evaluation.

Future work will extend the dual-modal imaging framework
and the En-MSFCF-Net to 3D tissue imaging.
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