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ABSTRACT
Blockchain protocols’ main differentiator is their purported decen-
tralization that unlocks various information technology applica-
tions that were supposedly impossible beforehand. The key promise
is that incentive-driven participation of a large set of interested
parties can lead to decentralized protocol states where no single op-
erator can be a “single point of failure.” Despite this promise, there is
little systematic analysis of decentralization in blockchain systems
and the sporadic theoretic and empirical investigations that exist
paint a rather negative picture due to resource “pooling behaviors”
that are impossible to prevent in the “permissionless” setting of
such protocols where parties have no designated identities.

Motivated by this, in this paper we study the Nash dynamics of
pooling in the context of Proof of Stake systems, following an agent-
based modeling approach. Our focus is the Cardano blockchain as it
features a number of attractive characteristics making it conducive
to an in-depth analysis. We aim to answer the question of whether
the incentive mechanism employed is capable of promoting decen-
tralization. To this end, we present a simulation engine that enables
strategic agents to engage in a number of actions empirically ob-
served in the real-world deployment of the system. The engine
simulates the “stake pool operation and delegation game" via suc-
cessive agent actions that improve their utility as more information
about their environment becomes evident in the course of the sim-
ulation. We investigate convergence to equilibrium states, and we
measure various decentralization metrics in these states, such as
the Nakamoto coefficient, which asks how many independent enti-
ties exist that collectively command more than 50% of the system’s
resources. Our results exemplify the ability of the incentive mecha-
nism to steer the system towards good equilibria and also illustrate
how the decentralization features of such equilibria are affected by
different choices of the parameters used in the mechanism and the
distribution of stake to participants.
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1 INTRODUCTION
Blockchain protocols, introduced in Nakamoto [21], put forth a
new paradigm for the deployment of information technology ser-
vices. In such permissionless systems, agents register themselves
to become system maintainers, incentivized by the provision of
rewards in the form of digital tokens, which can be subsequently
exchanged for offsetting costs and for profit. While the original
Bitcoin system offers mainly a digital store of value and payment
system, follow-up system development put forth a wide array of
applications including Smart contracts [26], name registries [7] and
cross border transfers [4], to name a few. The energy consumption
problem of the Bitcoin protocol and related systems, see e.g., [9], led
early on to the exploration of alternative disciplines for blockchain
design, notably Proof of Stake (PoS), cf. [3, 18], and currently a num-
ber of systems are based on PoS, such as Cardano, Tezos, Algorand,
Polkadot and Ethereum 2.0.

A key feature and consideration in all these systems is the abil-
ity of participants to “pool” resources together, (cf. [8, 20] for the
case of Bitcoin), that can have the adverse effect that the system
eventually centralizes to a handful (or in the extreme case just a
single) operator(s), cf. [1, 17, 19]. This is a serious downside, as it
removes one of the key supposed advantages of blockchain systems
- their decentralization. The phenomenon poses a real threat since
when the resources controlled by a single entity exceed a threshold
(typically 50%) the entity has full control of the whole system in
the sense of being capable of censoring or reverting transactions.
Importantly, this is not only a theoretical consideration as it has
also been observed empirically, cf. [10].

Techniques that aim to mitigate the above “pooling towards
centralization” issue are scarce. One of the main problems is the
lack of effective methodologies to validate mechanisms that aim
to promote decentralization. The main obstacle is the complexity
of the interactions between the agents. The emerging “game” is
one of incomplete information, between thousands of agents, each
possessing a different amount of resources and having distinct
operational costs when running the protocol; the resulting strategy

https://orcid.org/0000-0001-8501-3633
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space is vast and it is hard to analyze its equilibria and other game-
theoretic characteristics.

Our results. We study the Nash dynamics of pooling in the con-
text of Proof of Stake systems, adopting an empirical agent-based
modeling approach. We focus on the Cardano PoS blockchain as it
offers a number of attractive characteristics for the purpose of this
analysis: (i) it uses an “on-chain” poolingmechanism that is formally
documented [14] and leaves a trace of public information regarding
how participants interact with the mechanism, (ii) it comes with
an equilibrium analysis [2] that may consider a restricted set of
strategies, but still offers a good theoretical foundation over which
one can apply further game-theoretic analysis compared to other
systems, (iii) it has been deployed in the mainnet of Cardano since
August 2020 [12] allowing a sufficient time for empirical observa-
tions regarding the strategies that participants follow in the real
world1, (iv) Cardano has consistently ranked among the top ten
cryptocurrencies in terms of market capitalization since August
2020 thus ensuring that the rewards allocated by the mechanism
have real world value and hence participants meaningfully influ-
ence their utility by engaging with the system.

Our analysis has as its key overarching objective to answer
the question: does the incentive mechanism employed by Cardano
promote decentralization? To measure decentralization we consider
a number of metrics and analytical tools. First, we use a metric
called the Nakamoto coefficient, introduced in [24], that adapts well-
established economic metrics to the context of cryptocurrencies.
In a nutshell, the Nakamoto coefficient is defined as the minimum
number of independent operators whose aggregate influence of the
system exceeds the 50% barrier and hence, should they collaborate,
they can have complete control over the entire system (we remark
that this stems from the properties of the Bitcoin protocol, but the
threshold is also shared by the Ouroboros protocol [16] employed in
Cardano). The Nakamoto coefficient however is only one dimension
of the problem at hand; a second, but arguably equally important
metric, is how much stake is possessed in aggregate by such a set of
operators. This leads to another metric, that we call min-aggregate
pledge, which measures the resources held by the set of operators
whose controlled stake exceeds 50%.

In order to estimate the above metrics, we distill a strategy for
an agent using characteristics that were manifested in real world
system operation: (i) agents are utility maximizers and will be
modifying their strategy provided an alternative option exists that
exceeds a certain threshold in terms of utility improvement, (ii)
agents only have access to information available on chain (the game
is of incomplete information) and hence they adapt their strategy
over time as they become aware of other agents’ profiles, (iii) some
agents may not participate due to various barriers in participation
(e.g., tax implications, engagement in DeFi smart contracts etc.) (iv)
pool operators may create a large number of pools (what in the
Cardano community has been referred to as “pool splitting”, see
[15]) in an attempt to extract higher rewards from the system.

In our model, a player is further described by two additional val-
ues: the player’s stake and the player’s operational cost, should they
decide to become system operators. These two values are chosen at

1Various third party information aggregators exist that cover how pooling is performed
in Cardano, e.g. pooltool.io or adapools.org.

random from suitable probability distributions. We develop a simu-
lation engine that allows us to examine the dynamic interaction of
any given number of players. The engine uses a random schedule
and allows the agents to engage in successive refinement of their
position, adjusting their strategy as information about the other
agents is revealed. We utilize domain knowledge of the Cardano
system to improve the complexity of strategy selection and we
allow the players a degree of far-sightedness in the way they assess
the current state of the system and select their next move.

We conduct an array of experiments that examine whether the
system converges to an equilibrium and we study the final configu-
rations in terms of their decentralization properties. Of particular
interest is the impact of the two parameters of the reward sharing
scheme of [2], 𝛼, 𝑘 , that are meant to adjust the level of decentral-
ization offered by the mechanism. We demonstrate for the first time
experimentally the impact of these parameters on the Nakamoto
coefficient of the system. Our results exemplify the ability of the
system to converge towards equilibria that exhibit good decentral-
ization, given a suitable parametrization.

While the results we present paint a relatively favorable pic-
ture, they also reveal the sensitivity of the system’s properties to
parameter choices and the stakeholder distribution; they further
hint that the current choice of Cardano’s 𝛼 parameter is at the bare
minimum possible to produce good properties at equilibrium in
terms of decentralization when we deploy the simulation with a
synthetic distribution which is derived in part from actual data from
the live system. Moreover, our results can inform the current public
discourse regarding the desired setting of the 𝑘 parameter, that even
though was initially proposed to increase in March 2021, cf. [13],
this has since being delayed, generating a debate in social media.2

We note that while our results are stated in the context of Car-
dano, they apply to any system that uses the family of reward shar-
ing schemes from [2], such as Nym3 [5]. Moreover, our simulation
engine has been publicly released4, offering opportunities for in-
corporating additional functions and comparing different schemes
for rewards sharing.

Related work. The work most related to ours is [2], which put
forth the mechanism used in Cardano and an initial game-theoretic
and experimental analysis. Their analysis had the significant limi-
tation in the way it excluded operators running multiple pools as a
strategic option (even though they estimated the impact of Sybil
attacks [6] at the state of equilibrium), assumed full participation
and considered parameters fixed throughout. Our approach shares
a common foundation with Empirical Game Theoretic Analysis
[25], in the sense that it simulates repeated strategic interactions of
agents that are sampled probabilistically from a large space. Never-
theless, our objective is not to extract an empirical game payoff ma-
trix, but rather study the Nash dynamics of the agents and whether
they converge to a “sink”, cf. [11] or a sink connected component
in the sense of [22] that has good decentralization properties.

Despite the proliferation of blockchain systems with various re-
ward sharing schemes, very little is known in terms of the ability of

2See e.g., forum.cardano.org/t/k-parameter-to-1000-still-planned/64130 or
cardanofeed.com/cardano-spo-column-hodler-coalition-hodlr-70308.
3See nymtech.net.
4See Github.com/Blockchain-Technology-Lab/Rewards-Sharing-Simulation-Engine.
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such mechanisms to converge to configurations that have good de-
centralization properties. Moreover, given that current theoretical,
cf. [17] and empirical observations, cf. [10] suggest that Bitcoin’s
reward sharing has strong tendency to centralize, it is important to
improve the analytical toolkit and assess alternative mechanisms
regarding the degree to which they promote decentralization.

2 THEORETICAL MODEL
In this section, we present the reward mechanism used in Cardano
and we extend the game-theoretic model that has been used so far
for its analysis.

Rewards Sharing. Brünjes et al. [2] introduce a delegative reward
sharing scheme with capped rewards and incentivized pledging for
PoS blockchains. In this setting, any actor that holds stake in the
system can engage with the protocol, either directly by operating
their own stake pool or indirectly by delegating their stake to pools
of their choice. A pool’s size is determined by the stake that the
pool owner bonds to the pool —referred to as the pool’s pledge—
and the stake that other agents delegate to it. The rewards that
a pool receives depend both on its pledge and total size, growing
with them until a saturation threshold is reached, after which they
level off. Specifically, the rewards of a pool with pledged stake 𝜆
and total stake 𝜎 are dictated by this piecewise function:

𝑟 (𝜎, 𝜆) = 𝑅

1 + 𝛼
(𝜎′ + 𝜆′𝛼

𝜎′ − 𝜆′ 𝛽−𝜎
′

𝛽

𝛽
)

where 𝑅 ∈ R are the total available rewards for this epoch, 𝛼 ∈
[0,∞) is the pledge influence factor, 𝛽 = 1

𝑘
is the pool saturation

threshold (𝑘 ∈ N is the target number of pools) and 𝜆′ =𝑚𝑖𝑛{𝜆, 𝛽},
𝜎′𝑚𝑖𝑛{𝜎, 𝛽} are the pledge and total stake of the pool, but capped
at 𝛽 . Since 𝑅, 𝛼 and 𝑘 are fixed for a system, the rewards of different
pools vary based on their pledge and total stake.

Observe that a pool with some fixed pledge earns the highest
possible rewards when its total stake reaches the threshold (𝜎 = 𝛽),
in which case it is called saturated. An oversaturated pool (𝜎 > 𝛽)
still earns the same rewards, meaning that the excess stake does
not contribute to the generation of rewards. Hence, we can view 𝛽

as a soft cap on a pool’s size, in the sense that it does not “forbid”
pools to grow beyond this threshold, but it discourages them from
doing so by reducing the rewards per unit of stake that the pool
receives once the threshold is exceeded. Capping the rewards aims
to prevent the formation of very large pools, which are a threat to
the system’s decentralization. Setting 𝛽 = 1

𝑘
targets the formation

of 𝑘 pools of equal size5.
However, a participant might circumvent this cap by operating

multiple pools instead of one (a behavior that has become known as
“pool splitting” in Cardano [15]), which can also be seen as a Sybil
attack [6] against the system if done covertly, i.e., if an operator
assumes multiple identities through their pools. This is the reason
why another parameter was added to the model (𝛼), which controls
the influence of a pool’s pledge (the stake that the operator has
agreed to “lock” in their pool, denoted by 𝜆 here) on the rewards
it receives. This parameter, when given a non-zero value, results

5Note that we consider the total stake of the system to be 1 for our purposes, i.e., all
stake values used are relative to the total supply.

in higher-pledged pools receiving higher rewards per unit of stake
compared to lower-pledged ones (a difference that grows for higher
values of 𝛼). Granting higher rewards to pools with higher pledge
aims to induce operators to concentrate their stake in a single pool,
thereby deterring Sybil attacks (which is why 𝛼 is also referred to
as the Sybil resilience parameter).

As a further step, the protocol also handles the distribution of
rewards to the individual pool members, removing the need for
additional trust in the pool operators. When creating a pool, the
pool owner needs to declare its operational cost. When a pool’s
reward gets calculated, an amount that corresponds to the declared
cost is first set aside for the pool operator, to offset that cost. If the
reward is not sufficient to cover the pool’s cost, then no rewards are
distributed to its members. Note that, in this case, the pool operator
suffers a loss (as they have to pay the operational costs anyway),
whereas the pool members do not.

To compensate operators for the added risk they have to bear
and to further incentivize pool creation, the protocol allows them to
set a value of their choice —referred to as the pool’s margin— that
determines the fraction of the pool’s profits that will be allocated
to the operator before any additional distribution. The remaining
fraction of the pool’s profits get distributed to its members propor-
tionally to the stake they contribute. Recall that as a pool grows,
the rewards that are issued to it increase, and therefore the rewards
of its members increase, too. However, if a pool’s size exceeds the
saturation point 𝛽 , then its rewards stop growing, meaning that its
rewards per unit of stake —and therefore the rewards of individual
members— decrease.

Formally put, if a pool has stake 𝜎 , cost 𝑐 , margin𝑚 and pledge 𝜆,
then, each delegator that contributes stake 𝑎𝑑 to the pool receives:

𝑟𝑑 =

{
(1 −𝑚) (𝑟 (𝜎, 𝜆) − 𝑐) 𝑎𝑑𝜎 if 𝑟 (𝜎, 𝜆) > 𝑐

0 otherwise

And the pool owner, who contributes stake 𝑎𝑜 = 𝜆 to the pool,
receives:

𝑟𝑜 =

{
𝑐 +𝑚(𝑟 (𝜎, 𝜆) − 𝑐) + (1 −𝑚) (𝑟 (𝜎, 𝜆) − 𝑐) 𝜆𝜎 if 𝑟 (𝜎, 𝜆) > 𝑐

𝑟 (𝜎, 𝜆) otherwise

where 𝑟 (𝜎, 𝜆) are the rewards that a pool with stake 𝜎 and pledge
𝜆 is entitled to.

Game description. Granted such a rewards sharing scheme, we
can define the “Stake Pools Game”, with the players being stake-
holders of the system, their strategies describing how they engage
with the protocol (operate a pool with a certain margin and pledge
or delegate their stake) and their goal being the generation of profit.
Importantly, we augment the definition given by Br’́unjes et al
in [2], to incorporate strategies where a player operates multiple
pools.

We define the strategy 𝑆𝑖 of player 𝑖 as the following quadruple:

𝑆𝑖 = (𝑡𝑖 ,m𝑖 , 𝜆𝜆𝜆𝑖 , a𝑖 )

where 𝑡𝑖 ∈ N is the number of pools that player 𝑖 wishes to op-
erate, m𝑖 = (𝑚𝑖,1, . . . ,𝑚𝑖,𝑡𝑖 ), 𝑚𝑖, 𝑗 ∈ [0, 1] are the margins that
the player imposes to their 𝑡𝑖 pools, 𝜆𝜆𝜆𝑖 = (𝜆𝑖,1, . . . , 𝜆𝑖,𝑡𝑖 ), 𝜆𝑖, 𝑗 ≥ 0
are the pledges that the player commits to their pools and a𝑖 =

(ai,1, . . . , ai,n) describes the allocation of player 𝑖’s stake to the
3



pools of the 𝑛 players, where ai,j = (𝑎𝑖, 𝑗1 , . . . , 𝑎𝑖, 𝑗𝑡 𝑗 ) is the alloca-
tion of player 𝑖’s stake to the 𝑡 𝑗 different pools of player 𝑗 . It holds
that

∑𝑛
𝑗=1

∑𝑡 𝑗

𝑘=1 𝑎𝑖, 𝑗𝑘 ≤ 𝑠𝑖 , meaning that each player can allocate
part or all of their stake (but obviously no more than that) to the
pools of the system. If 𝑡𝑖 > 0 then 𝑎𝑖,𝑖𝑘 = 𝜆𝑖,𝑘 for 𝑘 ∈ {1, . . . , 𝑡𝑖 } else
ai,i is a null vector (as is every ai,j when 𝑡 𝑗 = 0 for 𝑗 ∈ {1, . . . , 𝑛}).
Note that our strategy definition allows for a player to both operate
pools and delegate stake to other pools at the same time. Since the
game transpires over several rounds, the above definition represents
player 𝑖’s strategy during a snapshot of the game.

An intuitive utility function to use for evaluating a strategy is
the simple addition of all rewards a player accumulates through
their stake allocations, minus any costs they bear (only relevant
for pool operators). We build upon this notion by allowing our
players a degree of far-sightedness. To accomplish this, we employ
the non-myopic utility function described in [2], which takes into
consideration the rewards of a pool based on its expected future
stake, instead of its current one. To estimate the future (non-myopic)
stake of a pool, Brünjes et al define the notions of potential profit,
desirability and rank, which we borrow for our model 6.

The potential profit of a pool with pledge 𝜆 𝑗 and cost 𝑐 𝑗 is:
𝑃 (𝜆 𝑗 , 𝑐 𝑗 ) = 𝑟 (𝛽, 𝜆 𝑗 ) − 𝑐 𝑗

and it represents the highest profit that a pool with this pledge and
operational cost can yield (the profit it receives at saturation).

The desirability of the pool is:

𝐷 𝑗 =

{
(1 −𝑚 𝑗 )𝑃 (𝜆 𝑗 , 𝑐 𝑗 ) if 𝑃 (𝜆 𝑗 , 𝑐 𝑗 ) ≥ 0
0 otherwise

and it represents the maximum profits that delegators can earn
from this pool. Note that this value depends on the margin𝑚 𝑗 , so
by choosing lower margins, pool owners make their pools more
desirable. We can rank pools based on their desirabilities, so that
the pool with the highest desirability is assigned rank 1, the second
highest is assigned rank 2, and so on. Then, the non-myopic stake
of a pool with rank 𝑗 , current stake 𝜎 𝑗 and pledge 𝜆 𝑗 is defined as:

𝜎𝑁𝑀
𝑗 =

{
𝑚𝑎𝑥 (𝛽, 𝜎 𝑗 ) if 𝑗 ≤ 𝑘

𝜆 𝑗 otherwise
This shows that the top 𝑘 ranked pools are expected to become
saturated, while the rest are expected to end up only with their
owner’s pledge, as delegators side with more competitive pools.

The expected utility of a stakeholder that delegates stake 𝑎𝑖, 𝑗 to
the pool with rank 𝑗 is then:

𝑢𝑖, 𝑗 =


max((1 −𝑚 𝑗 ) (𝑟 (𝛽, 𝜆 𝑗 ) − 𝑐 𝑗 )

𝑎𝑖,𝑗

𝜎𝑁𝑀
𝑗

, 0) if 𝑗 ≤ 𝑘 & 𝜆 𝑗 ≠ 0

max((1 −𝑚 𝑗 ) (𝑟 (𝜆 𝑗 + 𝑎𝑖, 𝑗 , 𝜆 𝑗 ) − 𝑐 𝑗 )
𝑎𝑖,𝑗

𝜆 𝑗+𝑎𝑖,𝑗 , 0) otherwise

And the expected utility for the owner of the pool, who con-
tributes pledge 𝜆 𝑗 is:

𝑢 𝑗, 𝑗 =


𝑟 (𝜎𝑁𝑀

𝑗
, 𝜆 𝑗 ) − 𝑐 𝑗 if 𝑟 (𝜎𝑁𝑀

𝑗
, 𝜆 𝑗 ) < 𝑐 𝑗 and 𝜆 𝑗 ≠ 0

(𝑟 (𝜎𝑁𝑀
𝑗

, 𝜆 𝑗 ) − 𝑐 𝑗 ) (𝑚 𝑗 + (1 −𝑚 𝑗 )
𝜆 𝑗

𝜎𝑁𝑀
𝑗

) otherwise

6For simplicity, we keep the definitions as they were presented in [2], with only one
index to refer to a pool’s properties (e.g.𝜆 𝑗 instead of𝜆 𝑗𝑘

for the pledge of a pool owned
by player 𝑗 ), but they can all be trivially extended to match our multi-pool-strategy
notation from the previous paragraph.

The total (non-myopic) utility of a player 𝑖 is then calculated as
the sum of the individual utilities from all pools they participate in:
𝑢𝑖 =

∑𝑛
𝑗=1 𝑢𝑖, 𝑗 . Observe that a pool operator’s expected payoff can

be negative, while a delegator’s cannot, highlighting the fact that it
is only operators who risk having losses.

In the case of operating multiple pools, agents assume that an
additional pool yields a lower cost than their first one when calcu-
lating their expected payoffs. This is a direct effect of the so-called
economies of scale, which make it possible to produce more units of
a good or service with lower costs per unit on average [23]. In our
case, the cost of the first pool represents the first big investment (e.g.
for equipment purchases) and every additional pool only increases
the total cost by a certain factor (e.g. for key management). To
incorporate this in our model, we define an additional parameter,
the cost factor 𝜙 , which represents the cost of an additional pool as
a fraction of an agent’s initial operational cost. Therefore, if player
𝑖 has an initial cost value 𝑐𝑖 and operates 𝑡𝑖 pools, then the average
cost of these pools is 1+(𝑡𝑖−1)𝜙

𝑡𝑖
𝑐𝑖 .

3 SIMULATION ENGINE
To simulate how the above game evolves for different parameter
values and initial states, we develop an engine that can be con-
figured to play out the game under any conditions of our choice.
We employ an agent-based model as the basis for the simulation,
defining simple actions for individual agents (micro-behavior) and
observing the complex patterns that emerge through their interac-
tions and their effect on the system’s properties (macro-behavior).
In this section, we explain how a simulation instance unfolds, how
agents choose their strategies, and what is the reasoning behind
these decisions.

First, the simulation constructs the initial conditions of the sys-
tem and its participants, creating the chosen number of agents
and assigning to each of them some stake and a cost value (which
represents the cost of their first pool, should they choose to open
one); typically, the former is sampled from a Pareto distribution,
and the latter from a Uniform distribution, however the simulation
supports other options as well. The system starts off without any
pools and, at every step, each agent decides on a strategy for how
to use their stake, based on the state of the system and any infor-
mation that has been made public by the other agents —such as
the operational cost of an agent that owns a pool— but without
having access to the private information of other agents —such as
the potential operational cost of an agent that does not own a pool
at that point in time. This process goes on, until all agents have
settled to their strategies, i.e., a state of equilibrium is reached, or
until a predetermined number of maximum rounds is reached.

In each round, all agents are given the chance to update their
strategy; to ensure fairness and make the process more realistic,
players are activated in random order7. Upon their turn, each agent
examines a handful of strategies, including delegation and pool-
operation strategies, and chooses the one that yields the highest
expected utility among those, or keeps their current one if the
new ones do not exceed its utility by a certain threshold. If there
is a tie between two moves, the one that requires less “effort” is
chosen (keeping the current strategy is preferred over delegation,
7A seed can be set to get a reproducible order and results.
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which is in turn is preferred over pool operation). In the following
paragraphs, we explain how the agents narrow down the search
space for potential moves and end up with a few options to compare.

Determining delegation moves. In order to choose which pool(s)
to delegate their stake to, agents start by calculating the desirability
of all active pools. Recall that the desirability of a pool represents the
share of the profits that is allocated to delegators, so it makes sense
for players to want to join pools with high desirability. Therefore,
the prospective delegators rank the pools based on their desirability
and choose to delegate their stake to the highest-ranked pool(s),
prioritizing the ones that are not already saturated.

Determining pool-operation moves. A strategy that involves pool
operation is more complex, as it requires from an agent to decide
how many pools to run (given that multi-pool strategies are per-
missible in our model), and then also choose suitable values for the
pledge and profit margin of each pool. To find a promising solu-
tion, agents employ a local search similar to hill climbing, which
transpires as follows for an agent with stake 𝑠:

Algorithm 1 Determining a pool-operation strategy for an agent
with stake 𝑠
1: Set the minimum number of pools 𝑡𝑚𝑖𝑛 = 1 and the maximum

number of pools 𝑡𝑚𝑎𝑥 = 𝑘 .
2: Select 𝑡 =

⌊ 𝑡𝑚𝑖𝑛+𝑡𝑚𝑎𝑥

2
⌋
as the current number of pools to ex-

amine.
3: Allocate 𝑠

𝑡 as pledge to each pool.
4: Calculate the average cost per pool.
5: Calculate suitable margins so that all 𝑡 pools end up in the top

𝑘 — if not possible for some pools then set their margin to 0.
6: Calculate the agent’s expected utility given these pools.
7: Repeat steps 3 - 6 for the two neighboring solutions of this

strategy, i.e., operating 𝑡 − 1 pools and operating 𝑡 + 1 pools.
8: Choose the highest utility of the three options. If that corre-

sponds to 𝑡−1 (or 𝑡+1) then set 𝑡𝑚𝑎𝑥 = 𝑡−1 (or 𝑡𝑚𝑖𝑛 = 𝑡+1) and
go to step 2. Otherwise, terminate with found solution (strategy
with 𝑡 pools that have the calculated pledges and margins).

To clarify the margin calculation process (step 5 above), the
agent ranks all pools that belong to other agents based on their
desirability and attempts to surpass the desirability of the 𝑘-ranked
pool with their first pool, the desirability of the (𝑘 − 1)-ranked pool
with their second pool, and so on, up to pool 𝑡 which attempts
to beat the desirability of the (𝑘 + 1 − 𝑡 )-ranked pool. Since they
attempt to replace different pools from the top 𝑘 , pools that belong
to the same agent may end up with distinct margin values.

4 DECENTRALIZATION ANALYSIS &
PARAMETER CHOICE

We use the simulation engine that we described above to run a
series of experiments, and we analyze the results to gain insights
about the system. In this section, we track certain behaviors that
arise among the agents and explore the impact they have on the
emergent properties of the system. We explore the decentralization
properties of the system and investigate the relationship between

its input (parameter values, stakeholder characteristics) and its
eventual degree of decentralization.

For most experiments that we discuss below, we populate the
system with 𝑛 = 1000 agents, with their stake values drawn from a
Pareto distribution8 with shape parameter 2 and their cost values
from a Uniform distribution so that each agent’s cost is 4 to 5
orders of magnitude smaller than the total available rewards 𝑅 9.
We assume a cost factor 𝜙 = 0.4, meaning that every additional
pool of an agent costs only 40% the cost of their first pool. This
specific value of 𝜙 was chosen for being presumably realistic, but
later on we show that the model is not sensitive to this choice (see
last paragraph of this section). Notably, and consistently with [2],
all experiments that we conducted eventually arrive at equilibria,
which in itself is already a positive result.

Parameter impact on decentralization. We explore how the values
of the reward sharing scheme’s parameters, 𝑘 and 𝛼 , influence the
eventual decentralization of the system at equilibrium. Recall that 𝑘
represents the target number of pools at equilibrium, but it is never
enforced (in real life or in the simulation) that the pools are exactly
𝑘 . Instead, the reward mechanism of the system incentivizes the
formation of 𝑘 pools by capping a pool’s rewards once its stake
reaches a saturation threshold that depends on 𝑘 , and, because of
that, the rational play we explore through the simulations typically
convergences to an equilibrium of 𝑘 pools. On the other hand,
𝛼 was introduced as a “Sybil resilience” factor, as it defines the
degree to which the pledge of a pool affects the rewards it receives.
Intuitively, we can tell that the higher the value of 𝛼 , the bigger
influence the pledge has on a pool’s reward, therefore the less likely
an operator is to create multiple pools. There have been theoretical
results that support this, but their scope was limited because of
strict assumptions [2]. This time, we explore these relationships
in a more realistic setting and gain insights on the impact of these
parameters on the system’s decentralization.

Before conducting any analysis, we should highlight that de-
centralization operates on a spectrum, hence the question is not
whether a system is decentralized or not but rather to what degree
it is, and for this reason, we need to define in which ways we are
going to measure decentralization. Unlike the analysis of [2], we do
not consider the number of pools indicative of the system’s decen-
tralization, as in our model (and in reality) it is possible for a single
stakeholder to control multiple pools—for example, a configuration
with 𝑘 pools at equilibrium which are all controlled by the same
agent should by no means be considered decentralized.

The first metric we employ is the Nakamoto coefficient, which
has been widely used in the context of blockchains and represents
the minimum number of independent entities that collectively con-
trol more than 50% of the system’s resources, and can therefore
launch a successful attack if they collude [24]. For PoS blockchains,
this translates to controlling the majority of the total active stake.
In our case, where we expect to have 𝑘 pools of equal size at equilib-
rium, the ideal Nakamoto coefficient would be 𝑘

2 + 1, implying that
all 𝑘 pools are independently owned, i.e. there is no pool splitting

8Distributions of wealth are typically modeled using a Pareto distribution.
9We express the costs as fractions of the total rewards for easier generalization, as the
utility function we use allows for it.
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at equilibrium —in practice, however, this value can diverge by a
lot from the ideal one.

Figure 1: Nakamoto coefficient heat map - Pareto stake dis-
tribution

To observe this phenomenon and better understand its relation-
ship with the parametrization of the system, we run a set of 50
experiments, with different combinations of 𝑘 and 𝛼 in each, while
keeping everything else fixed. Specifically, we examine 5 values for
𝑘 , ranging from 100 to 500, and 10 values for 𝛼 spaced evenly on a
logarithmic scale between 0.01 and 1 (note that Cardano currently
uses 𝛼 = 0.3). We repeat this set of experiments 5 times to account
for the impact of the random schedule and we combine the results
of identical executions suitably. The heat map of Fig. 1 reveals the
Nakamoto coefficient of the final configuration of the system, for
each combination of 𝑘 and 𝛼 .

Our experiments confirm that the values of 𝛼 and 𝑘 play pivotal
roles in the eventual decentralization of the system. We observe
that a very low 𝛼 (0.01 in our experiments) is not sufficient to deter
pool splitting, resulting in extremely low Nakamoto coefficients,
regardless of the value of 𝑘 . Once the value of 𝛼 grows to become
more effective against pool splitting, we remark that the value of 𝑘
becomes the decisive factor for the system’s decentralization, while
the increasing value of 𝛼 has a marginal impact, if any, at that point.

In general, it appears that the Nakamoto coefficient grows with 𝑘 ,
revealing that more andmore stakeholders become operators, as the
target number of pools rises. However, even though it is tempting to
think that “the higher the 𝑘 value the better”, there are a few reasons
why this may not always be the case. One caveat is that there exists
a natural limit on the number of stakeholders that can become pool
operators, imposed by the combinations of stake and operational
cost they have to begin with. For some stakeholders with high costs,
operating a pool may never be profitable, independent of the value
of 𝑘 . Note that, in the real world, there are even more barriers to
entry than the lack of profitability, such as the lack of technical
knowledge or time to set up and maintain a stake pool.

From our heat map, we observe another reason why a higher
𝑘 is not always better. For the values of 𝛼 that are on the border
of being effective (0.017 - 0.046 in our example), we observe that

the Nakamoto coefficient peaks for some 𝑘 value, after which any
increase in 𝑘 only makes it drop. We can interpret this as follows:
when 𝛼 is not sufficiently high, a certain number of stakeholders
with suitable stake and cost values may be able to profit more
from operating multiple pools compared to operating a single pool;
however, if their pools are not competitive enough to reach the
top 𝑘 , then they may end up not operating a pool at all, as they
would not receive delegations; when 𝑘 is stretched, it makes it more
likely for this type of agents to belong in the top 𝑘 , which is how
we can end up with many pool splitters and a very low Nakamoto
coefficient.

Figure 2: Median cost-rank and stake-rank of pool operators
for different 𝛼 values (𝑘 = 100)

A similar principle applies for 𝛼 : while a higher value of 𝛼
promises a higher degree of decentralization, there are other prop-
erties of the system that are adversely affected by it. In Fig. 2, we
track the median cost rank and stake rank of the stakeholders that
operate pools at equilibrium, for executions with different values
of 𝛼 . Note that a cost rank of 1 corresponds to the agent with the
lowest cost, while a stake rank of 1 corresponds to the agent with
the highest stake. From there, we conclude that for low values of
𝛼 , the stakeholders that become pool operators are those with the
lowest operational costs, regardless of the magnitude of their per-
sonal stake. Higher values of 𝛼 , however, result in configurations
where it is mainly the “richest” stakeholders that get to control the
pools, and not the most cost-efficient ones.

It follows that choosing a very high value for 𝛼 is not necessarily
good approach for the system. Even though such a value can pro-
vide a more robust defense against Sybil attacks, it also exacerbates
the “rich getting richer” phenomenon, which is an inherent issue
of Proof of Stake. This trade-off between Sybil resilience and egal-
itarianism is vital to keep in mind when selecting the parameter
values of a real-world system. Furthermore, our heat map suggests
that once the right threshold for 𝛼 is reached, any increase only has
a marginal impact—or none at all—on the decentralization of the
system, hence choosing an extremely high value would be pointless
in this regard.

The second metric we use in an attempt to quantify the concept
of decentralization is what is called min-aggregate pledge. Again,
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we examine the sets of pools that exert important influence in the
system (controlling more than 50% of the active stake), but instead
of looking for the minimum number of stakeholders in such a set,
this time we focus on the set with the lowest collective pledged
stake. This aims to give an indication of how much “skin in the
game” these powerful pool operators have, and therefore howmuch
they would risk by turning against the system.

Figure 3: Min-aggregate pledge heat map

Using the same set of experiments as above, we track the min-
aggregate pledge of the system at equilibrium for various combi-
nations of 𝑘 and 𝛼 . We can see the results in the heat map of Fig.
3, which resembles a lot the one of Fig. 1. Note that stake values
are expressed relative to the total stake, therefore a min-aggregate
pledge of 0.1 means that any group of pool operators that jointly
control the majority of the stake through their pools own at least
10% of the system’s total stake and have pledged it to those pools.

From this angle, we observe again the patterns of a very low
𝛼 being ineffective, the importance of 𝑘 growing with 𝛼 and the
border-line-effective 𝛼 values that mandate an upper bound for
𝑘 . This time we remark that an increase in 𝛼 continues to trigger
increases in the system’s min-aggregate pledge, even after the initial
phase transition.

Impact of initial stake distribution. In this section, we highlight
the fact that a system’s output can only be as good as its input,
and we explore the effects of this principle on the potential de-
centralization of the system. From Fig. 1, we observed that (for
suitable values of 𝛼) the system’s eventual decentralization was
high for any value of 𝑘 , and yet as 𝑘 grew, the Nakamoto coefficient
diverged more and more from the “ideal” one of 𝑘

2 + 1. This begs
the question of whether the mechanism can ever achieve this ideal
result, where the stake of the system is distributed evenly among 𝑘
independently operated pools. Recall that for the experiments we
examined so far, we sampled the agents’ stake values from a Pareto
distribution. Though this assumption brought the simulation closer
to the real-life system, it also introduced a bias for the configuration
of pools at equilibrium (for example, if an agent is so rich that they
can saturate a pool with their own stake, it makes sense for them to

open a second pool). To explore the effectiveness of the mechanism
in a more equitable scenario, we run the same set of experiments
as above but with a different initial stake distribution, making sure
this time that all agents start off with the same amount of stake.

Figure 4: Nakamoto coeff. heat map - Flat stake distribution

The results, in terms of Nakamoto coefficient, can be seen in Fig.
4, where we once again witness the role of 𝛼 and 𝑘 in influencing
the decentralization of the system. In general, a similar picture
is painted as the one we saw in Fig. 1, only this time the phase
transition leads to the ideal Nakamoto coefficient, where it takes
𝑘
2 +1 distinct pool operators to accumulate the majority of the stake,
compared to those of the experiment with the “biased” input that
always fell short.

Satisfying as they may be, the results of Fig. 4 cannot be used to
draw insights about the real world, as the assumption that all stake-
holders start off with equal stake is highly unrealistic. In fact, even
the Pareto distribution that we used before may fail to capture some
complex patterns that emerge in real-world deployments, where
staking involves a lot more actors, some of which have very partic-
ular characteristics, such as cryptocurrency exchanges. To achieve
a more faithful representation of Cardano’s deployment, we adjust
the input in three ways. First, we increase the number of stakehold-
ers from 1,000 to 10,000, allowing for higher diversity to develop
within the population. Second, we provide explicit stake values for
a number of stakeholders that were identified as exchanges, named
entities or custody services in Cardano (the stake values of the
remaining agents are still drawn from a Pareto distribution). Third,
we mark close to 1

4 of the total stake in the system as inactive, to
account for all stakeholders that abstain from the protocol 10.

This time we also run the simulation for higher values of 𝑘 , (note
that Cardano’s parameterization is currently at 𝑘 = 500, while
higher values are being considered by the community); because
of the increased time requirements for these bigger experiments,
we use fewer values for 𝛼 , but the range remains the same. The
results can be seen in the heat map of Fig. 5. The patterns that arise

10The information about the specific stake values and the fraction of inactive stake in
Cardano was extracted from adapools.org and pooltool.io..
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are similar to those we described in the previous paragraphs, with
lower values of 𝛼 failing to deter pool splitting, higher values of
𝛼 pushing the “upper bound” for 𝑘 and higher 𝑘 values yielding
higher decentralization when 𝛼 is sufficiently high. However, we
remark two key differences between these results and those of the
Pareto distribution with 1000 stakeholders.

Figure 5: Nakamoto coeff. heat map - Synthetic distribution

For one thing, the peak of the Nakamoto coefficient values for𝑘 =

500 does not come near the corresponding peak of Fig. 1, implying
that one of the modifications we made to the input lowered the
ceiling for the achievable Nakamoto coefficient of the system. More
importantly, we observe an overall shift towards higher values of
𝛼 , meaning that 𝛼 values that were considered effective in previous
experiments are apparently inadequate in this more realistic setting.
Notably, the value that has been chosen for Cardano’s deployment,
𝛼 = 0.3 sits on the border of being effective, while higher values
appear to achieve higher decentralization.

Sensitivity to cost assumptions in pool splitting. In all of the above
experiments, we applied a cost factor 𝜙 = 0.4, meaning that we
perceived an agent’s 2nd, 3rd, or any additional pool to cost 40%
as much as their first one. Since this choice was based on intu-
ition and rough estimations, we explore its potential impact on the
results of the simulation: we re-run some of the experiments we
conducted with the Pareto distribution for 10 additional values of
the cost factor (11 in total, ranging from 0 to 1) and examine how
the decentralization of the system is affected in terms of Nakamoto
coefficient. For the experiments where 𝑘 is kept fixed, we set it to
100 and similarly when 𝛼 is fixed, we set it to 0.3. The results can
be seen in Fig. 6 and 7; note that for every 𝛼 value there are always
11 data points for the different cost factors, but they are not always
visible, as the corresponding Nakamoto coefficients often coincide.

We observe that the properties of the system at equilibrium in
terms of decentralization are not significantly influenced by the
cost factor that we employ. Comparing to the results from Fig. 1 for
𝑘 = 100, we observe that only when 𝛼 is very low, the choice of 𝜙
has a noticeable impact. Specifically, we remark that if we assume a
more optimistic cost factor (0.8 - 1), then the threshold for 𝛼 being

Figure 6: Nakamoto coefficient at equilibrium for executions
with different 𝛼, 𝜙 values (with k = 100).

Figure 7: Nakamoto coefficient at equilibrium for executions
with different 𝑘, 𝜙 values (with 𝛼 = 0.3).

effective is shifted down, while with amore pessimistic cost factor (0
- 0.2) the threshold is shifted up by one step. Remarkably, even with
the most pessimistic assumptions, i.e. additional pools yielding no
extra cost, the incentivized-pledging mechanism appears to deter
pool splitting when 𝛼 is not extremely low. A similar picture is
painted by Fig. 7, where the value of 𝜙 seems to have a marginal
—if any— impact on the result. From both figures, we conclude that
the results are not particularly sensitive to the cost of additional
pools for multi-pool operators.

5 CONCLUSIONS
In this work we study the decentralization properties that arise
from staking and pooling behavior in the Cardano proof of stake
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blockchain via an agent-based modeling approach. Our work stud-
ies a far more real-world relevant setting compared to the original
analysis of [2] which, for the most part, was restricted to at most
one pool per participant. Instead, our engine allows multi-pool
strategies for all operators. Furthermore, we study the Nakamoto
coefficient at equilibrium, a metric that captures decentralization
in an essential way by disregarding nodes that are operated by
the same participant. Despite the richer strategy space, our anal-
ysis reveals that the reward sharing scheme used in Cardano still
converges to an equilibrium of 𝑘 pools, but not necessarily inde-
pendently owned ones.

Our work highlights how making suitable choices for the param-
eter values of the mechanism is essential for its decentralization
properties. We examine the influence of the scheme’s “pledge influ-
ence” parameter,𝛼 , andwe present through experimental results the
trade-off that it entails between egalitarianism and Sybil resilience.
We showcase how the initial stake distribution of the system acts as
a critical factor in the system’s ability to achieve decentralization.
We contrast the results between a hypothetical situation where all
agents start off with the same stake and a more realistic situation
using a synthetic distribution with some real-world data points. In
this context, our work suggests that the choice of 𝛼 = 0.3, that is
in the public Cardano implementation, is at the boundary of good
decentralization behavior (see Figure 5).

Future directions include performing further experiments with
evenmore realistic stakeholder and cost distributions and at a bigger
scale (say, at 1M player levels), while expanding the simulation with
additional behaviors, such as taking into account opportunity-loss
due to alternative options regarding one’s stake that are incon-
gruent with staking, influencing the agents’ utility by the opera-
tors’ reputation and advertised “mission”, modeling the effects of a
volatile exchange rate, or allowing modifying the stakeholder distri-
bution during the course of the execution. Furthermore, while our
engine and outcomes are geared towards Cardano, our results imme-
diately transfer to related schemes (e.g., NYM [5]), and the engine
can be easily adapted to model other PoS systems, suggesting also
the possibility for comparative analysis between reward schemes,
which is an interesting research direction. Finally, formalizing the
concept of decentralization, and developing novel metrics that help
quantify it, presents itself as an intriguing course of action.
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