

Edinburgh Research Explorer

PEReDi: Privacy-Enhanced, Regulated and Distributed Central
Bank Digital Currencies
Citation for published version:
Kiayias, A, Kohlweiss, M & Sarencheh, A 2022, PEReDi: Privacy-Enhanced, Regulated and Distributed
Central Bank Digital Currencies. in Proceedings of the 2022 ACM SIGSAC Conference on Computer and
Communications Security. Association for Computing Machinery (ACM), pp. 1739-1752, The 29th ACM
Conference on Computer and Communications Security, Los Angeles, California, United States, 7/11/22.
https://doi.org/10.1145/3548606.3560707

Digital Object Identifier (DOI):
10.1145/3548606.3560707

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications Security

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 20. Nov. 2022

https://doi.org/10.1145/3548606.3560707
https://doi.org/10.1145/3548606.3560707
https://www.research.ed.ac.uk/en/publications/edffc256-c782-495e-8e2a-32d34422d28c

PEReDi: Privacy-Enhanced, Regulated and Distributed Central
Bank Digital Currencies

Aggelos Kiayias
The University of Edinburgh & IOG

Edinburgh, United Kingdom
Aggelos.Kiayias@ed.ac.uk

Markulf Kohlweiss
The University of Edinburgh & IOG

Edinburgh, United Kingdom
Markulf.Kohlweiss@ed.ac.uk

Amirreza Sarencheh∗
The University of Edinburgh & IOG

Edinburgh, United Kingdom
Amirreza.Sarencheh@ed.ac.uk

ABSTRACT
Central Bank Digital Currencies (CBDCs) aspire to offer a digi-
tal replacement for physical cash and as such need to tackle two
fundamental requirements that are in conflict. On the one hand,
it is desired they are private so that a financial “panopticon” is
avoided, while on the other, they should be regulation friendly in
the sense of facilitating any threshold-limiting, tracing, and coun-
terparty auditing functionality that is necessary to comply with
regulations such as Know Your Customer (KYC), Anti Money Laun-
dering (AML) and Combating Financing of Terrorism (CFT) as well
as financial stability considerations. In this work, we put forth a
new model for CBDCs and an efficient construction that, for the
first time, fully addresses these issues simultaneously. Moreover,
recognizing the importance of avoiding a single point of failure,
our construction is distributed so that all its properties can with-
stand a suitably bounded minority of participating entities getting
corrupted by an adversary. Achieving all the above properties ef-
ficiently is technically involved; among others, our construction
uses suitable cryptographic tools to thwart man-in-the-middle at-
tacks, it showcases a novel traceability mechanism with significant
performance gains compared to previously known techniques and,
perhaps surprisingly, shows how to obviate Byzantine agreement
or broadcast from the optimistic execution path of a payment, some-
thing that results in an essentially optimal communication pattern
and communication overhead when the sender and receiver are
honest. Going beyond “simple” payments, we also discuss how our
scheme can facilitate one-off large transfers complying with Know
Your Transaction (KYT) disclosure requirements. Our CBDC con-
cept is expressed and realized in the Universal Composition (UC)
framework providing in this way a modular and secure way to
embed it within a larger financial ecosystem.

∗Corresponding Author.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
CCS ’22, November 7–11, 2022, Los Angeles, CA, USA.
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9450-5/22/11.
https://doi.org/10.1145/3548606.3560707

CCS CONCEPTS
• Security and privacy→ Distributed systems security; Public
key (asymmetric) techniques; Formal security models; • Applied
computing→ Electronic commerce.

KEYWORDS
Privacy; Cryptography; CBDC; Distributed Ledgers; Regulatory
Compliance; KYC; AML; CFT; KYT; Universal Composition.
ACM Reference Format:
Aggelos Kiayias, Markulf Kohlweiss, and Amirreza Sarencheh. 2022. PEReDi:
Privacy-Enhanced, Regulated and Distributed Central Bank Digital Curren-
cies. In Proceedings of the 2022 ACM SIGSAC Conference on Computer and
Communications Security (CCS ’22), November 7–11, 2022, Los Angeles, CA,
USA. ACM, New York, NY, USA, 34 pages. https://doi.org/10.1145/3548606.
3560707

1 INTRODUCTION
The development of cryptocurrencies provided a strong motivation
for the development of “central bank digital currency” (CBDC) sys-
tems. A CBDC is central bank money but more widely accessible
and transferable than central bank reserves and banknotes (see
e.g., Bank of England [36] for an overview of the basic principles
of such systems). This type of money can also be interest bearing
(with a different rate than that on reserves) [14] and has a different
operational structure than other forms of central bank money [49].
It was early on observed that CBDCs solve a different problem
than general cryptocurrencies such as Bitcoin and/or Ethereum.
The first construction that exploited this distinction is RSCoin [29]
which was followed by designs explored by a number of central
banks [1, 13, 27]. In such systems the verification of transactions
relies on a distributed set of independent authorities (we call them
“maintainers”). Such entities are empowered to enforce the mone-
tary and regulatory policies of the system that are dictated by the
central bank and regulatory entities. A distinguishing characteristic
of CBDC systems compared to cryptocurrencies is that the mone-
tary policy is decoupled from the monetary exchange system. The
integrity and soundness of the former remains in the purview of the
central bank, while the integrity of the latter is distributed across a
set of entities. Therefore, the CBDC system’s state is maintained
in a distributed manner by the maintainers such that the central
bank as well as any regulatory entities can be offline during the
time users transact.

https://doi.org/10.1145/3548606.3560707
https://doi.org/10.1145/3548606.3560707
https://doi.org/10.1145/3548606.3560707

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA. Aggelos Kiayias, Markulf Kohlweiss, and Amirreza Sarencheh

A common concern expressed in the context of CBDCs is that,
contrary to other forms of central bank money, a CBDC may trans-
form the central bank into a “panopticon” that is continuously
aware of all transactional data. Such concerns have also been high-
lighted in the context of cryptocurrencies. First generation cryp-
tocurrencies such as Bitcoin and Ethereum are only pseudonymous
in the sense that a user’s transactions are linkable to a (set of)
pseudonym(s) that the user can generate. Privacy enhanced cryp-
tocurrencies (e.g., ZCash [11] or Monero [42]) were developed to
hide the value of transactions and offer unlinkable transactions to
a certain degree or under plausible assumptions. Note that such
systems enjoy a level of anonymity that does not reveal directly
any information about payment counterparties and transaction val-
ues and, hence, may be attractive and be used for illegal activities
such as money laundering, financing terrorism, and so on. As a
result, privacy-preserving systems using such techniques can be
problematic in settings where comprehensive regulatory compli-
ance is required. CBDCs constitute such setting and hence it is
imperative to have built-in features by which, while full anonymity
can be offered for most circumstances, at the same time conditional
disclosure to regulators and law enforcement in case of misbehavior
can be facilitated, cf. [5].

Privacy in payment systems can interfere with three main regu-
latory obligations: 1 Know-Your-Customer (KYC), which requires
the positive identification of counterparties before they are able to
transact. 2 Anti-Money Laundering (AML), which requires that
sources of funds should be legitimate. 3 Combating Financing of
Terrorism (CFT), which requires that the recipients of funds should
not engage in terrorism. To appreciate the way such requirements
interfere with privacy, it helps to imagine the set of all payments as
a hidden directed graph where vertices correspond to counterpar-
ties and edges to payments between them weighted by their value.
Using this abstraction, it follows that introducing vertices in the
graph should be subject to KYC, while it should be possible to reveal
the incoming or outgoing edges to any vertex which is suspected
for illicit or terrorism activity, as well as trace selectively particular
paths in the graph from source to destination and vice versa to
address AML and CFT considerations. Beyond these opening and
tracing operations it is widely recognized in the CBDC context,
cf. [1, 8, 13], that it is desirable to restrict both the volume of pay-
ments that a particular vertex can make (so that “hoarding” CBDC
currency is tempered) as well as limit the amount of value that can
be transferred between two counterparties in a single transaction,
without triggering additional auditing regarding the funds of the
sender (what is referred to as KYT - know your transaction, cf. [3]).
Unfortunately, currently no existing CBDC design offers privacy
combined with such “regulation friendly” capabilities.

Our Results. We put forth a model and construction that for the
first time addresses all the issues identified above simultaneously.
In PEReDi each user has an account which is approved during on-
boarding (i.e., it undergoes KYC) and can subsequently be issued
currency by the central bank (following its monetary policy) as well
as receive or transmit funds to other users. Our design approach
applies a novel combination of cryptographic primitives and dis-
tributed organization that, perhaps surprisingly, shows how we can
remove the requirement for (byzantine) agreement or broadcast

from the optimistic path of payment execution. PEReDi features
an encrypted ledger maintained separately by each maintainer,
transactions are identified by transaction identifiers and leave en-
crypted fingerprints in the ledger of each maintainer that under
normal circumstances are completely opaque. Transaction senders
and receivers independently update their private accounts, leaving
the above traces, while only in the case of a transaction abort the
maintainers need to engage in an agreement protocol to ensure
consistency. In this way, PEReDi offers a digital equivalent of phys-
ical cash: payments do take place with double-spending prevention
without anyone in the system becoming aware of the precise value
transferred or the counterparties involved. Moreover, both sender
and receiver need to engage for the payment, something that pre-
vents “dusting” attacks1. At the same time (and contrary to physical
cash) the transaction value is subject to constraints in terms of send-
ing and receiving limits of the two counterparties and maximum
transaction size, while the counterparties themselves are precondi-
tioned to proper KYC onboarding. Tracing and opening operations
are accommodated by the design elements of the encrypted ledgers.
Given adequate evidence about suspicious activities of a specific
user or a particular transaction (indexed by its unique transaction
identifier), the authorities can trace transactions made by that user
or reveal the metadata of a given transaction by unlocking the real
world identities of the counterparties or the total value transferred.
Combining these opening and tracing operations, authorities can
identify the labels of specific vertices in the payment graph as well
as trace paths of payment from source to destination and vice-versa.
We stress that such operations require a quorum of entities to agree
and hence cannot be unilaterally invoked by any individual entity
hence precluding a single point of failure.

To summarize, our contributions are as follows:

1. To the best of our knowledge, this is the first time that a fully
privacy-preserving and comprehensively regulated CBDC is mod-
eled formally. Our formal model is in the Universal Composition
(UC) setting [22]. This modeling enables the composition of the
system as payment infrastructure within larger systems.
2. We review the regulatory compliance in the context of payment
systems (KYC, AML, CFT, auditing, etc.) and argue how our ideal
functionality for CBDCs captures such requirements.
3. We put forth a distributed construction that realizes our CBDC
ideal functionality in an efficient manner based on standard crypto-
graphic assumptions. Notably our construction demonstrates that
neither Byzantine broadcast nor agreement is needed in the opti-
mistic execution path of a payment instance, resulting in an optimal
communication pattern and message size in the case when both
sender and receiver are online and willing to finalize a payment.
4. We introduce a novel simulatable approach for tracing suspi-
cious users in the auditing protocol which is employed for double-
spending prevention as well and may be of independent interest
as it is more efficient than previously known techniques in the
broader context of tracing users in conditionally anonymous pay-
ment systems. Moreover, the introduced auditing mechanism does
not require Byzantine agreement or broadcast.

1Dusting attacks were observed in 2022 after the ruling of OFAC to blacklist the
anonymization service Tornado Cash [43].

PEReDi: Privacy-Enhanced, Regulated and Distributed Central Bank Digital Currencies CCS ’22, November 7–11, 2022, Los Angeles, CA, USA.

5. We describe how our efficient CBDC construction can facilitate
additional features such as protocol support for concurrent digital
currency issuance by the central bank for different users, aborting
transactions, and Know Your Transaction (KYT) operations.
It is worth noting that even though we describe our results in the
context of CBDCs, it is immediate that our system can be used
to implement any “stablecoin” or more generally fungible digital
token which has a centrally managed supply. In such case, the
role of the central bank is played by the issuer of the digital token,
who is capable to introduce new tokens increasing the supply as
determined by the issuer’s policy. It is also straightforward to return
such tokens to the issuer by sending them to a designated account
for that purpose.

Related Work. The first system for anonymous electronic cash
was introduced by Chaum [26] and focused on sender anonymity,
while disclosing the recipient’s identity and the amount transferred.
The system also required users to hold information linear in the
number of coins that they possess, a performance consideration
that was addressed in follow up work [19, 24]. Regarding the prob-
lem of revealing the transaction value to the bank, transferable
e-cash [7, 21] introduced a mechanism for double-spending pre-
vention. In this mechanism, coins can be transferred to various
users without communicating with the bank. Hence, coins expand
in size depending on how frequently they are used, which might be
inefficient for retail payments. Additionally, in these schemes coins
are distinguishable based on the number of transfers performed.
Camenisch et al. [20] proposed a token-based e-payment solution in
which the bank can enforce simple rules such as per-user payment
limits. Privacy of senders of transactions is preserved, nonetheless,
the recipient identity and payment amount are leaked.

Considering blockchain-ledger-based anonymous payment sys-
tems like Zerocash [11], Garman et al. [32] addressed how regula-
tion rules could be enforced in such constructions. The disadvantage
of payment systems similar to the Zerocash approach is that they
result in privacy-preserving transactions that are unsuitable for
resource-constrained users. Users should prove knowledge of the
path of a transaction output in a Merkle tree, hence, they must
maintain an up-to-date version of this tree. Moreover, users are
supposed to download the whole ledger and decrypt all transactions
to conclude whether they are recipients of transactions. Instead,
in our construction there is no need to download the ledger. The
necessity for users to be up-to-date with the whole ledger makes
distributed blockchain-ledger based constructions less efficient than
our scheme which is based on signatures of distributed (known)
maintainers on the updated account of each user (this technique
eliminates the need to synchronize with the ledger state, which is
only necessary for auditing).

Danezis and Meiklejohn, [29] introduced RSCoin, a central bank
currency framework which is built around an efficient broadcast
mechanism. In RSCoin, the central bank delegates the responsibility
of verifying transactions to a set of entities called mintettes. Dif-
ferent from traditional cryptocurrency miners, in their framework
mintettes are known and may eventually be held responsible for
any misconduct. RSCoin focuses on the scalability of broadcast
rather than privacy or regulatory compliance. Performance was
improved further with the Fastpay design [9], even though privacy

remained unaddressed. Wüst et al. [48] proposed an anonymous
payment scheme called PRCash in which transactions are verified
in a distributed manner. It achieves privacy and some degree of reg-
ulatory compliance. However, the main drawbacks of PRCash are
that it does not meet full anonymity as validators can link different
transactions and it does not have auditability. Hence, the author-
ities cannot investigate suspicious transactions or counterparties
on demand.

Androulaki et al. [6] introduced a privacy-preserving auditable
token management system. Their proposed scheme uses a UTxO
model in a permissioned blockchain. In contrast to our construction
which is account-based, they target business-to-business scenar-
ios, and they do not offer a comprehensive approach to regulatory
compliance as we do. Damgård et al.’s work [28] addressed the
problem of balancing accountability with privacy. Nevertheless,
their work is in the identity layer for blockchain systems, and they
do not study various features necessary for a CBDC system (e.g.,
currency issuance, transactions between users, financial and reg-
ulatory policies, and so on) in their transaction layer framework.
The tracing mechanism in [28], for each account generation, re-
quires the account holder to compute a pseudorandom-function
PRF using its secret key. There is no concrete implementation for
tracing in their work as they use a secure multi-party computation
for PRF in a black-box manner. More importantly, the input of PRF
is only restricted to be in a range of values making tracing inher-
ently inefficient as authorities are supposed to generate the PRF
values for all possible inputs in the range. In contrast, we achieve
tracing complexity, per user, proportional to the actual number of
transactions issued by that specific user.

Wüst et al. [47] introduced Platypus which is a privacy preserv-
ing and centralized payment system. Platypus relies on a single
authority, our scheme is distributed such that it is robust against
single points of failure with respect to regulation enforcement, and
can work even if the central bank is completely offline. Furthermore,
our scheme offers encrypted (distributed) ledgers which allow com-
pliance with regulation like AML and CFT, by enabling the set of
authorities to trace a malicious user and to discover the transfer
value and identities of the counterparties in any suspicious transac-
tion. Platypus [47] does not offer such capability. We stress that it
is quite delicate to add efficient tracing and opening mechanisms
to a CBDC design as various attacks such as man-in-the-middle
attacks where the sender’s transaction information is not tied to
the receiver’s identity and vice versa can take place and should be
addressed by careful design and modeling choices as we do here.
Moreover, the security properties of a CBDC system in their work
are defined via a game-based approach something which may limit
the composability of their construction, cf. [23]. Finally, another
drawback of Platypus [47] is that the technical details on their
regulation approach, currency issuance by the central bank, and
addressing concurrent and aborted transactions are not formally
studied within their security model.

Tomescu et al.[46] introduced a decentralized payment system
called UTT. Their construction rely on Byzantine fault tolerant in-
frastructure. However, PEReDi obviates Byzantine agreement and
byzantine broadcast from the optimistic execution path of a transac-
tion. Hence, we have an essentially optimal communication pattern
and communication overhead when transaction participants are

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA. Aggelos Kiayias, Markulf Kohlweiss, and Amirreza Sarencheh

honest. In UTT, the receiver of a transaction has to scan all trans-
actions on a ledger similar to blockchain-ledger-based anonymous
payment systems to be able to successfully receive the currency
which increases the load on users’ sides. Regarding regulation en-
forcement, the amount of money that can be anonymously sent in
UTT setting is limited by a monthly budget. PEReDi, on the other
hand, allows for comprehensive regulatory compliance, and can
also enforce them from the recipient’s standpoint.

2 CBDC DESIDERATA AND MODELING
We abstract a CBDC system to three separate classes of entities:
the central bank, a set of maintainers (e.g., commercial banks and
financial institutions), and users. Role separation is an important
element in CBDC design, cf. [1]. The description of these roles
together with the relevant assumptions made about them are as
follows.

1. Central Bank: The central bank issues the digital currency and
is responsible for monetary policy. The monetary supply at any
given time is in the purview of the central bank. However the state
of all users’ accounts is not under its control. Moreover, due to the
potential threat of mass surveillance [27], the central bank is also
not trusted for privacy, i.e. it has no ability to deanonymize the
sender or recipient of a transaction or reveal the transferred values
associated with a specific transaction. Finally, the central bank
is not responsible for enforcing the regulatory rules that govern
payments. We refer to [13], and [27] for more context on the role
of central banks.
2. Maintainers: The authority of validating transactions and facili-
tating various auditing operations needed for regulatory compli-
ance is delegated to a number of approved institutions that we call
the maintainers. As a result, the central bank and regulator are not
needed to be active in any of the system’s day to day operations
(except for issuing currency for the former). The maintainers share
the state of system and are responsible for continuously updating it
as users issue transactions. In a real world deployment, maintainers
can be organizations with an existing connection to the central
bank for instance, commercial banks, financial institutions, and etc.
Note that contrary to e.g., miners in a cryptocurrency blockchain,
the set of all maintainers is public and known to all network par-
ticipants. The basic properties of the system such as the integrity,
regulatory compliance and privacy of transactions emanate from
the actions of the maintainers. We note that the system’s security
and liveness objectives will be met as long as the adversary con-
trols less than a certain threshold number of maintainers. In any
financial system, there exist various operations that are subject to
regulatory rules. Examples of relevant entities developing and/or
enforcing such rules are the Financial Conduct Authority (FCA) in
the UK or the Securities and Exchange Commission (SEC) in the
US. One important aspect of regulatory compliance is KYC; in our
CBDC system abstraction, we assume maintainers are responsible
for onboarding users to the system, i.e., all accounts in the system
that are introduced subject to the approval of the maintainers.
3. Users and Payment interface Providers (PIPs): As any digital cur-
rency system, in a CBDC system, the users can act as either the
sender (a.k.a. buyer, payer, or customer) or the recipient (a.k.a. seller,
payee, or merchant) of digital currency in a transaction. Users of

the currency can be private individuals or organizations. Note that
users engage with the system through software and/or hardware
provided by a PIP. The distinction between users and PIPs will not
be essential for our analysis and modeling, and we will not pursue
it further. We assume that any number of users of the system are
untrusted, i.e. they may behave maliciously against honest users
or other system entities. Privacy of payments should be satisfied
between an honest sender and an honest receiver in a transaction.

2.1 CBDC Security Requirements
In this section, we informally define security requirements that will
be captured by our CBDC ideal functionality. Note that the CBDC
system should be resilient against broad types of attacks (e.g., Sybil
attacks, man-in-the-middle attacks etc.), however, the focus of this
section is on explaining requirements which are more specific to
payment systems and CBDCs; these are as follows.

1. Financial and Regulatory Integrity. No one should be able to
update the account of another user. Furthermore, currency in circu-
lation or the amount of CBDC that is used to conduct transactions
between consumers and businesses does not change as the system
evolves over time except when the central bank decides to create
new money (digital currency). Double-spending prevention is a
crucial requirement for any payment system. A specific balance
of a user should not be used in two transactions without being
updated each time. In addition, after a successful payment between
two users, the account of both of them should be updated correctly
considering all parameters that are included in users’ accounts for
the purpose of checking financial and regulatory rules.
2. Comprehensive Regulatory Compliance. This term means achiev-
ing all the following four items at the same time.

(1) Balance Limit: It limits the amount of funds that a particular user
can possess in a specific period of time. Bank of England [1] and
a report from several Central Banks (that details the principles,
motivations, and risks of CBDC) [13] have mentioned that bal-
ance limit can help prevent bank runs and evasion of wealth
tax. Moreover, the Bank of England (BoE) [1] and the European
central bank (ECB) [12] have addressed that to manage the im-
plications of a CBDC for financial stability, limits of how much
CBDC any individual can hold is necessary.

(2) Receiving and Sending Limit: It limits the amount of received and
sent funds that a particular user can receive or send in a specific
period of time. The sent and received amounts should not exceed
a predefined threshold. European central bank [8], and several
central banks [13] have mentioned that limiting receiving and
sending values can help achieve AML and prevent tax evasion.

(3) Transaction Value Limit and KYT: Reporting requirements and
disclosure of source of funds for large value transactions are
typically required (e.g., in the US filing a report is required for
transactions in cash exceeding $10, 000). To reflect this, we have
a limit on the value of each transaction. Furthermore we discuss
how it is possible to comply with more complex KYT policies
where users should disclose additional information for large value
transactions.

(4) Auditability: In cases of suspicious activities, additional audit-
ing actions are needed (for e.g., filing suspicious activity reports
called SARs [2]). The auditing functionality has two components:

PEReDi: Privacy-Enhanced, Regulated and Distributed Central Bank Digital Currencies CCS ’22, November 7–11, 2022, Los Angeles, CA, USA.

1 Privacy Revocation: Given an anonymous transaction, author-
ities can reveal the real world identities of involved parties and
the transferred value of that transaction. 2 Tracing: Given a real
world identity of a user, authorities can trace anonymous pay-
ments in which the user has engaged (as a sender or recipient).

3. Full Privacy. This property means achieving all the following
three items at the same time.

(1) Identity Privacy: It means for any given transaction the real
world identities of either the sender or the receiver cannot be
revealed (except when auditing). Furthermore, given the identity
of a specific user no one can find the transactions in which the
user has involved as a sender or receiver.

(2) Transaction Privacy: The transferred value by the sender to the
recipient cannot be revealed (except when auditing) and given a
specific amount of transferred value no one can find the transac-
tions that match that same (or related) value. Only the sender and
recipient should know the value of the transaction. Moreover, the
account information of users (e.g., sum of all sent and received
values) are hidden from all network entities.

(3) Full Unlinkability: It contains two parts that are as follows. 1
User Unlinkability: Given an anonymous payment’s real world
identities of the sender or receiver it should not be possible to link
the sender or receiver’s other transactions to the given transac-
tion. 2 Transaction Unlinkability: Given a transaction, it should
not be possible to link any past transaction that resulted in the
possession of the funds used by the current transaction.

4. Accountability.When a user makes a payment it should not be
able to deny it later — there is an obligation to accept the responsi-
bilities that come with a finalized transaction.

2.2 Notations
In this paper, for uniquely identifying parties, we denote the cen-
tral bank by B, the user and its key pair with U and (pkU, skU)
respectively. U also has another secret key 𝑎 used for generating
per-transaction tracing tag. This tag is denoted by T. We denote the
account of U by acc. The notation M𝑗 is used for the 𝑗-th main-
tainer and M for the set of all maintainers. Each maintainer (e.g,
M𝑗) has two pairs of keys for threshold encryption (pk1, 𝑗 , sk1, 𝑗)
and (pk2, 𝑗 , sk2, 𝑗). M𝑗 also, has a pair of key for threshold signa-
ture (pk𝑗 , sk𝑗). We assume |M| = 𝐷 and there are two thresholds,
𝛼 is the threshold number of maintainers required for verifying
transactions on behalf of the central bank and the regulator, and
𝛽 is the threshold number of maintainers required for executing
the Auditing protocol. Maintainers of which 𝛽 number is required
for executing the Auditing protocol is called audit committee. Set
of honest and malicious maintainers are denoted by H and C, and
their associated identifiers (indexes) byH and C respectively. We
assume |C| = 𝑡 . Honest maintainer is denoted byM𝑤 and malicious
maintainer is denoted byM𝑡 .
L 𝑗 denotes the 𝑗-th ledger maintained by 𝑗-th maintainer M𝑗

which is initially empty. We denote the user record which is saved
in L 𝑗 with UR. The sender and receiver of a payment are denoted
by U𝑠 and U𝑟 respectively. Hence, for instance the key pair of the
sender is (pk𝑠 , sk𝑠) and its tracing key is𝑎𝑠 . The value of transaction
that is transferred from a sender (B or U𝑠) to a recipient is denoted
by 𝑣 and the transaction identifier is denoted by 𝑡id.

The balance ofU is denoted by 𝐵, and sum of all sent and received
values of U by 𝑆 and 𝑅 respectively. 𝐵max, 𝑆max, 𝑅max, and𝑉max are
regulatory limits on maximum allowed: balance, sum of all sent
values, sum of all received values, and transaction value respectively.
We denote transaction counter of a user which is incremented for
each transaction (Currency Issuance or Payment) by 𝑥 (the statement
of Zero-Knowledge is denoted by x). The notation {𝑒𝑖 }𝑁𝑖=1 is used
to denote a set {𝑒1, ..., 𝑒𝑁 } with 𝑁 elements. If for every positive
polynomial 𝑝 , there is an integer 𝑖0 where for all integers 𝑖 >

𝑖0, negl(𝑖) < 1
𝑝 (𝑖) holds, the function negl is negligible. We use

F𝑞 to denote a field with 𝑞 elements. PPT stands for probabilistic
polynomial time.

2.3 CBDC Formal Model
We formalize the objectives of a CBDC system as an ideal function-
ality in the Universal Composition framework [22]. The central
bank digital currency scheme consists of six main sub-protocols:
User Registration, Currency Issuance, Payment, Abort Transaction,
Privacy Revocation and Tracing. The last two are called Auditing.
Valid transactions are recorded in the ledger L of each maintainer
M. Hence, there is a history of all verified transactions accessible
by anyone who is permissioned to audit private transactions.
FCBDC is parameterized by𝐷, 𝑡,𝑉max, 𝐵max, 𝑆max, and𝑅max where

𝐷 = 3𝑡 + 1 holds. The functionality FCBDC maintains the following
tables and mappings: 1 𝑇 (U) outputs 0 ifU has not been traced and
1 if it has been traced. Initially, 𝑇 (U) ← ⊥ meaning that for non-
registered users 𝑇 (U) outputs ⊥. 2 Users to their accounts’ state:
𝑊 = (𝐵, 𝑆, 𝑅, 𝑥) ← K(U). Initially, K(U) ← ⊥. 3 𝑈 (U) outputs
pid if the userU has ongoing transaction with pid. Once the transac-
tion is finalized (in the real world the user receives 𝛼 valid signature
shares on its new account)𝑈 (U) is set to ⊥ meaning that user is in
the Idle state, therefore, can start a new transaction. 4 Payment
identifiers pid to transaction identifiers 𝑡id: 𝑡id ← 𝑃 (pid). 5 Set of
maintainers who engage in a specific transaction whose identifier is
𝑡id:M(𝑡id). 6 Users to their most recent transaction metadata and
transaction identifier (U𝑠 ,U𝑟 , 𝑡id, 𝑣) ← Tid(U) where U = U𝑠 or
U = U𝑟 , or (B,U, 𝑡id, 𝑣) ← Tid(U). Initially, Tid(U) ← ⊥. 7 Trans-
action identifiers to transaction metadata (U𝑠 ,U𝑟 , 𝑣) ← Rvk(𝑡id).
8 Users to all their transaction identifiers and their role in each of
them {𝑡𝜏id, role

𝜏 }𝑥
𝜏=1 ← Trc(U).

We note that session identifiers are of the form sid = (B,M, sid′)
such thatM = {M𝑗 }𝐷𝑗=1. Initially, init← 0 where init ∈ {0, 1}. At
the end of Initialization init is set to 1. Afterwards in the beginning
of all parts of the functionality (namely User Registration, Currency
Issuance, Payment, Abort Transaction, Privacy Revocation and Trac-
ing) it is checked whether init has been set to 1. If it has not been set
to 1, FCBDC ignores the received message. In FCBDC, by sending a
message𝑚 toM via delayed output, we mean the following. FCBDC
provides𝑚 and unique identifiers of all maintainers in the setM
to the ideal-world adversary A. FCBDC lets A decide the order of
maintainers in the setM who receives the message𝑚. Also it can
delay the message delivery and prevent delivering a message to a
maintainer.

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA. Aggelos Kiayias, Markulf Kohlweiss, and Amirreza Sarencheh

Functionality FCBDC, part I: Registration and Issuance

Initialization.
1. Upon input (Init, sid) from party 𝑃 ∈ {B,M}: Abort if
sid ≠ (B,M, sid′). Else, output (InitEnd, sid, P) to A. Once
all parties have been initialized, set init← 1.
User Registration.
1. Upon receiving amessage (GenAcc, sid) fromU: IfK(U) =
⊥, output (GenAcc, sid,U) to A. Else, ignore.
2. Upon receiving (Ok.GenAcc, sid,U) from A: Output
(AccGened, sid,U) to M via public-delayed output. Out-
put (AccGened, sid) to U via public-delayed output and set
K(U) ←𝑊 = (0, 0, 0, 0) and 𝑇 (U) ← 0 when delivered.
Currency Issuance.
1. Upon receiving a message (Iss, sid,U, 𝑣) from B: Ignore
if B not in sid. Else, generate a new pid. If U is corrupted,
output (Iss, sid, pid,U, 𝑣) to A. Else, output (Iss, sid, pid)
to A.
2. Upon receiving (AcceptIss, sid, pid, 𝑣) from U: IfK(U) =
⊥ or𝑈 (U) ≠ ⊥, ignore. Else, retrieve𝑊 ← K(U). If 𝐵 + 𝑣 >

𝐵max or 𝑅 + 𝑣 > 𝑅max, ignore. Else, set 𝑈 (U) ← pid and
retrieve 𝑇 (U): (a) If 𝑇 (U) = 0, output (AcceptIss, sid, pid)
to A. (b) Else, output (AcceptIss, sid, pid,U) to A.
3. Upon receiving (GenTnx, sid, pid, 𝑡id) from A: If already
exits a pid′ ≠ pid where 𝑡id ← 𝑃 (pid′), ignore. Else, if
𝑃 (pid) = ⊥, set 𝑃 (pid) ← 𝑡id. Else, retrieve 𝑡 ′id ← 𝑃 (pid),
ignore if 𝑡 ′id ≠ 𝑡id. Set Tid(U) ← (B,U, 𝑡id, 𝑣).
4. Upon receiving (GenTnx, sid, pid,M𝑘) from A: Ignore if
⊥ ← 𝑃 (pid). Else, retrieve 𝑡id ← 𝑃 (pid). Set M(𝑡id) ←
M(𝑡id) ∪ M𝑘 and output (TnxDone, sid, 𝑡id) to M𝑘 via
public-delayed output. Once |M(𝑡id) | ≥ 𝛽 : Set K(U) ←
(𝐵 + 𝑣, 𝑆, 𝑅 + 𝑣, 𝑥 + 1), Rvk(𝑡id) ← (B,U𝑟 , 𝑣), Trc(U) ←
Trc(U) ∪ (𝑡id, receiver). Once |M(𝑡id) | ≥ 𝛼 : Output
(TnxDone, sid,B, 𝑣) to U via private-delayed output and set
𝑈 (U) ← ⊥ when delivered.

In more details the components of our functionality are as fol-
lows. 1 Initialization. This step merely ensures that the relevant
parties (B and all 𝐷 maintainersM) have been activated; the func-
tionality keeps a record of all parties that have been initialized for
the scheme. 2 User Registration. At the registration phase, a user
U should get their account ratified by the system. If the user U has
already been registered by maintainersM, it cannot be registered
again. Note that as it is common in the Universal Composition
setting, we allow the adversary A communications and hence also
block registration (i.e., we do not model denial of service attacks).
The balance and regulation-related information of user𝑊 are set to
initial values which are zero for balance 𝐵, sum of all sent values 𝑆 ,
sum of all received values 𝑅 of user, and transaction counter 𝑥 . The
maintainers are notified for each successful user registration. 3
Currency Issuance. In the Currency Issuance process different from
Payment, only the central bankB is allowed to be the payer and there
are no limits imposed to the funds that the central bank possesses.
First of all, functionality FCBDC checks whether the receiver of dig-
ital currency U is a valid registered user in the system or not which

means if the user U has not already been registered by maintainers
M, it cannot obtain any digital currency. The functionality imposes
the regulatory restrictions of 𝐵 +𝑣 ≤ 𝐵max and 𝑅 +𝑣 ≤ 𝑅max, where
𝑣 is the amount of currency that is issued following the central
bank’s instructions. We remark that based on different regulatory
rules in each jurisdiction, some of the restrictions such as upper
bounding the value central bank B issues 𝑣 ≤ 𝑉max can be easily
captured or the mentioned checks 𝐵 + 𝑣 ≤ 𝐵max and 𝑅 + 𝑣 ≤ 𝑅max
can be ignored for currency issuance transactions (note that as
our construction is account-based rather than token-based; adding
or removing such regulatory compliance constraints is relatively
straightforward). Currency issuance is not a unilateral action from
the central bank B as it also needs the activation of the user U who
receives the digital currency. This highlights one of the distinctions
of our setting compared to blockchain systems: the recipient of
funds U is online during transaction and the protocol is interactive.
The state of the receiver’s account is updated after each currency
issuance action. As before, the adversaryA may block the currency
issuance from going forward. A successful currency issuance will
increase the balance of the receiver U by the indicated amount 𝑣 .
Transaction value, and identity of the receiver is hidden from the
adversary. The ideal-world adversary A is also required to assign
a unique transaction identifier 𝑡id and all transaction metadata are
stored by the functionality in a table Rvk(𝑡id) while the 𝑡id is stored
in Trc(U), where U is the recipient. 4 Payment. As in the case of
Currency Issuance, the Payment process involves both the sender
U𝑠 and the receiver U𝑟 being activated. Contrary to issuance trans-
action, the functionality during payment performs the important
check that the sender U𝑠 has sufficient balance to fund the pay-
ment 𝐵𝑠 − 𝑣 ≥ 0. Interactive payment is necessary as we claim
that FCBDC captures regulatory compliance (e.g., AML, CFT) con-
sidering both parties which means both of them are supposed to
know with whom they are making a payment. Hence, it is vital for
the receiver U𝑟 to actively engage in each payment. A successful
payment protocol will increase the balance of the receiverU𝑟 by the
indicated amount 𝑣 as well as subtract that amount from the balance
of the sender U𝑠 . Additionally, account information of each user
is updated to capture different regulation policies. As in the case
of issuance a unique transaction identifier 𝑡id is determined by the
ideal-world adversaryA and the transaction metadata are stored in
table Rvk(𝑡id) while the 𝑡id is stored in Trc(U𝑟) and Trc(U𝑠), where
U𝑟 and U𝑠 are the sender and recipient of the payment. Note that
the adversaryA is not aware of the transaction value, and identities
of sender and receiver (unless one of them is malicious) and the 𝑡id
is selected independently of them. 5 Abort Transaction. The user
initiates aborting transaction by which it requests an update on
its account’s state. The update which user acquires on its account
depends on the number of maintainers who have actively engaged
in the user’s transaction (either in Currency Issuance or Payment).
The engagement corresponds to signing the account of the user in
the real world. If less than or equal to 𝑡 (either malicious or honest)
maintainers have engaged with the most recent transaction of the
user, the user’s transaction gets rejected meaning that the state
of the account is not changed (only 𝑥 is updated). Otherwise, the
transaction is confirmed and the state of the sender and receiver’s
account is updated (in case of Currency Issuance transaction only

PEReDi: Privacy-Enhanced, Regulated and Distributed Central Bank Digital Currencies CCS ’22, November 7–11, 2022, Los Angeles, CA, USA.

the receiver’s account is updated). 6 Privacy Revocation. Privacy re-
vocation is initiated by the maintainers who submit the transaction
identifier of a fully anonymous payment they wish to revoke. If a
sufficient number of them (this is set to 𝛽) agrees on the revocation
of a specific transaction the functionality will recover the metadata
of the specific transaction and return them to the maintainers and
adversary. 7 Tracing. As in the case of revocation, the maintainers
have to agree they want to trace a specific user. If the quorum is
reached (requiring 𝛽 maintainers) then the set of transaction iden-
tifiers that correspond to the agreed users will be returned to the
maintainers and adversary.

Functionality FCBDC, part II: Payment and Auditing

Payment.
1. Upon receiving a message (GenTnxSnd, sid,U𝑟 , 𝑣) from
U𝑠 : If K(U𝑠) = ⊥ or𝑈 (U𝑠) ≠ ⊥ ignore. Else, retrieve𝑊𝑠 ←
K(U𝑠). If 𝑆𝑠 + 𝑣 > 𝑆max, or 𝐵𝑠 − 𝑣 < 0, or 𝑣 > 𝑉max, ignore.
Else, generate a new pid and set 𝑈 (U𝑠) ← pid. If U𝑟 is
corrupted, output (GenTnxSnd, sid, pid,U𝑠 ,U𝑟 , 𝑣) to A. Else,
retrieve𝑇 (U𝑠): (a) If𝑇 (U𝑠) = 0, output (GenTnxSnd, sid, pid)
to A. (b) Else, output (GenTnxSnd, sid, pid,U𝑠) to A.
2. Upon receiving (GenTnxRcv, sid,U𝑠 , 𝑣) from U𝑟 : If
K(U𝑟) = ⊥ or 𝑈 (U𝑟) ≠ ⊥ ignore. Else, retrieve 𝑊𝑟 ←
K(U𝑟). If 𝐵𝑟 + 𝑣 > 𝐵max, or 𝑅𝑟 + 𝑣 > 𝑅max, ig-
nore. Else, set 𝑈 (U𝑟) ← pid and retrieve 𝑇 (U𝑟): (a) If
𝑇 (U𝑟) = 0, output (GenTnxRcv, sid, pid) to A. (b) Else, out-
put (GenTnxRcv, sid, pid,U𝑟) to A.
3. Upon receiving (GenTnx, sid, pid, 𝑡id) from A: If already
exits a pid′ ≠ pid where 𝑡id ← 𝑃 (pid′), ignore. Else, if
𝑃 (pid) = ⊥, set 𝑃 (pid) ← 𝑡id. Else, retrieve 𝑡 ′id ← 𝑃 (pid),
ignore if 𝑡 ′id ≠ 𝑡id. Set Tid(U𝑠) ← (U𝑠 ,U𝑟 , 𝑡id, 𝑣) and
Tid(U𝑟) ← (U𝑠 ,U𝑟 , 𝑡id, 𝑣).
4. Upon receiving (GenTnx, sid, pid,M𝑘) from A: Ignore if
⊥ ← 𝑃 (pid). Else, retrieve 𝑡id ← 𝑃 (pid). Set M(𝑡id) ←
M(𝑡id) ∪M𝑘 , and output (TnxDone, sid, 𝑡id) toM𝑘 via public-
delayed output. Once |M(𝑡id) | ≥ 𝛽 : Set K(U𝑠) ← (𝐵𝑠 −
𝑣, 𝑆𝑠 + 𝑣, 𝑅𝑠 , 𝑥𝑠 + 1), K(U𝑟) ← (𝐵𝑟 + 𝑣, 𝑆𝑟 , 𝑅𝑟 + 𝑣, 𝑥𝑟 + 1),
Rvk(𝑡id) ← (U𝑠 ,U𝑟 , 𝑣), Trc(U𝑠) ← Trc(U𝑠) ∪ (𝑡id, sender),
and Trc(U𝑟) ← Trc(U𝑟) ∪ (𝑡id, receiver). Once |M(𝑡id) | ≥
𝛼 : Output (TnxDone, sid,U𝑠 , 𝑣) to U𝑟 via private-delayed
output and set 𝑈 (U𝑟) ← ⊥ when delivered. Output
(TnxDone, sid,U𝑟 , 𝑣) to U𝑠 via private-delayed output and
set𝑈 (U𝑠) ← ⊥ when delivered.
Abort Transaction.
1. Upon receiving a message (AbrTnx, sid) from Ua: If
K(U) = ⊥ or Tid(U) = ⊥, ignore. Else, retrieve
(U𝑠 ,U𝑟 , 𝑡id, 𝑣) ← Tid(U). Send (AbrTnx, sid, 𝑡id) to A.
2. Upon receiving (AbrTnx.Ok, sid, 𝑡id) from A: Set
Tid(U) ← ⊥. (a) If |M(𝑡id) | < 𝛽 : Set K(U) ← (𝐵, 𝑆, 𝑅, 𝑥 + 1),
Trc(U) ← Trc(U)∪(𝑡id,Aborted). Output (TnxAborted, sid)
toU via public-delayed output and set𝑈 (U) ← ⊥when deliv-
ered. Output (TnxAborted, sid, 𝑡id) toM via public-delayed
output. (b) Else, given the retrieved tuple (U𝑠 ,U𝑟 , 𝑡id, 𝑣):

Output (TnxDone, sid,U𝑠 , 𝑣) to U𝑟 via private-delayed
output and set 𝑈 (U𝑟) ← ⊥ when delivered. Output
(TnxDone, sid,U𝑟 , 𝑣) to U𝑠 via private-delayed output and
set 𝑈 (U𝑠) ← ⊥ when delivered. Output (TnxDone, sid, 𝑡id)
toM via public-delayed output.
Privacy Revocation.
1. Upon receiving a message (RvkAnm, sid, 𝑡 𝑗id) from main-
tainer M𝑗 : If Rvk(𝑡 𝑗id) = ⊥, ignore. Else, record
(RvkAnm, sid, 𝑡 𝑗id,M𝑗) and output (RvkAnm, sid, 𝑡 𝑗id,M𝑗) to A.
Once |{ 𝑗 |𝑡 𝑗id = 𝑡id}| ≥ 𝛽 , set 𝑋 ← 𝑡id.
2. Upon receiving (RvkAnm.Ok, sid, 𝑡id) from A: If 𝑋 has not
already been set to 𝑡id, ignore. Else, retrieve (U𝑠 ,U𝑟 , 𝑣) ←
Rvk(𝑋). Output (AnmRevoked, sid, 𝑡id,U𝑠 ,U𝑟 , 𝑣)b to M via
public-delayed output.
Tracing.
1. Upon receiving a message (Trace, sid,U𝑗) from
maintainer M𝑗 : If K(U𝑗) = ⊥ ignore. Else, record
(Trace, sid,U𝑗 ,M𝑗) and output (Trace, sid,U𝑗 ,M𝑗) to A.
Once |{ 𝑗 |U𝑗 = U}| ≥ 𝛽 , set 𝑌 ← U.
2. Upon receiving (Trace.Ok, sid,U) fromA: If 𝑌 has not al-
ready been set toU, ignore. Else, retrieve (𝐵, 𝑆, 𝑅, 𝑥) ← K(U).
Retrieve {𝑡𝜏id, role

𝜏 }𝑥
𝜏=1 ← Trc(𝑌). Set 𝑇 (U) ← 1. Output

(Traced, sid, {𝑡𝜏id, role
𝜏 }𝑥

𝜏=1) toM via public-delayed output.
aEither U = U𝑠 or U = U𝑟 holds.

bFor a currency issuance transaction U𝑠 = B.

3 OUR CONSTRUCTION
In our construction, we aim to achieve all the financial, regulatory
and security properties described informally in Sec. 2.1 and formally
in Sec. 2.3. We assume that the whole number of maintainers are
3𝑡 + 1 and 𝑡 of them can be corrupted by the adversary. Hence,
we set the thresholds of blind signature scheme and auditing as
𝛼 = 2𝑡 + 1 and 𝛽 = 𝑡 + 1 respectively.

3.1 High-level Technical Overview
Every user in the system has an account acc for storing the current
balance 𝐵 and other user specific values related to the system’s
financial and regulatory restrictions. Users update their accounts
when transacting. For each new Currency Issuance or payment
transaction, the involved parties in the transaction engage in a
cryptographic protocol with all maintainersM. To this end, users
encode the values of accounts into cryptographic one-time objects
that fix a unique tag T. When updating an account a user discloses
the tag associated to the previous account snapshot acc (which has
been signed by at least 𝛼 maintainers). A user also discloses 𝜎Rnd

M
that is a re-randomization of the consolidated signature 𝜎M on their
previous account snapshot. The disclosed tags are stored by main-
tainers for the purpose of enforcing users to use their most updated
accounts (as in Chaum’s double-spending prevention for online
cash [26]). To support tracing, the protocol in fact computes tags
pseudo-randomly so that they can be recomputed by the Auditing

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA. Aggelos Kiayias, Markulf Kohlweiss, and Amirreza Sarencheh

Receiving

Sending

Idle
(initial state)

Aborting

Figure 1: User’s State Transition in PEReDi’s Transactions. TI:
Transaction Information. AR: Abort Request. 𝜎new

M
: Maintain-

ers’ signature on the new account of the user. 𝜎r
M
: Maintain-

ers’ signature on the refreshed account of the user.

protocol using a special-purpose MPC (multi-party computation)
protocol.

The newly updated account accnew is given to M for signing
together with a proof that the new account accnew is consistent
with the previous account snapshot acc and the transaction value 𝑣
issued by B to U in the Currency Issuance protocol or transferred
from U𝑠 to U𝑟 in the Payment protocol. To this end, users prove
to M in a privacy-preserving way that their new accounts snap-
shots accnew are updated honestly. For instance, the same value
is deducted from U𝑠 ’s account and that value is added to U𝑟 ’s ac-
count. Similarly, the account of the receiver is updated with respect
to the value of digital currency issued by the central bank while
making sure that attacks such as a replay attack on central bank’s
message is prohibited. Moreover, both U𝑠 and U𝑟 ’s new accounts
accnew𝑠 and accnew𝑟 comply with the system’s regulatory compliance
rules. The parties engaged in a payment should acquire at least
𝛼 number of maintainers’ blind signature shares 𝜎new,𝔅 on their
new accounts. They locally unblind these signature shares 𝜎new
and aggregate them to create a single consolidated signature 𝜎new

M
on their new account snapshot. Furthermore, every transaction
results in a transaction identifier 𝑡id that is output to maintainersM
and stored in each maintainer’s ledger L. This identifier contains
cryptographic information concerning the transaction. To ensure
privacy, we prove that the transaction identifier 𝑡id does not leak
any privacy-sensitive information so that we achieve full privacy.
It is only retrievable and reconstructable by an audit committee
using the information saved in L for the purpose of privacy revo-
cation and tracing. In other words, an audit can be done when the
audit committee has been convinced that a specific transaction or
user is suspicious enough for anonymity to be revoked or have its
counterparties be traced respectively. Note that tracing and revoca-
tion can be applied in an adaptive fashion to reconstruct a set of
counterparties across a sequence of payments.

In the following, we describe user’s state transition (in Currency
Issuance and Payment protocols) in the PEReDi’s setting which is
depicted in Fig. 1. Upon receiving environment’sZ command (of
the form (AcceptIss, sid, pid, 𝑣) or (GenTnxRcv, sid, pid,U𝑠 , 𝑣) or
(GenTnxSnd, sid,U𝑟 , 𝑣)) to make a transaction, if the user U is in:

1. The Idle state, it sends its transaction information TI (which
includes U’s new-blinded account accnew,𝔅) to all maintainersM.

Upon sending TI, U’s state is changed to Receiving (from central
bank B or from another user U𝑠) or Sending (to another user U𝑟).
2. One of the states Receiving or Sending (which means U’s most
recent transaction is pending), U ignoresZ’s message.
When state is changed from Idle to Receiving or Sending, the trans-
action can be successful or pending as explained in the following
cases:
1. Successful (e.g., payment participants use their newly updated
accounts, regulatory compliance is met, and maintainers have re-
ceived valid transaction information of both payment participants).
U receives at least 𝛼 valid blind signature shares of maintainers
on accnew,𝔅. Upon generating unblinded-consolidated maintainers’
signature on the new account 𝜎new

M
, state is changed to Idle. Hence,

U who, now, has its new account signed is ready to enter into the
next transaction.
2. Pending (e.g., the sender-receiver pair has not been generated
on sufficiently enough maintainers’ sides). U’s state remains in
Receiving or Sending up to the moment when Z instructs U to
send an abort request AR.
UponZ’s instruction (of the form (AbrTnx, sid)) for sending abort
request AR (which includes U’s refreshed-blinded account accr,𝔅),
U sends AR to M (in this case, if the state of U is not Sending or
Receiving, it ignoresZ’s instruction). Doing so changes U’s state
from either Sending or Receiving to Aborting. The two following
scenarios are for the case when U is in the Aborting state:
1. If at least 𝑡 + 1 maintainers have saved a sender-receiver TI pair
in their ledgers (which guarantees at least one honest maintainer
has the pair), maintainers ignore accr,𝔅 and send their signatures
for accnew,𝔅 to U. Upon generating unblinded-consolidated main-
tainers’ signature on the new account 𝜎new

M
, state is changed to

Idle.
2. Else, maintainers sign accr,𝔅, record the pending transaction
as aborted and ignore accnew,𝔅 included in TI. Upon generating
unblinded-consolidated maintainers’ signature on the refreshed
account 𝜎r

M
, state is changed to Idle.

Furthermore, you can find a pictorial representation of all the sub-
protocols of our construction in Fig. 2-6. Note that for simplicity,
in the figures we do not include the messages between the environ-
mentZ and the parties. For the same reason, we do not depict AR
messages as well.

3.2 Details of the Construction
In this section, we describe our CBDC protocol ΠPEReDi. We will
prove that ΠPEReDi securely realizes FCBDC. Our construction uses
several concrete cryptographic components (see Appendix B) and
ideal functionalities (see Appendix C). Our scheme uses the Coconut
Threshold Blind Signature scheme (TBS) [41, 45] and the Threshold
ElGamal Encryption (TE) scheme [30, 33, 39] in a mostly black-
box manner. However, we reduce the unforgeability of Coconut
to its underlying Pointcheval-Sanders [40] signature component.
Throughout this section when we use Coconut we employ its algo-
rithms as described in Appendix B. However, whenever possible we
merge its ZK proofs with those of the rest of the protocol for improv-
ing performance. PEReDi employs the following functionalities: a
Key-Registration functionality FKR, a communication Channels

PEReDi: Privacy-Enhanced, Regulated and Distributed Central Bank Digital Currencies CCS ’22, November 7–11, 2022, Los Angeles, CA, USA.

functionality FCh (parameterized by different labels, e.g., “sa” for a
sender anonymous channel F sa

Ch), a Broadcast functionality FBC, a
Byzantine Agreement functionality FBA, a RandomOracle function-
ality FRO, a Non-Interactive Zero Knowledge functionality FNIZK
and a Signature of Knowledge functionality FSoK.

We will assume that transacting parties communicate through
variants of FCh as specified. We note that some sender-anonymity
is necessary for privacy, as otherwise network “leakage” will triv-
ially reveal the counterparties of a transaction irrespective of the
strength of cryptographic protections at the transactional level.
We note that in a real-world deployment such network leakage
may be considered tolerable — our analysis would apply directly
to such setting as well, exhibiting the unavoidable concession that
the adversary may break privacy via traffic analysis.

Throughout this section we use the notation of Sec. 2.2. Each
maintainer M has its own ledger L for storing registration and
transaction information. In the Currency Issuance and Payment pro-
tocols of the construction below, the sender (U𝑠 or B) and receiver
(U or U𝑟) separately send their transaction information TI to all
maintainers M. However, a plausible alternative communication
pattern could have the sender sending its transaction information
TI to the receiver and then the receiver sending both the sender’s
TI and its own TI toM. The public key of threshold encryption, the
ciphertexts and tracing tags all are from G (see B.4), and we use
Bilinear maps for threshold blind signature (see B.4 and B.6).

3.2.1 Initialization. The key generation algorithm takes the se-
curity parameter as input and generates the secret key sk and public
key pk for the caller of algorithm as outputs. Participants of the
network independently call the key generation algorithm for each
underlying cryptographic scheme to generate their keys (see Ap-
pendix B for key generation algorithms and see Section 2.2 for
the notations). The public keys of all parties are maintained in a
public-key directory and are assumed to be accessible on demand
by calling FKR with input (RetrieveKey, sid, P) for party P.

3.2.2 User Registration. MaintainersM enroll a user U in the
CBDC system by creating a signature on the user’s initial account.
Afterwards, U uses the signature to create transactions. For regis-
tration, U with a pair of public-secret key (pkU, skU) and a secret
key 𝑎 (used in tag generation) engages in a threshold blind signa-
ture TBS protocol with M where U proves honest creation of its
initial account toM. The output of this protocol is a signed account
𝜎M for U (needed for its first transaction) and the user record UR
saved in the ledger L of each maintainerM (required for additional
investigation during the Auditing protocol). Every user’s account
consists of a tuple of field elements acc = (𝐵, 𝑆, 𝑅, skU, 𝑎𝑥 , 𝑎). Dur-
ing registration, U sets 𝐵, 𝑆, 𝑅 and 𝑥 to 0.

Upon receiving (GenAcc, sid) (fromZ), U who is initially in the
Idle state initiates the User Registration protocol, see Fig. 2, to get
the account signed byM. U generates its registration information
RI𝑗 = (acc𝔅, 𝑎 𝑗 , 𝑟 𝑗 , comM, pkU, 𝜋) as follows:

1. (acc𝔅, ·, {𝑜𝜏 }6𝜏=1) ← PrepareBlindSign(acc, ·),2 and calls {𝑎 𝑗 }𝐷𝑗=1
$←− SSH.Share𝐷,𝛽 (𝑎) to secret share𝑎 and computes ˜com𝑗 = 𝑔𝑎 𝑗 ·ℎ𝑟 𝑗

for 𝑟 𝑗
$←− Z∗𝑝 . It sets comM = { ˜com𝑗 }𝐷𝑗=1.

2. Calls FNIZK with input (Prove, sid, x, w), and receives (Proof,
sid, 𝜋) where 𝜋 is a NIZK proof of knowledge for statement x =

(acc𝔅, comM, pkU) and witness w = (acc,
{
𝑎 𝑗

}𝐷
𝑗=1 , rbacc, rcom) We

denote the randomness used to create the blinded account acc𝔅
and the commitment comM by rbacc and rcom, respectively and
define the relation R(x, w) of NIZK as follows (for formal definition
of the relation and the associated Sigma protocol see F.5.1): 1
The secret key skU in the blinded account acc𝔅 is the secret key
associated with public key pkU. 2 The secret key 𝑎 in acc𝔅 is
the same as the secret key that can be reconstructed from the
shares

{
𝑎 𝑗

}𝐷
𝑗=1 committed in comM. 3 acc𝔅 is generated such that

𝐵 = 𝑆 = 𝑅 = 𝑥 = 0 holds. 4 The user U knows the randomness
rbacc and rcom.
3. CallsFBC with (Broadcast, sid, comM), and then calls (Send, sid,
M𝑗 ,RI𝑗) to the secure channel F sc

Ch for 𝑗 = 1, . . . , 𝐷 . Specifically,
U calls F sc

Ch with the input (Send, sid,M𝑘 ,RI𝑘) (1 ≤ 𝑘 ≤ 𝐷 − 1)
and waits for F sc

Ch to send back (Continue, sid) then U proceeds by
calling F sc

Ch with the input (Send, sid,M𝑘+1,RI𝑘+1).

Each maintainer (M𝑗):

1. Generates pairs of messages. Each pair contains the receivedmes-
sage from FBC and F sc

Ch where both messages have the same identi-
fier U of the user. In other words, it receives (Broadcasted, sid,U′,
comM) from FBC and (Received, sid,U′,RI𝑗) from the secure chan-
nel F sc

Ch. If U
′ = U, M𝑗 generates a pair of messages containing the

received messages from FBC and F sc
Ch. Else, waits to receive such

messages.
2. If comM received from FBC is not equal to comM included in
RI𝑗 received from F sc

Ch, aborts.
3. Else, ignores the message if at least one of the following condi-
tions holds: 1 There already exists a user record UR′ in L 𝑗 where
U′ = U. 2 Upon calling FKR with (RetrieveKey, sid,U), it receives
(KeyRetrieved, sid,U, pk′) such that pkU ≠ pk′. 3 Upon calling
FNIZK with (Verify, sid, x, 𝜋), it receives (Verification, sid, 0).
4 Given (𝑎′

𝑗
, 𝑟 ′

𝑗
) received from F sc

Ch included in RI𝑗 , it computes

𝑔
𝑎′𝑗 · ℎ𝑟

′
𝑗 which is not equal to ˜com𝑗 for ˜com𝑗 ∈ comM. 5 Know

Your Customer (KYC) guidelines for U is not verified.
4. Else, the user record: UR =

(
𝑎 𝑗 , 𝑟 𝑗 , comM,U

)
is saved in L 𝑗 ,

𝜎𝔅
𝑗
← BlindSign(sk𝑗 , ·, ·, acc𝔅),3 calls authenticated channel F ac

Ch
with input (Send, sid,U, 𝜎𝔅

𝑗
), and outputs (AccGened, sid,U) (to

Z).

2Given acc, it calls PrepareBlindSign algorithm of the threshold blind signature
scheme TBS to obtain a blinded account acc𝔅 . {𝑜𝜏 }6𝜏=1 are random field elements.
Here, as explained in the beginning of this section, in contrast to the original
PrepareBlindSign algorithm of Coconut the algorithm does not create a proof. All
necessary ZK proofs are included in (2.).
3Signs associated information of acc𝔅 using the BlindSign algorithm of TBS scheme
to obtain blind signature share 𝜎𝔅

𝑗
.

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA. Aggelos Kiayias, Markulf Kohlweiss, and Amirreza Sarencheh

The user U: 1 Receives (Received, sid,M𝑗 , 𝜎
𝔅
𝑗
) for different 𝑗

from the authenticated channelF ac
Ch. 2 𝜎 𝑗 ← Unblind({𝑜𝜏 }6𝜏=1 , 𝜎

𝔅
𝑗
),4

𝜎M ← TBS.Agg(
{
𝜎 𝑗

}𝛼
𝑗=1 , pk),

5 and outputs (AccGened, sid) (to
Z).

3.2.3 Currency Issuance. Upon receiving (Iss, sid,U, 𝑣) (from
Z), B initiates Currency Issuance protocol as shown in Fig. 3. To
issue a digital currency worth of 𝑣 for U, first of all, B sends 𝑣
to U using the secure-receiver anonymous channel F sra

Ch with in-
put (Send, sid,U, 𝑣) so that U receives (Received, sid,B, 𝑣). Upon
receiving (AcceptIss, sid, pid, 𝑣) (from Z), if U is in Idle state, it
sends the fresh randomness 𝜌 of 𝜓 to B using the secure-sender
anonymous channel F ssa

Ch with input (Send, sid,B, 𝜌).6 𝜓 is fresh
ElGamal threshold encryption of U’s public key pkU and 𝑔𝑣 .

U waits for the message (Continue, sid) from F ssa
Ch and after

receiving it, U sends its transaction information TIU to M which
is of the form: TIU = (𝜓, accnew,𝔅, 𝜎Rnd

M
, T, 𝜋). The components of

TIU is computed by U who does the following:
1. Computes threshold ElGamal encryption as follows setting its
public key pkU and 𝑔𝑣 as plaintexts:𝜓 = (𝜓1,𝜓2,𝜓3) = (𝑔𝜌 , pk𝜌1,M ·
pkU, pk

𝜌

2,M · 𝑔
𝑣).

2. Computes accnew,𝔅 and 𝜎Rnd
M

. Similar to acc𝔅 at User Regis-
tration protocol, to obtain blind signature shares of M on U’s
new account which is as follows: accnew = (𝐵new, 𝑆new, 𝑅new,
skU, 𝑎𝑥+1, 𝑎) = (𝐵old +𝑣, 𝑆old, 𝑅old +𝑣, skU, 𝑎𝑥 ·𝑎, 𝑎), U should prove
that it has a valid signature 𝜎M on its previous account acc and
request a new signature on its new account accnew.
accnew,𝔅 is computed forU’s new account accnew usingPrepareBlindSign
algorithm and 𝜎Rnd

M
is computed for U’s previous account acc (for

which it has consolidated signature 𝜎M) using the ProveSig algo-
rithm of the TBS scheme.
3. Computes T = 𝑔𝑎

𝑥+1
that is a tag used for compelling users to

use their most updated accounts in which 𝑥 is an incrementing
value per transaction. As we will see, same value is used for tracing
the user when it is necessary.
4. CallsFNIZK with input (Prove, sid, x, w), and obtains (Proof, sid, 𝜋)
from it inwhich𝜋 is aNIZK proof for the statement x = (𝜓, accnew,𝔅,
𝜎Rnd
M

, T) We denote the randomness used to create accnew,𝔅, 𝜎Rnd
M

and threshold encryption𝜓 by rreg. Thewitness of𝜋 is w = (acc, rreg, 𝑣)
for the following relation R(x, w) (for formal definition of the rela-
tion and the associated Sigma protocol see 2e in the subsection F.3):
1 The secret key skU used in accnew,𝔅 is the secret key associated
with public key pkU in the threshold encryption𝜓 generated under
the public key of maintainers pk1,M. 2 T is well-formed, the expo-
nent of 𝑔 is the fifth element in accnew. 3 𝜎Rnd

M
is re-randomization

of 𝜎M which is a signature generated by aggregating 𝛼 different
valid signature shares of maintainers on acc. 4 accnew,𝔅 is gen-
erated considering acc and 𝑣 in𝜓 . Hence, 𝐵new = 𝐵old + 𝑣, 𝑆new =

𝑆old, 𝑅new = 𝑅old + 𝑣, sknewU = skU, 𝑎𝑥+1 = 𝑎𝑥 · 𝑎 and 𝑎new = 𝑎 hold

4Unblinds at least 𝛼 different signature shares
{
𝜎 𝑗

}𝛼
𝑗=1 using the Unblind algorithm

of the TBS scheme.
5Aggregates unblinded signature shares using the TBS.Agg algorithm of the TBS
scheme to form one consolidated signature 𝜎M . pk is Coconut’s public key defined in
the Appendix B.
6Upon receiving (AcceptIss, sid, pid, 𝑣) (from Z), if U is in one of the Sending or
Receiving state, U ignores the message.

for accnew. Additionally, 𝐵new ≤ 𝐵max, and 𝑅new ≤ 𝑅max hold7. 5
U knows the randomness rreg.
5. Calls the sender anonymous channel F sa

Ch with input (Send,
sid,M𝑗 , TIU) for 𝑗 = 1, . . . , 𝐷 . Specifically,U callsF sa

Ch with the input
(Send, sid,M𝑘 , TIU) (1 ≤ 𝑘 ≤ 𝐷 − 1) and waits for functionality to
send back (Continue, sid), then U proceeds by calling F sa

Ch with
the input (Send, sid,M𝑘+1, TIU).
Upon receiving (Received, sid,U, 𝜌) from the secure-sender anony-
mous channel F ssa

Ch , B also sends its transaction information TIB =

𝜓 to M. The central bank B calls the authenticated channel F ac
Ch

with input (Send, sid,M𝑗 , TIB) for 𝑗 = 1, . . . , 𝐷 . Specifically, B calls
F ac
Ch with the input (Send, sid,M𝑘 , TIB) (1 ≤ 𝑘 ≤ 𝐷 − 1) and waits

for F ac
Ch to send back (Continue, sid) then B proceeds by calling

F ac
Ch with the input (Send, sid,M𝑘+1, TIB).
Each maintainer (M𝑗):

1. Receives (Received, sid, TIU,mid) from the sender anonymous
channel F sa

Ch and parses TIU as (𝜓, accnew,𝔅, 𝜎Rnd
M

, T, 𝜋) (resp. re-
ceives (Received, sid,B, TIB) from the authenticated channel F ac

Ch
and parses TIB as𝜓).
2. Ignores TIU if at least one of the following conditions holds: 1
There already exists a transaction identifier 𝑡 ′id (for an issuance
transaction or an aborted transaction) in its ledger L 𝑗 where T′ = T
or 𝜓 ′ = 𝜓 (the latter only applies for 𝑡 ′id of issuance transaction).
2 There already exists a transaction identifier 𝑡 ′id (for a payment
transaction) in L 𝑗 where T′𝑠 = T or T′𝑟 = T. 3 Upon calling FNIZK
with (Verify, sid, x, 𝜋), it receives (Verification, sid, 0). 4 Upon
calling VerifySig, it receives 0.
3. Else, records TIU (resp. TIB) in L 𝑗 , and upon receiving TIB (resp.
TIU that passes all the checks) that has 𝜓 ′ value where 𝜓 ′ = 𝜓 , it
saves a sender-receiver pair8 (TIB, TIU) in L 𝑗 .
4. Saves transaction identifier 𝑡id = (𝜓, T) inL 𝑗 ,𝜎new,𝔅𝑗

← BlindSign(sk𝑗 ,
·, ·, accnew,𝔅), calls the sender anonymous channel F sa

Ch with input
(Send, sid,mid, 𝜎new,𝔅

𝑗
), and outputs (Issued, sid, 𝑡id) (toZ).

The userU: 1 Receives (Received, sid,M𝑗 , 𝜎
new,𝔅
𝑗

) for different
𝑗 from the sender anonymous channel F sa

Ch. 2 𝜎new
𝑗
← Unblind(

{𝑜𝜏 }6𝜏=1, 𝜎
new,𝔅
𝑗

), 𝜎new
M
← TBS.Agg({𝜎new

𝑗
}𝛼
𝑗=1, pk), and outputs

(Issued, sid, 𝑣) (toZ).

3.2.4 Payment. To make a payment, upon receiving (GenTnxSnd,
sid,U𝑟 , 𝑣) (from Z), if U𝑠 is in Idle state, it initiates the Payment
protocol as shown in Fig. 4 by sending a fresh randomness 𝜌𝑠
of 𝜓𝑠 and the value of transaction 𝑣 to the receiver U𝑟 via fully
anonymous channel F fa

Ch with input (Send, sid,U𝑟 , (𝜌𝑠 , 𝑣)).9 𝜓𝑠 is a
fresh ElGamal threshold encryption of U𝑠 ’s public key pk𝑠 and 𝑔𝑣 .

On receiving (GenTnxRcv, sid,U𝑠 , 𝑣) (from Z), if U𝑟 is in Idle
state, it sends back a fresh randomness 𝜌𝑟 used in𝜓𝑟 toU𝑠 using the
fully anonymous channel F fa

Ch with input (Send, sid,U𝑠 , 𝜌𝑟).10 𝜓𝑟 is
7Different from Payment protocol in which transferred value is upper bounded, in this
protocol, there is no upper bound on value of transaction 𝑣 issued by B. However, as
addressed before, it is straightforward to add such a constraint if desired.
8Note that it does not matter which transaction information TIU or TIB is received by
M𝑗 first.
9Upon receiving (GenTnxSnd, sid,U𝑟 , 𝑣) (from Z), if U𝑠 is in one of the Sending or
Receiving state, it ignores the message.
10Upon receiving (GenTnxRcv, sid,U𝑠 , 𝑣) (from Z), if U𝑟 is in one of the Sending or
Receiving state, it ignores the message.

PEReDi: Privacy-Enhanced, Regulated and Distributed Central Bank Digital Currencies CCS ’22, November 7–11, 2022, Los Angeles, CA, USA.

ElGamal threshold encryption of U𝑟 ’s public key pk𝑟 . Furthermore,
U𝑠 and U𝑟 generate their transaction information. The transaction
information TI of U𝑠 is of the form: TI𝑠 = (𝜓𝑠 ,𝜓𝑟 , 𝜎𝑠 (𝜓𝑟), accnew,𝔅𝑠 ,

𝜎Rnd
𝑠,M

, T𝑠). The components of TI𝑠 is computed by U𝑠 who does the
following:
1. Computes threshold ElGamal encryptions𝜓𝑠 = (𝜓𝑠,1,𝜓𝑠,2,𝜓𝑠,3) =
(𝑔𝜌𝑠 , pk𝜌𝑠1,M ·pk𝑠 , pk

𝜌𝑠
2,M ·𝑔

𝑣) and𝜓𝑟 = (𝜓𝑟,1,𝜓𝑟,2) = (𝑔𝜌𝑟 , pk𝜌𝑟1,M ·pk𝑟)
2. Computes accnew,𝔅𝑠 , 𝜎Rnd

𝑠,M
, and T𝑠 similar to the Currency Is-

suance protocol where the new account ofU𝑠 is as follows: accnew𝑠 =

(𝐵new𝑠 , 𝑆new𝑠 , 𝑅new𝑠 , sk𝑠 , 𝑎
𝑥𝑠+1
𝑠 , 𝑎𝑠) = (𝐵old𝑠 − 𝑣, 𝑆old𝑠 + 𝑣, 𝑅old𝑠 , sk𝑠 , 𝑎

𝑥𝑠
𝑠 ·

𝑎𝑠 , 𝑎𝑠)
3. CallsFSoK on input (Sign, sid,𝜓𝑟 , x𝑠 , w𝑠) and receives (Signature,
sid,𝜓𝑟 , x𝑠 , 𝜎𝑠 (𝜓𝑟)) from it in which 𝜎𝑠 (𝜓𝑟) is U𝑠 ’s signature of
knowledge on 𝜓𝑟 that also binds the message 𝜓𝑟 to the proof so
that it proves knowledge of w𝑠 satisfying the relation R(x𝑠 , w𝑠) for
the statement x𝑠 = (𝜓𝑠 , accnew,𝔅𝑠 , 𝜎Rnd

𝑠,M
, T𝑠) and the message of sig-

nature𝜓𝑟 .
We denote the set of all random values accnew,𝔅𝑠 , 𝜎Rnd

𝑠,M
, and𝜓𝑠 by r𝑠 .

The witness of 𝜎𝑠 (𝜓𝑟) is w𝑠 = (acc𝑠 , r𝑠 , 𝑣) for the following relation
R(x𝑠 , w𝑠) (for formal definition of the relation and the associated
Sigma protocol see 1f in the subsection F.4): 1 The secret key sk𝑠
used in accnew,𝔅𝑠 is the secret key associated with public key pk𝑠
in the threshold encryption𝜓𝑠 generated under the public key of
maintainers pk1,M. 2 T𝑠 is well-formed, the exponent of 𝑔 is the
fifth element in accnew𝑠 . 3 𝜎Rnd

𝑠,M
is re-randomization of 𝜎𝑠,M which

is a signature generated by aggregating 𝛼 different valid signature
shares of maintainers on acc𝑠 . 4 accnew,𝔅𝑠 is generated considering
acc𝑠 and 𝑣 in 𝜓𝑠 . Hence, 𝐵new𝑠 = 𝐵old𝑠 − 𝑣, 𝑆new𝑠 = 𝑆old𝑠 + 𝑣, 𝑅new𝑠 =

𝑅old𝑠 , sknew𝑠 = sk𝑠 , 𝑎
𝑥𝑠+1
𝑠 = 𝑎𝑥𝑠 · 𝑎𝑠 and 𝑎new𝑠 = 𝑎𝑠 hold for accnew𝑠 .

Additionally, 0 ≤ 𝐵new𝑠 , 𝑆new𝑠 ≤ 𝑆max and 𝑣 ≤ 𝑉max hold. 5 U𝑠

knows the randomness r𝑠 .
The transaction information of U𝑟 , TI𝑟 is similar to TI𝑠 with val-

ues associated toU𝑟 which is TI𝑟 = (𝜓𝑠 ,𝜓𝑟 , 𝜎𝑟 (𝜓𝑠), accnew,𝔅𝑟 , 𝜎Rnd
𝑟,M

, T𝑟).
Hence, everything is similar to what has been described for U𝑠 ex-
cept that accnew,𝔅𝑟 is generated considering acc𝑟 (for which user
reveals 𝜎Rnd

𝑟,M
) and 𝑣 in𝜓𝑠,3 (U𝑟 gets to know 𝜌𝑠). The new account of

the receiver is accnew𝑟 = (𝐵new𝑟 , 𝑆new𝑟 , 𝑅new𝑟 , sk𝑟 , 𝑎
𝑥𝑟+1
𝑟 , 𝑎𝑟) = (𝐵old𝑟 +

𝑣, 𝑆old𝑟 , 𝑅old𝑟 + 𝑣, sk𝑟 , 𝑎𝑥𝑟𝑟 · 𝑎𝑟 , 𝑎𝑟) Hence, 𝐵new𝑟 = 𝐵old𝑟 + 𝑣, 𝑆new𝑟 =

𝑆old𝑟 , 𝑅new𝑟 = 𝑅old𝑟 + 𝑣, sknew𝑟 = sk𝑟 , 𝑎
𝑥𝑟+1
𝑟 = 𝑎

𝑥𝑟
𝑟 · 𝑎𝑟 and 𝑎new𝑟 = 𝑎𝑟

hold for accnew𝑟 . Additionally, 𝐵new𝑟 ≤ 𝐵max and 𝑅new𝑟 ≤ 𝑅max
hold.11

The senderU𝑠 (resp. receiverU𝑟): 1 Calls the sender anonymous
channel F sa

Ch with input (Send, sid,M𝑗 , TI𝑠) (resp. (Send, sid,M𝑗 ,

TI𝑟)) for 𝑗 = 1, . . . , 𝐷 . Specifically, U𝑠 (resp. U𝑟) calls F sa
Ch with the

input (Send, sid,M𝑘 , TI𝑠) (resp. (Send, sid,M𝑘 , TI𝑟)) (1 ≤ 𝑘 ≤ 𝐷−1)
and waits for the channel to send back (Continue, sid), then U𝑠

(resp. U𝑟) proceeds by calling F sa
Ch with the input (Send, sid,M𝑘+1,

TI𝑠) (resp. (Send, sid,M𝑘+1, TI𝑟)). Note that, U𝑠 , after receiving
(Received, sid,U𝑟 , 𝜌𝑟) from F fa

Ch sends its TI𝑠 to M. U𝑟 waits for
the message (Continue, sid) from F fa

Ch and then sends TI𝑟 toM.
Each maintainer (M𝑗):

11Regulatory compliance 𝑣 ≤ 𝑉max has already been considered in TI𝑠 .

1. Receives (Received, sid, TI𝑠 ,mid𝑠) (resp. (Received, sid, TI𝑟 ,mid𝑟))
from the sender anonymous channelF sa

Ch and parses TI𝑠 as (𝜓𝑠 ,𝜓𝑟 , 𝜎𝑠 (𝜓𝑟),
accnew,𝔅𝑠 , 𝜎Rnd

𝑠,M
, T𝑠) (resp. parses TI𝑟 as (𝜓𝑠 ,𝜓𝑟 , 𝜎𝑟 (𝜓𝑠), accnew,𝔅𝑟 , 𝜎Rnd

𝑟,M
,

T𝑟)).
2. Ignores TI𝑠 (resp. TI𝑟) if at least one of the following conditions
holds: 1 There already exists a transaction identifier 𝑡 ′id (for an
issuance transaction or an aborted transaction) in its ledger L 𝑗

where T′ = T𝑠 (resp. T′ = T𝑟). 2 There already exists a transac-
tion identifier 𝑡 ′id (for a payment transaction) in L 𝑗 where T′𝑠 = T𝑠
or T′𝑟 = T𝑠 (resp. T′𝑠 = T𝑟 or T′𝑟 = T𝑟). 3 Upon calling FSoK with
(Verify, sid,𝜓𝑟 , x𝑠 , 𝜎𝑠 (𝜓𝑟)) (resp. (Verify, sid,𝜓𝑠 , x𝑟 , 𝜎𝑟 (𝜓𝑠))), it re-
ceives (Verified, sid,𝜓𝑟 , x𝑠 , 𝜎𝑠 (𝜓𝑟), 0) (resp. (Verified, sid,𝜓𝑠 , x𝑟 ,
𝜎𝑟 (𝜓𝑠), 0)). 4 Upon calling VerifySig, it receives 0.
3. Else, records TI𝑠 (resp. TI𝑟) in L 𝑗 , and upon receiving a transac-
tion information (which has not been ignored w.r.t. the conditions
above) that has (𝜓 ′𝑠 ,𝜓 ′𝑟) value where (𝜓 ′𝑠 ,𝜓 ′𝑟) = (𝜓𝑠 ,𝜓𝑟), it saves a
sender-receiver pair (TI𝑠 , TI𝑟) in L 𝑗 .
4. Saves transaction identifier 𝑡id = (𝜓𝑠 ,𝜓𝑟 , T𝑠 , T𝑟) in L 𝑗 , and signs
associated information of accnew,𝔅𝑠 and accnew,𝔅𝑟 using BlindSign
algorithm to obtain blind signature shares 𝜎new,𝔅

𝑠,𝑗
and 𝜎new,𝔅

𝑟,𝑗
that

belong to U𝑠 and U𝑟 respectively.
5. Calls the sender anonymous channel F sa

Ch with input (Send, sid,
mid𝑠 , 𝜎

new,𝔅
𝑠,𝑗

) and (Send, sid,mid𝑟 , 𝜎
new,𝔅
𝑟, 𝑗

). Outputs (TnxDone, sid, 𝑡id)
(toZ).

The senderU𝑠 (resp. receiverU𝑟): 1 Receives (Received, sid,M𝑗 ,

𝜎
new,𝔅
𝑠,𝑗

) (resp. (Received, sid,M𝑗 , 𝜎
new,𝔅
𝑟,𝑗

)) for different 𝑗 from the

sender anonymous channelF sa
Ch. 2 𝜎new

𝑠,𝑗
← Unblind({𝑜𝑠,𝜏 }6𝜏=1, 𝜎

new,𝔅
𝑠,𝑗

)
(resp.𝜎new

𝑟,𝑗
← Unblind({𝑜𝑟,𝜏 }6𝜏=1, 𝜎

new,𝔅
𝑟,𝑗

)) 3 𝜎new
𝑠,M
← TBS.Agg({𝜎new

𝑠,𝑗
}𝛼
𝑗=1,

pk) (resp. 𝜎new
𝑟,M
← TBS.Agg({𝜎new

𝑟, 𝑗
}𝛼
𝑗=1, pk)). Outputs (TnxDone,

sid,U𝑟 , 𝑣) (toZ) (resp. U𝑟 outputs (TnxDone, sid,U𝑠 , 𝑣)).

3.2.5 Abort Transaction. In Currency Issuance and Payment pro-
tocols it can be the case that a user’s specific transaction is pending
which means the transaction has passed the checks maintainers
do. However, sufficiently enough maintainers have not received a
valid TI of user’s counterparty so far. As a result, a pair of sender-
receiver has not been generated on sufficiently enough maintain-
ers’ sides which implies that the user has not received 𝛼 valid
signature shares on its new account so far. In this case, upon re-
ceiving environment’s instruction (AbrTnx, sid) for aborting the
transaction, U sends an abort request AR toM which is of the form
AR = (accr,𝔅, 𝜎Rnd

M
, T, 𝜋) in which accr = (𝐵r, 𝑆r, 𝑅r, skU, 𝑎𝑥+1, 𝑎) =

(𝐵old, 𝑆old, 𝑅old, skU, 𝑎𝑥 · 𝑎, 𝑎) is a refreshed account of the user and
accr,𝔅 is a blinded version of it. T = 𝑔𝑎

𝑥+1
is the most recent tag

used in the user’s most recent transaction. 𝜋 is a NIZK proof of
knowledge. Specifically, the user U acts as follows:

1. Computes accr,𝔅 and 𝜎Rnd
M

. accr,𝔅 is computed for U’s refreshed
account accr using PrepareBlindSign algorithm and 𝜎Rnd

M
is com-

puted for U’s previous account acc (for which it has consolidated
signature 𝜎M) using the ProveSig algorithm of the TBS scheme.
2. Calls FNIZK with input (Prove, sid, x, w), and obtains (Proof,
sid, 𝜋) from it in which 𝜋 is a NIZK proof for the statement x =

(accr,𝔅, 𝜎Rnd
M

, T) We denote the randomness used to create accr,𝔅

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA. Aggelos Kiayias, Markulf Kohlweiss, and Amirreza Sarencheh

and𝜎Rnd
M

by rabr. Thewitness of 𝜋 is w = (acc, rabr) for the following
relation R(x, w) (for formal definition of the relation and the associ-
ated Sigma protocol see F.5.2): 1 T is well-formed, the exponent of𝑔
is the fifth element in accr. 2 𝜎Rnd

M
is re-randomization of 𝜎M which

is a signature generated by aggregating 𝛼 different valid signature
shares of maintainers on acc. 3 accr,𝔅 is generated considering
acc. Hence, 𝐵r = 𝐵old, 𝑆r = 𝑆old, 𝑅r = 𝑅old, skrU = skU, 𝑎𝑥+1 = 𝑎𝑥 · 𝑎
and 𝑎r = 𝑎 hold for accr. 4 U knows the randomness rabr.
3. Calls the sender anonymous channel F sa

Ch with input (Send, sid,
M𝑗 ,AR) for 𝑗 = 1, . . . , 𝐷 . Specifically, U calls F sa

Ch with the input
(Send, sid,M𝑘 ,AR) (1 ≤ 𝑘 ≤ 𝐷 − 1) and waits for channel to send
back (Continue, sid,mid𝑘), then U proceeds by calling F sa

Ch with
the input (Send, sid,M𝑘+1,AR).
Each maintainer M𝑗 :
1. Receives (Received, sid,AR,mid) from the sender anonymous
channel F sa

Ch and parses AR as
(
accr,𝔅, 𝜎Rnd

M
, T, 𝜋

)
.

2. Ignores AR if at least one of the following items holds: 1 There
already exists a transaction identifier 𝑡 ′id (for an aborted transac-
tion) in its ledger L 𝑗 where T′ = T. 2 Upon calling FNIZK with
(Verify, sid, x, 𝜋), it receives (Verification, sid, 0). 3 Upon call-
ing VerifySig, it receives 0.
3. Else, calls Byzantine Agreement FBA with input (Agree, sid, 𝑑 𝑗).
The value of 𝑑 𝑗 is set to 1 if M𝑗 sees a 𝑡id (for issuance or payment
transaction) in L 𝑗 that contains T. Else, 𝑑 𝑗 is set to 0. The output
of FBA is (Agreed, sid, 𝑄).
4. If 𝑄 = 1 (which means at least one honest maintainer has saved
a 𝑡id in its ledger that contains T):12

(1) Each maintainer (e.g.,M𝑖) who has already had sender-receiver
pair saved in L𝑖 , sends it to others by calling the authenticated
channel F ac

Ch with the input (Send, sid,M𝑗 , (TI𝑠 , TI𝑟)) for 𝑗 =

1, . . . , 𝐷 ∧ 𝑗 ≠ 𝑖 .
(2) Maintainers receive sender-receiver pair from F ac

Ch (e.g., M𝑗 re-
ceives (Received, sid,M𝑖 , (TI𝑠 , TI𝑟)) sent byM𝑖).

(3) Each maintainer verifies the validity of TI𝑠 and TI𝑟 by calling
FSoK and ignore them if they are not valid. Else, each maintainer
e.g., M𝑘 signs the new-blinded accounts of users accnew,𝔅𝑠 and
accnew,𝔅𝑟 included in TI𝑠 and TI𝑟 to obtain 𝜎

new,𝔅
𝑠,𝑘

and 𝜎new,𝔅
𝑟,𝑘

.
(4) M𝑘 saves the associated 𝑡id = (𝜓𝑠 ,𝜓𝑟 , T𝑠 , T𝑟) inL𝑘 (if it has not al-

ready done so), calls the sender anonymous channel F sa
Ch with in-

put (Send, sid,mid𝑠 , 𝜎
new,𝔅
𝑠,𝑘

) and (Send, sid,mid𝑟 , 𝜎
new,𝔅
𝑟,𝑘

), and
outputs (TnxDone, sid, 𝑡id) (toZ).

The sender U𝑠 (resp. receiver U𝑟): 1 Receives (Received, sid,M𝑘 ,

𝜎
new,𝔅
𝑠,𝑘

) (resp. (Received, sid,M𝑘 , 𝜎
new,𝔅
𝑟,𝑘

)) for different 𝑘 from the
sender anonymous channel F sa

Ch. 2 Similar to payment, U𝑠 (resp.
U𝑟) unblinds and aggregates the received signatures, and outputs
(TnxDone, sid,U𝑟 , 𝑣) (toZ) (resp. U𝑟 outputs (TnxDone, sid,U𝑠 , 𝑣)).
Having the signature on its refreshed account 𝜎r

M
, the user can

enter into new transaction by generating its new account accnew
using accr (rather than acc).
5. Else (meaning that 𝑄 = 0):

12For the ease of understanding, in the protocol description, we address payment trans-
actions. Issuance transactions are similar as we have (TIB, TIU) instead of (TI𝑠 , TI𝑟)
thus the tag T is only checked against TIU . Moreover, maintainers who have TIB , they
send the proof of receiving it from authenticated channel so that others make sure
that TIB has been sent by B.

(1) Maintainers who have already saved 𝑡id = (𝜓𝑠 ,𝜓𝑟 , T𝑠 , T𝑟) in their
ledgers where T𝑠 or T𝑟 equals to T delete it.

(2) Each maintainer saves the aborted transaction identifier in its
ledger which is of the form 𝑡id = (Aborted, T)

(3) Each maintainer e.g., M𝑗 signs the refreshed-blinded account of
the user accr,𝔅

𝑗
to obtain 𝜎

r,𝔅
𝑗

.
(4) M𝑗 calls the sender anonymous channelF sa

Ch with input (Send, sid,
mid, 𝜎r,𝔅

𝑗
). Outputs (TnxAborted, sid, 𝑡id) (toZ).

The user U: 1 Receives (Received, sid,M𝑗 , 𝜎
r,𝔅
𝑗
) for different 𝑗

from the sender anonymous channel F sa
Ch. 2 Similar to payment, U

unblinds and aggregates the received signatures. Outputs (TnxAborted,
sid) (toZ).

3.2.6 Auditing. For achieving auditability, we make use of trust
dispersal, cf. [1]. Users trust several authorities independently serv-
ing in different roles so that no single authority has unlimited power
or authority over any user. Hence, for privacy revocation and user
tracing, we also take advantage of threshold cryptography. For exe-
cuting any type of auditing the participation of at least 𝛽 = 𝑡 + 1
maintainers is required where 𝑡 is the maximum number of main-
tainer that can be corrupted by the adversary. As we have set the
threshold of TBS scheme to 𝛼 = 2𝑡 + 1, always there exists at least
𝑡 + 1 honest maintainers that have the transaction identifier 𝑡id of
a transaction saved in their ledgers. This protocol parses as two
sub-protocols Privacy Revocation and Tracing which are as follows.

I Privacy Revocation: Given a privacy-preserved payment made
by a specific sender-receiver pair, the audit committee revokes the
privacy of the transaction by decrypting the ciphertexts and identi-
fying transaction participants and value of the transaction. Upon
receiving a message (RvkAnm, sid, 𝑡 𝑗id) (fromZ) the 𝑗-th maintainer
M𝑗 does the following as shown in Fig. 5:
1. Finds the associated (𝜓𝑠 ,𝜓𝑟) saved in its ledger13 L 𝑗 for the
given 𝑡

𝑗

id, and computes its decryption shares that are 𝜓 sk1, 𝑗
𝑠,1 and

𝜓
sk2, 𝑗
𝑠,1 for𝜓𝑠 , and𝜓

sk1, 𝑗
𝑟,1 for𝜓𝑟 , and callsFNIZK with input (Prove, sid,

x𝑗 , w𝑗), and obtains (Proof, sid, 𝜋 𝑗) from it in which 𝜋 𝑗 is a NIZK
proof for the statement x𝑗 = (𝜓𝑠,1,𝜓𝑟,1,𝜓

sk1, 𝑗
𝑠,1 ,𝜓

sk2, 𝑗
𝑠,1 ,𝜓

sk1, 𝑗
𝑟,1) The wit-

ness of 𝜋 𝑗 is w𝑗 = (sk1, 𝑗 , sk2, 𝑗) for the following relation R(x𝑗 , w𝑗):
log𝑔 pk1, 𝑗 = log𝜓𝑠,1

𝜓
sk1, 𝑗
𝑠,1 , log𝑔 pk2, 𝑗 = log𝜓𝑠,1

𝜓
sk2, 𝑗
𝑠,1 , and log𝑔 pk1, 𝑗 =

log𝜓𝑟,1
𝜓
sk1, 𝑗
𝑟,1 hold. For the associated Sigma protocol see Section

F.5.3.
2. Calls the authenticated channel F ac

Ch with the input (Send, sid,
M𝑖 , (x𝑗 , 𝜋 𝑗)) for 𝑖 = 1, . . . , 𝐷 ∧ 𝑖 ≠ 𝑗 , and considering the equa-
tions pk𝑠 = 𝜓𝑠,2/

∏
𝑗 ∈𝐼 𝜓

sk1, 𝑗_1, 𝑗
𝑠,1 , 𝑔𝑣 = 𝜓𝑠,3/

∏
𝑗 ∈𝐼 𝜓

sk2, 𝑗_2, 𝑗
𝑠,1 , pk𝑟 =

𝜓𝑟,2/
∏

𝑗 ∈𝐼 𝜓
sk1, 𝑗_1, 𝑗
𝑟,1 such that |𝐼 | = 𝛽 and _ is Lagrange coeffi-

cient, upon obtaining 𝛽 valid decryption shares from F ac
Ch (sent

by other maintainers), computes pk𝑠 , 𝑔𝑣 , and pk𝑟 . Validity of shares
is checked by calling FNIZK.
3. CallsFKR with (RetrieveID, sid, pk𝑠) and (RetrieveID, sid, pk𝑟)
to retrieve unique identifiers of users by receiving (IDRetrieved,

13(For currency issuance transaction, given the fact that the sender is B, the crypto-
graphic information saved for auditing only contains𝜓 . However, in the following,
we describe the steps of Privacy Revocation protocol for a payment transaction and
currency issuance transaction is similar.

PEReDi: Privacy-Enhanced, Regulated and Distributed Central Bank Digital Currencies CCS ’22, November 7–11, 2022, Los Angeles, CA, USA.

sid,U𝑠 , pk𝑠) and (IDRetrieved, sid,U𝑟 , pk𝑟) from FKR. Computes
𝑣 from 𝑔𝑣 . Outputs (AnmRevoked, sid, 𝑡id,U𝑠 ,U𝑟 , 𝑣) (toZ).

Note that to have an efficient zero-knowledge and signature of
knowledge proofs the user sets 𝑔𝑣 as one of the plaintexts in 𝜓 .
One of the system’s regulatory compliance is having a limit on
transaction value 𝑣 < 𝑉max which makes extracting 𝑣 from 𝑔𝑣

efficient forM in this sub-protocol.
II Tracing: Given a suspicious user’s unique identifier, the audit

committee traces all the transactions made by that user. First of
all, they find user’s record generated in User Registration protocol.
Using secret shares of 𝑎, maintainers compute all tracing tags of the
user without revealing 𝑎. We will see that to achieve simulatability 𝑎
should not be revealed. The maintainers mutually compute tracing
tags such that the last computation results in a tag that does not
exist in their ledgers. In this way, tracing authorities know the
most recent transaction of U. As described in Currency Issuance and
Payment protocols, all transactions contain tracing tag values of
the form 𝑔𝑎

𝑥
in which 𝑎 is user’s (tracing tag) secret key and 𝑥 is

its transaction counter (note that for aborted transactions the user
also increments 𝑥 by one). The threshold for TBS is 𝛼 which results
the fact that always there exists at least 𝛽 honest maintainers who
have 𝑡id of a specific transaction saved in their ledgers. However,
the number of honest maintainers who have the whole 𝑡id of all
transactions of a specific user is not 𝛽 (we do not use any agreement
in the main body of payment). Hence, we have to make sure that
at each step of threshold tag computation all maintainers are able
to compute the tag T and afterwards check their ledgers to see if
such a tag has already existed or not. They do so, by sending their
next tag-computation shares in a provable way to others so that
having 𝛽 shares, the next tag is computed. This process is done up
to the point that maintainers do not see the computed tag T in their
ledgers so that there is no 𝛽 shares for computing the next tag.

Upon receiving a message (Trace, sid,U𝑗) the 𝑗-th maintainer
M𝑗 does the following as shown in Fig. 6:

1. Finds the associated user record UR =
(
𝑎 𝑗 , 𝑟 𝑗 , comM,U

)
saved14

in L 𝑗 , and proves that the share contributed by itself to the thresh-
old tag computation (equation at step 4) is consistent with 𝑗-th
commitment ˜com𝑗 ∈ comM (broadcasted at User Registration proto-
col toM). More specifically, for the witness w𝑗 =

(
𝑎 𝑗 , 𝑟 𝑗

)
and a given

group element ¤𝑔 = 𝑔𝑎
𝑒
where initially 𝑒 ← 0 and the statement

x𝑗 =
(

˜com𝑗 , ¤𝑔𝑎 𝑗 , ¤𝑔
)
it calls FNIZK with input (Prove, sid, x𝑗 , w𝑗),

and receives (Proof, sid, 𝜋 𝑗) from FNIZK. Verification of 𝜋 𝑗 outputs
(Verification, sid, 1) if R(x𝑗 , w𝑗) (which is as follows) holds: ˜com𝑗

is the commitment to the same 𝑎 𝑗 as what is in the maintainer’s
share ¤𝑔𝑎 𝑗 . For the relation and the associated Sigma protocol see
Sec. F.5.4.
2. Calls the authenticated channel F ac

Ch with the input (Send, sid,
M𝑖 , (x𝑗 , 𝜋 𝑗)) for 𝑖 = 1, . . . , 𝐷 ∧ 𝑖 ≠ 𝑗 , and considering the equation
¤𝑔𝑎 =

∏
𝑗 ∈𝐼 (¤𝑔𝑎 𝑗)

∏
𝑖∈𝐼 ,𝑖≠𝑗 (𝑖/(𝑖−𝑗)) where |𝐼 | = 𝛽 and

∏
𝑖∈𝐼 ,𝑖≠𝑗 (𝑖/(𝑖 − 𝑗))

is a Lagrange coefficient, upon obtaining 𝛽 valid tracing shares
from F ac

Ch (sent by other maintainers), computes ¤𝑔𝑎 . In other words,
upon receiving (Received, sid,M𝑖 , (x𝑖 , 𝜋𝑖)) from F ac

Ch (sent byM𝑖),
M𝑗 calls FNIZK with (Verify, sid, x𝑖 , 𝜋𝑖).M𝑗 ignores the received

14For simplicity we ignore the subscript 𝑗 for U𝑗 .

message from F ac
Ch if FNIZK outputs (Verification, sid, 0). Else,

having 𝛽 valid shares, it computes ¤𝑔𝑎 based on the equation above.
3. If there already exists a transaction identifier 𝑡id (for issuance,
payment, or aborted transaction) in its ledger L 𝑗 that includes ¤𝑔𝑎
as a tag T, proceeds from step 2 with 𝑒 ← 𝑒 + 1 and records the
associated 𝑡id of computed T and role.
Else, sends a message to all maintainers via calling F ac

Ch with input
(Send, sid,M𝑖 , (0, ¤𝑔𝑎)) for 𝑖 = 1, . . . , 𝐷 ∧ 𝑖 ≠ 𝑗 (which means it has
not seen ¤𝑔𝑎 in L 𝑗).
4. If it receives 2𝑡 + 1 messages of the form (Received, sid,M𝑖 ,

(0, ¤𝑔𝑎)) (in which ¤𝑔 = 𝑔𝑎
𝑒
) from F ac

Ch, outputs transaction identi-
fiers and corresponding roles (Traced, sid, {𝑡𝜏id, role

𝜏 }𝑥
𝜏=1) (to Z),

and aborts. Else, waits for at least 𝑡 + 1 messages of the form
(Received, sid,M𝑖 , (x𝑖 , 𝜋𝑖)) (in which ¤𝑔 = 𝑔𝑎

𝑒+1
) from F ac

Ch and
proceeds from step 2.
For currency issuance transaction 𝑡id only contains tracing tag of
receiver and for payment transaction it contains tracing tags of
both sender and receiver. Based on the computed tracing tags each
maintainer knows that the traced user was sender or receiver of the
transaction for which 𝑡id is retrieved (tag of the sender appears first
in 𝑡id). Hence, M output (Traced, sid, {𝑡𝜏id, role

𝜏 }𝑥
𝜏=1) (to Z) such

that role can be 𝑠𝑒𝑛𝑑𝑒𝑟 or 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑟 . Note that given the {𝑡𝜏id}
𝑥
𝜏=1

values, the counterparties of the suspicious user can be revealed
using the Privacy Revocation protocol described above. To make
tracing efficient, at User Registration protocol each user proves that
𝑥 starts from 1 and then increments by one for each transaction.

4 PEReDi SECURITY AND PERFORMANCE
Our main theorem is given below.

Theorem 1. Assuming that Pedersen commitments are perfectly
hiding, Pointcheval-Sanders signatures are EUF-CMA secure in the
random oracle model, ElGamal encryption is IND-CPA secure, and
the d-strong Diffie-Hellman problem is hard, there exist two polyno-
mials 𝑝𝑐 and 𝑝𝑢 such that no PPT environment Z can distinguish
the real-world execution EXECΠPEReDi,A,Z from the ideal-world exe-
cution EXECFCBDC,S,Z with advantage better thanAdvEUF-CMA

A +𝑝𝑐 ·
AdvIND-CPAA +𝑝𝑢 ·Advd-sDDHA in the {FKR, FCh, FBA, FBC, FRO, FNIZK,
FSoK}-hybrid model with static corruptions in the presence of arbi-
trary number of malicious users, up to 𝑡 malicious maintainers out
of 𝐷 = 3𝑡 + 1 total maintainers and a potentially malicious central
bank.

Due to the lack of space, we provide the security proof in Ap-
pendix E. For the same reason, we explain the performance details
of transactions in PEReDi in Appendix F.

ACKNOWLEDGMENTS
This work was supported by Input Output (iohk.io) through their
funding of the Edinburgh Blockchain Technology Lab.

REFERENCES
[1] Central bank digital currency—opportunities, challenges and design. Bank of

England, Discussion Paper, March, 2020.
[2] SAR Online User Guidance. National Crime Agency, 2021. Available in this Link.
[3] Know Your Transaction (KYT) – The Key to Combating Transaction Laundering.

Insights into Payments and Beyond, December 2020. Available in this Link.
[4] Joseph A. Akinyele, Christina Garman, Ian Miers, Matthew W. Pagano, Michael

Rushanan, Matthew Green, and Aviel D. Rubin. Charm: a framework for rapidly

https://www.nationalcrimeagency.gov.uk/what-we-do/crime-threats/money-laundering-and-illicit-finance/suspicious-activity-reports
https://thepaypers.com/expert-opinion/know-your-transaction-kyt-the-key-to-combating-transaction-laundering--1246231

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA. Aggelos Kiayias, Markulf Kohlweiss, and Amirreza Sarencheh

prototyping cryptosystems. Journal of Cryptographic Engineering, 3(2):111–128,
June 2013.

[5] Sarah Allen, Srđjan Čapkun, Ittay Eyal, Giulia Fanti, Bryan A Ford, James Grim-
melmann, Ari Juels, Kari Kostiainen, Sarah Meiklejohn, Andrew Miller, et al.
Design choices for central bank digital currency: Policy and technical considera-
tions. Technical report, National Bureau of Economic Research, 2020.

[6] Elli Androulaki, Jan Camenisch, Angelo De Caro, Maria Dubovitskaya, Kaoutar
Elkhiyaoui, and Björn Tackmann. Privacy-preserving auditable token pay-
ments in a permissioned blockchain system. Cryptology ePrint Archive, Report
2019/1058, 2019. https://eprint.iacr.org/2019/1058.

[7] Foteini Baldimtsi, Melissa Chase, Georg Fuchsbauer, and Markulf Kohlweiss.
Anonymous transferable E-cash. In Jonathan Katz, editor, PKC 2015, volume 9020
of LNCS, pages 101–124. Springer, Heidelberg, March / April 2015.

[8] European Central Bank. Exploring anonymity in central bank digital currencies.
2019.

[9] Mathieu Baudet, George Danezis, and Alberto Sonnino. Fastpay: High-
performance byzantine fault tolerant settlement. In Proceedings of the 2nd ACM
Conference on Advances in Financial Technologies, pages 163–177, 2020.

[10] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm
for designing efficient protocols. In Proceedings of the 1st ACM Conference on
Computer and Communications Security, pages 62–73, 1993.

[11] Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers,
Eran Tromer, and Madars Virza. Zerocash: Decentralized anonymous payments
from bitcoin. In 2014 IEEE Symposium on Security and Privacy, pages 459–474.
IEEE Computer Society Press, May 2014.

[12] Ulrich Bindseil. Tiered CBDC and the Financial System. 2020. Available in this
Link.

[13] BIS. Bank of canada, european central bank, bank of japan, sveriges riksbank,
swiss national bank, bank of england, board of governors of the federal reserve,
and bank for international settlements. central bank digital currencies: founda-
tional principles and core features,, 2020. Available in this Link.

[14] Ole Bjerg. Designing new money-the policy trilemma of central bank digital
currency. 2017.

[15] Manuel Blum, Paul Feldman, and Silvio Micali. Non-interactive zero-knowledge
and its applications (extended abstract). In 20th ACM STOC, pages 103–112. ACM
Press, May 1988.

[16] Elette Boyle, Ran Cohen, and Aarushi Goel. Breaking the 𝑜 (
√
𝑛)-bit barrier:

Byzantine agreement with polylog bits per party. In Proceedings of the 2021 ACM
Symposium on Principles of Distributed Computing, pages 319–330, 2021.

[17] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille, and
Greg Maxwell. Bulletproofs: Short proofs for confidential transactions and more.
In 2018 IEEE symposium on security and privacy (SP), pages 315–334. IEEE, 2018.

[18] Jan Camenisch, Manu Drijvers, Tommaso Gagliardoni, Anja Lehmann, and Gre-
gory Neven. The wonderful world of global random oracles. In Annual Inter-
national Conference on the Theory and Applications of Cryptographic Techniques,
pages 280–312. Springer, 2018.

[19] Jan Camenisch, Susan Hohenberger, and Anna Lysyanskaya. Compact e-cash. In
Ronald Cramer, editor, Advances in Cryptology - EUROCRYPT 2005, 24th Annual
International Conference on the Theory and Applications of Cryptographic Tech-
niques, Aarhus, Denmark, May 22-26, 2005, Proceedings, volume 3494 of Lecture
Notes in Computer Science, pages 302–321. Springer, 2005.

[20] Jan Camenisch, Susan Hohenberger, and Anna Lysyanskaya. Balancing account-
ability and privacy using e-cash (extended abstract). In Roberto De Prisco and
Moti Yung, editors, SCN 06, volume 4116 of LNCS, pages 141–155. Springer,
Heidelberg, September 2006.

[21] Sébastien Canard and Aline Gouget. Anonymity in transferable e-cash. In
Steven M. Bellovin, Rosario Gennaro, Angelos D. Keromytis, and Moti Yung,
editors, ACNS 08, volume 5037 of LNCS, pages 207–223. Springer, Heidelberg,
June 2008.

[22] Ran Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In 42nd FOCS, pages 136–145. IEEE Computer Society Press, October
2001.

[23] Ran Canetti. Security and composition of cryptographic protocols: A tutorial.
Cryptology ePrint Archive, Report 2006/465, 2006. https://eprint.iacr.org/2006/
465.

[24] Agnes Hui Chan, Yair Frankel, and Yiannis Tsiounis. Easy come - easy go
divisible cash. In Kaisa Nyberg, editor, Advances in Cryptology - EUROCRYPT
’98, International Conference on the Theory and Application of Cryptographic
Techniques, Espoo, Finland, May 31 - June 4, 1998, Proceeding, volume 1403 of
Lecture Notes in Computer Science, pages 561–575. Springer, 1998.

[25] Melissa Chase and Anna Lysyanskaya. On signatures of knowledge. Cryptology
ePrint Archive, Report 2006/184, 2006. https://eprint.iacr.org/2006/184.

[26] David Chaum. Blind signatures for untraceable payments. In David Chaum,
Ronald L. Rivest, and Alan T. Sherman, editors, CRYPTO’82, pages 199–203.
Plenum Press, New York, USA, 1982.

[27] David Chaum, Christian Grothoff, and Thomas Moser. How to issue a central
bank digital currency. arXiv preprint arXiv:2103.00254, 2021.

[28] Ivan Damgård, Chaya Ganesh, Hamidreza Khoshakhlagh, Claudio Orlandi, and
Luisa Siniscalchi. Balancing privacy and accountability in blockchain identity
management. In Kenneth G. Paterson, editor, CT-RSA 2021, volume 12704 of
LNCS, pages 552–576. Springer, Heidelberg, May 2021.

[29] George Danezis and Sarah Meiklejohn. Centrally banked cryptocurrencies. In
NDSS 2016. The Internet Society, February 2016.

[30] Taher ElGamal. A public key cryptosystem and a signature scheme based on
discrete logarithms. In G. R. Blakley and David Chaum, editors, CRYPTO’84,
volume 196 of LNCS, pages 10–18. Springer, Heidelberg, August 1984.

[31] Juan A Garay, Jonathan Katz, Ranjit Kumaresan, and Hong-Sheng Zhou. Adap-
tively secure broadcast, revisited. In Proceedings of the 30th annual ACM SIGACT-
SIGOPS symposium on Principles of distributed computing, pages 179–186, 2011.

[32] Christina Garman, Matthew Green, and Ian Miers. Accountable privacy for
decentralized anonymous payments. In Jens Grossklags and Bart Preneel, editors,
FC 2016, volume 9603 of LNCS, pages 81–98. Springer, Heidelberg, February 2016.

[33] Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk, and Tal Rabin. Secure
distributed key generation for discrete-log based cryptosystems. Journal of
Cryptology, 20(1):51–83, January 2007.

[34] Jens Groth, Rafail Ostrovsky, and Amit Sahai. Perfect non-interactive zero knowl-
edge for np. In Annual International Conference on the Theory and Applications of
Cryptographic Techniques, pages 339–358. Springer, 2006.

[35] Yashvanth Kondi and abhi shelat. Improved straight-line extraction in the random
oracle model with applications to signature aggregation. Cryptology ePrint
Archive, Paper 2022/393, 2022. https://eprint.iacr.org/2022/393.

[36] Michael Kumhof and Clare Noone. Central bank digital currencies-design princi-
ples and balance sheet implications. 2018.

[37] Anna Lysyanskaya and Leah Namisa Rosenbloom. Universally composable
sigma-protocols in the global random-oracle model. Cryptology ePrint Archive,
Paper 2022/290, 2022. https://eprint.iacr.org/2022/290.

[38] Mary Maller, Sean Bowe, Markulf Kohlweiss, and Sarah Meiklejohn. Sonic:
Zero-knowledge SNARKs from linear-size universal and updatable structured
reference strings. In Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang, and
Jonathan Katz, editors, ACM CCS 2019, pages 2111–2128. ACM Press, November
2019.

[39] Torben P. Pedersen. A threshold cryptosystem without a trusted party (extended
abstract) (rump session). In Donald W. Davies, editor, EUROCRYPT’91, volume
547 of LNCS, pages 522–526. Springer, Heidelberg, April 1991.

[40] David Pointcheval and Olivier Sanders. Short randomizable signatures. Cryptol-
ogy ePrint Archive, Paper 2015/525, 2015.

[41] Alfredo Rial and Ania M Piotrowska. Security analysis of coconut, an attribute-
based credential scheme with threshold issuance. Cryptology ePrint Archive,
2022.

[42] Nicolas Saberhagen. Cryptonote v. 2.0. https://cryptonote.org/whitepaper.pdf,
October 17 2013.

[43] Mat Di Salvo. Tornado Cash User ’Dusts’ Hundreds of Public Wallets. Aug 9,
2022. Available in this Link.

[44] Adi Shamir. How to share a secret. Communications of the ACM, 22(11):612–613,
1979.

[45] Alberto Sonnino,Mustafa Al-Bassam, Shehar Bano, SarahMeiklejohn, andGeorge
Danezis. Coconut: Threshold issuance selective disclosure credentials with
applications to distributed ledgers. In NDSS 2019. The Internet Society, February
2019.

[46] Alin Tomescu, Adithya Bhat, Benny Applebaum, Ittai Abraham, Guy Gueta,
Benny Pinkas, and Avishay Yanai. Utt: Decentralized ecash with accountable
privacy. Cryptology ePrint Archive, 2022.

[47] Karl Wüst, Kari Kostiainen, and Srdjan Capkun. Platypus: A central bank digital
currency with unlinkable transactions and privacy preserving regulation. Cryp-
tology ePrint Archive, Report 2021/1443, 2021. https://eprint.iacr.org/2021/1443.

[48] Karl Wüst, Kari Kostiainen, Vedran Capkun, and Srdjan Capkun. PRCash: Fast,
private and regulated transactions for digital currencies. In Ian Goldberg and
Tyler Moore, editors, FC 2019, volume 11598 of LNCS, pages 158–178. Springer,
Heidelberg, February 2019.

[49] Qian Yao. A systematic framework to understand central bank digital currency.
Science China Information Sciences, 61(3):1–8, 2018.

A PICTORIAL REPRESENTATION OF PEReDi
SUB-PROTOCOLS

In the following, we provide a pictorial representation of all the
important sub-protocols of our construction in Fig. 2-6.

B CRYPTOGRAPHIC SCHEMES
In this section, we present the basic cryptographic primitives that
we use in our construction ΠPEReDi.

https://eprint.iacr.org/2019/1058
https://www.ecb.europa.eu/pub/pdf/scpwps/ecb.wp2351~c8c18bbd60.en.pdf
https://www.bis.org/publ/othp33.htm
https://eprint.iacr.org/2006/465
https://eprint.iacr.org/2006/465
https://eprint.iacr.org/2006/184
https://eprint.iacr.org/2022/393
https://eprint.iacr.org/2022/290
https://decrypt.co/107090/tornado-cash-dusts-public-wallets-jimmy-fallon-brian-armstrong-steve-aoki-logan-paul?amp=1
https://eprint.iacr.org/2021/1443

PEReDi: Privacy-Enhanced, Regulated and Distributed Central Bank Digital Currencies CCS ’22, November 7–11, 2022, Los Angeles, CA, USA.

3
4

Maintainers’ consolidated-unblinded
signature on user’s initial account.

Maintainers’ blind signature shares
on user’s account.

Registration Information

(Blinded account, share of tracing tag’s secret key, randomness,
commitment on tracing tag’s secret key, public key, and NIZK proof).

1

2

Commercial Banks and Financial Institutions

5

6

Sybil-resilient user record

is saved in ledgers that will be used
in the Auditing protocol.

User

Figure 2: User Registration Protocol

User

Central Bank

1

2

(Threshold encryption of public key and transaction
value, blinded-updated account, re-randomized
signature on previous account, tracing tag, and
NIZK proof).

Commercial Banks and Financial Institutions

Transaction identifier

is saved in ledgers that will be
used for compelling users to
use their most updated
accounts and in the auditing
protocol as well.

3

3

4(Threshold encryption of user’s public key and
transaction value). 5

Maintainers’ blind signature shares
on user’s updated account.

6

Maintainers’ consolidated-
unblinded signature
on user’s updated account.

7

Figure 3: Currency Issuance Protocol

Receiver

Sender

1

2

(Threshold encryption of sender and receiver’s public keys and
transaction value, signature of knowledge, blinded-updated account,
re-randomized signature on previous account, and tracing tag).

Commercial Banks and Financial Institutions

Transaction identifier

is saved in ledgers that will be
used for compelling users to
use their most updated
accounts (e.g., to achieve
double-spending prevention)
and in the Auditing protocol as
well.

4

5

Maintainers’ blind signature shares ,

on sender and receiver’s updated accounts.

6

Maintainers’ consolidated-
unblinded signature on
receiver’s updated account.

7

3

3

Maintainers’ consolidated-
unblinded signature on
sender’s updated account.

7

6

Figure 4: Payment Protocol

Commercial Banks and Financial Institutions

Transaction identifier of a suspicious
privacy-preserved payment.

Associated threshold encryptions of
public keys and transaction value.

1 2

3
4

5 Decryption shares.
6

Figure 5: Privacy Revocation Protocol

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA. Aggelos Kiayias, Markulf Kohlweiss, and Amirreza Sarencheh

Commercial Banks and Financial Institutions

Identifier of a
suspicious user.

1

3

Associated user record.

2

4
Tracing share.

5

6

Figure 6: Tracing Protocol

B.1 ElGamal Encryption Scheme
The security of ElGamal encryption scheme [30] depends on the
hardness of the discrete logarithm problem. It contains the three
following algorithms:

(1) KeyGen: Let 𝑝 be a large prime and 𝑔 be a generator of Z∗𝑝 .
The receiver (maintainer in ΠPEReDi) randomly chooses the

secret key sk
$←− Z∗𝑝 and computes pk = 𝑔sk mod 𝑝 . Then, the

receiver publishes public parameters (𝑔, 𝑝, pk) while keeping
sk secret.

(2) Encryption: For encrypting a message 𝑚 ∈ Z𝑝 , the user

randomly chooses an integer 𝑘
$←− Z∗𝑝 and set the ciphertext

𝑐 = (𝑐1, 𝑐2) =
(
𝑔𝑘 , pk𝑘𝑚

)
mod 𝑝 .

(3) Decryption: Given 𝑐 = (𝑐1, 𝑐2), the receiver computes the
message𝑚 = 𝑐2/𝑐1sk mod 𝑝 .

B.2 Threshold ElGamal Encryption Scheme
Using a distributed key generation protocol introduced in [39]
or [33] the secret key of threshold ElGamal encryption scheme
is generated. We denote that sk𝑗 is the secret key of decryption
for 𝑗-th maintainer and pk𝑗 = 𝑔sk𝑗 is the corresponding public
key share. Hence, we have sk =

∑
𝑗 ∈𝐼 sk𝑗_ 𝑗 such that _ 𝑗 is the

Lagrange coefficient for the 𝑗-th share and |𝐼 | = 𝛽 . To decrypt an
ElGamal ciphertext 𝑐 = (𝑐1, 𝑐2) =

(
𝑔𝑘 , pk𝑘𝑚

)
, 𝑗-th maintainer first

publishes 𝑐sk𝑗1 , and then generates a proof that log𝑔 pk𝑗 = log𝑐1 𝑐
sk𝑗
1

hold to prove its honest contribution. Finally, the plaintext𝑚 can
be retrieved as𝑚 = 𝑐2/

∏
𝑗 ∈𝐼 𝑐

sk𝑗_ 𝑗

1 .
In our construction, assuming the first message as user’s pub-

lic key 𝑚1 = pkU and the second message as 𝑚2 = 𝑔𝑣 in which
𝑣 is the value of transaction, we extend the ciphertext such that
𝑐 = (𝑐1, 𝑐2, 𝑐3) =

(
𝑔𝑘 , pk𝑘1,M𝑚1, pk𝑘2,M𝑚2

)
. Hence, 𝑗-th maintainer

has two secret keys sk1, 𝑗 and sk2, 𝑗 such that pk1, 𝑗 = 𝑔sk1, 𝑗 and
pk2, 𝑗 = 𝑔sk2, 𝑗 . Similarly, we have sk1,M =

∑
𝑗 ∈𝐼 sk1, 𝑗_1, 𝑗 and

sk2,M =
∑

𝑗 ∈𝐼 sk2, 𝑗_2, 𝑗 , and their associated public keys are pk1,M =

𝑔sk1,M and pk2,M = 𝑔sk2,M respectively. The 𝑗-th maintainer’s de-

cryption shares are 𝑐sk1, 𝑗1 and 𝑐sk2, 𝑗1 . It also generates a proof that

log𝑔 pk1, 𝑗 = log𝑐1 𝑐
sk1, 𝑗
1 and log𝑔 pk2, 𝑗 = log𝑐1 𝑐

sk2, 𝑗
1 hold to prove

its honest contribution. The messages 𝑚1 and 𝑚2 are retrieved
by computing𝑚1 = 𝑐2/

∏
𝑗 ∈𝐼 𝑐

sk1, 𝑗_1, 𝑗
1 and𝑚2 = 𝑐3/

∏
𝑗 ∈𝐼 𝑐

sk2, 𝑗_2, 𝑗
1

respectively.

B.3 Secret Sharing
Shamir introduced (𝐷, 𝛽)-threshold scheme [44]. A 𝛽-out-of-𝐷
threshold secret sharing of a secret (field element) message𝑚 is
sharing 𝑚 into 𝐷 parts such that any 𝛽 shares together can be
used to reconstruct the secret𝑚. However, fewer shares provide
no information at all about𝑚.

Definition B.1. A (𝐷, 𝛽)-secret sharing scheme SSH = (SSH.Share,
SSH.Agg) consists of the following algorithms:

(1) {𝑚𝑖 }𝐷𝑖=1
$←− SSH.Share𝐷,𝛽 (𝑚): Upon receiving𝑚 as input it

outputs 𝐷 secret shares such that𝑚𝑖 denotes the 𝑖-th share
of𝑚.

(2) 𝑚∗ ←− SSH.Agg𝐷,𝛽 {𝑚𝑖 }𝑖∈𝐼 : Upon receiving 𝛽 shares (|𝐼 | =
𝛽) as input it outputs a reconstructed secret𝑚∗.

Moreover, SSH generally satisfies Correctness and Privacy. The
former guarantees that Pr [𝑚∗ =𝑚] = 1 and the latter requires that
given 𝛽 − 1 or fewer shares of either𝑚1 or𝑚0 no PPT adversaryA
can guess which message was shared with probability better than
1
2 + negl(_).

B.3.1 Shamir’s Secret Sharing Scheme. In order to share a secret 𝑎
into 𝛽 shares, one needs to choose 𝛽−1 randomnumbers

(
𝑎1, . . . , 𝑎𝛽−1

)
to construct a polynomial 𝑃 (𝑥) = 𝑎 + 𝑎1𝑥 + . . . + 𝑎𝛽−1𝑥𝛽−1. Every
share 𝑖 is then given by (𝑥𝑖 , 𝑃 (𝑥𝑖)) where 𝑥𝑖 ’s are distinct and non-
zero. The reconstruction is derived from interpolation which is as
follows: 𝑎 =

∑
𝑖∈G 𝑦𝑖 ·

∏
𝑗≠𝑖, 𝑗 ∈G

−𝑥 𝑗

𝑥𝑖−𝑥 𝑗
.

B.4 Bilinear Maps
The threshold blind signature employed in PEReDi uses bilinear
maps. Assuming that (G, G̃,G𝑡) are groups of prime order 𝑝 , we
define a map 𝑒 : G × G̃→ G𝑡 with the following properties:

• Bilinearity: for all 𝑔 ∈ G, 𝑔 ∈ G̃, and (𝑥,𝑦) ∈ F2𝑝 , 𝑒 (𝑔𝑥 , 𝑔𝑦) =
𝑒 (𝑔,𝑔)𝑥𝑦 holds.
• Non-degeneracy: for all generators 𝑔 ∈ G and 𝑔 ∈ G̃, 𝑒 (𝑔,𝑔)
generates G𝑡 .
• Efficiency: there exists an efficient algorithm G

(
1_

)
that

outputs the pairing group setup
(
𝑝,G, G̃,G𝑡 , 𝑒, 𝑔, 𝑔

)
and an

efficient algorithm to compute 𝑒 (𝑔,𝑔) for any 𝑔 ∈ G and 𝑔 ∈
G̃. In type 3 pairings, G ≠ G̃ and there exists no efficiently
computable homomorphism 𝑓 : G̃→ G.

PEReDi: Privacy-Enhanced, Regulated and Distributed Central Bank Digital Currencies CCS ’22, November 7–11, 2022, Los Angeles, CA, USA.

B.5 Pointcheval-Sanders Signature Scheme
Pointcheval-Sanders signature scheme [40] is existentially unforge-
able and randomizable which consists of the following algorithms:

(1) KeyGen(1_, 𝑞): Run G(1_) to obtain a pairing group setup
[= (𝑝,G, G̃,G𝑡 , 𝑒, 𝑔, 𝑔). Pick random secret key sk = (𝑥, {𝑦𝜏 }𝑞𝜏=1)
fromZ𝑞+1𝑝 . Set the public key pk = ([, 𝛼, {𝛽𝜏 }𝑞𝜏=1) ← ([,𝑔

𝑥 , {𝑔𝑦𝜏 }𝑞
𝜏=1).

(2) Sign(sk, {𝑚𝜏 }𝑞𝜏=1): Select random 𝑟 from Z𝑝 , and set ℎ ← 𝑔𝑟 .
Output the signature 𝜎 = (ℎ, 𝑠) ← (ℎ,ℎ𝑥+{𝑦𝜏𝑚𝜏 }𝑞𝜏=1)

(3) VerifySig(pk, 𝜎, {𝑚𝜏 }𝑞𝜏=1): Output 1 ifℎ ≠ 1 and 𝑒 (ℎ, 𝛼 ∏𝑞

𝜏=1 𝛽
𝑚𝜏
𝜏)

= 𝑒 (𝑠, 𝑔). Else, output 0.

B.6 Threshold Blind Signature
Coconut [45] is an optional declaration credential construction
supporting distributed threshold issuance based on Pointcheval-
Sanders signature [40]. Unlinkable optional attribute disclosures,
and public and private attributes are supported by the framework
of [45] even when a part of issuing authorities are malicious or
offline. Recently, Rial et al. [41] have analyzed the security prop-
erties of Coconut [45] by introducing an ideal functionality which
captures all the security properties of a threshold blind signature
TBS. They introduced a new construction that follows Coconut
with a few modifications to realize TBS ideal functionality. They
have some changes for issuing blind signatures and for signature
show.

Informally TBS scheme satisfies unforgeability, unlinkability and
blindness. Unforgeability guarantees unfeasibility for a corrupted
user to convince an honest verifier that it has a valid signature if in
fact it has not. Blindness guarantees unfeasibility for a corrupted
signer to learn any information about the message𝑚 during the
execution of IssueSig protocol, except for the fact that𝑚 satisfies
a predicate. Unlinkability guarantees unfeasibility for a corrupted
signer or verifier to learn anything about the message𝑚, except
that it satisfies a predicate, or to link the execution of ProveSig
with either another execution of ProveSig or with the execution of
IssueSig.

We use the improved version of Coconut [45] introduced in [41]
with modifications (to their construction such as modelling the com-
munication between the user and the signing maintainer, and em-
bedding the NIZK proofs needed throughout the TBS scheme into
proofs generated in our construction as we describe in Sec. 3.2) as a
TBS scheme. The scheme TBS = (TBS.KeyGen, IssueSig, TBS.Agg,
ProveSig,VerifySig) consists of the following algorithms and pro-
tocols (maintainers and signers are interchangeable).

TBS.KeyGen algorithm can be replaced by a distributed key
generation protocol using e.g., [39] or [33].

1
({(

pk𝑗 , sk𝑗
)}𝐷

𝑗=1
, pk

)
← TBS.KeyGen

(
1_, 𝐷, 𝛼

)
(1) Run

(
𝑝,G, G̃,G𝑡 , 𝑒, 𝑔, 𝑔

)
← G

(
1_

)
and pick 𝑞 random gener-

ators {ℎ𝜏 }𝑞𝜏=1 ← G and set the parameters 𝑝𝑎𝑟 ← (𝑝,G, G̃,G𝑡 ,
𝑒, 𝑔, 𝑔, {ℎ𝜏 }𝑞𝜏=1).

(2) Choose (𝑞 + 1) polynomials
(
𝑣, {𝑤𝜏 }𝑞𝜏=1

)
of degree (𝛼 −

1) with random coefficients in Z𝑝 and set
(
𝑥, {𝑦𝜏 }𝑞𝜏=1

)
←(

𝑣 (0), {𝑤𝜏 (0)}𝑞𝜏=1
)
.

(3) For 𝑗 = 1 to 𝐷 , set the secret key sk𝑗 of each maintainer
M𝑗 as sk𝑗 =

(
𝑥 𝑗 ,

{
𝑦 𝑗,𝜏

}𝑞
𝜏=1

)
←

(
𝑣 (𝑗), {𝑤𝜏 (𝑗)}𝑞𝜏=1

)
and set

the verification key pk𝑗 of each maintainer M𝑗 as pk𝑗 =(
𝛼 𝑗 ,

{
𝛽 𝑗,𝜏 , 𝛽 𝑗,𝜏

}𝑞
𝜏=1

)
← (𝑔𝑥 𝑗 , {𝑔𝑦 𝑗,𝜏 , 𝑔𝑦 𝑗,𝜏 }𝑞

𝜏=1) .

(4) Set pk =

(
𝑝𝑎𝑟, 𝛼,

{
𝛽𝜏 , 𝛽𝜏

}𝑞
𝜏=1

)
← (𝑝𝑎𝑟, 𝑔𝑥 , {𝑔𝑦𝜏 , 𝑔𝑦𝜏 }𝑞

𝜏=1).

2 IssueSig protocol consists three following algorithms (PrepareBlindSign,
BlindSign,Unblind).

2.1. (acc𝔅, 𝜋𝑠 , {𝑜𝜏 }𝑞𝜏=1) ← PrepareBlindSign(acc, 𝜙) algorithm
is run by user U which is as follows:

(1) Parse acc15 as acc = {𝑚𝜏 }𝑞𝜏=1 ∈ Z𝑝 . Pick a random value

𝑜
$←− Z𝑝 and compute com = 𝑔𝑜

∏𝑞

𝜏=1 ℎ
𝑚𝜏
𝜏 and send com to

FRO16 and receive ℎ from FRO.
(2) Compute commitments to each of the messages. For {𝜏}𝑞

𝜏=1,
pick random 𝑜𝜏 ← Z𝑝 and set com𝜏 = 𝑔𝑜𝜏ℎ𝑚𝜏 .

(3) Compute a NIZK proof 𝜋𝑠 for the following relation: 𝜋𝑠 =

NIZK{({𝑚𝜏 }𝑞𝜏=1 , 𝑜, {𝑜𝜏 }
𝑞

𝜏=1), com = 𝑔𝑜
∏𝑞

𝜏=1 ℎ
𝑚𝜏
𝜏 ∧{com𝜏 = 𝑔𝑜𝜏ℎ𝑚𝜏 }𝑞

𝜏=1
∧ 𝜙 ({𝑚𝜏 }𝑞𝜏=1 = 1)} and set

acc𝔅 =

(
com, {com𝜏 }𝑞𝜏=1 , ℎ

)
2.2. 𝜎𝔅

𝑗
← BlindSign(sk𝑗 , 𝜙, 𝜋𝑠 , acc𝔅) algorithm is run by main-

tainer M𝑗 which is as follows:
(1) Send com to FRO and receive ℎ′ from FRO. Abort if ℎ ≠ ℎ′

or 𝜋𝑠 is not correct.
(2) Compute 𝑐 = ℎ𝑥 𝑗

∏𝑞

𝜏=1 com
𝑦 𝑗,𝜏

𝜏 and set the blind signature
share

𝜎𝔅𝑗 = (ℎ,ℎ𝑥 𝑗

𝑞∏
𝜏=1

com
𝑦 𝑗,𝜏

𝜏)

2.3. 𝜎 𝑗 ← Unblind({𝑜𝜏 }𝑞𝜏=1 , 𝜎
𝔅
𝑗
) algorithm is run by user U which

is as follows:
(1) Parse 𝜎𝔅

𝑗
as (ℎ′, 𝑐). Abort if ℎ ≠ ℎ′.

(2) Compute

𝜎 𝑗 =
(
ℎ, 𝑠 𝑗

)
←

(
ℎ, 𝑐

𝑞∏
𝜏=1

𝛽
−𝑜𝜏
𝑗,𝜏

)
(3) Abort if 𝑒

(
ℎ, 𝛼 𝑗

∏𝑞

𝜏=1 𝛽
𝑚𝜏

𝑗,𝜏

)
= 𝑒

(
𝑠 𝑗 , 𝑔

)
does not hold.

3 𝜎M ← TBS.Agg(
{
𝜎 𝑗

}𝛼
𝑗=1 , pk) User U does the following:

(1) Let 𝐸 ∈ [1, 𝐷] be a set of 𝛼 indices of maintainers inM.
(2) For all 𝑗 ∈ 𝐸, evaluate at 0 the Lagrange basis polynomials

𝑙 𝑗 =
[∏

𝑖∈𝐸,𝑖≠𝑗 (𝑖)/(𝑖 − 𝑗)
]
mod 𝑝 .

(3) For all 𝑗 ∈ 𝐸, take 𝜎 𝑗 =
(
ℎ, 𝑠 𝑗

)
and compute the signature

𝜎M = (ℎ, 𝑠) ← ©«ℎ,
∏
𝑗 ∈𝐸

𝑠
𝑙 𝑗
𝑗

ª®¬
15acc is the tuple of field elements as a message in the signature.
16FRO denotes functionality of random oracle which is a black box that provides a
truly random response from an output domain for every unique request.

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA. Aggelos Kiayias, Markulf Kohlweiss, and Amirreza Sarencheh

(4) Abort if 𝑒
(
ℎ, 𝛼

∏𝑞

𝜏=1 𝛽
𝑚𝜏
𝜏

)
= 𝑒 (𝑠, 𝑔) does not hold.

4 (𝜎Rnd
M

, 𝜋𝑣, 𝜑) ← ProveSig(𝜑, 𝜎M, {𝑚𝜏 }𝑞𝜏=1 , pk)
User U does the following:

(1) Parse 𝜎M as (ℎ, 𝑠), pick 𝑟 $←− Z𝑝 and 𝑟 ′
$←− Z𝑝 .

(2) Compute 𝜎 int
M

= (ℎ′, 𝑠 ′) ←
(
ℎ𝑟
′
, 𝑠𝑟
′ (ℎ′)𝑟

)
(3) Parse acc as {𝑚𝜏 }𝑞𝜏=1. Compute ^ ← 𝛼

∏𝑞

𝜏=1 𝛽
𝑚𝜏
𝜏 𝑔𝑟

(4) Compute the NIZK proof 𝜋𝑣 for the relation: 𝜋𝑣 = NIZK

{({𝑚𝜏 }𝑞𝜏=1 , 𝑟) : ^ = 𝛼
∏𝑞

𝜏=1 𝛽
𝑚𝜏
𝜏 𝑔𝑟 ∧ 𝜑

(
{𝑚𝜏 }𝑞𝜏=1

)
= 1}

(5) Set

𝜎RndM =

(
𝜎 intM , ^

)
=

((
ℎ′, 𝑠 ′

)
, 𝛼

𝑞∏
𝜏=1

𝛽
𝑚𝜏
𝜏 𝑔𝑟

)
5 (1, 0) ← VerifySig(𝜎Rnd

M
, 𝜋𝑣, 𝜑, pk)

Maintainer (M𝑗) does the following:

(1) Parse 𝜎Rnd
M

as
(
𝜎 int
M

, ^

)
and output 0 if ℎ′ = 1 or if 𝑒 (ℎ′, ^) =

𝑒 (𝑠 ′, 𝑔) does not hold.
(2) Verify 𝜋𝑣 and output 0 if the proof is not correct. Else, output

1.

C FUNCTIONALITIES
The description of the ideal functionalities used in our protocol is as
follows. Functionality FKR models key registration. A party calls the
functionalitywith (Register, sid, 𝑘𝑒𝑦) to register a key for the iden-
tifier U of the party. Later, all parties can call the functionality with
(RetrieveKey, sid,U) to receive the registered key key of party U;
or they can call the functionality with (RetrieveID, sid, key) to
obtain the identifier of the owner of key.

Functionality FKR

(1) Register. Upon input (Register, sid, key) from U,
output (Register, sid,U, key) to A. Upon receiving
(Ok, sid,U) from A, record the pair (U, key), and out-
put (Registered, sid) to U.

(2) Retrieve. Upon input (RetrieveKey, sid,U) from U𝑗 ,
output (RetrieveKey, sid,U,U𝑗) to A. Upon receiv-
ing (Ok, sid,U,U𝑗) from A, if there exists a recorded
pair (U, key), output (KeyRetrieved, sid,U, key) to
U𝑗 . Else, output (KeyRetrieved, sid,U,⊥) to U𝑗 .
Upon input (RetrieveID, sid, key) from U𝑗 , out-
put (RetrieveID, sid, key,U𝑗) to A. Upon receiving
(Ok, sid, key,U𝑗) from A, if there exists a recorded
pair (U, key), output (IDRetrieved, sid,U, key) to U𝑗 .
Else, output (IDRetrieved, sid, key,⊥) to U𝑗 .

For privacy-preserving requirement FCBDC does not leak identi-
ties of users. To realize this functionality, our protocol uses different
types of communication channels FCh to deliver messages and to
meet network level anonymity (e.g., preventing traffic analysis
attack and extracting identities).

Functionality FCh

Let define a set of parties where 𝑆 and 𝑅 denote two parties of
the set as the sender and receiver of a message𝑚 respectively.
Δ is defined as follows based on parameters of functionality.
Message identifiermid is selected freshly by the functionality.

(1) Upon input (Send, sid, 𝑅,𝑚) from 𝑆 , output
(Send, sid,Δ,mid) to A.

(2) Upon receiving (Ok, sid,mid) from A, send
(Received, sid, 𝑆,𝑚) to 𝑅.

Set Δ based on the following parameterized functions:
• for F ac

Ch set Δ = (𝑆, 𝑅,𝑚). Upon receiving
(Ok.Snd, sid,mid) fromA, send (Continue, sid) to 𝑆a.
• for F sra

Ch set Δ = (𝑆, |𝑚 |).
• for F ssa

Ch set Δ = (𝑅, |𝑚 |).
• for F fa

Ch set Δ = |𝑚 |.
• for F sc

Ch set Δ = (𝑆, 𝑅, |𝑚 |). Upon receiving
(Ok.Snd, sid,mid) from A, send (Continue, sid) to 𝑆 .
• for F sa

Ch set Δ = (𝑅,𝑚).
(1) Upon receiving (Ok, sid,mid) from A, send
(Received, sid,𝑚,mid) to 𝑅. Upon receiving
(Ok.Snd, sid,mid) from A, send (Continue, sid) to
𝑆 .

(2) Upon receiving (Send, sid,mid,𝑚′) from 𝑅,
output (Send, sid, 𝑅,𝑚′,mid) to A. Upon
receiving (Ok.End, sid,mid) from A, send
(Received, sid, 𝑅,𝑚′) to 𝑆 .

aThis gives more power to adversary A who decides when the sender can
proceed as sequential message sending is required in the UC model.

In Byzantine Agreement (BA) protocol a set of 𝐷 parties agree
on their inputs, even facing malicious corruptions. The following
functionality tolerates a malicious adversary who statically corrupts
up to 𝑡 parties.

In our interactive protocol ΠPEReDi that tolerates static malicious
adversaries we use the following Byzantine Agreement functional-
ity FBA which can be implemented as follows. Parties send their
input to everyone. Once all inputs are received, an honest party
(with input 0) switches its input to 1 if at most 2𝑡 zeros are received.
Afterwards, parties engage in a standard Byzantine Agreement
protocol [16].

Functionality FBA

Running with M = {M1, ...,M𝐷 } parties; Byzantine Agree-
ment functionality FBA proceeds as follows where initially
𝑄 ← ⊥:

(1) Upon receiving (Agree, sid, 𝑑 𝑗) from M𝑗 where
𝑑 𝑗 ∈ {0, 1}, record (Agree, sid, 𝑑 𝑗 ,M𝑗) and send
(Agree, sid, 𝑑 𝑗 ,M𝑗) to A. Once |{ 𝑗 |𝑑 𝑗 = 1}| ≥ 𝑡 + 1,
set 𝑄 = 1. Once |{ 𝑗 |𝑑 𝑗 = 0}| ≥ 2𝑡 + 1, set 𝑄 = 0.

PEReDi: Privacy-Enhanced, Regulated and Distributed Central Bank Digital Currencies CCS ’22, November 7–11, 2022, Los Angeles, CA, USA.

(2) Upon receiving (Agree.Ok, sid) fromA: If 𝑄 ≠ ⊥ out-
put (Agreed, sid, 𝑄) to every M𝑗 via public-delayed
output. Else, ignore.

In the following, we define the standard Broadcast functionality
FBC from [31] where it does not guarantee secrecy for the message
𝑚.

Functionality FBC

Broadcast functionality FBC parameterized by the setM =

{M1, ...,M𝐷 } proceeds as follows:
Upon receiving (Broadcast, sid,𝑚) from a party P, send
(Broadcasted, sid, P,𝑚) to all entities in the set M and to
A.

FRO defined in the following models an idealized hash func-
tion [18].

Functionality FRO

The functionality is parameterized by an output space 𝑌 and
a message space 𝑀 . Upon receiving (Query, sid,𝑚) from a
party P:

(1) Abort if𝑚 ∉ 𝑀 ,
(2) Else, if a tuple (sid,𝑚′, ℎ) where𝑚′ = 𝑚 has not al-

ready been stored, select a random ℎ from 𝑌 where
there is no stored tuple (sid,𝑚∗, ℎ′) where ℎ′ = ℎ,
then store (sid,𝑚,ℎ).

(3) Take the stored tuple (sid,𝑚′, ℎ) where𝑚′ = 𝑚 and
output (Query.Re, sid, ℎ) to party P.

Groth et al. [34] formalized ideal functionality of Non-Interactive
Zero Knowledge (NIZK) that was introduced by Blum et al. [15].
FNIZK does not specify the verifier in advance different from the in-
teractive zero-knowledge proof. The generated proof can be verified
by anyone.

Functionality FNIZK

The functionality is parameterized by a relation R.
(1) Proof. On receiving (Prove, sid, x, w) from U, ignore

if (x, w) ∉ R. Else, send (Prove, sid, x) to A. Upon
receiving (Proof, sid, 𝜋) fromA, store (x, 𝜋) and send
(Proof, sid, 𝜋) to U.

(2) Verify. Upon receiving (Verify, sid, x, 𝜋) from
U check whether (x, 𝜋) is stored. If not send
(Verify, sid, x, 𝜋) to A. Upon receiving the an-
swer (Witness, sid, w) from A, check (x, w) ∈ R
and if so, store (x, 𝜋). If (x, 𝜋) has been stored,

output (Verification, sid, 1) to U, else output
(Verification, sid, 0).

Signature of knowledge (SoK) was first formally defined by
Chase et al. [25]. In SoK, by providing a valid signature, the signer
proves the possession of a witness w to a statement x for a relation R.
It generalizes the notion of traditional signature where a signature
under a public key serves as a proof that the signer is in possession
of the corresponding secret key.

Functionality FSoK

The functionality is parameterized by a relation R. Moreover,
Sign, Simsign and Extract are descriptions of PPT TMs, and
Verify is a description of a deterministic polytime TM.

(1) Setup. Upon receiving (Setup, sid) from U if
this is the first time that (Setup, sid) is re-
ceived, send (Setup, sid) to A; upon receiving
(Algorithms, sid, Sign,Verify, Simsign, Extract) from
A, store these algorithms. Output the stored
(Algorithms, sid, Sign,Verify) to U.

(2) Signature Generation. Upon receiving
(Sign, sid,𝑚, x, w) from U, if (x, w) ∉ R ignore.
Else, compute 𝜎 ← Simsign(𝑚, x), and check
that Verify(𝑚, x, 𝜎) = 1. If so, then output
(Signature, sid,𝑚, x, 𝜎) to U and record the
entry (𝑚, x, 𝜎). Else, output an error message
(Completeness error) to U and halt.

(3) Signature Verification. Upon receiving
(Verify, sid,𝑚, x, 𝜎) from U𝑗 , if (𝑚, x, 𝜎 ′)
is stored for some 𝜎 ′, then output
(Verified, sid,𝑚, x, 𝜎,Verify(𝑚, x, 𝜎)) to U𝑗 .
Else let w ← Extract(𝑚, x, 𝜎); if (x, w) ∈ R,
output (Verified, sid,𝑚, x, 𝜎,Verify(𝑚, x, 𝜎))
to U𝑗 . Else if Verify(𝑚, x, 𝜎) = 0, output
(Verified, sid,𝑚, x, 𝜎, 0) to U𝑗 . Else output an
error message (Unforgeability error) to U𝑗 and halt.

D KNOW YOUR TRANSACTION FOR LARGE
PAYMENTS

Enforcing limits on transaction value and sum of all sent values
are two general regulatory rules. The maximum allowed values for
the former is denoted by𝑉max and for the latter is denoted by 𝑆max.
While such limits serve a purpose, a user may want to exceed them
when a large payment is required. Even though we do not include
this feature in our main functionality we describe in this section
how to realize it given our construction.

In such cases, regulatory compliance may require proving the
source of funds. In such circumstances, the user can exceed the
mentioned thresholds up to the new limits𝑉 ′𝑚𝑎𝑥 and 𝑆 ′𝑚𝑎𝑥 . The new
limit is computed by adding all values whose sources are proven as
verified sources to the pre-defined general limit value. For instance,

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA. Aggelos Kiayias, Markulf Kohlweiss, and Amirreza Sarencheh

assuming the setting in which the user has accumulated funds
during a long period of time and now it wants to spend them at
once (e.g., in the process of buying a property) this will result in
a transaction value far exceeding 𝑉max (note we assume 𝐵max ≫
𝑉max, as otherwise there is no need for the mechanism of this
paragraph). The user saves the relevant information of transactions
for which it will make a claim. The user points to transaction
identifiers of associated transactions in which it has received money
during a period of time from an acceptable source. The user can
make such a claim toM who will facilitate the excess thresholds.

We denote the sum of all values for which the user makes a claim
by 𝛿 , then following the above explanation 𝑉 ′𝑚𝑎𝑥 = 𝑉max + 𝛿 and
𝑆 ′𝑚𝑎𝑥 = 𝑆max + 𝛿 hold. The user points to the relevant transaction
identifier of 𝑙 transactions {𝑡𝜏id}

𝑙
𝜏=1 that contain associated thresh-

old encryptions {(𝜓𝑠 ,𝜓𝑟)𝜏 }𝑙𝜏=1. Given the fact that the user knows
the randomness of threshold encryptions it provides the proof of
knowledge and proves that sum of all values in threshold encryp-
tions equals to 𝛿 . Moreover, using the relevant random values it
convincesM regarding the sender of transactions. More generally,
M can recognize a third party auditor who will verify the user’s
claim and in this case the user needs only to present a certification
of this transaction by that auditor.

E PROOF OF PEReDi SECURITY
We denote the real-world protocol and adversary by ΠPEReDi andA
respectively. The simulator S described in a detailed manner in the
Appendix Gmakes the view of real-world execution EXECΠPEReDi,A,Z
and ideal-world execution EXECFCBDC,S,Z for any PPT environ-
mentZ indistinguishable. Session identifier denoted by sid is cho-
sen by Z. The simulator S internally runs a version of ΠPEReDi
and makes the view of the dummy adversary A in the ideal world
indistinguishable from its view in the real-world. At the incep-
tion of the execution,Z triggers A to corrupt parties with a mes-
sage (Corrupt, sid, P), where P denotes a party that can be any
entity of the network. S reads these corruption messages and
tells FCBDC which parties are corrupted by sending the message
(Corrupt, sid, P), the simulator S also stores the corrupted parties
identifiers. S internally emulates the functionalities FKR, FCh, FBA,
FNIZK, FBC and FSoK. A instructs corrupted parties arbitrarily. S
interacts with FCBDC on behalf of corrupt parties. In the ideal-
world execution EXECFCBDC,S,Z , honest (dummy) parties forward
their input fromZ to FCBDC.

E.0.1 Sequence of games. Through a sequence of games, we
show that the randomvariables EXECΠPEReDi,A,Z and EXECFCBDC,S,Z
are statistically close. We denote by Pr

[
Gamei

]
the probability that

the environmentZ outputs 1 in Gamei. Each game Gamei has its
own F 𝑖

CBDC and S𝑖 . We start from the most leaky functionality
F 0
CBDC and the associated simulator S0 and gradually go toward

the main functionality FCBDC and the simulator S. For the security
analysis, without loss of generality, we set the number of mali-
cious maintainers to equal to the maximum allowed number of
maintainers to be malicious (wherever it is necessary).

Game0: Initially, F 0
CBDC forwards all communication with Z,

and the simulatorS0 corresponds to the execution of the real-world
protocol EXECΠPEReDi,A,Z .

Game1: Same as Game0 except that in Game1 we change𝑤-th
honest maintainer’s blind signature share on U’s account to 𝜎𝔅𝑤
which is simulated by S1. To do so, in this game, S1 selects the
secret signing key of non-threshold Pointcheval-Sanders signature
and then computes non-threshold signature 𝜎M = (ℎ, 𝑠). Note that
afterGame1 the simulatorS𝑖 for 𝑖 ≥ 2 never uses the secret signing
key of non-threshold signature scheme (as we will see it receives
a non-threshold signature from the challenger of non-threshold
signature’s unforgeability game –see Def. H.5– in the associated
reduction). Also, by selecting the secret key of malicious maintain-
ers, S1 computes partial blind signatures of malicious maintainers
that are 𝜎𝔅𝑡 for 𝑡 ∈ C. As a result of having 𝜎M and 𝜎𝔅𝑡 for 𝑡 ∈ C
the simulator S1 computes honest maintainers’ signature shares
𝜎𝔅𝑤 for𝑤 ∈ H as follows.

When A initiates the protocol in which it requests a signature
on the blinded account acc𝔅, S1 who emulates FNIZK in Currency
Issuance and FSoK in Payment protocols extracts the witness ofA’s
(malicious user’s) message namely acc and the associated random-
ness of acc𝔅. Then, having the message acc, S1 computes 𝜎M. S1
selects the secret keys of malicious maintainers17 and computes
associated public keys. S1 uses Lagrange interpolation to compute
public keys ofM𝑤 ∈ H using computed public keys forM𝑡 ∈ C and
public key of non-threshold signature. Hence, all public keys are
consistent with the public key of non-threshold signature. First of
all, S1 computes blind signature shares for ∀M𝑡 ∈ C using selected
sk𝑡 =

(
𝑥𝑡 ,

{
𝑦𝑡,𝜏

}𝑞
𝜏=1

)
to obtain 𝜎𝔅𝑡 =

(
ℎ,ℎ𝑥𝑡

∏𝑞

𝜏=1 com
𝑦𝑡,𝜏
𝜏

)
. As de-

scribed above, S1 has extracted witness of NIZK or SoK proofs,
hence, it knows {𝑜𝜏 }𝑞𝜏=1 which lets him to compute unblinded sig-

nature shares in the following way: 𝜎𝑡 =
(
ℎ, 𝑐

∏𝑞

𝜏=1 𝛽
−𝑜𝜏
𝑡,𝜏

)
= (ℎ, 𝑠𝑡)

in which 𝑠𝑡 = ℎ𝑥𝑡
∏𝑞

𝜏=1 ℎ
𝑚𝜏 𝑦𝑡,𝜏 . Then, S1 computes unblinded sig-

nature shares for ∀M𝑤 ∈ H as follows (note that 𝑘 ≠ 0 as 0 does
not exist in the corrupted maintainers’ indexes C).

𝜎𝑤 = (ℎ, 𝑠𝑤) =
(
ℎ, 𝑠

∏
𝑘∈C ((𝑘−𝑤)/𝑘)

∏
𝑡 ∈C

𝑠𝑡

∏
𝑘∈C,𝑘≠𝑡 ((𝑤−𝑘)/(𝑡−𝑘))

)
.

Having the extracted witness {𝑜𝜏 }𝑞𝜏=1, the simulator computes blind
signature shares for ∀M𝑤 ∈ H using the computed 𝜎𝑤 as follows:
𝜎𝔅𝑤 =

(
ℎ,

∏𝑞

𝜏=1 𝑠𝑤𝛽
𝑜𝜏
𝑤,𝜏

)
.

As a result, in this game we changed𝑤-th honest maintainer’s
blind signature share on U’s account to 𝜎𝔅𝑤 which is simulated
by S1 as described above. Based on Unblind algorithm which is
run by A, the unblinded signature is computed as follows 𝜎𝑤 =(
ℎ, 𝑐

∏𝑞

𝜏=1 𝛽
−𝑜𝜏
𝑤,𝜏

)
for the 𝑐 simulated byS4 as 𝑐 = ∏𝑞

𝜏=1 𝑠𝑤𝛽
𝑜𝜏
𝑤,𝜏 . As a

result, we have 𝜎𝑤 = (ℎ, 𝑠𝑤) that passes the verification algorithm
𝑒

(
ℎ, 𝛼𝑤

∏𝑞

𝜏=1 𝛽
𝑚𝜏
𝑤,𝜏

)
= 𝑒 (𝑠𝑤 , 𝑔) which means that the following

equation holds.

Pr
[
Game1

]
= Pr

[
Game0

]
Game2: Same as Game1 except that in Game2, F 2

CBDC does
not allow S2 to submit any message on behalf of adversary A
(malicious user) who forges threshold blind signature TBS scheme

17Note that Z triggers (ideal-word) adversary to corrupt parties with a message
(Corrupt, sid, P) , therefore, S1 has already known C.

PEReDi: Privacy-Enhanced, Regulated and Distributed Central Bank Digital Currencies CCS ’22, November 7–11, 2022, Los Angeles, CA, USA.

to F 2
CBDC. Hence, Game2 equals to Game1 except the fact that it

checks if a flag is raised or not. If A who is not issued at least 𝛼
signature shares submits a valid signature, the flag is raised. Hence,
any difference betweenGame2 andGame1 is because of the forgery
for threshold blind signature TBS which allows us to bound the
probability thatZ distinguishes Game2 from Game1 as follows.

Associated Reduction (existential unforgeability of signature).
IfA forges threshold blind signature TBS used in our construction,
it can be used to construct another A ′ who breaks unforgeabil-
ity property (see Def. H.5) of non-threshold Pointcheval-Sanders
signature used in threshold blind signature TBS scheme. The par-
tial blind signatures of all honest maintainers 𝜎𝔅𝑤 for ∀𝑤 ∈ H
can be reconstructed from the partial blind signatures of malicious
maintainers that are 𝜎𝔅𝑡 for 𝑡 ∈ C and the non-threshold signature
𝜎M = (ℎ, 𝑠) obtained from the challenger of the existential unforge-
ability game (different from Game1 in which S1 selected the secret
signing key of non-threshold signature) using the Lagrange inter-
polation for the other shares. We omit writing the details as the
algorithm is similar to what S1 does in Game1 except the fact that
A ′ obtains the non-threshold signature 𝜎M from the challenger.
Hence, given the non-threshold signature, A ′ simulates the entire
view ofA which are partial signatures that the honest maintainers
are contributed which implies that A cannot forge messages in
the threshold setting of our construction unless A forges it in the
non-threshold one. In other words, for Z, Game2 is the same as
running a threshold signature TBS with real-world maintainers
rather than simulated maintainers byA ′. Hence, ifA forges in the
real world, it will forge in this threshold setting and A ′ uses this
forgery as a forgery for the non-threshold scheme. As a result, TBS
is simulatable that together with unforgeability property of non-
threshold Pointcheval-Sanders signature makes TBS unforgeable
in our construction’s setting.

Therefore, under the unforgeability property of non-threshold
Pointcheval-Sanders signature the following inequality holds (see
Def. H.5 for the definition of AdvEUF-CMA

A):��Pr [
Game2

]
− Pr

[
Game1

] �� ≤ AdvEUF-CMA
A

Game3: Same as Game2 except that S3 computes 𝜎Rnd
M

for the
honest user without knowing the account values of the user. In the
real world, having the consolidated signature 𝜎M = (ℎ, 𝑠), 𝜎Rnd

M
is

computed as (ℎ′, 𝑠 ′) =
(
ℎ𝑟
′
, 𝑠𝑟
′
ℎ𝑟
′𝑟
)
such that 𝑟

$←− Z𝑝 and 𝑟 ′
$←− Z𝑝 .

Assume a random value as [, set ℎ = 𝑔[by programming the
random oracle. Hence, we have

𝜎RndM = (ℎ𝑟
′
, (

∏
𝑗 ∈𝐸
(ℎ𝑥 𝑗

𝑞∏
𝜏=1

com
𝑦 𝑗,𝜏

𝜏 𝛽
−𝑜𝜏
𝑗,𝜏
)𝑙 𝑗)𝑟

′
ℎ𝑟
′𝑟)

= (𝑔[𝑟
′
, 𝑔[𝑟

′ (𝑥+∑𝑞

𝜏=1 (𝑚𝜏 𝑦𝜏)+𝑟))
(𝑥+∑𝑞

𝜏=1 (𝑚𝜏 𝑦𝜏)+𝑟)=𝑑
−−−−−−−−−−−−−−−−−−−→

[𝑟 ′=𝑑′
𝜎RndM = (𝑔𝑑

′
, 𝑔𝑑𝑑

′
)

Also, in the real world in ProveSig algorithm the user U computes
^ as well which is of the form:

^ = 𝛼

𝑞∏
𝜏=1

𝛽𝑚𝜏 𝑔𝑟 = 𝑔(𝑥+
∑𝑞

𝜏=1 (𝑦𝜏𝑚𝜏)+𝑟) (𝑥+
∑𝑞

𝜏=1 (𝑚𝜏 𝑦𝜏)+𝑟)=𝑑
−−−−−−−−−−−−−−−−−−−→ ^ = 𝑔𝑑

S3 randomly selects 𝑢
$←− Z𝑝 and 𝑢 ′

$←− Z𝑝 . Then, sets ℎ′ ← 𝑔𝑢
′
,

𝑠 ′ ← 𝑔𝑢𝑢
′
and hence sets 𝜎Rnd

M
← (𝑔𝑢′, 𝑔𝑢𝑢′). Finally, sets ^ ← 𝑔𝑢 .

Computed values pass the verification 𝑒 (ℎ′, ^) = 𝑒 (𝑠 ′, 𝑔) as we
have 𝑒

(
𝑔𝑢
′
, 𝑔𝑢

)
= 𝑒

(
𝑔𝑢𝑢

′
, 𝑔

)
. As 𝑑 =

(
𝑥 +∑𝑞

𝜏=1 (𝑚𝜏𝑦𝜏) + 𝑟
)
and

𝑑 ′ = [𝑟 ′ are random values, they match the distribution of 𝑢 and
𝑢 ′ which concludes the fact that

Pr
[
Game3

]
= Pr

[
Game2

]
Game4: Same as Game3 except that in Game4, S4 simulate the

decryption shares 𝜓 sk1,𝑤
𝑠,1 and 𝜓

sk2,𝑤
𝑠,1 (for 𝜓𝑠), and 𝜓

sk1,𝑤
𝑟,1 (for 𝜓𝑟),

of honest maintainer M𝑤 , 𝑤 ∈ H , and for 𝑠-th and 𝑟 -th honest
users’ threshold encryptions using the values of a non-threshold
ElGamal encryption scheme. In this game, plaintexts of𝜓𝑠 and𝜓𝑟
are the same as real-world values (in Game4i for 𝑖 ≥ 1, we will
change plaintexts to dummy values selected by the simulator S4

𝑖
).

To do so, in this game, S4 selects the secret decryption keys of
non-threshold ElGamal encryption sk1,M and sk2,M (note that from
Game4 onward simulator does not use sk1,M and sk2,M directly as
the decryption shares are simulated using a non-threshold scheme.
This allows for reductions to the non-threshold ElGamal IND-CPA
security game, see Def. H.4, associated with Game5). Then, S4

computes 𝑐𝑠 = (𝜓𝑠,1,𝜓𝑠,2,𝜓𝑠,3) =
(
𝑔𝜌𝑠 , pk𝜌𝑠1,M · pk𝑠 , pk

𝜌𝑠
2,M𝑔

𝑣
)
and

𝑐𝑟 = (𝜓𝑟,1,𝜓𝑟,2) =

(
𝑔𝜌𝑟 , pk𝜌𝑟1,M · pk𝑟

)
. The plaintexts of thresh-

old encryptions are retrieved as pk𝑠 = 𝜓𝑠,2/
∏

𝑗 ∈𝐼 𝜓
sk1, 𝑗_1, 𝑗
𝑠,1 , pk𝑟 =

𝜓𝑟,2/
∏

𝑗 ∈𝐼 𝜓
sk1, 𝑗_1, 𝑗
𝑟,1 and 𝑔𝑣 = 𝜓𝑠,3/

∏
𝑗 ∈𝐼 𝜓

sk2, 𝑗_2, 𝑗
𝑠,1 . Now, S4 should

simulate honest maintainers’ decryption shares such that decrypted
values become pk𝑠 , pk𝑟 and 𝑔𝑣 respectively that are consistent
with (AnmRevoked, sid, 𝑡id,U𝑠 ,U𝑟 , 𝑣) received from the leakage of
F 4
CBDC.

S4 computes 𝜓𝑠,2/pk𝑠 which results in pk𝜌𝑠1,M =

(
𝑔sk1,M

)𝜌𝑠
=

𝜓
𝑠𝑘1,M
𝑠,1 that is used in the computation of honest maintainers’ shares

in the following equation. S4 computes𝑤-th honest maintainer’s
decryption share as follows with knowing malicious maintainers
shares𝜓 sk1,𝑡

𝑠,1 and𝜓 sk2,𝑡
𝑠,1 for𝜓𝑠 , and𝜓

sk1,𝑡
𝑟,1 for𝜓𝑟 for ∀𝑡 ∈ C such that

|C| ≤ 𝛽 − 1 = 𝑡 (note that in the equation below 𝑘 ≠ 0 as 0 does
not exist in the corrupted maintainers’ indexes C).

𝜓
sk1,𝑤
𝑠,1 =

(
𝜓𝑠,2/pk𝑠

)∏
𝑘∈C (𝑘−𝑤)/𝑘 ·

∏
𝑡 ∈C

(
𝜓
sk1,𝑡
𝑠,1

)∏
𝑘∈C,𝑘≠𝑡 (𝑤−𝑘)/(𝑡−𝑘)

S4 computes𝜓𝑟,2/pk𝑟 which results in pk
𝜌𝑟
1,M =

(
𝑔sk1,M

)𝜌𝑟
= 𝜓

𝑠𝑘1,M
𝑟,1

then computes𝜓 sk1,𝑤
𝑟,1 as follows:

𝜓
sk1,𝑤
𝑟,1 =

(
𝜓𝑟,2/pk𝑟

)∏
𝑘∈C (𝑘−𝑤)/𝑘 ·

∏
𝑡 ∈C

(
𝜓
sk1,𝑡
𝑟,1

)∏
𝑘∈C,𝑘≠𝑡 (𝑤−𝑘)/(𝑡−𝑘)

S4 computes𝜓𝑠,3/𝑔𝑣 which results in pk𝜌𝑠2,M =

(
𝑔sk2,M

)𝜌𝑠
= 𝜓

𝑠𝑘2,M
𝑠,1

then computes𝜓 sk2,𝑤
𝑠,1 as follows:

𝜓
sk2,𝑤
𝑠,1 =

(
𝜓𝑠,3/𝑔𝑣

)∏
𝑘∈C (𝑘−𝑤)/𝑘 ·

∏
𝑡 ∈C

(
𝜓
sk2,𝑡
𝑠,1

)∏
𝑘∈C,𝑘≠𝑡 (𝑤−𝑘)/(𝑡−𝑘)

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA. Aggelos Kiayias, Markulf Kohlweiss, and Amirreza Sarencheh

FNIZK emulation allows S4 to provide faked proofs about the con-
tribution of honest maintainers which is unconditionally secure.
Moreover, changing honest maintainers’ decryption shares is in-
formation theoretically indistinguishable. Moreover, the simulated
decryption shares work in the threshold decryption computation
(as shown above), thus, we have the following equation:

Pr
[
Game4

]
= Pr

[
Game3

]
Game5: Same as Game4 except that in Game5 we change all

plaintexts of threshold encryptions to dummy values selected by
S5. Hence, Game5 equals to Game4 except the fact that S5 com-
putes encryptions for some dummy values as plaintexts (e.g., de-
noted by pk∗𝑠 , pk

∗
𝑟 and 𝑔∗𝑣) on behalf of an honest user. However,

the decryption shares of honest maintainers simulated in a way
that computation of 𝜓𝑠,2/

∏
𝑗 ∈𝐼 𝜓

sk1, 𝑗_1, 𝑗
𝑠,1 , 𝜓𝑟,2/

∏
𝑗 ∈𝐼 𝜓

sk1, 𝑗_1, 𝑗
𝑟,1 and

𝜓𝑠,3/
∏

𝑗 ∈𝐼 𝜓
sk2, 𝑗_2, 𝑗
𝑠,1 result in pk𝑠 , pk𝑟 and 𝑔𝑣 respectively that are

consistentwith (AnmRevoked, sid, 𝑡id,U𝑠 ,U𝑟 , 𝑣) received fromF 5
CBDC

(rather than dummy values pk∗𝑠 , pk∗𝑟 and 𝑔∗𝑣). We ignore writing
the details as it is similar to Game4. Hence, any difference between
Game5 and Game4 is because of breaking the IND-CPA security of
threshold encryption used in our construction which allows us to
bound the probability thatZ distinguishes Game5 from Game4 as
follows.

We define Game40 = Game4 and 𝑝𝑐 as the upper bound on the
number of all ciphertexts of honest users. Also, lets define Game41
as a game similar to Game40 except in Game41 we change the plain-
text of first ciphertext from the real-world value to the ideal-world
dummy value. The reduction between Game40 and Game41 is similar
to the described reduction below so that any difference between
Game40 and Game41 is upper bounded by AdvIND-CPAA (see Def. H.4
for the definition of AdvIND-CPAA). Similarly, we change the plain-
texts of ciphertexts of 𝑖-th honest user to dummy values and finally
we do the same for the last ciphertext of last honest user such that
in Game4pc (which equals to Game5) all ciphertexts are generated
from dummy plaintexts. The reduction between Game4pc−1 and
Game4pc is similar to the described reduction below so that the any
difference between Game4pc−1 and Game4pc is upper bounded by
AdvIND-CPAA .

AssociatedReductionBetweenGame4i−1 andGame4i (IND-CPA
security of encryption). If A distinguishes Game4i−1 and Game4i it
can be used to construct anotherA ′ who breaks IND-CPA security
of non-threshold ElGamal encryption used in threshold encryption
scheme. The decryption shares of all honest maintainers𝜓 sk1,𝑤

𝑠,1 and

𝜓
sk2,𝑤
𝑠,1 for 𝜓𝑠 , and 𝜓

sk1,𝑤
𝑟,1 for 𝜓𝑟 for ∀𝑤 ∈ H can be reconstructed

from the decryption shares of malicious maintainers that are𝜓 sk1,𝑡
𝑠,1

and𝜓 sk2,𝑡
𝑠,1 for𝜓𝑠 , and𝜓

sk1,𝑡
𝑟,1 for𝜓𝑟 for ∀𝑡 ∈ C and the non-threshold

encryption 𝑐𝑠 and 𝑐𝑟 obtained from the challenger of the IND-CPA
security game of non-threshold encryption using the Lagrange
interpolation for the other shares. We omit writing the details as
the algorithm is similar to the described algorithm in Game4 ex-
cept the fact that A ′ obtains the non-threshold encryptions 𝑐𝑠 and
𝑐𝑟 from the challenger of IND-CPA game. Hence, given the non-
threshold ciphertexts,A ′ simulates the entire view ofA which are

decryption shares that the honest maintainers contribute which
implies that A cannot distinguish Game4i−1 from Game4i unless
A distinguishes non-threshold ciphertexts 𝑐𝑠 and 𝑐𝑟 generated by
real-world values as plaintexts from ciphertexts generated by ideal-
world dummy values as plaintexts. In other words, forZ, Game4i
is the same as running a threshold encryption with real-world
maintainers rather than simulated maintainers by A ′. Hence if
Z distinguishes Game4i−1 from Game4i , A

′ uses this to win the
non-threshold encryption scheme’s IND-CPA game. As a result,
threshold encryption is simulatable that together with IND-CPA
property of non-threshold encryption scheme makes threshold
encryption IND-CPA secure in our construction’s setting.

Therefore, under IND-CPA property of non-threshold ElGamal
encryption scheme the following inequality holds:��Pr [

Game5
]
− Pr

[
Game4

] �� ≤ 𝑝𝑐 · AdvIND-CPAA

Game6: Same as Game5, except that for honest maintainer M𝑤

the simulatorS6 computes the tracing tag share ¤𝑔𝑎𝑤 for tracing hon-
est userUwithout directly knowing the shares 𝑎𝑤 of the tracing key.
Here ¤𝑔 is a group element computed in each step of the protocol. In
this game tracing tags are the same as real-world values (in Game6i
for 𝑖 ≥ 1, we will change these tags to dummy values selected by
the simulator S6

𝑖
). S6 knows {𝑔𝑧𝜏 }𝑥𝜏=1 from the transaction iden-

tifiers leaked from F 6
CBDC which are (Traced, sid,

{
𝑡𝜏id, role

𝜏
}𝑥
𝜏=1
)

and computes M𝑤 ’s first share as follows (¤𝑔 = 𝑔):

𝑔𝑎𝑤 =
(
𝑔𝑧1

)∏
𝑘∈C,𝑘≠0 (𝑘−𝑤)/𝑘 ·

∏
𝑡 ∈C

(
𝑔𝑎𝑡

)∏
𝑘∈C,𝑘≠𝑡 (𝑤−𝑘)/(𝑡−𝑘)

Then, given the revealed (𝜏 − 1)-th tracing tag (𝑔𝑧𝜏−1),𝑤-th honest
maintainer’s share for the next computation is simulated as follows
(¤𝑔 = 𝑔𝑧𝜏−1):(
𝑔𝑧𝜏−1

)𝑎𝑤 =
(
𝑔𝑧𝜏

)∏
𝑘∈C,𝑘≠0 (𝑘−𝑤)/𝑘 ·

∏
𝑡 ∈C

((
𝑔𝑧𝜏−1

)𝑎𝑡)∏𝑘∈C,𝑘≠𝑡 (𝑤−𝑘)/(𝑡−𝑘)

Changing honest maintainers’ shares is information theoretically
indistinguishable and emulating FNIZK (which is unconditionally
secure) allows S6 to provide faked proofs. As a result, we have

Pr
[
Game6

]
= Pr

[
Game5

]
Game7: Same as Game6 except that in Game7 we change the

tracing tags of honest users to the dummy values selected by S7.
Hence, Game7 equals to Game6 except the fact that S7 computes
tracing tags and submits them to F 7

CBDC as part of transaction
identifiers in Currency Issuance and Payment protocols. However,
the tracing tag shares of honest maintainers simulated in a way
that computation of tags result in {𝑔𝑧𝜏 }𝑥𝜏=1 that are consistent with
transaction identifiers 𝑡id leaked from F 7

CBDC. We ignore writing
the details as it is similar to Game6. Hence, any difference between
Game7 and Game6 is because of distinguishing 𝑔𝑎

𝑥
values from

𝑔𝑧 values which allows us to bound the probability thatZ distin-
guishes Game7 from Game6 as follows.

We define Game60 = Game6 and 𝑝𝑢 as the upper bound on the
number of all honest users. Also, lets define Game61 as a game simi-
lar to Game60 except in Game61 we change the tracing tags of first
honest user from real-world values to ideal-world dummy values.
The reduction between Game60 and Game61 is described below so

PEReDi: Privacy-Enhanced, Regulated and Distributed Central Bank Digital Currencies CCS ’22, November 7–11, 2022, Los Angeles, CA, USA.

that any difference between Game60 and Game61 is upper bounded
by Advd-sDDHA (see Def. H.1 for the definition of Advd-sDDHA). Simi-
larly, we change the tracing tags of 𝑖-th honest user to the dummy
values and finally we do the same for the last honest user such that
in Game6pu (which equals to Game7) all tracing tags are dummy
values. The reduction between Game6pu−1 and Game6pu is similar to
the described reduction below so that the any difference between
Game6pu−1 and Game6pu is upper bounded by Advd-sDDHA .

Associated Reduction Between Game6i−1 and Game6i (hard-
ness of d-sDDH). If A distinguishes Game6i−1 from Game6i it can
be used to construct another A ′ who breaks hardness of d-strong
Diffie-Hellman problem. The tracing tag shares of all honest main-
tainers ¤𝑔𝑎𝑤 for ∀𝑤 ∈ H can be reconstructed from the tracing tag
shares of malicious maintainers that are ¤𝑔𝑎𝑡 for ∀𝑡 ∈ C and the
tracing tags {𝑔𝑧𝜏 }𝑥𝜏=1 received from the leakage of functionality
using the Lagrange interpolation for the other shares. We omit
writing the details as the algorithm is similar to the described algo-
rithm in Game6. Hence, A ′ simulates the entire view of A which
are tracing tag computation shares that the honest maintainers
contribute which implies that A cannot distinguish Game6i−1 from
Game6i unless A breaks the hardness of d-strong Diffie-Hellman
problem. Hence, ifZ distinguishes Game6i−1 from Game6i ,A

′ uses
this to win the indistinguishability game of d-strong Diffie-Hellman
problem. As a result, under hardness of d-strong Diffie-Hellman
problem the following inequality holds:��Pr [

Game7
]
− Pr

[
Game6

] �� ≤ 𝑝𝑢 · Advd-sDDHA

As F 7
CBDC = FCBDC and S7 = S which means Game7 corre-

sponds to the ideal-world execution EXECFCBDC,S,Z , we argue that
random variables EXECΠPEReDi,A,Z and EXECFCBDC,S,Z are statisti-
cally close or, in other worlds, the probability for any PPT environ-
ment Z to distinguish EXECΠPEReDi,A,Z from EXECFCBDC,S,Z is
upper bounded by AdvEUF-CMA

A +𝑝𝑐 ·AdvIND-CPAA +𝑝𝑢 ·Advd-sDDHA
that concludes the security proof (see Appendix G for detailed
simulation description).

F IMPLEMENTATION DETAILS
Wemeasured the performance of PEReDi transactions with an Intel
Core i7-9850H CPU @ 2.60 GHz with 16 GB of RAM using Ubuntu
20.04.2 LTS. Table 1 lists the size of the field and groups’ elements
and the exponentiation running time and pairing cost using the
Charm-Crypto framework [4], a Python library for Pairing-based
Cryptography. E, Ẽ, E𝑡 and P denote exponentiation in G, G̃ and
G𝑡 and pairing respectively. We applied the Barreto-Naehrig (BN)
curve, type F,𝑦2 = 𝑥3+𝑏 over the field with order 𝑝 with embedding
curve degree 𝑘 = 12 and 1920-bit DLog security. For simplicity
the computations over Z𝑝 and hash functions are not taken into
account.

The summary of time complexity and communication costs with
respect to number of maintainers and ranges we have for regulatory
compliance are shown in Table 2 and Table 3 respectively18.

To instantiate FNIZK and FSoK efficiently one can either follow
the approach of [37] based on Fischlin’s transform [35] or construct

18For the sake of completeness and for providing some example of concrete vales, one
may set 𝑛𝑣 to 32 and other values can be set accordingly.

Table 1: Size of parameters and cost of operations

Parameter: |Z𝑝 | |G| |G̃| |G𝑡 |
Size (byte): 46 46 90 514
Parameter: field operations E Ẽ E𝑡 P
Time (ms): negligible 0.89 1.58 5.36 23.32

a simulation-extractable NIZK/SoK from simulation-sound NIZK
and a CPA-secure encryption scheme as described by [28]. Instead,
to allow for an apple-to-apple comparison with existing schemes
we analyze performance in the in practice more common, e.g. [46],
stand-alone setting in which one can employ the plain Fiat-Shamir
transform.

F.1 Fiat-Shamir Transform
All the proofs presented in this section as an interactive proto-
col with a logarithmic number of rounds can be converted into
a non-interactive protocol that is secure and zero-knowledge in
the random oracle model using the Fiat-Shamir transform [10]. All
random challenges are replaced by hashes of the transcript up to
that point, including the statement itself.

F.2 Range Proofs
For the range proofs of PEReDi we use bulletproofs [17]. The range
proof relation is defined as follows:

{(Public Input: ℎ,𝑔 ∈ G, 𝐴, 𝑛;Witness: 𝑣,𝛾 ∈ Z𝑝) : 𝐴 = 𝑔𝛾 ·ℎ𝑣∧𝑣 ∈ [0, 2𝑛−1]}
According to comparisons made in [38], the computation complex-
ity of one range proof of the form above is 8𝑛 group exponentiation
on the prover’s side and 4𝑛 group exponentiation on the verifier’s
side.

In the following, we explain the performance details of transac-
tions in PEReDi. Table 2 and Table ?? show the summary of results
with respect to number of maintainers and ranges we have for
regulatory compliance. We note that using other techniques for
range proofs (rather than bulletproof) results in a better efficiency.

F.3 Performance Details of Currency Issuance
(1) Central bank needs to compute𝜓 = (𝜓1,𝜓2,𝜓3) = (𝑔𝜌 , pk𝜌1,M·

pkU, pk
𝜌

2,M · 𝑔
𝑣) which requires 4 exponentiation in G and 2

multiplication in G.
(2) User needs to compute TIU =

(
𝜓, accnew,𝔅, 𝜎Rnd

M
, T, 𝜋

)
. As-

sociated computation complexities to compute each element
of TIU are as follows.

(a) 𝜓 : Similar to central bank user needs to perform 4 ex-
ponentiation in G and 2 multiplication in G to compute
𝜓 .

(b) accnew,𝔅: For accnew,𝔅 =

(
com, {com𝜏 }6𝜏=1 , ℎ

)
user per-

forms 19 exponentiation in G, 12 multiplication in G and
1 hash.

(c) 𝜎Rnd
M

: For re-randomizing signature user parses 𝜎M as

(ℎ, 𝑠), picks 𝑟 $←− Z𝑝 and sets 𝑟 ′
$←− Z𝑝 . Then, it com-

putes 𝜎 int
M

= (ℎ′, 𝑠 ′) ←
(
ℎ𝑟
′
, 𝑠𝑟
′ (ℎ′)𝑟

)
. It computes ^ ←

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA. Aggelos Kiayias, Markulf Kohlweiss, and Amirreza Sarencheh

Table 2: Time complexity of PEReDi transactions considering all regulatory compliance-related information in user’s account.
We assume that 𝐵max = 2𝑛𝑏 −1, 𝑆max = 2𝑛𝑠 −1, 𝑅max = 2𝑛𝑟 −1 and𝑉max = 2𝑛𝑣 −1. 𝑡 is themaximum number of malicious maintainers
where the number of all maintainers is 𝐷 = 3𝑡 + 1.

Transactions Sender Receiver Maintainer

Issuance 3.56 ms (for B) 7.12(𝑛𝑏 + 𝑛𝑟) + 186.16𝑡 + 192.21 ms 3.56(𝑛𝑏 + 𝑛𝑟) + 81.15 ms
Payment 7.12(𝑛𝑣 + 𝑛𝑠 + 𝑛𝑏) + 186.16𝑡 + 193.99 ms 7.12(𝑛𝑏 + 𝑛𝑟) + 186.16𝑡 + 193.99 ms 3.56(𝑛𝑣 + 2𝑛𝑏 + 𝑛𝑟 + 𝑛𝑠) + 162.3 ms

Table 3: Communication cost of PEReDi transactions considering all regulatory compliance-related information in user’s
account. We assume that 𝐵max = 2𝑛𝑏 − 1, 𝑆max = 2𝑛𝑠 − 1, 𝑅max = 2𝑛𝑟 − 1 and 𝑉max = 2𝑛𝑣 − 1. G and G̃means group elements, and F
means field elements.

Transactions Sender Receiver Maintainer

Issuance 3 G (for B) 40 G + 2 log2 (𝑛𝑏) G + 2 log2 (𝑛𝑟) G + 2 G̃ + 19 F 2 G
Payment 48 G + 2 log2 (𝑛𝑣) G + 2 log2 (𝑛𝑏) G + 2 log2 (𝑛𝑠) G + 2 G̃ + 19 F 42 G + 2 log2 (𝑛𝑏) G + 2 log2 (𝑛𝑟) G + 2 G̃ + 19 F 2 G

𝛼
∏6

𝜏=1 𝛽
𝑚𝜏
𝜏 𝑔𝑟 . Sets𝜎Rnd

𝑠,M
=

(
𝜎 int
M

, ^

)
=

(
𝜎 int
M

, 𝛼
∏6

𝜏=1 𝛽
𝑚𝜏
𝜏 𝑔𝑟

)
.

Hence, computing 𝜎Rnd
M

requires 3 exponentiation in G, 1
multiplication in G, 7 exponentiation in G̃, and 7 multipli-
cation in G̃.

(d) T = 𝑔𝑎
𝑥+1

: It requires 1 exponentiation in field, and 1
exponentiation in G.

(e) 𝜋 : To compute computation complexity of proof 𝜋 we
describe the details of Sigma protocol between the prover
(user) and the verifier (each maintainer).
The witness of the user is w = ((𝐵old, 𝑆old, 𝑅old, sk, 𝜑 =

𝑎𝑥 , 𝑎), 𝜌, 𝑜, {𝑜𝜏 }6𝜏=1 , 𝑟 , 𝑟1, 𝑟2, 𝑣), the statement is x = (𝜓, accnew,𝔅,
𝜎Rnd
M

, T), and the relation is {𝜓1 = 𝑔𝜌 ∧𝜓2 = pk𝜌1,M · 𝑔
sk ∧

𝜓3 = pk𝜌2,M ·𝑔
𝑣∧com = 𝑔𝑜 ·ℎ𝐵old+𝑣

1 ·ℎ𝑆old2 ·ℎ𝑅old+𝑣
3 ·ℎsk4 ·ℎ

𝜑new

5 ·
ℎ𝑎6 ∧ com1 = 𝑔𝑜1 · ℎ𝐵old+𝑣 ∧ com2 = 𝑔𝑜2 · ℎ𝑆old ∧ com3 =

𝑔𝑜3 ·ℎ𝑅old+𝑣∧com4 = 𝑔𝑜4 ·ℎsk∧com5 = 𝑔𝑜5 ·ℎ𝜑new∧com6 =

𝑔𝑜6 ·ℎ𝑎 ∧^ = 𝛼 · 𝛽𝐵old

1 · 𝛽𝑆old2 · 𝛽𝑅old

3 · 𝛽sk4 · 𝛽
𝜑old

5 · 𝛽𝑎6 ·𝑔
𝑟 ∧T =

𝑔𝜑
new∧𝑁 = 𝑔𝑟1 ·ℎ𝜑old∧com5 = 𝑁𝑎 ·𝑔𝑟2∧𝐵new = 𝐵old+𝑣 ≤

𝐵max ∧ 𝑅new = 𝑅old + 𝑣 ≤ 𝑅max}.
We stress that prover sets 𝑟2 ← 𝑜5 − 𝑎𝑟1. Also, all values
are included in the (defined) statement instead of 𝑁 which
is sent by the prover to the verifier as part of the proof.
First of all, the prover and verifier execute 2 range proofs
using bulletproofs (as defined in F.2) where the relations
are as follows: {(𝑔, ℎ ∈ G, com1, 𝐵max;𝑜1, 𝐵new ∈ Z𝑝) :
com1 = 𝑔𝑜1 · ℎ𝐵new ∧ 𝐵new ∈ [0, 𝐵max]} and {(𝑔, ℎ ∈
G, com3, 𝑅max;𝑜3, 𝑆new ∈ Z𝑝) : com3 = 𝑔𝑜3 · ℎ𝑅new ∧
𝑅new ∈ [0, 𝑅max]}. Then the prover and verifier run a
sigma protocol (where in the non-interactive version all
random challenges are replaced by hashes of the transcript
up to that point, including the statement itself, so the hash
in the following Sigma protocol contains bulletproof’s
transcripts as well). The commitments used in the range
proof relations are exactly the commitments used in the
sigma protocol explained in the following. The prover and
verifier execute the following (interactive) Sigma protocol:

(i) Prover computes: 𝜓 ′1 = 𝑔[1 ,𝜓 ′2 = pk[11,M · 𝑔
[2 ,𝜓 ′3 =

pk[12,M · 𝑔
[3 , com′ = 𝑔[4 · ℎ[5+[31 · ℎ[62 · ℎ

[7+[3
3 · ℎ[24 ·

ℎ
[17
5 ·ℎ

[8
6 , com′1 = 𝑔[10 ·ℎ[5+[3 , com′2 = 𝑔[11 ·ℎ[6 , com′3 =

𝑔[12 ·ℎ[7+[3 , com′4 = 𝑔[13 ·ℎ[2 , com′5 = 𝑔[14 ·ℎ[17 , com′6 =
𝑔[15 ·ℎ[8 , ^ ′ = 𝛼 · 𝛽[51 · 𝛽

[6
2 · 𝛽

[7
3 · 𝛽

[2
4 · 𝛽

[9
5 · 𝛽

[8
6 ·𝑔

[16 , T′ =
𝑔[17 , 𝑁 ′ = 𝑔[18 · ℎ[9 and com′′5 = 𝑁[8 · 𝑔[19 .
Prover sends 𝜓 ′1,𝜓

′
2,𝜓
′
3, com

′, com′1, com
′
2, com

′
3, com

′
4,

com′5, com
′
6, ^
′, T′, 𝑁 ′ and com′′5 to the verifier.

(ii) Verifier sends back challenge 𝑐 .
(iii) Prover computes:𝜔1 = [1−𝜌𝑐, 𝜔2 = [2− sk𝑐, 𝜔3 = [3−

𝑣𝑐, 𝜔4 = [4 − 𝑜𝑐, 𝜔5 = [5 − 𝐵old𝑐, 𝜔6 = [6 − 𝑆old𝑐, 𝜔7 =

[7 − 𝑅old𝑐, 𝜔8 = [8 − 𝑎𝑐, 𝜔9 = [9 − 𝜑old𝑐, 𝜔10 = [10 −
𝑜1𝑐, 𝜔11 = [11 − 𝑜2𝑐, 𝜔12 = [12 − 𝑜3𝑐, 𝜔13 = [13 −
𝑜4𝑐, 𝜔14 = [14−𝑜5𝑐, 𝜔15 = [15−𝑜6𝑐, 𝜔16 = [16−𝑟𝑐, 𝜔17 =
[17 − 𝜑new𝑐, 𝜔18 = [18 − 𝑟1𝑐 and 𝜔19 = [19 − 𝑟2𝑐 .
Prover sends 𝜔1, . . . , 𝜔19 to the verifier.

(iv) Verifier checks if:𝜓 ′1 = 𝜓𝑐
1 ·𝑔

𝜔1 ,𝜓 ′2 = 𝜓𝑐
2 ·pk

𝜔1
1,M ·𝑔

𝜔2 ,𝜓 ′3 =

𝜓𝑐
3 ·pk

𝜔1
2,M ·𝑔

𝜔3 , com′ = com𝑐 ·𝑔𝜔4 ·ℎ𝜔5+𝜔3
1 ·ℎ𝜔6

2 ·ℎ
𝜔7+𝜔3
3 ·

ℎ
𝜔2
4 · ℎ

𝜔17
5 · ℎ𝜔8

6 , com′1 = com𝑐
1 · 𝑔

𝜔10 · ℎ𝜔5+𝜔3 , com′2 =

com𝑐
2 · 𝑔

𝜔11 · ℎ𝜔6 , com′3 = com𝑐
3 · 𝑔

𝜔12 · ℎ𝜔7+𝜔3 , com′4 =
com𝑐

4 · 𝑔
𝜔13 · ℎ𝜔2 , com′5 = com𝑐

5 · 𝑔
𝜔14 · ℎ𝜔17 , com′6 =

com𝑐
6 · 𝑔

𝜔15 · ℎ𝜔8 , ^ ′ = ^𝑐 · 𝛼1−𝑐 · 𝛽𝜔5
1 · 𝛽

𝜔6
2 · 𝛽

𝜔7
3 · 𝛽

𝜔2
4 ·

𝛽
𝜔9
5 · 𝛽

𝜔8
6 · 𝑔

𝜔16 , T′ = T𝑐 · 𝑔𝜔17 , 𝑁 ′ = 𝑁𝑐 · 𝑔𝜔18 · ℎ𝜔9 and
com′′5 = com𝑐

5 · 𝑁
𝜔8 · 𝑔𝜔19 .

The interactive protocol explained above is converted to
non-interactive version using Fiat-Shamir transform (see
F). The computation complexity on the prover’s side for
non-interactive version is 1 hash, 29 exponentiation in G,
7 exponentiation in G̃, 16 multiplication in G, 7 multipli-
cation in G̃, 23 field addition, 19 field multiplication, and
16𝑛 exponentiation in G. Moreover, as explained above
the prover computes 𝑁 which is sent to the verifier as well
that needs 2 exponentiation in G and 1 multiplication in
G.

The user also needs to unblind and aggregate themaintainers’
signatures. Hence, we address each of them in the following.

PEReDi: Privacy-Enhanced, Regulated and Distributed Central Bank Digital Currencies CCS ’22, November 7–11, 2022, Los Angeles, CA, USA.

(a) For unblinding signature: the user parses 𝜎𝔅
𝑗

as (ℎ′, 𝑐).

Aborts ifℎ ≠ ℎ′. Then, computes𝜎 𝑗 =
(
ℎ, 𝑠 𝑗

)
←

(
ℎ, 𝑐

∏6
𝜏=1 𝛽

−𝑜𝜏
𝑗,𝜏

)
.

Hence, this step requires at maximum 6𝐷 exponentiation
in G and 6𝐷 multiplication in G. Afterwards, aborts if
𝑒

(
ℎ, 𝛼 𝑗

∏6
𝜏=1 𝛽

𝑚𝜏

𝑗,𝜏

)
= 𝑒

(
𝑠 𝑗 , 𝑔

)
does not hold. Hence, at

maximum this step requires 2𝐷 pairings, 6𝐷 exponentia-
tion in G̃ and 6𝐷 multiplication in G̃.

(b) For aggregating signature: the user parses 𝜎 𝑗 =
(
ℎ, 𝑠 𝑗

)
and computes the signature 𝜎M = (ℎ, 𝑠) ←

(
ℎ,

∏
𝑗 ∈𝐸 𝑠

𝑙 𝑗
𝑗

)
which requires 2𝑡+1 exponentiation inG and 2𝑡 multiplica-
tion inG. Afterwards, aborts if 𝑒

(
ℎ, 𝛼

∏6
𝜏=1 𝛽

𝑚𝜏
𝜏

)
= 𝑒 (𝑠, 𝑔)

does not hold which requires 2 pairings, 6 exponentiation
in G̃ and 6 multiplication in G̃.

(3) Each maintainer verifies the proof and re-randomized signa-
ture and generates a blind signature.

(a) For verification, each maintainer does the following:
(i) Parses 𝜎Rnd

M
as

(
𝜎 int
M

= (ℎ′, 𝑠 ′) , ^
)
and aborts if ℎ′ = 1

or if 𝑒 (ℎ′, ^) = 𝑒 (𝑠 ′, 𝑔) does not hold which requires 1
pairing.

(ii) Verifies 𝜋 and aborts if the proof is not correct which
means that the maintainer acts as what explained above
for the proof verification as a result, considering the
presented details above this step requires 1 hash, 42
exponentiation in G, 9 exponentiation in G̃, 29 multipli-
cation in G, 8 multiplication in G̃, 4 field addition, and
8𝑛 exponentiation in G.

(b) For blind signature, each maintainer does the following:
(i) Sends com to FRO and receive ℎ′ from FRO. Aborts if

ℎ ≠ ℎ′ which requires 1 hash.
(ii) Computes 𝑐 = ℎ𝑥 𝑗

∏6
𝜏=1 com

𝑦 𝑗,𝜏

𝜏 and sets the blind sig-
nature share𝜎𝔅

𝑗
= (ℎ,ℎ𝑥 𝑗

∏6
𝜏=1 com

𝑦 𝑗,𝜏

𝜏)which requires
7 exponentiation in G, and 6 multiplication in G.

F.4 Performance Details of Payment
In the following, we present the details for the sender’s side. The
computation complexity on the receiver’s side is similar to the
sender’s side except the fact that the receiver performs one range
proof less than the sender.

(1) The sender needs to compute TI𝑠 = (𝜓𝑠 ,𝜓𝑟 , 𝜎𝑠 (𝜓𝑟), accnew,𝔅𝑠 ,

𝜎Rnd
𝑠,M

, T𝑠). Associated computation complexities to compute
each element of TI𝑠 are as follows.

(a) 𝜓𝑠 : The sender needs to perform 4 exponentiation inG and
2 multiplication in G to compute 𝜓𝑠 =

(
𝜓𝑠,1,𝜓𝑠,2,𝜓𝑠,3

)
=(

𝑔𝜌𝑠 , pk𝜌𝑠1,M · pk𝑠 , pk
𝜌𝑠
2,M · 𝑔

𝑣
)
.

(b) 𝜓𝑟 : Computing 𝜓𝑟 =
(
𝜓𝑟,1,𝜓𝑟,2

)
=

(
𝑔𝜌𝑟 , pk𝜌𝑟1,M · pk𝑟

)
re-

quires 2 exponentiation in G and 1 multiplication in G.
(c) accnew,𝔅𝑠 : Computing accnew,𝔅𝑠 =

(
com, {com𝜏 }6𝜏=1 , ℎ

)
requires 19 exponentiation in G, 12 multiplication in G
and 1 hash.

(d) 𝜎Rnd
𝑠,M

: For re-randomizing signature user parses 𝜎M as

(ℎ, 𝑠), picks 𝑟 $←− Z𝑝 and sets 𝑟 ′
$←− Z𝑝 . Then, it com-

putes 𝜎 int
M

= (ℎ′, 𝑠 ′) ←
(
ℎ𝑟
′
, 𝑠𝑟
′ (ℎ′)𝑟

)
. It computes ^ ←

𝛼
∏6

𝜏=1 𝛽
𝑚𝜏
𝜏 𝑔𝑟 . Sets𝜎Rnd

𝑠,M
=

(
𝜎 int
M

, ^

)
=

(
𝜎 int
M

, 𝛼
∏6

𝜏=1 𝛽
𝑚𝜏
𝜏 𝑔𝑟

)
.

Hence, computing 𝜎Rnd
M

requires 3 exponentiation in G, 1
multiplication in G, 7 exponentiation in G̃, and 7 multipli-
cation in G̃.

(e) T𝑠 = 𝑔𝑎𝑠
𝑥𝑠+1 : It requires 1 exponentiation in field, and 1

exponentiation in G.
(f) 𝜎𝑠 (𝜓𝑟): To compute computation complexity of signature

of knowledge 𝜎𝑠 (𝜓𝑟) we describe the details of Sigma
protocol between the prover (sender) and the verifier (each
maintainer).
Thewitness of the sender is w𝑠 = ((𝐵old, 𝑆old, 𝑅old, sk, 𝜑old =

𝑎𝑥 , 𝑎), 𝜌, 𝑜, {𝑜𝜏 }6𝜏=1 , 𝑟 , 𝑟1, 𝑟2, 𝑣), the statement is x𝑠 = (𝜓𝑠 ,
accnew,𝔅𝑠 , 𝜎Rnd

𝑠,M
, T𝑠), and the relation is {𝜓𝑠,1 = 𝑔𝜌 ∧𝜓𝑠,2 =

pk𝜌1,M ·𝑔
sk∧𝜓𝑠,3 = pk𝜌2,M ·𝑔

𝑣 ∧com = 𝑔𝑜 ·ℎ𝐵old−𝑣
1 ·ℎ𝑆old+𝑣2 ·

ℎ𝑅
old

3 · ℎsk4 · ℎ
𝜑new

5 · ℎ𝑎6 ∧ com1 = 𝑔𝑜1 · ℎ𝐵old−𝑣 ∧ com2 =

𝑔𝑜2 ·ℎ𝑆old+𝑣∧com3 = 𝑔𝑜3 ·ℎ𝑅old∧com4 = 𝑔𝑜4 ·ℎsk∧com5 =

𝑔𝑜5 · ℎ𝜑new ∧ com6 = 𝑔𝑜6 · ℎ𝑎 ∧ ^ = 𝛼 · 𝛽𝐵old

1 · 𝛽𝑆old2 · 𝛽𝑅old

3 ·
𝛽sk4 · 𝛽

𝜑old

5 · 𝛽𝑎6 · 𝑔
𝑟 ∧ T = 𝑔𝜑

new ∧ 𝑁 = 𝑔𝑟1 · ℎ𝜑old ∧ com5 =

𝑁𝑎 · 𝑔𝑟2 ∧ 0 ≤ 𝑣 ≤ 𝑉max ∧ 𝐵new = 𝐵old − 𝑣 ≥ 0 ∧ 𝑆new =

𝑆old + 𝑣 ≤ 𝑆max}
Similar to currency issuance protocol, we stress that prover
sets 𝑟2 ← 𝑜5 − 𝑎𝑟1. Also, all values are included in the
(defined) statement instead of 𝑁 which is sent by the
prover to the verifier as part of the proof. First of all, the
prover and verifier execute 3 range proofs using bullet-
proofs (as defined in F.2) where the relations are as fol-
lows: {(pk2,M, 𝑔 ∈ G,𝜓𝑠,3,𝑉max; 𝜌, 𝑣 ∈ Z𝑝) : 𝜓𝑠,3 = pk𝜌2,M ·
𝑔𝑣 ∧ 𝑣 ∈ [0,𝑉max]}, {(𝑔, ℎ ∈ G, com1, 𝐵max;𝑜1, 𝐵new ∈
Z𝑝) : com1 = 𝑔𝑜1 ·ℎ𝐵new ∧𝐵new ∈ [0, 𝐵max]}, and {(𝑔, ℎ ∈
G, com2, 𝑆max;𝑜2, 𝑆new ∈ Z𝑝) : com2 = 𝑔𝑜2 ·ℎ𝑆new∧𝑆new ∈
[0, 𝑆max]}. Then the prover and verifier run a sigma pro-
tocol (where in the non-interactive version all random
challenges are replaced by hashes of the transcript up to
that point, including the statement itself and the message
of signature of knowledge𝜓𝑟 , so the hash in the following
Sigma protocol contains bulletproof’s transcripts as well).
The commitments used in the range proof relations are
exactly the commitments used in the sigma protocol ex-
plained in the following. The prover and verifier execute
the following (interactive) Sigma protocol:
(i) Prover computes 𝜓 ′

𝑠,1 = 𝑔[1 ,𝜓 ′
𝑠,2 = pk[11,M · 𝑔

[2 ,𝜓 ′
𝑠,3 =

pk[12,M ·𝑔
[3 , com′ = 𝑔[4 ·ℎ[5−[31 ·ℎ[6+[32 ·ℎ[73 ·ℎ

[2
4 ·ℎ

[17
5 ·

ℎ
[8
6 , com′1 = 𝑔[10 · ℎ[5−[3 , com′2 = 𝑔[11 · ℎ[6+[3 , com′3 =

𝑔[12 · ℎ[7 , com′4 = 𝑔[13 · ℎ[2 , com′5 = 𝑔[14 · ℎ[17 , com′6 =

𝑔[15 ·ℎ[8 , ^ ′ = 𝛼 · 𝛽[51 · 𝛽
[6
2 · 𝛽

[7
3 · 𝛽

[2
4 · 𝛽

[9
5 · 𝛽

[8
6 ·𝑔

[16 , T′ =
𝑔[17 , 𝑁 ′ = 𝑔[18 · ℎ[9 and com′′5 = 𝑁[8 · 𝑔[19 .
Prover sends𝜓 ′

𝑠,1,𝜓
′
𝑠,2,𝜓

′
𝑠,3, com

′, com′1, com
′
2, com

′
3, com

′
4,

com′5, com
′
6, ^
′, T′, 𝑁 ′ and com′′5 to the verifier.

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA. Aggelos Kiayias, Markulf Kohlweiss, and Amirreza Sarencheh

(ii) Verifier sends back challenge 𝑐 .
(iii) Prover computes 𝜔1 = [1 − 𝜌𝑐, 𝜔2 = [2 − sk𝑐, 𝜔3 = [3 −

𝑣𝑐, 𝜔4 = [4 − 𝑜𝑐, 𝜔5 = [5 − 𝐵old𝑐, 𝜔6 = [6 − 𝑆old𝑐, 𝜔7 =

[7 − 𝑅old𝑐, 𝜔8 = [8 − 𝑎𝑐, 𝜔9 = [9 − 𝜑old𝑐, 𝜔10 = [10 −
𝑜1𝑐, 𝜔11 = [11 − 𝑜2𝑐, 𝜔12 = [12 − 𝑜3𝑐, 𝜔13 = [13 −
𝑜4𝑐, 𝜔14 = [14−𝑜5𝑐, 𝜔15 = [15−𝑜6𝑐, 𝜔16 = [16−𝑟𝑐, 𝜔17 =
[17 − 𝜑new𝑐, 𝜔18 = [18 − 𝑟1𝑐 and 𝜔19 = [19 − 𝑟2𝑐 .
Prover sends 𝜔1, . . . , 𝜔19 to the verifier.

(iv) Verifier checks if: 𝜓 ′
𝑠,1 = 𝜓𝑐

𝑠,1 · 𝑔
𝜔1 ,𝜓 ′

𝑠,2 = 𝜓𝑐
𝑠,2 · pk

𝜔1
1,M ·

𝑔𝜔2 ,𝜓 ′
𝑠,3 = 𝜓𝑐

𝑠,3 ·pk
𝜔1
2,M ·𝑔

𝜔3 , com′ = com𝑐 ·𝑔𝜔4 ·ℎ𝜔5−𝜔3
1 ·

ℎ
𝜔6+𝜔3
2 · ℎ𝜔7

3 · ℎ
𝜔2
4 · ℎ

𝜔17
5 · ℎ𝜔8

6 , com′1 = com𝑐
1 · 𝑔

𝜔10 ·
ℎ𝜔5−𝜔3 , com′2 = com𝑐

2 · 𝑔
𝜔11 · ℎ𝜔6+𝜔3 , com′3 = com𝑐

3 ·
𝑔𝜔12 ·ℎ𝜔7 , com′4 = com𝑐

4 ·𝑔
𝜔13 ·ℎ𝜔2 , com′5 = com𝑐

5 ·𝑔
𝜔14 ·

ℎ𝜔17 , com′6 = com𝑐
6 ·𝑔

𝜔15 ·ℎ𝜔8 , ^ ′ = ^𝑐 ·𝛼1−𝑐 · 𝛽𝜔5
1 · 𝛽

𝜔6
2 ·

𝛽
𝜔7
3 ·𝛽

𝜔2
4 ·𝛽

𝜔9
5 ·𝛽

𝜔8
6 ·𝑔

𝜔16 , T′ = T𝑐 ·𝑔𝜔17 , 𝑁 ′ = 𝑁𝑐 ·𝑔𝜔18 ·ℎ𝜔9

and com′′5 = com𝑐
5 · 𝑁

𝜔8 · 𝑔𝜔19 .
The interactive protocol explained above is converted to
non-interactive version using Fiat-Shamir transform (see
F). The computation complexity on the prover’s side for
non-interactive version is 1 hash, 29 exponentiation in G,
7 exponentiation in G̃, 16 multiplication in G, 7 multipli-
cation in G̃, 23 field addition, 19 field multiplication, and
24𝑛 exponentiation in G. Moreover, as explained above
the prover computes 𝑁 which is sent to the verifier as well
that needs 2 exponentiation in G and 1 multiplication in
G.

The user also needs to unblind and aggregate themaintainers’
signatures. Hence, we address each of them in the following.

(a) For unblinding signature: the user parses 𝜎𝔅
𝑗

as (ℎ′, 𝑐).

Aborts ifℎ ≠ ℎ′. Then, computes𝜎 𝑗 =
(
ℎ, 𝑠 𝑗

)
←

(
ℎ, 𝑐

∏6
𝜏=1 𝛽

−𝑜𝜏
𝑗,𝜏

)
.

Hence, this step requires at maximum 6𝐷 exponentiation
in G and 6𝐷 multiplication in G. Afterwards, aborts if
𝑒

(
ℎ, 𝛼 𝑗

∏6
𝜏=1 𝛽

𝑚𝜏

𝑗,𝜏

)
= 𝑒

(
𝑠 𝑗 , 𝑔

)
does not hold. Hence, at

maximum this step requires 2𝐷 pairings, 6𝐷 exponentia-
tion in G̃ and 6𝐷 multiplication in G̃.

(b) For aggregating signature: the user parses 𝜎 𝑗 =
(
ℎ, 𝑠 𝑗

)
and computes the signature 𝜎M = (ℎ, 𝑠) ←

(
ℎ,

∏
𝑗 ∈𝐸 𝑠

𝑙 𝑗
𝑗

)
which requires 2𝑡+1 exponentiation inG and 2𝑡 multiplica-
tion inG. Afterwards, aborts if 𝑒

(
ℎ, 𝛼

∏6
𝜏=1 𝛽

𝑚𝜏
𝜏

)
= 𝑒 (𝑠, 𝑔)

does not hold which requires 2 pairings, 6 exponentiation
in G̃ and 6 multiplication in G̃.

(2) Each maintainer verifies the proof and re-randomized sig-
nature and generates a blind signature. All the following
computation complexities are related to processing TI𝑠 , pro-
cessing TI𝑟 requires the same computation complexity except
one range proof less than processing TI𝑠 . In our results, we
have considered computation complexity for processing both
TI𝑠 and TI𝑟 .

(a) For verification, each maintainer does the following:
(i) Parses 𝜎Rnd

M
as

(
𝜎 int
M

= (ℎ′, 𝑠 ′) , ^
)
and aborts if ℎ′ = 1

or if 𝑒 (ℎ′, ^) = 𝑒 (𝑠 ′, 𝑔) does not hold which requires 1
pairing.

(ii) Verifies 𝜋 and aborts if the proof is not correct which
means that the maintainer acts as what explained above
for the proof verification as a result, considering the
presented details above this step requires 1 hash, 42
exponentiation in G, 9 exponentiation in G̃, 29 multipli-
cation in G, 8 multiplication in G̃, 4 field addition, and
12𝑛 exponentiation in G (for TI𝑟 it is 8𝑛 exponentiation
in G).

(b) For blind signature, each maintainer does the following:
(i) Sends com to FRO and receive ℎ′ from FRO. Aborts if

ℎ ≠ ℎ′ which requires 1 hash.
(ii) Computes 𝑐 = ℎ𝑥 𝑗

∏6
𝜏=1 com

𝑦 𝑗,𝜏

𝜏 and sets the blind sig-
nature share𝜎𝔅

𝑗
= (ℎ,ℎ𝑥 𝑗

∏6
𝜏=1 com

𝑦 𝑗,𝜏

𝜏)which requires
7 exponentiation in G, and 6 multiplication in G.

F.5 Sigma Protocols and Formal Definitions for
Zero-Knowledge Relations

In this section, we address formal definitions of all zero-knowledge
relations used throughout the whole construction. The formal defi-
nitions of ZK relations for Currency Issuance and Payment protocols
addressed in Sections F.3 and F.4.

F.5.1 User Registration ZKRelation. User’s witness is w = ((0, 0, 0, sk,
1, 𝑎), {𝑎 𝑗 }𝐷𝑗=1, 𝑜, {𝑜𝜏 }

6
𝜏=1, {𝑟 𝑗 }

𝐷
𝑗=1, {coe𝑗 }

𝛽−1
𝑗=1), the statement is x =

(acc𝔅, comM, pkU), and the relation is {com = 𝑔𝑜 · ℎsk4 · ℎ5 · ℎ
𝑎
6 ∧

com1 = 𝑔𝑜1 ∧com2 = 𝑔𝑜2 ∧com3 = 𝑔𝑜3 ∧com4 = 𝑔𝑜4 ·ℎsk∧com5 =

𝑔𝑜5 ·ℎ∧com6 = 𝑔𝑜6 ·ℎ𝑎∧
{

˜com𝑗 = 𝑔𝑎 𝑗ℎ𝑟 𝑗
}𝐷
𝑗=1∧pkU = 𝑔sk∧{ ˜com𝑗 =

𝑔𝑎+coe1 𝑗+...+coe𝛽−1 𝑗
𝛽−1 ·ℎ𝑟 𝑗 = 𝑔𝑎 ·𝑔coe1 𝑗 . . . 𝑔coe𝛽−1 𝑗𝛽−1 ·ℎ𝑟 𝑗 }𝐷

𝑗=1}. The
prover and verifier execute the following Sigma protocol:

(1) Prover sends com′ = 𝑔[1 · ℎ[24 · ℎ5 · ℎ
[3
6 , com′1 = 𝑔[4 , com′2 =

𝑔[5 , com′3 = 𝑔[6 , com′4 = 𝑔[7 · ℎ[2 , com′5 = 𝑔[8 · ℎ, com′6 =

𝑔[9 · ℎ[3 , { ˜com∗𝑗 = 𝑔` 𝑗ℎ𝛾 𝑗 }𝐷
𝑗=1 ∧ pk′ = 𝑔[2 and { ˜com∗∗𝑗 =

𝑔[3 · 𝑔𝛼1 𝑗 . . . 𝑔𝛼𝛽−1 𝑗𝛽−1 · ℎ𝛾 𝑗 }𝐷
𝑗=1 to the verifier.

(2) Verifier sends back challenge 𝑐 .
(3) Prover sends: 𝜔1 = [1 −𝑜𝑐, 𝜔2 = [2 − sk𝑐, 𝜔3 = [3 −𝑎𝑐, 𝜔4 =

[4−𝑜1𝑐, 𝜔5 = [5−𝑜2𝑐, 𝜔6 = [6−𝑜3𝑐, 𝜔7 = [7−𝑜4𝑐, 𝜔8 = [8−
𝑜5𝑐, 𝜔9 = [9 − 𝑜6𝑐, 𝜔 ′1 = `1 − 𝑎1𝑐, . . . , 𝜔 ′𝐷 = `𝐷 − 𝑎𝐷𝑐, 𝜔 ′′1 =

𝛾1 − 𝑟1𝑐, . . . , 𝜔 ′′𝐷 = 𝛾𝐷 − 𝑟𝐷𝑐, 𝜔 ′′′1 = 𝛼1 − coe1𝑐, . . . , 𝜔 ′′′𝛽−1 =

𝛼𝛽−1 − coe𝛽−1𝑐 to the verifier.
(4) Verifier checks if: com′ = com𝑐 ·𝑔𝜔1 ·ℎ𝜔2

4 ·ℎ
1−𝑐
5 ·ℎ𝜔3

6 , com′1 =
com𝑐

1 · 𝑔
𝜔4 , com′2 = com𝑐

2 · 𝑔
𝜔5 , com′3 = com𝑐

3 · 𝑔
𝜔6 , com′4 =

com𝑐
4 ·𝑔

𝜔7 ·ℎ𝜔2 , com′5 = com𝑐
5 ·𝑔

𝜔8 ·ℎ1−𝑐 , com′6 = com𝑐
6 ·𝑔

𝜔9 ·
ℎ𝜔3 , { ˜com∗𝑗 = ˜com𝑐

𝑗 ·𝑔
𝜔′𝑗ℎ

𝜔′′𝑗 }𝐷
𝑗=1∧pk

′ = pk𝑐 ·𝑔𝜔2∧{ ˜com∗∗𝑗 =

˜com𝑐
𝑗 · 𝑔

𝜔3 · 𝑔𝜔′′′1 𝑗 . . . 𝑔
𝜔′′′
𝛽−1 𝑗

𝛽−1
· ℎ𝜔

′′
𝑗 }𝐷

𝑗=1.

F.5.2 Abort Transaction ZK Relation. User’s witness is w = ((𝐵old,
𝑆old, 𝑅old, sk, 𝜑 = 𝑎𝑥 , 𝑎), 𝑜, {𝑜𝜏 }6𝜏=1, 𝑟 , 𝑟1, 𝑟2), the statement is x =

(accnew,𝔅, 𝜎Rnd
M

, T), and the relation is {com = 𝑔𝑜 · ℎ𝐵old

1 · ℎ𝑆old2 ·
ℎ𝑅

old

3 ·ℎsk4 ·ℎ
𝜑new

5 ·ℎ𝑎6∧com1 = 𝑔𝑜1 ·ℎ𝐵old∧com2 = 𝑔𝑜2 ·ℎ𝑆old∧com3 =

𝑔𝑜3 · ℎ𝑅old ∧ com4 = 𝑔𝑜4 · ℎsk ∧ com5 = 𝑔𝑜5 · ℎ𝜑new ∧ com6 =

𝑔𝑜6 · ℎ𝑎 ∧ ^ = 𝛼 · 𝛽𝐵old

1 · 𝛽𝑆old2 · 𝛽𝑅old

3 · 𝛽sk4 · 𝛽
𝜑old

5 · 𝛽𝑎6 · 𝑔
𝑟 ∧ T =

𝑔𝜑
new ∧ 𝑁 = 𝑔𝑟1 · ℎ𝜑old ∧ com5 = 𝑁𝑎 · 𝑔𝑟2 }. We stress that prover

PEReDi: Privacy-Enhanced, Regulated and Distributed Central Bank Digital Currencies CCS ’22, November 7–11, 2022, Los Angeles, CA, USA.

sets 𝑟2 ← 𝑜5 − 𝑎𝑟1. The prover and verifier execute the following
Sigma protocol:

(1) Prover computes: com′ = 𝑔[4 · ℎ[51 · ℎ
[6
2 · ℎ

[7
3 · ℎ

[2
4 · ℎ

[17
5 ·

ℎ
[8
6 , com′1 = 𝑔[10 · ℎ[5 , com′2 = 𝑔[11 · ℎ[6 , com′3 = 𝑔[12 ·

ℎ[7 , com′4 = 𝑔[13 · ℎ[2 , com′5 = 𝑔[14 · ℎ[17 , com′6 = 𝑔[15 ·
ℎ[8 , ^ ′ = 𝛼 ·𝛽[51 ·𝛽

[6
2 ·𝛽

[7
3 ·𝛽

[2
4 ·𝛽

[9
5 ·𝛽

[8
6 ·𝑔

[16 , T′ = 𝑔[17 , 𝑁 ′ =
𝑔[18 · ℎ[9 and com′′5 = 𝑁[8 · 𝑔[19 .
Prover sends com′, com′1, com

′
2, com

′
3, com

′
4, com

′
5, com

′
6, ^
′,

T′, 𝑁 ′ and com′′5 to the verifier.
(2) Verifier sends back challenge 𝑐 .
(3) Prover computes: 𝜔2 = [2 − sk𝑐, 𝜔4 = [4 − 𝑜𝑐, 𝜔5 = [5 −

𝐵old𝑐, 𝜔6 = [6 − 𝑆old𝑐, 𝜔7 = [7 − 𝑅old𝑐, 𝜔8 = [8 − 𝑎𝑐, 𝜔9 =

[9 − 𝜑old𝑐, 𝜔10 = [10 − 𝑜1𝑐, 𝜔11 = [11 − 𝑜2𝑐, 𝜔12 = [12 −
𝑜3𝑐, 𝜔13 = [13 − 𝑜4𝑐, 𝜔14 = [14 − 𝑜5𝑐, 𝜔15 = [15 − 𝑜6𝑐, 𝜔16 =
[16−𝑟𝑐, 𝜔17 = [17−𝜑new𝑐, 𝜔18 = [18−𝑟1𝑐 and𝜔19 = [19−𝑟2𝑐 .
Prover sends 𝜔2, 𝜔4, . . . , 𝜔19 to the verifier.

(4) Verifier checks if: com′ = com𝑐 · 𝑔𝜔4 · ℎ𝜔5
1 · ℎ

𝜔6
2 · ℎ

𝜔7
3 ·

ℎ
𝜔2
4 · ℎ

𝜔17
5 · ℎ𝜔8

6 , com′1 = com𝑐
1 · 𝑔

𝜔10 · ℎ𝜔5 , com′2 = com𝑐
2 ·

𝑔𝜔11 · ℎ𝜔6 , com′3 = com𝑐
3 · 𝑔

𝜔12 · ℎ𝜔7 , com′4 = com𝑐
4 · 𝑔

𝜔13 ·
ℎ𝜔2 , com′5 = com𝑐

5 ·𝑔
𝜔14 ·ℎ𝜔17 , com′6 = com𝑐

6 ·𝑔
𝜔15 ·ℎ𝜔8 , ^ ′ =

^𝑐 ·𝛼1−𝑐 ·𝛽𝜔5
1 ·𝛽

𝜔6
2 ·𝛽

𝜔7
3 ·𝛽

𝜔2
4 ·𝛽

𝜔9
5 ·𝛽

𝜔8
6 ·𝑔

𝜔16 , T′ = T𝑐 ·𝑔𝜔17 , 𝑁 ′ =
𝑁𝑐 · 𝑔𝜔18 · ℎ𝜔9 and com′′5 = com𝑐

5 · 𝑁
𝜔8 · 𝑔𝜔19 .

F.5.3 Privacy Revocation ZK Relation. Maintainer’s witness is w𝑗 =
(sk1, 𝑗 , sk2, 𝑗), the statement is x𝑗 = (𝜓𝑠,1,𝜓𝑟,1,𝜓

sk1, 𝑗
𝑠,1 𝜓

sk2, 𝑗
𝑠,1 ,𝜓

sk1, 𝑗
𝑟,1),

and the relation is {pk1, 𝑗 = 𝑔sk1, 𝑗 ∧𝜓 sk1, 𝑗
𝑠,1 ∧ pk2, 𝑗 = 𝑔sk2, 𝑗 ∧𝜓 sk2, 𝑗

𝑠,1 ∧
𝜓
sk1, 𝑗
𝑟,1 }. The prover and verifier execute the following Sigma proto-

col:
(1) Prover computes: pk′1, 𝑗 = 𝑔[1 ,𝜓

[1
𝑠,1, pk

′
2, 𝑗 = 𝑔[2 ,𝜓

[2
𝑠,1 and𝜓

[1
𝑟,1.

Prover sends pk′1, 𝑗 ,𝜓
[1
𝑠,1, pk

′
2, 𝑗 ,𝜓

[2
𝑠,1 and𝜓

[1
𝑟,1 to the verifier.

(2) Verifier sends back challenge 𝑐 .
(3) Prover computes: 𝜔1 = [1 − sk1, 𝑗𝑐 and 𝜔2 = [2 − sk2, 𝑗𝑐 .

Prover sends 𝜔1 and 𝜔2 to the verifier.
(4) Verifier checks if: pk′1, 𝑗 = pk𝑐1, 𝑗 · 𝑔

𝜔1 ,𝜓
[1
𝑠,1 =

(
𝜓
sk1, 𝑗
𝑠,1

)𝑐
·

𝜓
𝜔1
𝑠,1 , pk

′
2, 𝑗 = pk𝑐2, 𝑗 · 𝑔

𝜔2 ,𝜓
[2
𝑠,1 =

(
𝜓
sk2, 𝑗
𝑠,1

)𝑐
· 𝜓𝜔2

𝑠,1 and 𝜓
[1
𝑟,1 =(

𝜓
sk1, 𝑗
𝑟,1

)𝑐
·𝜓𝜔1

𝑟,1

F.5.4 Tracing ZK Relation. Maintainer’s witness is w𝑗 =
(
𝑎 𝑗 , 𝑟 𝑗

)
,

the statement is x𝑗 =
(

˜com𝑗 , ¤𝑔𝑎 𝑗 , ¤𝑔
)
, the relation is

{
˜com𝑗 = 𝑔𝑎 𝑗 · ℎ𝑟 𝑗 ∧ ¤𝑔𝑎 𝑗

}
.

The prover and verifier execute the following Sigma protocol:
(1) Prover computes: ˜com∗𝑗 = 𝑔[1 · ℎ[2 and ¤𝑔[1 .

Prover sends ˜com∗𝑗 and ¤𝑔[1 to the verifier.
(2) Verifier sends back challenge 𝑐 .
(3) Prover computes: 𝜔1 = [1 − 𝑎 𝑗𝑐 and 𝜔2 = [2 − 𝑟 𝑗𝑐 .

Prover sends 𝜔1 and 𝜔2 to the verifier.
(4) Verifier checks if: ˜com∗𝑗 = ˜com𝑐

𝑗 ·𝑔
𝜔1 ·ℎ𝜔2 and ¤𝑔[1 = (¤𝑔𝑎 𝑗)𝑐 ·

¤𝑔𝜔1 .

G SIMULATION
We describe a simulator S that reproduces the real-world view of
A and emulate the execution of honest parties. The simulator inter-
nally emulates the functionalities FKR, FCh, FBA, FRO, FBC, FNIZK
and FSoK. To do so, it needs to maintain specific lists associated to

each functionality. However, without loss of generality, we assume
S internally keeps track of states of functionalities and omit ad-
dressing all these lists explicitly. It also maintains the lists ListUR
for keeping track of registered users and Listtid for keeping track
of transaction identifiers. S interacts with the dummy adversaryA
and with the CBDC functionality FCBDC. Similar to the functional-
ity FCBDC and our construction ΠPEReDi, the simulator is described
in six parts: User Registration, Currency Issuance, Payment, Abort
Transaction, Privacy Revocation and Tracing. In this section, we de-
note the values of user’s old account without the old superscript
e.g., we denote 𝐵old by 𝐵.

G.1 Simulation of User Registration
In all the following cases, S receives (GenAcc, sid,U) from FCBDC
and at the end of the simulation,S sends themessage (Ok.GenAcc, sid,
U) to FCBDC if the user receives at least 2𝑡 +1 valid signature shares
from maintainers19. Throughout the simulation of User Registration
S knows the identifier of the user U (regardless of the fact that U is
corrupted or not). We note that in order to keep the functionality
as simple as possible we leave it to the adversary to determine the
outcome of the KYC process in the ideal world. Our construction
on the other hand does capture it.

G.1.1 Honest U and at most 𝑡 malicious maintainers: S initiates
User Registration protocol by emulating the honest user U.

(1) Communication from U toM:
Emulating FKR, S internally records the pair (U, pkU) for a
randomly chosen value as pkU.
Simulator on behalf of honest user U is supposed to provide
RI𝑗 = (acc𝔅, 𝑎 𝑗 , 𝑟 𝑗 , comM, pkU, 𝜋) to malicious maintainers
and associated leakage of channel to adversary A.
It does so by computing acc𝔅 based on dummy values. It
also, selects two values as 𝑎 𝑗 and 𝑟 𝑗 randomly from Z∗𝑝 per
maintainer and computes ˜com𝑗 = 𝑔𝑎 𝑗ℎ𝑟 𝑗 . It sets comM ←{

˜com𝑗

}𝐷
𝑗=1.

S also storesUR =
(
𝑎 𝑗 , 𝑟 𝑗 ,M𝑗 ,U

)
(per maintainer) in ListUR.

S sets x ←
(
acc𝔅, comM, pkU

)
. Emulating FNIZK the sim-

ulator sends (Prove, sid, x) to the dummy (internally run) ad-
versaryA as the leakage ofFNIZK. Upon receiving (Proof, sid,
𝜋) from A, the simulator stores (x, 𝜋).
Emulating FBC it sends (Broadcasted, sid,U, comM) to the
dummy A (both as the leakage of FBC and the message
malicious maintainers receive).
Emulating F sc

Ch, the simulator leaks (Send, sid, (U,M𝑗 , |RI𝑗 |),
mid) to A. And upon receiving (Ok.Snd, sid,mid) from A,
leaks the next leakage (Send, sid,

(
U,M𝑗+1, |RI𝑗+1 |

)
,mid).

Finally,A (maliciousmaintainer e.g.,M𝑡) receives (Received,
sid,U,RI𝑡) from F sc

Ch.
S gives that message toA (who controlsM𝑡) upon receiving
(Ok, sid,mid) from the dummyA asS has already simulated
all information included in RI𝑡 .

(2) Communication among honest and malicious maintainers:

19Doing so makes FCBDC to update its internally maintained mappings and output
(AccGened, sid) to U and (AccGened, sid,U) toM.

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA. Aggelos Kiayias, Markulf Kohlweiss, and Amirreza Sarencheh

S outputs (RetrieveKey, sid,U,M𝑗) toA as leakage of FKR.
S has already emulated the honest user and FNIZK by storing
(x, 𝜋). Hence, upon calling FNIZK with (Verify, sid, x, 𝜋) via
A (maliciousmaintainer), the simulator outputs (Verification,
sid, 1) to A.
S keeps track of adversary’s blockage on the message each
honest maintainer receives. As soon as one honest main-
tainer receives RI the simulator submits (Ok.GenAcc, sid,U)
to FCBDC.

(3) Communication fromM to U:
Then, S needs to simulate the view of A considering the
information that is leaked toA when each maintainer sends
back the blind signature share of U’s account. To do so, S
sends (Send, sid, (M𝑗 ,U, 𝜎𝔅𝑗),mid) to A as leakage of F ac

Ch
in which 𝜎𝔅𝑤 for𝑤 ∈ H is simulated by S and 𝜎𝔅𝑡 for 𝑡 ∈ C
is obtained from the A.
Emulating channel functionality allows S to keep track of
active malicious maintainers who participate at generating
valid signatures. If at least 2𝑡 + 1 valid signature shares are
sent by maintainers to the channel functionality the simula-
tor lets functionality output (AccGened, sid) to U.

G.1.2 MaliciousU and at most 𝑡 malicious maintainers: A on behalf
of malicious U initiates User Registration protocol.

(1) Communication from U toM:
Once adversary A calls FBC with (Broadcast, sid, comM)
S sends (Broadcasted, sid,U, comM) toA (both as the leak-
age of FBC and the message malicious maintainers receive).
A callsF sc

Ch that is emulated bySwith input (Send, sid,M𝑗 ,RI𝑗).
S leaks (Send, sid, (U,M𝑗 , |RI𝑗 |),mid) to A as leakage of
F sc
Ch. Upon receiving (Ok.Snd, sid,mid) from A, the simula-

tor sends (Continue, sid) to A (malicious U).
S sends (Received, sid,U,RI𝑡) to A (malicious maintainer
M𝑡) as the output of F ac

Ch once it receives (Ok, sid,mid) from
A.

(2) Communication among honest and malicious maintainers:
S who emulates FKR checks internally maintained list for
FKR to see if (U, pkU) has already been saved or not. If not,
it ignores RI.
S who emulates FBC, F sc

Ch and honest maintainers waits to
receive a message from FBC and F sc

Ch where the message is
sent from A on behalf of one specific U and comM received
from both functionalities is the same.
Afterwards, S checks whether there is a user record UR
saved in ListUR for U. If there is, it ignores RI.
Given the received (𝑎𝑤 , 𝑟𝑤) from A, it computes 𝑔𝑎𝑤ℎ𝑟𝑤
and ignores if it is not equal to com𝑤 ∈ comM for ∀𝑤 ∈ H .
Else, S checks if (x, 𝜋) such that x =

(
acc𝔅, comM, pkU

)
is

stored. Otherwise, (to extract thewitness) sends (Verify, sid, x,
𝜋) to A as leakage of FNIZK. Upon receiving the answer
(Witness, sid, w) from A, checks (x, w) ∈ R and if so, stores
(x, 𝜋). Else, ignore the message.
S saves UR =

(
𝑎 𝑗 , 𝑟 𝑗 , comM,U

)
in ListUR.

S keeps track of adversary’s blockage on the message each
honest maintainer receives. As soon as one honest main-
tainer receives RI the simulator submits (Ok.GenAcc, sid,U)
to FCBDC.

(3) Communication fromM to U:
S sends (Send, sid, (M𝑗 ,U, 𝜎𝔅𝑗),mid) toA as leakage of com-
munication channel in which 𝜎𝔅𝑤 for 𝑤 ∈ H is simulated
by S (as described in the sequences of games Sec. E.0.1)
and 𝜎𝔅𝑡 for 𝑡 ∈ C is obtained from the A. S also sends
(Received, sid,M𝑗 , 𝜎

𝔅
𝑗
) to A as the message A (malicious

user) receives in the real world once it receives (Ok, sid,mid)
from A.
Emulating channel functionality allows S to keep track of
active malicious maintainers who participate at generating
valid signatures (S has already extracted the witness from
malicious user’s RI so that it can check the validity of mali-
cious maintainers’ signatures). If at least 2𝑡+1 valid signature
shares are received by the user (note that honest maintain-
ers are emulated by S itself, and S generates signatures on
behalf of the honest maintainers who have received the RI)
the simulator lets functionality output (AccGened, sid) to U.

G.2 Simulation of Currency Issuance
G.2.1 Honest U, honest B and at most 𝑡 malicious maintainers: S
receives (Iss, sid, pid) from FCBDC and initiates Currency Issuance
protocol by emulating honest B.

(1) Communication from B to U:
In the real-worldA sees (Send, sid, (B, |𝑣 |),midB) as leakage
of F sra

Ch . The simulator S has already known |𝑣 | and thus
sends the leakage to A.

(2) Communication from U to B:
Upon receiving (AcceptIss, sid, pid) from FCBDC the simu-
lator emulates an honest user U. We note that if the user has
already been traced S receives (AcceptIss, sid, pid,U) from
FCBDC so that it is able to use the same tag in this protocol
as it had generated for the user U who did not have any
transactions in the time of executing the Tracing protocol.
In the real world, A sees (Send, sid,B, |𝜌 |,midU) as leakage
of F ssa

Ch . The simulator has already known |𝜌 | and sends the
leakage to A.

(3) Communication from B and U toM:
Considering U and B’s communications withM, the adver-
sary A respectively sees (Send, sid,M𝑗 , TIU,mid′U) as leak-
age of F sa

Ch and (Send, sid,B,M𝑗 , TIB,mid′B) as leakage of
F ac
Ch. Once S receives (Ok.Snd, sid,mid′U) from A it leaks

the next leakage (Send, sid,M𝑗+1, TIU,mid′U) and once it re-
ceives (Ok.Snd, sid,mid′B) from A it leaks the next leakage
(Send, sid,B,M𝑗+1, TIB,mid′B).
Hence, S is supposed to simulate the view of dummy A
with respect to the information real-world A sees without
knowing the identity of U.
First of all, based on PrepareBlindSign, S selects random
values to compute accnew,𝔅.

PEReDi: Privacy-Enhanced, Regulated and Distributed Central Bank Digital Currencies CCS ’22, November 7–11, 2022, Los Angeles, CA, USA.

Then, computes 𝜎Rnd
M

in a way described in Sec. E.0.1. Af-
terwards, S computes a threshold encryption𝜓 on dummy
values as plaintexts.

It computes T by randomly selecting 𝑧
$←− Z𝑝 and let T← 𝑔𝑧 .

S sets x ←
(
𝜓, accnew,𝔅, 𝜎Rnd

M
, T

)
. Emulating FNIZK, the

simulator sends (Prove, sid, x) to A. The simulator receives
(Proof, sid, 𝜋) from A and records (x, 𝜋).
S sends (Send, sid,M𝑗 , TIU,mid′U) and (Send, sid,B,M𝑗 , TIB,

mid′B) to A such that TIU =

(
𝜓, accnew,𝔅, 𝜎Rnd

M
, T, 𝜋

)
and

TIB = 𝜓 as explained above.
Finally,A (maliciousmaintainer) receives (Received, sid, TIU,
mid′U) and (Received, sid,B, TIB) from channel (emulated
byS) once dummyA sends (Ok, sid,mid′U) and (Ok, sid,mid′B)
to S respectively.

(4) Communication among honest and malicious maintainers:
S has already emulated the honest user and FNIZK (it has
stored (x, 𝜋)).
Hence, upon calling FNIZK with (Verify, sid, x, 𝜋) via A
(maliciousmaintainer), the simulator outputs (Verification,
sid, 1) to A.
As soon as one honest maintainer receives both TIU and TIB,
the simulator submits (GenTnx, sid, pid, 𝑡id) to FCBDC where
𝑡id = (𝜓, T). The values of 𝜓 and T are simulated by S as
described above.
For each maintainer (either honest or malicious) who gener-
ates a valid signature on user’s accountS submits (GenTnx, sid,
pid,M𝑘) to FCBDC whereM𝑘 is the identifier of that main-
tainer.

(5) Communication fromM to U:
S sends (Send, sid,M𝑗 , 𝜎

new,𝔅
𝑗

,mid′U) to A as leakage of

F sa
Ch in which 𝜎

new,𝔅
𝑤 for 𝑤 ∈ H is simulated by S and

𝜎
new,𝔅
𝑡 for 𝑡 ∈ C is obtained from the A (malicious main-
tainer).

G.2.2 MaliciousU, honest B and at most 𝑡 malicious maintainers: In
this case, S receives (Iss, sid, pid,U, 𝑣) from FCBDC. The simulator
initiates Currency Issuance protocol on behalf of honest B to issue
a digital currency worth of 𝑣 for U.

(1) Communication from B to U:
Similar to the case of honestU and honest B,S leaks toA the
message (Send, sid,B, |𝑣 |,midB) as leakage of F sra

Ch . In the
real world, A (malicious U) receives (Received, sid,B, 𝑣),
S has already received (Iss, sid, pid,U, 𝑣) from FCBDC thus
it knows 𝑣 and it sends (Received, sid,B, 𝑣) to the dummy
(internally run)A once it receives the message (Ok, sid,mid).

(2) Communication from U to B:
Emulating F ssa

Ch , the simulator receives A’s message of the
form (Send, sid,B, 𝜌). Then, S leaks (Send, sid,B, |𝜌 |,midU)
toA as leakage of F ssa

Ch . Once S receives (Ok, sid,mid) from
A it proceeds emulating honest B.

(3) Communication from B and U toM:
Simulating the communication from B toM is similar to the
case of honest U and honest B.
Regarding the communication from U toM, the adversary
calls F sa

Ch with input (Send, sid,M𝑗 , TIU).

The simulator sends (Send, sid,M𝑗 , TIU,mid′U) to A as the
leakage of F sa

Ch. Upon receiving (Ok.Snd, sid,mid′U) from A,
S sends (Continue, sid) to A (malicious U).
A (maliciousmaintainer) receives (Received, sid, TIU,mid′U)
from S. For the simulator to do so, it uses A’s sent informa-
tion TIU once it receives (Ok, sid,mid′U) from A.
S submits (AcceptIss, sid, pid, 𝑣) to FCBDC on behalf of
malicious U.

(4) Communication among honest and malicious maintainers:
S checks if𝜓 included in TIU is generated using the random-
ness it received fromA and value 𝑣 . In other words, whether
𝜓 equals to the threshold encryption that is generated by
S20.
Also S checks if𝜓 is the first element of one of the 𝑡id arrays
saved in Listtid. If it is, then ignores.
Then, verifies whether T is the second element of one of the
saved 𝑡id arrays in Listtid.
If not, checkswhether (x, 𝜋) such that x = (𝜓, accnew,𝔅, 𝜎Rnd

M
,

T) is stored. Otherwise, sends (Verify, sid, x, 𝜋) toA as leak-
age of FNIZK. Upon receiving the answer (Witness, sid, w)
fromA, checks (x, w) ∈ R. If so stores (x, 𝜋). Else, ignore the
message.
S saves 𝑡id = (𝜓, T) in Listtid.
S submits (GenTnx, sid, pid, 𝑡id) to FCBDC where 𝑡id = (𝜓, T).
The values of𝜓 is calculated by S (also it is given byA) and
T is given by A as described above.
As soon as one honest maintainer receives both TIU and TIB,
the simulator submits (GenTnx, sid, pid, 𝑡id) to FCBDC where
𝑡id = (𝜓, T). The values of 𝜓 and T are received from A as
described above.
For each maintainer (either honest or malicious) who gener-
ates a valid signature on user’s accountS submits (GenTnx, sid,
pid,M𝑘) to FCBDC whereM𝑘 is the identifier of that main-
tainer.

(5) Communication fromM to U:
For simulating the messages that are sent back to malicious
U, S gives (Send, sid,M𝑗 , 𝜎

new,𝔅
𝑗

,mid′U) to A as leakage

of F sa
Ch in which 𝜎

new,𝔅
𝑤 for 𝑤 ∈ H is simulated by S (as

described in the sequences of games Sec. E.0.1) and 𝜎new,𝔅𝑡

for 𝑡 ∈ C is obtained from the A (malicious maintainer).
Also, once it receives (Ok.End, sid,mid′U) from A, it outputs
(Received, sid,M𝑗 , 𝜎

new,𝔅
𝑗

) to A as the message that mali-
cious U receives.

G.2.3 Honest U, malicious B and at most 𝑡 malicious maintainers:
A on behalf of malicious B, initiates Currency Issuance protocol.

(1) Communication from B to U:
A initiates the protocol on behalf of B by calling F sra

Ch with
input (Send, sid,U∗, 𝑣∗). Hence, emulating F sra

Ch the simula-
tor knows U∗ and 𝑣∗ and sends (Send, sid,B, |𝑣∗ |,midB) to
A as the leakage of F sra

Ch . The simulator submits a currency
issuance transaction to FCBDC with input (Iss, sid,U∗, 𝑣∗)
on behalf of malicious B. If S receives (AcceptIss, sid, pid),

20In this case, S has already received (Iss, sid, pid,U, 𝑣) from FCBDC which means
regulatory compliance and so on have already been verified by FCBDC .

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA. Aggelos Kiayias, Markulf Kohlweiss, and Amirreza Sarencheh

it concludes that sent values byA, namely U∗ and 𝑣∗ are the
same as corresponding values in honest U’s message given
to FCBDC. In other words, U∗ = U and 𝑣∗ = 𝑣 hold. Hence, it
continues the protocol otherwise it ignores 21

(2) Communication from U to B:
S emulates U and this emulation is similar to the case of
honest U and honest B. In addition, emulating F ssa

Ch the sim-
ulator sends (Received, sid,U, 𝜌) toA in which 𝜌 is chosen
randomly by S.

(3) Communication from B and U toM:
The simulation of communication between U andM is simi-
lar to the case of honest U and honest B.
A (malicious B) calls F ac

Ch with input (Send, sid,M𝑗 , TIB).
EmulatingF ac

Ch, the simulator leaks (Send, sid,B,M𝑗 , TIB,mid′B)
for to A. The adversary (malicious maintainer) receives
(Received, sid,B, TIB) from S if S receives (Ok, sid,mid′B)
from A.
Upon receiving (Ok.Snd, sid,mid′B) fromA,S sends (Continue,
sid) to A and leaks the next massage similarly.

(4) Communication among honest and malicious maintainers:
S (on behalf of honest maintainer) checks if TIB = 𝜓 holds
or not such that𝜓 is computed using the randomness chosen
by itself and the value 𝑣 . If it does not hold, S ignores.
Other parts of simulation are similar to the case of honest U
and honest B.

(5) Communication fromM to U:
This simulation is similar to (the associated simulation of)
the case of honest U and honest B.

G.2.4 Malicious U, malicious B and at most 𝑡 malicious maintainers:
In this case, exchanging information between U and B namely
communication from B toU and communication fromU to B is done
byA. IfA uses communication channel functionalities to exchange
information between U and B, the simulator leaks whatever real-
world A sees as the leakage of channels to the dummy A similar
to the associated simulations in the cases of malicious U and honest
B, and honest U and malicious B described above.

(1) Communication from B and U toM:
A calls F sa

Ch with input (Send, sid,M𝑗 , TIU) on behalf of
U. Also, A calls F ac

Ch with input (Send, sid,M𝑗 , TIB) on be-
half of B. The simulator leaks (Send, sid,M𝑗 , TIU,mid′U) and
(Send, sid,B,M𝑗 , TIB,mid′B) toA as leakage of F sa

Ch and F
ac
Ch

using the information received from A.
OnceS receives (Ok.Snd, sid,mid′U) fromA it sends (Continue,
sid) toA. Similarly onceS receives (Ok.Snd, sid,mid′B) from
A it sends (Continue, sid) to A.
The adversary (malicious maintainer) receives (Received,
sid, TIU,mid′U) and (Received, sid,B, TIB) from S. For the
simulator to do so, it uses A’s sent information TIU and TIB
once it receives (Ok, sid,mid′U) and (Ok, sid,mid′B) respec-
tively.

(2) Communication among honest and malicious maintainers:

21Doing so, S captures the fact that if B tries to issue a currency that breaks regulatory
rules imposed to U the transaction will be failed. In the real world, U will not engage
in a Currency Issuance protocol when it knows that doing so will break the rules (when
U is malicious, after it engages in a transaction that breaks the regulatory rules, the
transaction will be failed by maintainers as we will see in the next case).

S checks if𝜓 in TIB equals to𝜓 in TIU. If it equals,S checks if
𝜓 is the first element of one of the 𝑡id arrays saved in Listtid.
If it is, then ignores. Else, S checks whether (x, 𝜋) such
that x =

(
𝜓, accnew,𝔅, 𝜎Rnd

M
, T

)
is stored. Otherwise sends

(Verify, sid, x, 𝜋) toA as leakage of FNIZK. Upon receiving
the answer (Witness, sid, w) fromA, checks (x, w) ∈ R. If so
stores (x, 𝜋).
Having the witness w, the simulator submits a currency is-
suance transaction to FCBDC with input (Iss, sid,U, 𝑣) on
behalf of malicious B. If it receives (Iss, sid, pid,U, 𝑣) from
FCBDC it saves 𝑡id = (𝜓, T) in Listtid else ignores.
Other parts of simulation are similar to the case of malicious
U and honest B.

(3) Communication fromM to U:
This simulation is similar to the case of malicious U and
honest B.

G.3 Simulation of Payment
G.3.1 Honest U𝑠 , honest U𝑟 and at most 𝑡 malicious maintainers: S
receives (GenTnxSnd, sid, pid) from FCBDC and initiates Payment
protocol by emulating an honest sender U𝑠 . We note that if the
senderU𝑠 has already been traced,S receives (AcceptIss, sid, pid,U𝑠)
from FCBDC so that it is able to use the same tag in this protocol as
it had generated for U𝑠 who did not have any transactions in the
time of executing the Tracing protocol.

(1) Communication from U𝑠 to U𝑟 :
In the real-world A sees (Send, sid, | (𝜌𝑠 , 𝑣) |,mid𝑠) as leak-
age of F fa

Ch. The simulator has already known | (𝜌𝑠 , 𝑣) | and
sends (Send, sid, | (𝜌𝑠 , 𝑣) |,mid𝑠) toA once it receives (Ok, sid,
mid𝑠) from A.

(2) Communication from U𝑟 to U𝑠 :
Upon receiving (GenTnxRcv, sid, pid) from FCBDC (similar
to what was explained for traced U𝑠 above, if the receiver
U𝑟 has already been traced, S receives (AcceptIss, sid, pid,
U𝑟) from FCBDC), the simulator emulates honest U𝑟 .
In the real world, A sees (Send, sid, |𝜌𝑟 |,mid𝑟) as leakage
of F fa

Ch. The simulator has already known |𝜌𝑟 | and sends
(Send, sid, |𝜌𝑟 |,mid𝑟) to A once it receives (Ok, sid,mid𝑟)
from A. .

(3) Communication from U𝑠 and U𝑟 toM:
Regarding U𝑠 and U𝑟 ’s communications withM, the adver-
sary respectively sees (Send, sid,M𝑗 , TI𝑠 ,mid′𝑠) and (Send, sid,
M𝑗 , TI𝑟 ,mid′𝑟) as leakages of F sa

Ch.
Hence, S is supposed to simulate the view of the dummy
A with respect to the information real-world A sees. We
note the simulation of U𝑠 ’s communications withM and the
simulation of U𝑟 ’s communications with M in this step of
the protocol is the same. Hence, in the following we describe
simulation for U𝑠 .
Using PrepareBlindSign algorithm, S selects random val-
ues to compute accnew,𝔅𝑠 . Then, computes 𝜎Rnd

𝑠,M
in a way

described in the Sec. E.0.1.
Then, S computes a threshold encryption 𝜓 on a dummy
value as plaintext.

PEReDi: Privacy-Enhanced, Regulated and Distributed Central Bank Digital Currencies CCS ’22, November 7–11, 2022, Los Angeles, CA, USA.

It computes T by randomly selecting 𝑧𝑠
$←− Z𝑝 and let Ts ←

𝑔𝑧𝑠 .
S sets x𝑠 ←

(
𝜓𝑠 , acc

new,𝔅
𝑠 , 𝜎Rnd

𝑠,M
, T𝑠

)
.

EmulatingFSoK, the simulator computes𝜎𝑠 (𝜓𝑟) ← Simsign(𝜓𝑟 , x𝑠).
The simulator records the entry (𝜓𝑟 , x𝑠 , 𝜎𝑠 (𝜓𝑟)).
Therefore,U𝑠 ’s transaction information TI𝑠 is simulated byS
which is of the form TI𝑠 =

(
𝜓𝑠 ,𝜓𝑟 , 𝜎𝑠 (𝜓𝑟), accnew,𝔅𝑠 , 𝜎Rnd

𝑠,M
, T𝑠

)
.

The simulator gives (Send, sid,M𝑗 , TI𝑠 ,mid′𝑠) to A as leak-
age of F sa

Ch.
Finally,A (maliciousmaintainer) receives (Received, sid, TI𝑠 ,
mid′𝑠) from S once S receives (Ok, sid,mid′𝑠) fromA. To do
so, S uses the above simulated values for TI𝑠 .

(4) Communication among honest and malicious maintainers:
S has already emulated the honest sender U𝑠 and honest re-
ceiverU𝑟 , and FSoK (it has stored (𝜓𝑟 , x𝑠 , 𝜎𝑠 (𝜓𝑟)) and (𝜓𝑠 , x𝑟 ,
𝜎𝑟 (𝜓𝑠))).
Hence, onceA (maliciousmaintainer) callsFSoK with (Verify,
sid,𝜓𝑟 , x𝑠 , 𝜎𝑠 (𝜓𝑟)) and (Verify, sid,𝜓𝑠 , x𝑟 , 𝜎𝑟 (𝜓𝑠)), the simu-
lator outputs (Verified, sid,𝜓𝑟 , x𝑠 , 𝜎𝑠 (𝜓𝑟), 1) and (Verified,
sid,𝜓𝑠 , x𝑟 , 𝜎𝑟 (𝜓𝑠), 1) respectively to A.
As soon as one honest maintainer receives both TI𝑠 and TI𝑟 ,
the simulator submits (GenTnx, sid, pid, 𝑡id) to FCBDC where
𝑡id = (𝜓𝑠 ,𝜓𝑟 , T𝑠 , T𝑟) (note that pid is unique per transac-
tion hence FCBDC can distinguishes payment and issuance
transactions based on tables it has generated with respect
to pid). The values of𝜓𝑠 ,𝜓𝑟 , T𝑠 and T𝑟 are simulated by S as
described above.
For each maintainer (either honest or malicious) who gen-
erates a valid signature on sender and receiver’s account
S submits (GenTnx, sid, pid,M𝑘) to FCBDC where M𝑘 is the
identifier of that maintainer.

(5) Communication fromM to U𝑠 and U𝑟 :
S sends (Send, sid,M𝑗 , 𝜎

new,𝔅
𝑠,𝑗

,mid′𝑠) and (Send, sid,M𝑗 , 𝜎
new,𝔅
𝑟,𝑗

,

mid′𝑟) to A as leakages of F sa
Ch in which 𝜎

new,𝔅
𝑤 for𝑤 ∈ H

is simulated by S and 𝜎new,𝔅𝑡 for 𝑡 ∈ C is obtained from the
A (malicious maintainer).

G.3.2 Malicious U𝑠 , honest U𝑟 and at most 𝑡 malicious maintain-
ers: S receives (GenTnxSnd, sid, pid) from FCBDC (similarly, if the
sender U𝑠 has already been traced, S receives (AcceptIss, sid, pid,
U𝑠) from FCBDC). A on behalf of malicious U𝑠 , initiates Payment
protocol.

(1) Communication from U𝑠 to U𝑟 :
A initiates the protocol on behalf of U𝑠 by calling F fa

Ch with
input (Send, sid,U∗𝑟 , (𝜌𝑠 , 𝑣∗)).
Hence, emulating F fa

Ch the simulator knows U∗𝑟 and 𝑣∗ and
sends (Send, sid, | (𝜌𝑠 , 𝑣∗) |,mid𝑠) to A as the leakage of
F fa
Ch.

The simulator submits a payment transaction to FCBDC with
input (GenTnxSnd, sid,U∗𝑟 , 𝑣∗) on behalf of malicious U𝑠 .
IfS receives (GenTnxRcv, sid, pid) (or (GenTnxRcv, sid, pid,U𝑟))
from FCBDC, it concludes that sent values by A, namely U∗𝑟
and 𝑣∗ are the same as corresponding values in honest U𝑟 ’s
message which is (GenTnxRcv, sid, pid,U𝑠 , 𝑣). In other words,
U∗𝑟 = U𝑟 and 𝑣∗ = 𝑣 hold.

Hence, it continues the protocol otherwise it ignores22.
(2) Communication from U𝑟 to U𝑠 :
S emulates U𝑟 and the simulation process is similar to the
case of honest U𝑠 and honest U𝑟 .
In addition, emulatingF fa

Ch the simulator sends (Received, sid,
U𝑟 , 𝜌𝑟) to A in which 𝜌𝑟 is chosen randomly by S once S
receives (Ok, sid,mid𝑟) from A.

(3) Communication from U𝑠 and U𝑟 toM:
The simulation of communications between U𝑟 and M is
similar to the case of honest U𝑠 and honest U𝑟 .
A (malicious U𝑠) calls F sa

Ch with input (Send, sid,M𝑗 , TI𝑠).
Emulating F sa

Ch, the simulator leaks (Send, sid,M𝑗 , TI𝑠 ,mid′𝑠)
to A.
Upon receiving (Ok.Snd, sid,mid′𝑠) fromA,S sends (Continue,
sid) to A (malicious U𝑠).
Finally,A (maliciousmaintainer) receives (Received, sid, TI𝑠 ,
mid′𝑠) from S. To do so, S uses A’s sent information TI𝑠
once it receives (Ok, sid,mid′𝑠) from A.

(4) Communication among honest and malicious maintainers:
Having TI𝑠 =

(
𝜓𝑠 ,𝜓𝑟 , 𝜎𝑠 (𝜓𝑟), accnew,𝔅𝑠 , 𝜎Rnd

𝑠,M
, T𝑠

)
generated

byA, the simulator checks if𝜓𝑠 and𝜓𝑟 equal the values that
S has generated internally or not (using 𝑣 and the random
values exchanged between A and S). If they are not the
same, S ignores.
Then, verifies whether T𝑠 exists in one of the saved 𝑡id arrays
in Listtid.
If not checkswhether (𝜓𝑟 , x𝑠 , 𝜎 ′) such that x𝑠 = (𝜓𝑠 , accnew,𝔅𝑠 ,

𝜎Rnd
𝑠,M

, T𝑠) is stored for some 𝜎 ′ or not. Else emulating FSoK,
lets w𝑠 ← Extract(𝜓𝑟 , x𝑠 , 𝜎𝑠 (𝜓𝑟)). Then, if (x𝑠 , w𝑠) ∈ R pro-
ceeds as follows else ignores.
S saves 𝑡id = (𝜓𝑠 ,𝜓𝑟 , T𝑠 , T𝑟) in Listtid.
As soon as one honest maintainer receives both TI𝑠 and
TI𝑟 , the simulator submits (GenTnx, sid, pid, 𝑡id) to FCBDC
where 𝑡id = (𝜓𝑠 ,𝜓𝑟 , T𝑠 , T𝑟). The values of 𝜓𝑠 ,𝜓𝑟 and T𝑟 are
simulated by S (the first two also are given by A to S) and
T𝑠 is sent by A to S.
For each maintainer (either honest or malicious) who gen-
erates a valid signature on sender and receiver’s account
S submits (GenTnx, sid, pid,M𝑘) to FCBDC where M𝑘 is the
identifier of that maintainer.

(5) Communication fromM to U𝑠 and U𝑟 :
S sends (Send, sid,M𝑗 , 𝜎

new,𝔅
𝑠,𝑗

,mid′𝑠) and (Send, sid,M𝑗 , 𝜎
new,𝔅
𝑟,𝑗

,

mid′𝑟) to A as leakages of F sa
Ch in which 𝜎

new,𝔅
𝑤 for𝑤 ∈ H

is simulated by S (as described in the sequences of games
Sec. E.0.1) and 𝜎

new,𝔅
𝑡 for 𝑡 ∈ C is obtained from the A

(malicious maintainer).
S also sends (Received, sid,M𝑗 , 𝜎

new,𝔅
𝑠,𝑗

) to A (malicious
U𝑠) once it receives (Ok.End, sid,mid′𝑠) from A.

G.3.3 Honest U𝑠 , malicious U𝑟 and at most 𝑡 malicious maintainers:
S on behalf of honest U𝑠 , initiates Payment protocol. In this case,
S receives (GenTnxSnd, sid, pid,U𝑠 ,U𝑟 , 𝑣) from FCBDC.
22Doing so, S captures the fact that if malicious U𝑠 tries to make a payment that
breaks regulatory rules related to the account of honest U𝑟 the transaction will be
failed. Because, in the real world, U𝑟 will not engage in a Payment protocol when it
knows that doing so will not be in compliant with system’s rules.

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA. Aggelos Kiayias, Markulf Kohlweiss, and Amirreza Sarencheh

(1) Communication from U𝑠 to U𝑟 :
S initiates the protocol on behalf of U𝑠 . The simulator emu-
lates F fa

Ch and sends (Send, sid, | (𝜌𝑠 , 𝑣) |,mid𝑠) to A as the
leakage of F fa

Ch such that 𝜌𝑠 is chosen randomly by S. The
real world adversary also receives (Received, sid,U𝑠 , 𝜌𝑠 , 𝑣)
and S sends this message toA using the leaked information
from FCBDC once it receives (Ok, sid,mid𝑠) from A.

(2) Communication from U𝑟 to U𝑠 :
Emulating F fa

Ch, the simulator receives A’s message of the
form (Send, sid,U𝑠 , 𝜌𝑟). Then, S leaks (Send, sid, |𝜌𝑟 |,mid𝑟)
toA as leakage of F fa

Ch. Once S receives (Ok, sid,mid𝑟) from
A continues. Else, ignores.

(3) Communication from U𝑠 and U𝑟 toM:
The simulation of communications between U𝑠 and M is
similar to the case of honest U𝑠 and honest U𝑟 .
The simulation of communications between U𝑟 and M is
similar to the case of malicious U𝑠 and honest U𝑟 , however,
for malicious U𝑟 rather than malicious U𝑠 .

(4) Communication among honest and malicious maintainers:
The simulation of this part is similar to the case of malicious
U𝑠 and honest U𝑟 , however, for malicious U𝑟 rather than
malicious U𝑠 .

(5) Communication fromM to U𝑠 and U𝑟 :
The simulation of this part is similar to the case of malicious
U𝑠 and honest U𝑟 , however, for malicious U𝑟 rather than
malicious U𝑠 .

G.3.4 Malicious U𝑠 , malicious U𝑟 , and at most 𝑡 malicious main-
tainers: In this case, exchanging information between U𝑠 and U𝑟

namely communication from U𝑠 to U𝑟 and communication from
U𝑟 to U𝑠 is done byA. IfA uses communication channel function-
alities to exchange information between U𝑠 and U𝑟 , the simulator
leaks whatever real-world A sees as the leakage of channels to
the dummy A similar to the associated simulations in the cases
of malicious U𝑠 and honest U𝑟 , and honest U𝑠 and malicious U𝑟

described above.

(1) Communication from U𝑠 and U𝑟 toM:
Communications from U𝑠 toM is similar to the associated
communications in case of malicious U𝑠 and honest U𝑟 , and
communications from U𝑟 toM is similar to the associated
communications in the case of honest U𝑠 and malicious U𝑟 .

(2) Communication among honest and malicious maintainers:
S checks if (𝜓𝑠 ,𝜓𝑟) in TI𝑠 equals to (𝜓𝑠 ,𝜓𝑟) in TI𝑟 . If it is not,
S ignores.
After extracting the witnesses w𝑠 and w𝑟 (similar to what
was described before), the simulator submits a payment
(GenTnxSnd, sid,U𝑟 , 𝑣) to FCBDC on behalf of U𝑠 .
The rest of the simulation of this step of protocol is simi-
lar to the associated simulations in the cases of malicious
U𝑠 and honest U𝑟 , and honest U𝑠 and malicious U𝑟 (e.g.,
upon receiving (GenTnxSnd, sid, pid,U𝑠 ,U𝑟 , 𝑣) from FCBDC
the simulator starts emulatingM and so on).

(3) Communication fromM to U𝑠 and U𝑟 :
This simulation is similar to the associated simulations in
the cases of malicious U𝑠 and honest U𝑟 , and honest U𝑠 and
malicious U𝑟

G.4 Simulation of Abort Transaction
G.4.1 Honest U, and at most 𝑡 malicious maintainers: In this case,
S receives (AbrTnx, sid, 𝑡id) from FCBDC.

(1) Communication from U toM:
Considering U’s communications withM, the adversary A
sees (Send, sid,M𝑗 ,AR,mid) as leakage of F sa

Ch. Once S re-
ceives (Ok.Snd, sid,mid) from A it leaks the next leakage
(Send, sid,M𝑗+1,AR,mid′).
Hence, S is supposed to simulate the view of dummy A
with respect to the information real-world A sees without
knowing the identity of U, however, by having the leaked T
included in 𝑡id given by FCBDC.
First of all, based on PrepareBlindSign, S selects random
values to compute accr,𝔅.
Then, computes 𝜎Rnd

M
in a way described in Sec. E.0.1.

Using the leaked T included in 𝑡id,S sets x← (accr,𝔅, 𝜎Rnd
M

, T).
Emulating FNIZK, the simulator sends (Prove, sid, x) to A.
The simulator receives (Proof, sid, 𝜋) from A and records
(x, 𝜋).
S sends (Send, sid,M𝑗 ,AR,mid) toA such thatAR = (accr,𝔅,
𝜎Rnd
M

, T, 𝜋).
Finally,A (maliciousmaintainer) receives (Received, sid,AR,
mid) from the channel (emulated by S) once dummy A
sends (Ok, sid,mid) to S.

(2) Communication among honest and malicious maintainers:
S has already emulated the honest user and FNIZK by storing
(x, 𝜋). Hence, upon calling FNIZK with (Verify, sid, x, 𝜋) via
A (maliciousmaintainer), the simulator outputs (Verification,
sid, 1) to A.
Emulating ByzantineAgreement functionalityFBA,S should
leak (Agree, sid, 𝑑 𝑗 ,M𝑗) to A where for malicious main-
tainers S uses 𝑑𝑡 received by A (malicious maintainer M𝑡).
On behalf of honest maintainers S checks its table to see
whether it sees a 𝑡id (for issuance or payment transaction)
that contains T in Listtid or not. In case it sees it sets the
value of 𝑑𝑤 to 1 (on behalf of honest maintainerM𝑤).
S keeps track of adversary’s blockage on the message each
honest maintainer receives. As soon as one honest main-
tainer receivesAR the simulator submits (AbrTnx.Ok, sid, 𝑡id)
to FCBDC.
The simulator simulates the rest of the protocol based on the
output of FBA as follows:

(3) If 𝑄 = 1:
In this case, there exists at least one honest maintainer (e.g.,
M𝑤) who is emulated by S.
S leaks (Send, sid,M𝑖 ,M𝑗 , (TI𝑠 , TI𝑟) ,mid) to A.
Also, it sends (Received, sid,M𝑖 , (TI𝑠 , TI𝑟)) toA (malicious
maintainer) once it receives (Ok, sid,mid) from A.
EmulatingFSoK,S outputs (Verified, sid,𝜓, x, 𝜎 (𝜓),Verify(𝜓,
x, 𝜎 (𝜓))) toA onceA callsFSoK with (Verify, sid,𝜓, x, 𝜎 (𝜓)).
S saves 𝑡id = (𝜓𝑠 ,𝜓𝑟 , T𝑠 , T𝑟) in Listtid.

(a) Communication fromM to U:
S sends (Send, sid,M𝑘 , 𝜎

new,𝔅
𝑠,𝑘

,mid′𝑠) and (Send, sid,M𝑘 ,

𝜎
new,𝔅
𝑟,𝑘

,mid′𝑟) toA as leakages of F sa
Ch in whichmid′𝑠 and

mid′𝑟 are included in TI𝑠 and TI𝑟 . 𝜎new,𝔅𝑘
(for both U𝑠 and

PEReDi: Privacy-Enhanced, Regulated and Distributed Central Bank Digital Currencies CCS ’22, November 7–11, 2022, Los Angeles, CA, USA.

U𝑟) parses as 𝜎new,𝔅𝑤 and 𝜎
new,𝔅
𝑡 (for both U𝑠 and U𝑟).

Also, 𝜎new,𝔅𝑤 for𝑤 ∈ H is simulated by S and 𝜎new,𝔅𝑡 for
𝑡 ∈ C is obtained from the A (malicious maintainer).

(4) If 𝑄 = 0:
Emulating honestmaintainerswho have had 𝑡id = (𝜓𝑠 ,𝜓𝑟 , T𝑠 , T𝑟),
the simulator deletes the saved 𝑡id entry.
S saves 𝑡id = (Aborted, T) in Listtid.

(a) Communication fromM to U:
S sends (Send, sid,M𝑗 , 𝜎

r,𝔅
𝑗

,mid′𝑠) to A as leakages of

F sa
Ch in which 𝜎

r,𝔅
𝑗

parses as 𝜎r,𝔅𝑤 and 𝜎r,𝔅𝑡 . Also, 𝜎r,𝔅𝑤 for

𝑤 ∈ H is simulated by S and 𝜎
r,𝔅
𝑡 for 𝑡 ∈ C is obtained

from the A (malicious maintainer).

G.5 Simulation of Privacy Revocation
S receives (RvkAnm, sid, 𝑡 𝑗id,M𝑗) from FCBDC and starts emulating
honest maintainers.

G.5.1 Honest U𝑠 , honest U𝑟 , and at most 𝑡 malicious maintainers for
both Currency Issuance and Payment protocols: In the following,
for simplicity we describe S for payment transactions (issuance
transactions are similar and more straightforward).
S uses its internally maintained list Listtid to find out the

associated ciphertext (𝜓𝑠 ,𝜓𝑟) of the received 𝑡id from FCBDC.
S submits (RvkAnm.Ok, sid, 𝑡id) to FCBDC and waits for the mes-

sage (AnmRevoked, sid, 𝑡id,U𝑠 ,U𝑟 , 𝑣) from FCBDC.
Once S receives that message it starts faking the threshold de-

cryption of ciphertexts based on keys it has registered for honest
U𝑠 and honest U𝑟 . Specifically, S computes shares of honest main-
tainers in a way that threshold decryption of (𝜓𝑠 ,𝜓𝑟) result in
associated values received from FCBDC, pk𝑠 and pk𝑟 registered for
U𝑠 and U𝑟 and 𝑣 as described in details in Sec. E.0.1.

The real-worldA sees the leakages of FNIZK when honest main-
tainer (e.g.,M𝑤) generates proof which is (Prove, sid, x𝑤) for x𝑤 =(
𝜓𝑠,1,𝜓𝑟,1,𝜓

sk1,𝑤
𝑠,1 𝜓

sk2,𝑤
𝑠,1 ,𝜓

sk1,𝑤
𝑟,1

)
. In x𝑤 , the values 𝜓𝑠,1 and 𝜓𝑟,1 are

from (𝜓𝑠 ,𝜓𝑟), however, the values of 𝜓 sk1,𝑤
𝑠,1 𝜓

sk2,𝑤
𝑠,1 and 𝜓 sk1,𝑤

𝑟,1 are
computed as it is described detailedly in Sec. E.0.1.
S outputs the leakage of authenticated channel F ac

Ch which is
(Send, sid,M𝑤 ,M𝑖 , (x𝑤 , 𝜋𝑤),mid) toA which is related to the calls
honest maintainers make.

EmulatingF ac
Ch, upon receiving themessage (Send, sid,M𝑖 , (x𝑡 , 𝜋𝑡))

from A (malicious maintainer M𝑡), S outputs (Send, sid,M𝑡 ,M𝑖 ,

(x𝑡 , 𝜋𝑡),mid′) to A.
Upon receivingmessages of the form (Ok, sid,mid) and (Ok, sid,mid′)

from A, S sends (Received, sid,M𝑗 , (x𝑗 , 𝜋 𝑗)) to A (or malicious
maintainer M𝑡) where M𝑗 includes honest maintainer M𝑤 and
malicious maintainer M𝑡 respectively.

Moreover, upon receiving (Ok.Snd, sid,mid′) from A, S sends
(Continue, sid) toM𝑡 .
S also leaks (RetrieveID, sid, pk𝑠 ,M𝑗) and (RetrieveID, sid, pk𝑟 ,

M𝑗) to A upon receiving the associated calls from maintainer M𝑗 .

G.5.2 Honest (resp. malicious)U𝑠 and malicious (resp. honest)U𝑟 , or
malicious U𝑠 and malicious U𝑟 ; and at most 𝑡 malicious maintainers
for both Currency Issuance and Payment protocols: The simulation
of this case is similar to the case of honest U𝑠 and honest U𝑟 except

the fact that there is no need for changing the shares. The reason
is that in this case S knows the identities of participants U𝑠 and
U𝑟 , and also transaction value 𝑣 .
S on behalf of honest maintainers computes decryption shares

and all participant maintainers in the Privacy Revocation protocol
use their decryption shares to obtain the associated public keys and
value as described in the construction details.

G.6 Simulation of Tracing23

S receives (Trace, sid,U𝑗 ,M𝑗) from FCBDC and emulates honest
maintainers.

G.6.1 Honest U and at most 𝑡 malicious maintainers for both Cur-
rency Issuance and Payment protocols: S submits (Trace.Ok, sid,U)
to FCBDC and upon receiving (Traced, sid,

{
𝑡𝜏id, role

𝜏
}𝑥
𝜏=1
) gets to

know
{
𝑡𝜏id, role

𝜏
}𝑥
𝜏=1

which are required for simulating honest main-
tainers’ shares such that tracing tag computation results in tags
(that are random values that were selected by S in issuance and
payment transactions) associated to

{
𝑡𝜏id

}𝑥
𝜏=1

.
In the Simulation ofCurrency Issuance and Simulation of Payment

we described that S randomly selects 𝑧. Hence, S should simulate
the result of threshold tag computation to be consistent with values
{𝑔𝑧𝜏 }𝑥𝜏=1. The simulator does so as described in the Sec. E.0.1.
S uses its internally maintained list ListUR to retrieve UR =

(𝑎 𝑗 , 𝑟 𝑗 ,M𝑗 ,U). Then, computes com𝑤 (on behalf of the honest
maintainer M𝑤). It outputs (Prove, sid, x𝑤) to A where x𝑤 =

(com𝑤 , ¤𝑔𝑎𝑤 , ¤𝑔) see Sec. E.0.1 for details of computing ¤𝑔𝑎𝑤 .
S outputs the leakage of authenticated channel F ac

Ch which is
(Send, sid,M𝑤 ,M𝑖 , (x𝑤 , 𝜋𝑤),mid) toA which is related to the calls
honest maintainers make.

EmulatingF ac
Ch, upon receiving themessage (Send, sid,M𝑖 , (x𝑡 , 𝜋𝑡))

from A (malicious maintainer M𝑡), S outputs (Send, sid,M𝑡 ,M𝑖 ,

(x𝑡 , 𝜋𝑡),mid′) to A.
Upon receivingmessages of the form (Ok, sid,mid) and (Ok, sid,mid′)

from A, S sends (Received, sid,M𝑗 , (x𝑗 , 𝜋 𝑗)) to A (or malicious
maintainer M𝑡) where M𝑗 includes honest maintainer M𝑤 and
malicious maintainerM𝑡 respectively.

Moreover, upon receiving (Ok.Snd, sid,mid′) from A, S sends
(Continue, sid) toM𝑡 .

Emulation of F ac
Ch for the rest of the protocol (e.g., calls with

input (Send, sid,M𝑖 , (0, ¤𝑔𝑎))) is similar to the calls above.

G.6.2 Malicious U and less than min (𝛼, 𝛽) malicious maintainers
for both Currency Issuance and Payment protocols: The simulation
of this case is similar to the case above except the fact that there is
no need for changing the shares of honest maintainers. S on behalf
of honest maintainers participate at computing the tracing tags as
described in the construction.

23Our construction achieves a stronger form of post-tracing privacy. However, for the
sake of keeping the functionality concise we exclude that property in the functionality.

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA. Aggelos Kiayias, Markulf Kohlweiss, and Amirreza Sarencheh

H SECURITY DEFINITIONS OF PEReDi’S
BUILDING BLOCKS

H.1 d-sDDH Assumption
Definition H.1. We say that the d-strong Diffie-Hellman problem

is hard relative to G if for any PPT adversary A there exists a
negligible function negl(·) such that:

Advd-sDDHA = | Pr [A(G, 𝑝, 𝑔, 𝑔𝑥 , 𝑔𝑥2
, . . . , 𝑔𝑥

𝑑) = 1]−Pr[A(G, 𝑝, 𝑔,
𝑔𝑥1 , 𝑔𝑥2 , . . . , 𝑔𝑥𝑑) = 1] | ≤ negld-sDDH (_)

where (G, 𝑝, 𝑔) ← G
(
1_

)
and the probabilities are taken over

the choices of (𝑥, 𝑥1, . . . , 𝑥𝑑)
$←− Z𝑝 .

H.2 Security Properties of Commitment Scheme
Let com = (com.Setup,Commit, com.Vrf) be a commitment scheme.

Definition H.2. For any PPT adversary A, the hiding property
is defined as the following security experiment between A and a
challenger parameterized by a bit 𝑏 ∈ {0, 1}:

Hid-com(A, _):

(1) The challenger runs PubPar
$←− com.Setup(1_) and outputs

PubPar to A.
(2) A gives two messages (𝑚0,𝑚1) such that𝑚0 ∧𝑚1 ∈ M to

the challenger.
(3) The challenger computes (com𝑏 ; 𝑟) = Commit(𝑚𝑏) and out-

puts com𝑏 to A.
(4) A outputs a bit 𝑏 ′ to the challenger.

AdvHid-comA = | 1
2
− Pr[Hid-com(A, _) 𝑠 .𝑡 . 𝑏 ′ = 𝑏] | ≤ neglcom (_)

We say that commitment scheme com is perfectly hiding ifAdvHid-comA =

0.

Definition H.3. For any PPT adversary A, the binding property
is defined as the following security experiment between A and a
challenger parameterized by a bit 𝑏 ∈ {0, 1}:

Bind-com(A, _):

(1) The challenger runs PubPar
$←− com.Setup(1_) and outputs

PubPar to A.
(2) A outputs (com,𝑚0,𝑚1, 𝑟0, 𝑟1).

AdvBind-comA = Pr[Bind-com(A, _) 𝑠 .𝑡 . com.Vrf (com,𝑚0, 𝑟0) = 1∧
com.Vrf (com,𝑚1, 𝑟1) = 1 ∧ 𝑚0 ≠𝑚1] ≤ neglcom (_)

We say that commitment scheme com is perfectly binding if
AdvBind-comA = 0.

H.3 CPA Security of Public Key Encryption
Scheme

Definition H.4. Let PKE = (PKE.Gen, Enc,Dec) be a public key
encryption scheme. The following security experiment between
PPT adversary A and a challenger is parameterized by a bit 𝑏 ∈
{0, 1}:

IND-CPA𝑏PKE (A, _):

(1) The challenger runs (pk, sk) $←− PKE.Gen(1_) and outputs
pk to A.

(2) A gives two messages (𝑚0,𝑚1) such that |𝑚0 | = |𝑚1 | to the
challenger.

(3) The challenger computes 𝑐𝑏 = Encpk (𝑚𝑏) and outputs 𝑐𝑏 to
A.

(4) A outputs a bit 𝑏 ′ to the challenger (if A aborts without
giving any output, we set 𝑏 ′ ← 0).

AdvIND-CPAA = | Pr[IND-CPA1PKE (A, _) = 1]−Pr[IND-CPA0PKE (A, _) =
1] | ≤ neglPKE (_)

H.4 Existential Unforgeability of Digital
Signature Scheme

Definition H.5. Let DS = (DS.Gen, Sign,Verify) be a digital sig-
nature scheme. Existential Unforgeability under Chosen-Message
Attack (EUF-CMA) is defined using the following game between
PPT adversary A and the challenger:

EUF-CMADS (A, _):

(1) The challenger runs (vk, sk) $←− DS.Gen(1_) and gives the
adversary A the resulting verification key vk and keeps the
secret key sk to itself.

(2) The adversary A submits signature queries for {𝑚𝜏 }𝑞𝜏=1. To
each query𝑚𝜏 the challenger responds by running Sign to
generate a signature𝜎𝜏 of𝑚𝜏 and sending𝜎𝜏 to the adversary
A.

(3) The adversary A outputs a pair (𝑚,𝜎) and wins if 𝜎 is a
valid signature of 𝑚 according to Verify and (𝑚,𝜎) is not
among the pairs (𝑚𝜏 , 𝜎𝜏) generated during the query phase.
AdvEUF-CMA

A = Pr[EUF-CMADS (A, _)] ≤ neglDS (_)

	Abstract
	1 Introduction
	2 CBDC Desiderata and Modeling
	2.1 CBDC Security Requirements
	2.2 Notations
	2.3 CBDC Formal Model

	3 Our Construction
	3.1 High-level Technical Overview
	3.2 Details of the Construction

	4 PEReDi Security and Performance
	Acknowledgments
	References
	A Pictorial Representation of PEReDi Sub-Protocols
	B Cryptographic Schemes
	B.1 ElGamal Encryption Scheme
	B.2 Threshold ElGamal Encryption Scheme
	B.3 Secret Sharing
	B.4 Bilinear Maps
	B.5 Pointcheval-Sanders Signature Scheme
	B.6 Threshold Blind Signature

	C Functionalities
	D Know Your Transaction for Large Payments
	E Proof of PEReDi Security
	F Implementation Details
	F.1 Fiat-Shamir Transform
	F.2 Range Proofs
	F.3 Performance Details of Currency Issuance
	F.4 Performance Details of Payment
	F.5 Sigma Protocols and Formal Definitions for Zero-Knowledge Relations

	G Simulation
	G.1 Simulation of User Registration
	G.2 Simulation of Currency Issuance
	G.3 Simulation of Payment
	G.4 Simulation of Abort Transaction
	G.5 Simulation of Privacy Revocation
	G.6 Simulation of TracingOur construction achieves a stronger form of post-tracing privacy. However, for the sake of keeping the functionality concise we exclude that property in the functionality.

	H Security Definitions of PEReDi's Building Blocks
	H.1 d-sDDH Assumption
	H.2 Security Properties of Commitment Scheme
	H.3 CPA Security of Public Key Encryption Scheme
	H.4 Existential Unforgeability of Digital Signature Scheme

