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Abstract7

Tidal energy has the potential to significantly contribute to energy security8

by providing predictable renewable energy. New technology is needed to de-9

crease the levelised cost of energy and to make this energy sector competitive10

in the energy market. A key area where technology can contribute to decrease11

costs is mitigating the hydrodynamic load fluctuations, and thus increasing the12

fatigue life of the turbine. Here, we formulate a passive morphing blade concept13

that aims to mitigate the unsteady thrust without affecting the mean torque14

and thus the harvested power.15

We show that a blade with a trailing edge that deflects perfectly elastically16

can suppress virtually all fluctuations without varying the mean loads. The17

effect of the hydrodynamic and blade’s inertia, the material damping, and the18

radial shear stress, decrease the performances.19

Using a low-order model of the blade, we show that when a gust occurs, the20

angle of attack experienced by a rigid blade increases, whilst that experienced21

by a well-designed morphing blade decreases. This counter-intuitive mechanism22

is what makes morphing blades highly effective. While blades that could pas-23

sively twist have previously been developed, this theoretical study suggests that24

chordwise flexibility is a suitable alternative that should be further explored.25

Keywords: unsteady load mitigation, passive load control, pitch control,26

morphing, fluid-structure interaction, tidal turbine27

Preprint submitted to Renewable Energy November 20, 2021



Nomenclature28

29

A area swept by the blade [m2]30

A2D perimeter of a blade31

annulus [m]32

C(k) Theodorsen’s function [-]33

Ccam circulatory damping34

coefficient [Nm s−1deg−1]35

Cncam non-circulatory damping36

coefficient [Nm s−1deg−1]37

Cκ stiffness coefficient [-]38

Cdy
κ optimal stiffness coefficient39

(dynamic analysis) [-]40

Cqs
κ optimal stiffness coefficient41

(quasi-steady analysis) [-]42

CRBM root bending moment43

coefficient [-]44

Ctot total damping [Nm s−1deg−1]45

Cµ damping coefficient [-]46

CD drag coefficient [-]47

CL lift coefficient [-]48

CM foil’s pitching moment49

coefficient [Nm]50

CP power coefficient [-]51

C2D
P sectional power coefficient [-]52

CT thrust coefficient [-]53

C2D
T sectional thrust coefficient [-]54

D drag force [N]55

F force [N]56

FCo Coriolis force [N]57

FEu Euler force [N]58

Fc centrifugal force [N]59

Iam added mass coefficient [Nm60

s2deg−1]61

J blade pitching inertia [kgm2]62

J2D blade section inertia [kgm]63

Jtot total inertia [kgm2]64

Kam added stiffness coefficient65

[Nmdeg−1]66

Ktot total stiffness [Nmdeg−1]67

L lift force [N]68

M pitching moment [Nm]69

M2D
c sectional centrifugal70

moment [N]71

M2D
dy hydrodynamic moment on a72

blade section [N]73

M2D
qs sectional quasi-steady74

hydrostatic moment [N]75
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MRB root bending moment [Nm]76

Mc blade centrifugal moment [Nm]77

Mdy hydrodynamic moment on the78

blade [Nm]79

Mqs blade quasi-steady80

hydrostatic moment [Nm]81

Ms spring moment [Nm]82

M2D
s spring moment83

per unit span [N]84

N number of blade sections [-]85

Nb number of blades [-]86

P blade power [W]87

P power extracted [W]88

P 2D sectional power [Wm−1]89

R tip radius [m]90

T blade thrust force [N]91

T thrust force [N]92

T 2D sectional thrust force [Nm−1]93

U inflow velocity [m s−1]94

Uhub free stream velocity at95

hub height [m s−1]96

Ux axial component of the inflow97

velocity [m s−1]98

U∞ free stream velocity [m s−1]99

Uψ tangential component of the100

inflow velocity [m s−1]101

ZZ ′ plane of a generic blade102

section [-]103

A position of the pitching axis104

of a section [m]105

B position of a generic point106

on a section [m]107

AB distance of a generic point from108

the pitching axis of a section [m]109

δr span of a section [m]110

γ angular coordinate on a blade111

section [m]112

ĈM flat plate’s pitching moment113

coefficient [Nm]114

F̂ Prandtl’s tip loss factor [-]115

Ĵ objective function of the116

optimisation problem [-]117

x̂ chordwise coordinate on a blade118

section [m]119

x̂A distance of the pitching axis from120

the leading edge of a section [m]121

Re Reynolds number [-]122

µ blade mechanical123

damping [Nm s−1deg−1]124
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ψ blade azimuthal position [deg]125

a axial induction factor [-]126

a′ tangential induction factor [-]127

b half-chord length [m]128

c chord length [m]129

d distance of the pitching axis130

from the half chord [m]131

f Prandtl’s tip loss factor132

exponent [-]133

m mass of a small blade134

element [kg]135

r radial coordinate [m]136

t time [s]137

x horizontal streamwise138

coordinate [m]139

xy foil thickness in percentage140

of chord [-]141

z vertical coordinate from the142

seabed [m]143

zhub height of the hub from the144

seabed [m]145

Γ sectional non-dimensional146

stiffness [-]147

Γ0 optimal sectional148

non-dimensional stiffness [-]149

ΩN system natural frequency150

[radss−1]151

Ωs blade cross-sectional shell152

area [m2]153

Ωw blade cross-sectional internal154

area [m2]155

α angle of attack [deg]156

β pitch angle [deg]157

β0 twist angle [deg]158

κ stiffness of the spring [Nmdeg−1]159

κ2D spring stiffness per unit span160

[Ndeg−1]161

λ tip speed ratio [-]162

λ0 optimal tip speed ratio [-]163

ω rotational speed [rads−1]164

ϕ inflow angle [deg]165

ρs density of blade shell [kgm−3]166

ρw density of water [kgm−3]167

θ spring strain angle [deg]168

θdy spring strain angle (dynamic169

analysis) [deg]170

θdy0 optimal preload (dynamic171

analysis) [deg]172

θqs spring strain angle (quasi-steady173

analysis) [deg]174
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θqs0 optimal preload175

(quasi-steady analysis) [deg]176

θ0 preload of the spring [deg]177

ζ damping ratio [-]178

BEMT Blade Element Momentum179

Theory180

HATT Horizontal Axis Tidal Turbine181

HAWT Horizontal Axis Wind Turbine182

LCOE Levelised Cost Of Energy183

TGL Tidal Generation Limited184

Nomenclature note: time derivatives are shown with a dot above the vari-185

able; overbars show mean values over a blade revolution; bold symbols describe186

vector variables; ∆ represents the difference between the maximum and mini-187

mum values of a fluctuating variable; δ represents a small variation; quantities188

that refer to the rigid fixed-pitch turbine are indicated by subscripts |κ→∞.189
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1. Introduction190

Tidal energy is a promising renewable energy source that could critically191

contribute to energy security [1]. It’s been estimated that the global theoretical192

potential of tidal power is 22000 TWh/year, and that under favourable condi-193

tions, by 2050, wave and tidal energy systems could contribute to nearly 10% of194

the European electrical demand (350 TWh/year) [2]. The world’s first arrays195

of tidal turbines (Meygen and Nova’s Bluemull Sound, 2016) have only recently196

been deployed in Scotland. For this energy sector to develop further, new tech-197

nology must be developed to reduce the levelised cost of energy (LCOE), which198

is the minimum constant price at which electricity has to be sold in order to199

break-even over the lifetime of the project. Technology that enables more reli-200

able and cheaper tidal turbines to be built would contribute to a reduction in201

the LCOE and it would provide more competitive renewable energy.202

The large load fluctuations induced by the shear and turbulence of the onset203

flow, wave-induced current fluctuations, yaw misalignment, interaction with the204

support structures, and wakes of the upstream devices present a major challenge205

to the design of tidal turbines [3, 4]. Load fluctuations are transmitted from206

the blades to the rest of the turbine making fatigue failures a key limit to207

reliability [5]. To increase local blockage and thus yields, tidal turbines might208

be placed in close proximity. This will have consequences on, for example,209

the foundations and scours [6, 7, 8], but will also result in additional unsteady210

load fluctuations [9]. Furthermore, unsteady loads are reflected in power output211

fluctuations, which result in over-dimensioned power-take-off systems [10] and in212

a lower maximum mean operating power. Therefore, unsteady load mitigation213

is critical to reducing LCOE and enhancing the competitiveness of tidal energy.214

Load fluctuations are currently mitigated by actively varying the turbine215

speed, by actively pitching the blades, or by enabling the blade to twist pas-216

sively to feather when the fluid dynamic load increases (also known as hydroe-217

lastic tailoring) [11]. Unfortunately, the effectiveness of these control systems218

decreases with the size of the blade. In fact, there is a trade off between the219
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power that can be spent to actively control the rotor and the highest frequency220

that can be mitigated. From the results of Barlas et al. [12, 13], for example, it221

can be noted that pitch control is up to about 50 times slower than required to222

cancel up to the highest load fluctuations experienced by wind turbines. Passive223

twist is currently adopted by Schottel Hydro, whose 70 kW turbines are 6.3 m224

in diameter. On the other hand, the higher loads on SIMEC Atlantis Energy’s225

MW-scale tidal turbines are incompatible with the flexibility required for pas-226

sive twist. Additionally, all these mechanisms primarily mitigate the unsteady227

load at the tip, which is the major contribution to the torque and thrust, but228

they do not prevent large flow separation from occurring near the blade root229

[3]. This results in less energy remaining available to the downstream turbines,230

and thus to lower efficiency for compacted arrays.231

Fast-actuated flaps, like those used on aircraft wings, could mitigate higher232

frequency fluctuations [12, 13, 14]. These flaps are smaller and therefore could233

have a faster response than a whole blade pitching system, but they still re-234

quire power electronics, hinges with bearings and actuator mechanisms that are235

exposed to debris and biofouling. This additional complexity of the system is236

seen by industry as posing a risk to turbine reliability. The cost of maintenance237

of both offshore wind and tidal turbines is a major driver compared to onshore238

wind. Hence, reliability is paramount [15]. For example, tidal companies such239

as Nova Innovation, Nautricity and Schottel Hydro adopt fixed blade turbines240

to maximise reliability. Orbital Marine Power and SIMEC Atlantis Energy,241

which operate the largest rotors, only use collective pitch control, which can-242

not mitigate fast load fluctuations due to, for example, shear, interference, yaw243

misalignment, etc.244

Last year, the European Commission identified blades with built-in chord-245

wise flexibility as one of the most promising concepts for reducing the costs of the246

blades and the downstream components of turbines [16]. Hence, in this paper247

we investigate the underlying principles of load alleviation through morphing248

blades and their potential effectiveness.249

Specifically, we aim to answer the following research questions. (1) How250
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do morphing blades work? What are the physical phenomena that underlie251

unsteady load alleviation by morphing blades? (2) Which are the key factors252

of a practical implementation that can decrease their effectiveness? To address253

these questions, we develop a low-order model of a morphing blade and we254

identify the parameters that govern the system performance.255

This work focuses on the underlying physical mechanism and aims to pave256

the way to future designs. The proposed model is kept as simple as possible257

to allow insights on the physics, whilst it does not mean to be a design tool.258

While the model cannot be currently validated due to the lack of experimental259

data on morphing blades, we test our model of rigid and flexible blades against260

the numerical simulations of other authors. We consider both the unsteady261

fluctuations due to the rotation of the blades in a steady shear current, and262

those due to a turbulent shear current in the presence of large waves. The latter263

input flow velocity condition is taken from full-scale measurements undertaken264

at the European Marine Energy Centre (EMEC) tidal test site [3].265

The rest of the paper is organised as follows. In Section 2, we present our266

methodology and how we modelled the morphing blade. In Sections 4, 5 we267

present the model inputs and the turbine geometry, and the model validation268

respectively. Section 6 shows the analysis of the morphing blade model, how269

we optimised its load alleviation capabilities, we present a parametric study of270

the effect of the morphing blade properties on the system performance, and we271

show the potential load mitigation of morphing blades on a turbine subjected272

to real flow conditions. In Section 7, we summarise our findings.273

2. Methodology274

We present our methodology for a turbine subjected to flow fluctuations275

caused by a modelled shear flow. Nonetheless, the method can be readily gener-276

alised for flow fluctuations induced by other sources, like turbulence, waves and277

wakes, or for real flow conditions, as described in Section 3. The specific flow278

conditions, the turbine properties, and the spatial and temporal discretizations279
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are introduced in Section 4.280

2.1. Rigid Blade Model281

We consider a 3 blades tidal turbine with a rotor diameter of 18 m (blade282

length R = 9 m) operating in a sheared velocity profile, at the optimal tip283

speed ratio of 4.5. The turbine hub is at 20 m from the seabed, the mean flow284

velocity at the hub is Uhub = 2 m s−1, and the velocity profile varies with a285

1/7 power law. Each blade experiences periodic onset flow, such that the inflow286

speed and the angle of attack are maximum for each section when the blade is287

pointing upwards, and minimum when pointing downwards. The 1/7 power law288

is commonly used to describe the velocity profile across a turbulent boundary289

layer [17]. It is often applied to tidal flow in coastal regions [18], and its use290

is recommended by the UK Health and Safety Executive [19] to model velocity291

profiles in coastal regions around the UK.292

Figure 1: Schematic diagram of a tidal turbine coordinate systems. On the left, the side view

shows the interaction of the turbine with a shear flow. On the right, front view of the turbine.

We employ Blade Element Momentum Theory (BEMT) [20] to compute the293

axial induction factor a and the tangential induction factor a′. The axial (Ux)294

and tangential (Uψ) components of the flow speed relative to the blade sections295

are depicted in Fig. 2 and they are computed following the approach of Burton296

et al. [20] as297
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Ux = U∞ − aU∞,

Uψ = ωr(1 + a′),
(1)

where ω is the turbine rotational speed, r is the section position along the blade,298

and U∞ is the average upstream axial velocity seen by a blade rotating in a shear299

flow.300

Figure 2: Flow velocities and forces acting on a 2D blade section.

From the vectors shown in Fig. 2, the flow relative to the blade is obtained301

as302

U =
√
U2
x + U2

ψ,

ϕ = tan−1

(
Ux
Uψ

)
,

(2)

where U is the magnitude of the relative flow speed experienced by the blade303

section and ϕ is the inflow angle (Fig. 2). Let β0 be the twist angle of a blade304

section, the angle of attack is305

α = ϕ− β0. (3)

We compute the tip loss factor following Burton et al. [20] as306

F̂ =
2

π
cos−1(e−f ), (4)
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where307

f =
Nb
2

1− r

r sinϕ
, (5)

and Nb is the number of blades.308

The BEMT algorithm evaluates the induction factors with an iterative pro-309

cedure that uses the mean loads acting on each section. We define the mean310

inflow conditions as311

U =

√
U

2

x + U2
ψ,

ϕ = atan

(
Ux
Uψ

)
,

(6)

where Ux = U∞(1−a). The average angle of attack experienced by each section312

is313

α = ϕ− β0. (7)

The mean lift and drag coefficients, CL(α) and CD(α) respectively, are ini-314

tially evaluated with a = 1/3 and a′ = 0 for each section. The resulting lift and315

drag are then used to update the values of the induction factors316

a =

(
4πrF̂ sinϕ

2

Nbc(CL cosϕ+ CD sinϕ)
+ 1

)−1

,

a′ =

(
4πrF̂ sinϕ cosϕ

Nbc(CL sinϕ− CD cosϕ)
− 1

)−1

,

(8)

where c is the foil's chord.317

The procedure is repeated until a, a′, CL and CD converge.318

The performance of the turbine is evaluated in terms of the non-dimensional319

power and thrust coefficients. For a blade section, they are respectively defined320

as321
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C2D
P =

P 2D

1

2
ρwU3

hubA
2D

,

C2D
T =

T 2D

1

2
ρwU2

hubA
2D

,

(9)

where ρw is the water density, A2D = 2πr is the perimeter swept by the blade322

section at spanwise position r, and the thrust T 2D and the power P 2D are323

T 2D = L cosϕ+D sinϕ,

P 2D = ωr
(
L sinϕ−D cosϕ

)
.

(10)

For a turbine's blade, these coefficients are computed respectively as324

CP =
P

1

2
ρwU3

hubA
,

CT =
T

1

2
ρwU2

hubA
,

(11)

where A = πR2 is the area swept by the turbine, T =
∑
i T

2D
i δri and P =325 ∑

i P
2D
i δri, for i = 1...N , where δri is the thickness of the section and is chosen326

sufficiently small to ensure the desired accuracy.327

2.2. Morphing Blade Model328

The blade can bend its trailing edge to mitigate the changes in the flow329

incidence, thus alleviating the load fluctuations. Let’s assume that the loads on330

a blade section result in the elastic deformation of the foil as shown in Fig. 3.331

We consider the effect of such geometric variation as an equivalent change in332

the angle of attack of the original foil. Therefore, the shape deformation is333

analogous to the pitch rotation of a rigid foil, and its flexibility can be modelled334

by a torsional spring with constant properties that controls the pitching motion335

of the blade (Fig. 4). The angular position of the blade is thus determined by336

the balance of the moments acting along the pitch axis.337
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Rotor plane

Figure 3: Morphing blade concept. Part of the blade can bend to mitigate inflow fluctuations.

Rotor plane

Spring at rest

Figure 4: Morphing blade model. The flexibility is modelled by a torsional spring.

The analysis is carried out for two different scenarios. Firstly, we consider a338

blade where there is no interaction between the sections such that each section339

moves independently from the others (Fig. 5a). This condition is representa-340

tive, for example, of a blade made of a flexible material with a very low shear341

modulus, such that the shear stresses between the sections are negligible. The342

blade flexibility is represented by a torsional spring for each section, and the343

deflection of each section is determined by the local flow conditions. This model344

is described using a 2-dimensional analysis in Section 2.3, and it is optimised345

for each section of the blade, to allow the same mean load as the rigid foil and346

13



to minimise the fluctuations.

(a) Each section moves independently. (b) All the sections deflect together.

Figure 5: Morphing blade models.

347

Secondly, we consider a blade where all sections experience the same deflec-348

tion along the span (Fig. 5b). As opposed to the previous scenario, this model349

could represent a blade material with a very high shear modulus. Therefore,350

the stresses caused by the external loads are efficiently redistributed along the351

blade such that each section deforms by the same amount. The blade deflection352

is thus seen as a rigid rotation with the flexibility concentrated at the root of353

the blade. This flexible connection is modelled with a torsional spring placed354

at the root that adds a variable pitch angle δθ to the rigid blade twist angle β0.355

This condition is presented in Section 2.4, where the entire blade is considered,356

and the spring's parameters are optimised to minimise the fluctuations in the357

root bending moment without reducing the average power extracted. In Sec-358

tion 2.5, we extend such model to include the dynamics of the blade and the359

unsteadiness of the flow, to check the robustness of the optimal system when360
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the blade dynamics are considered, and to investigate the effect of the blade361

inertia, the unsteady hydrodynamics and the blade mechanical damping on the362

performance of the morphing blade.363

2.3. Quasi-steady Analysis of a Morphing Foil364

We assume that each section can move independently from the others (Fig. 5a),365

such that every blade section can be optimised separately. The section angular366

position is determined by balancing the moments acting along its pitch axis.367

There are two moments that compete to determine the angular position of a368

blade section: the reaction of the spring369

M2D
s = −κ2Dθ, (12)

where θ is the spring strain and κ2D is the spring stiffness of a 2D section, and370

the hydrostatic pitching moment371

M2D
qs =

1

2
ρwU

2c2CM (α). (13)

The blade pitches around the point at the chordwise coordinate x̂A = 0.1c372

from the leading edge of each section. The moment coefficient CM is obtained373

from the quarter-chord moment coefficient CM1/4
by adding the moment con-374

tributions of lift and drag with respect to the pitch axis position x̂A, and is375

computed as376

CM (α) = −CM1/4
−
(
1

2
+
d

b

)
1

2
[CL cos(α) + CD sin(α)] , (14)

where the location of the pitch axis is indicated with d (following Theodorsen’s377

notation [21]), such that the distance of the pitch axis from the mid-chord is378

d = −0.8b, where b = c/2. CM is positive in the clockwise direction according379

to the sign convention in Fig. 4.380

Since the passively controlled system works around the average flow condi-381

tion for the rigid turbine (i.e. α(t) ≈ α), the hydrostatic pitching moment is382

linearised as383

15



CM (α) = CM,0 + CM,αα, (15)

where CM,0 and CM,α are the best fitting linear regression coefficients of Eq. 14384

over a 6 deg range of angle of attacks (i.e. α ∈ [α− 3 deg , α+ 3 deg]). Equa-385

tions 13 is thus rewritten as386

M2D
qs =

1

2
ρwU

2c2
[
CM,αα+ CM,0

]
. (16)

The quasi-steady equations for the foil in Fig. 4 are387


M2D

s +M2D
qs = 0 (a)

ϕ(t) = β(t) + α(t) (b)

β(t) = β0 + δθ(t) (c)

(17)

where β is the blade pitch angle and δθ(t) = θ(t)− θ0.388

The optimisation problem consists in finding the morphing blade that min-389

imises the flapwise bending moment fluctuations on the blade over its revolution,390

with the requirement that the mean power extracted from the flow is the same391

as for the rigid turbine. For a 2D foil, the condition on the average power is392

restricted to the power generated by a single section of the blade and we at-393

tempt to minimise the fluctuations of the thrust acting on the section ∆C2D
T ,394

as it ultimately contributes to the fluctuations of the flapwise bending moment.395

Hence, in 2D the optimisation problem is396

min
κ2D

Ĵ(κ2D) = ∆C2D
T

s.t.
∂C

2D

P

∂κ2D
= 0,

(18)

where397

C
2D

P =
1

2π

∫ 2π

0

C2D
P dψ. (19)

The problem is solved using an exhaustive search algorithm.398
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We approximate the average power extracted with the power generated by399

average flow conditions, namely CP ≈ CP
(
α,U

)
. The average flow conditions400

α(t) = α and U(t) = U , thus constant power generation, are achieved for a401

constant pitch angle β(t) = β0. The requirement, β(t) = β0, is satisfied with a402

spring extended by θ(t) = θ0 where403

θ0 =
1

2
ρwU

2
c2
(
CM,αα+ CM,0

κ2D

)
. (20)

θ0 will be referred to as the preload of the spring. The angle of attack is404

evaluated from the Eq. 17a where the expression for θ is obtained by combining405

Eq. 17c with δθ = θ − θ0. The expression for α is then rearranged to406

α(t) =
κ2D

(
ϕ(t)− β0 + θ0

)
− 1

2ρwc
2U2CM,0

κ2D + 1
2ρwc

2U2CM,α

. (21)

It’s noted that the equation for α is consistent with the definition of the angle407

of attack for a fixed foil, in fact408

lim
κ2D→∞

α = ϕ− β0. (22)

The spring deformation θ is evaluated by substituting Eq. 17c in Eq. 17b,409

such that410

θ(t) = ϕ(t)− α(t)− β0 + θ0. (23)

For a given value of κ, all the required quantities can be computed and the411

loads are assessed.412

The results for a 2D section will be shown over a range of the non-dimensional413

spring stiffness414

Γ =
κ2D

ρwc2U
2 . (24)

Γ is the ratio between the two-dimensional stiffness and a representative415

hydrodynamic moment. The latter is taken as the product of the hydrodynamic416

force ρwU
2
c and the arm c.417
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2.4. Quasi-steady Analysis of the Morphing Blade418

In this section, we study a morphing blade where the blade deflection at419

every spanwise position is the same. The blade morphing is seen as a rigid420

rotation around the pitch axis and its flexibility is modelled as a torsional spring421

mounted at the root of the blade (Fig. 5b). We study the impact of the proposed422

passive pitch system for a rigid blade pitching around an axis at the chordwise423

coordinate x̂A = 0.1c, rotating at the optimal tip speed ratio λ0 = 4.5 for a far-424

field speed Uhub = 2 m s−1 at the hub height zhub. The pitching equilibrium is425

again dictated by the spring reaction and by the hydrostatic loads. The spring426

acts as a lumped, flexible connection between the blade and the hub and its427

moment reaction is428

Ms = −κθ. (25)

The hydrostatic moment Mqs takes into account the sum of the moments429

applied on each i-th section of the blade, and is computed as430

Mqs =
∑
i

1

2
ρwUi(t)

2c2iCMi
(αi)δri. (26)

The quasi-steady equations that describe the motion of the blade are431


Ms +Mqs = 0 (a)

ϕi(t) = βi(t) + αi(t) (bi)

βi(t) = β0i + δθ(t) (ci)

(27)

The optimisation problem is stated similarly to the 2D section case. How-432

ever, since the entire blade is considered, the minimisation is imposed on the433

out-of-plane blade root bending moment coefficient CRBM, whereas the con-434

straint considers the power generated by the entire blade. The optimisation435

problem is stated as436
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min
κ
Ĵ(κ) = ∆CRBM

s.t.
∂CP
∂κ

= 0

(28)

where437

CP =
1

2π

∫ 2π

0

CP (ψ) dψ, (29)

and ∆CRBM is the amplitude of CRBM =MRB/

(
1

2
ρwU

2
hubRA

)
, with438

MRB =
∑
i riT

2D
i δri the blade root out-of-plane bending moment.439

The optimisation problem is solved using an exhaustive search approach.To440

meet the requirement of constant power extracted, the spring preload is com-441

puted similarly to the two-dimensional case as442

θ0 =
1

κ

∑
i

1

2
ρwU

2

i c
2
i (CMi,ααi + CMi,0)δri. (30)

By combining Eq. 27 with δθ = θ − θ0 we compute the spring deformation443

θ at each time step as444

θ(t) =

∑
i
1
2ρwc

2
iU

2
i (CMi,α (ϕ(t)− β0 + θ0) + CMi,0) δri

κ+
∑
i
1
2ρwc

2
iU

2
i CMi,αδri

. (31)

Then, using the complementarity of angles (Eqs. 27bi, ci), the angle of attack445

is determined as446

αi(t) = ϕi(t)− β0i − θ + θ0. (32)

Using the above equations for θ and α and the preload θ0, all the loads acting447

on the blade can be computed.448

2.5. Dynamic Analysis of the Morphing Blade449

We consider a hollow blade made of composite layers then filled with water450

[22]. The inertia J2D of each blade section is obtained by451

19



J2D = ρs

∫
Ωs

AB
2
dΩ+ ρw

∫
Ωw

AB
2
dΩ, (33)

where ρs and ρw are the density of the blade shell and the density of water452

respectively, Ωs is the area of the blade shell on the section, Ωw is the area453

occupied by the water within and AB represents the relative position of a454

generic section element from the pitching axis (Fig. 6). A blade usually presents455

a box spar placed near the pitch axis. Such spar has little influence on the blade456

inertia, it becomes relevant only for structural consideration, and it is therefore457

neglected. The inertia J of the entire blade is then computed as458

J =
∑
i

J2D
i δri, (34)

for i = 1...N , with N the number of equally spaced blade sections.459

Figure 6: The blade is composed by a composite shell filled with water.

The blade rotates around the rotor axis with angular velocity ω. This leads to460

the Euler force FEu = −mdω
dt ∧ r, the Coriolis force FCo = −mω ∧ dr

dt and the461

centrifugal force F c = −mω ∧
(
ω ∧ r

)
. In this case, the Euler force disappears462

because we consider a constant rotation rate ( dω
dt = 0 ). The Coriolis force463

is also equal to zero because solid points on the blade do not move radially464

(drdt = 0). Conversely, there is a component of F c that lies in the section plane465

which generates a pitching moment (Fig. 7). For a generic point B on a blade466

section, this force, FB
c , generates a moment MB

c = AB ∧ FB
c,ψ that tends to467

align the blade with the rotor plane.468
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Figure 7: A generic small element of a section that does not lie on the pitch axis is subjected

to a centrifugal moment MB
c .

The centrifugal moment is evaluated for each section as469

M2D
c (β) =− 1

2
ω2ρs

∫
Ωs

AB
2
sin(2(β + γ)) dΩ

− 1

2
ω2ρw

∫
Ωs

AB
2
sin(2(β + γ)) dΩ,

(35)

where β + γ is the angular distance of a blade element from the rotor axis470

(Fig. 6).471

A Taylor-Young first-order expansion is used to approximate the centrifugal472

moment as473

M2D
c ≈M2D

c (β0) +
∂M2D

c

∂β
δβ. (36)
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This approximation is valid as long as β ≈ β0, a condition that is met by im-474

posing the requirement of constant power generated (Eq. 28). By construction,475

δβ ≡ δθ (Fig. 4). Hence, Eq. 36 is rearranged to make explicit the dependency476

of the centrifugal moment to the spring deformation. The centrifugal moment477

acting on the entire blade is478

Mc ≈
∑
i

(Mci,0 +Mci,θδθ) δri, (37)

where Mc,0 =M2D
c (β0) and Mc,θ =

∂M2D
c

∂θ .479

The preload angle is computed for average flow conditions, and pitch angle480

β(t) = β0. Under these conditions, the centrifugal moment is the only dynamic481

contributions to the preload angle. Equation 30 is thus modified as482

θ0 =
1

κ

∑
i

[
1

2
ρwU

2

i c
2
i (CMi,ααi + CMi,0) +Mci,0

]
δri. (38)

A detailed calculations of the centrifugal and inertial terms on a rotating483

blade can be found in Lanczos [23].484

The contribution of the gravity force is neglected. The composite blade shell485

is filled with water [22], the density of the whole blade is assumed to match that486

of the surrounding water, and the gravitational force is in equilibrium with the487

buoyancy force.488

2.5.1. Unsteady Hydrodynamics489

The oscillations due to the shear flow are periodic but not harmonic, and490

to estimate the dynamic loads acting on the blade using Theodorsen’s theory,491

we have to consider sinusoidal variations of the angle of attack. We determined492

the fluctuations of the axial velocity (Ux) such that the angle of attack would493

fluctuate harmonically with the same amplitude and the same mean value as494

the inflow oscillations due to the shear profile (Fig. 8). This procedure can495

be readily extended to generic inflow conditions, where the signal is decom-496

posed in its Fourier harmonic components, and their effects are superimposed497

via Theodorsen’s linear theory. The variations in the angle of attack and in498
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Figure 8: The fluctuations of the angle of attack are approximated by a sinusoidal shape

(shown here for r = 0.75R).

the axial velocity lead to additional pitching moment contributions. Following499

Theodorsen [21], the moment on a 2D foil pitching sinusoidally is500

M2D
dy = ρwb

3π

[(
1

2
− d

b

)
Uδα̇+ b

(
1

8
+

(
d

b

)2
)
δθ̈

]

−2ρwUb
3π

(
1

2
+
d

b

)
C(k)

(
1

2
− d

b

)
δθ̇

+
1

2
ρwU

2c2CM,αC(k)δα

+
1

2
ρwU

2c2 [CM,αα+ CM,0] ,

(39)

where δα = α − α, C(k) is Theodorsen’s circulation function that is expressed501

in terms of Hankel functions of the reduced frequency k = ωb
U
. The unsteady502

pitching moment for the whole blade accounts for the contributions of each503

section and it is computed as504

Mdy =
∑
i

M2D
dyi
δri, (40)

The aerodynamic lift L for the quasi-steady analysis accounts only for the505

hydrostatic loads (Eq. ??) whereas, in the dynamic analysis, it accounts for506
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both the dynamic and the hydrostatic contributions and is computed as507

L = πρwb
2

[
Uδα̇− b

(
d

b

)
δθ̈

]
+ 2πρwUb

2C(k)

(
1

2
− d

b

)
δθ̇

+
1

2
ρwU

2c [C(k)CL(α) + (1− C(k))CL(α)] .

(41)

The dynamic equations for the blade are508


Ms +Mc +Mdy − µδθ̇ = Jδθ̈ (a)

ϕi(t) = βi + αi(t) (bi)

βi(t) = β0i + δβi(t), (ci)

(42)

where µ is a parameter that accounts for the mechanical damping of the blade.509

The sectional hydrodynamic torque M2D
dyi

is a function of the average angle510

of attack αi and of its fluctuations δαi (Eq. 39). Using the complementarity of511

the angles in Eqs. 42bi and 42ci, it is possible to express δαi as a function of δθ,512

and to obtain an expression for the blade hydrodynamic torque in Eq. 40 which513

depend only on δθ and its first and second time derivative. By substituting Eqs.514

25, 37, 40 into Eq. 42a, the morphing blade dynamic equilibrium is formulated515

as:516

(
J −

∑
i

Iami
δri

)
δθ̈ +

(
µ+

∑
i

(
Cncami

− Ccami

)
δri

)
δθ̇

+

(
κ+

∑
i

(Kami −Mci,θ) δri

)
δθ

=
∑
i

(
Cncami

δϕ̇i +Kami
δϕi +M2D

qsi
(ϕi − β0i) +Mci,0

)
δri − κθ0,

(43)

where517
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Iam = ρwb
4π

(
1

8
+

(
d

b

)2
)
,

Ccam = −ρwUb3π
(
1

2
− d

b

)(
1 + 2

d

b

)
C(k),

Cncam = −ρwUb3π
(
1

2
− d

b

)
,

Kam =
1

2
ρwU

2c2CM,αC(k),

M2D
qsi

(α) =
1

2
ρwU

2c2 [CM,αα+ CM,0] ,

(44)

The fluctuations are defined by δϕ = ∆ϕ
2 exp(jωt) and δα = ∆α

2 exp(jωt),518

where ∆ϕ and ∆α represent the amplitude of the fluctuations of the respective519

angles and j is the imaginary unit. The blade is expected to oscillate with520

the same period, namely δθ = ∆θ
2 exp(jωt+ χ). By substituting δθ̇ = jωδθ,521

δθ̈ = −ω2δθ, δϕ̇ = jωδϕ and δϕ̈ = −ω2δϕ, Eq. 43 is rewritten as522

[
− ω2

(
J −

∑
i

Iamiδri

)
+ jω

(
µ+

∑
i

(
Cncami

− Ccami

)
δri

)

+

(
κ+

∑
i

(Kami
−Mci,θ) δri

)]
δθ

=
∑
i

((
jωCncami

+Kami

)
δϕi +M2D

qsi
(ϕi − β0i) +Mci,0

)
δri − κθ0.

(45)

The dynamics of δθ are determined by the algebraic solution of Eq. 45 for523

each time step and the equilibrium position of the blade is computed as θ =524

θ0 + δθ. The solution method is inspired by the work of Medina and Hemati525

[24].526

The optimisation problem is defined as for the quasi-steady case (Eq. 28),527

where the loads account for the unsteady contributions described in Eq. 41.528

The angle of attack is determined as for the quasi-steady analysis using Eq. 32,529

hence all the loads acting on the blade can be computed.530

In the Results (Sections 6.2, 6.3), we present the spring stiffness κ and the531
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material damping µ in terms of the nondimensional coefficients532

Cκ =
κ

ρwU2
hubAc

,

Cµ =
µ

ρwUhubAc2
.

(46)

533

Akin to Γ, also Cκ and Cµ are made nondimensional using a hydrodynamic534

force and the length scale c. Here, the force is that acting on the rotor disk535

and it is proportional to ρwU
2
hubA. It is noted that both the coefficients are536

based on the force on the rotor disk and do not account for the hydrodynamic537

force associated with the tangential velocity. Hence, as the tip speed ratio538

increases, the optimum κ and Cκ are expected to increase to match the higher539

hydrodynamic force associated with the rotation.540

3. Real inflow conditions541

For this numerical study, we use a flow sample measured at EMEC during a542

flood tide on November 22nd 2014. This sample was originally chosen by Scarlett543

et al. [3] to investigate numerically the unsteady hydrodynamic response of the544

Tidal Generation Limited (TGL) turbine subjected to large waves and opposing545

current. The significant wave height in the sample is 4.2 m, the maximum546

observed height is about 5 m, and the wave period is 10 s. The turbine is547

operating at the optimal tip speed ratio 4.5, the magnitude of the inflow speed548

averaged over the area and the sample time period is 2.77 m s−1, and the549

rotational speed of the turbine is ω = 1.38 rads−1. Figure 9 shows the time550

history of the angle of attack at the blade spanwise position r/R = 0.75, over551

10 rotational periods (Tr = 2π/ω). Further details about the measured flow552

conditions and the measurement system are found in Scarlett et al. [3].553

The blade deflection at every spanwise position is computed as described554

in Section 2.4, the blade flexibility is modelled as a torsional spring mounted555

at the root, and the blade pitches around an axis at the chordwise coordinate556

x̂A = 0.1c. The pitching equilibrium is described using the quasi-steady analysis557
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Figure 9: Time history of the angle of attack at r/R = 0.75. Data from ReDAPT project re.

in Eq. 27. The optimisation problem is defined in Eq. 28 and solved using an558

exhaustive search algorithm varying the input spring stiffness. For any stiffness,559

the preload is computed using Eq. 30. The optimum is represented by the stiff-560

ness and preload that minimise the fluctuations of the out-of-plane blade root561

bending moment CRBM, whilst keeping constant the average power generated562

by the turbine.563

4. Input parameters564

The aerodynamics (CL, CD) for the blade sections profiles is taken from565

Gretton and Ingram [25] for a Reynolds number Re = 3 × 106 which matches566

the flow on a full-scale tidal turbine. The shape of the blade sections is the567

NACA 63(318) − 4xy, based on the NACA 6−series designation given by, for568

instance, Abbott and Von Doenhoff [26]. The thickness xy in percentage of569

the foil chord varies from the NACA 63(318) − 455 near the root to the NACA570

63(318) − 418 at the blade tip. An overview of the blade geometry is showed571

in Fig. 10 and data is provided in Table 1. The blades are thicker at the root,572

which results in a smooth force variation near the stall angle. For the blade573
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sections with thickness up to 40%, the foil characteristics are interpolated from574

the data provided by Gretton and Ingram [25]. Instead, for thicker sections,575

the CL and CD of the 40%-thick section are used. This approximation will not576

affect the results significantly since the root of the blade does not contribute577

much to the power extraction compared to the mid span and the tip.578

The quarter-chord pitching moment CM1/4
, which is not provided by Gretton579

and Ingram [25], is taken from Abbott and Von Doenhoff [26] for a NACA580

633 − 418 (Fig. 11). The parameters used in the simulations are resumed in581

Table 2.582

Figure 10: TGL blade geometry adapted from Gretton and Ingram [25].
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Figure 11: Quarter chord pitching moment coefficient for a NACA 633 − 418 as a function of

α, at Re = 3× 106. Data taken from Abbott and Von Doenhoff [26].

5. Code Validation583

(a) Power coefficient (b) Thrust coefficient

Figure 12: Comparison of the BEMT results of this study and the CFD results from Gretton

and Ingram [25] using Uhub = 2 m s−1. CP and CT refer to the entire turbine.

584

First, we assess the accuracy of the numerical code for a turbine subjected585

to steady flow conditions, against the data from Gretton and Ingram [25],586
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Radius [m] Twist [deg] Chord [m] Thickness

ratio

Profile

1.25 32.5 1.612 1.000 Circle

2.05 23.2 2.271 0.550 63(318) − 455

2.45 19.9 2.119 0.533 63(318) − 453

2.85 17.2 1.962 0.511 63(318) − 451

3.25 14.9 1.813 0.485 63(318) − 449

3.65 13.1 1.677 0.454 63(318) − 445

4.05 11.5 1.556 0.422 63(318) − 442

4.45 10.2 1.447 0.390 63(318) − 439

4.85 9.1 1.351 0.359 63(318) − 436

5.25 8.1 1.265 0.330 63(318) − 433

5.65 7.2 1.189 0.306 63(318) − 431

6.05 6.4 1.120 0.286 63(318) − 429

6.45 5.8 1.058 0.275 63(318) − 427

6.85 5.2 1.003 0.267 63(318) − 427

7.25 4.6 0.953 0.255 63(318) − 426

7.65 4.2 0.907 0.243 63(318) − 424

8.05 3.7 0.865 0.227 63(318) − 423

8.45 3.3 0.827 0.208 63(318) − 421

8.85 3.0 0.792 0.188 63(318) − 419

9 2.8 0.600 0.180 633 − 418

Table 1: Blade geometry.

who studied a full-scale turbine prototype from TGL at different tip speed587

ratio λ, where the free stream velocity is uniform with U∞(z) = Uhub and588

Ux = U∞(1− a). We compare the thrust and power coefficients in Fig. 12. The589

difference of the computed power coefficient with the CFD data from Gretton590

and Ingram [25] is always smaller than 3%, whereas the thrust differs by less591
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Blade section

r = 0.5R r = 0.75R

Mean angle of attack α [deg] 9.58 5.96

Twist angle β0 [deg] 10.17 5.39

Chord c [m] 1.445 1.019

Foil type NACA 63(318)439 NACA 63(318)427

Axial induction factor a [-] 0.1835 0.3112

Tangential induction factor a′ [-] 0.0182 0.0164

Mean inflow speed U [m s−1] 4.82 6.98

Blade length R [m] 9

Far field flow speed Uhub [m s−1] 2

Hub height zhub [m] 20

Pitch axis position x̂A/c [-] 0.1

Rotational speed ω [rad s−1] 1

Blade shell thickness [mm] 56.5 (root) - 14.5 (tip)

Blade shell density ρs [kg m−3] 570 (root) - 660 (tip)

Sea water density ρw [kg m−3] 1025

Table 2: Simulation parameters.

than 2% over the considered range λ ∈ [3, 6], including the optimal operating592

point λ0 = 4.5 where we study the performance of the morphing blade.593

Next, we consider the accuracy of the model at predicting loads fluctuations594

when the turbine is subjected to unsteady flow. The predictions of our model595

are compared to the results of Scarlett et al. [3]. They developed a model596

based on blade element momentum theory coupled with a dynamic stall model,597

and they validated it against data from AeroDyn, an opensource aerodynamic598

software developed by NREL, and wind tunnel data. To aid the modelling599

of dynamic stall phenomena, Scarlett et al. [3] considered the blade made of600
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NREL S814 airfoils, since a large database of empirical dynamic stall parameters601

is available for a series of NREL airfoils [27]. In particular, the NREL S814602

generates a similar power coefficient to the NACA 63-418, which represents the603

tip airfoil of the TGL turbine blades. Therefore, the comparison is made for604

the lift experienced by the tip section (r/R = 1), over 56 rotational periods.605

In Fig. 13, we show the time history of the lift coefficient over 5 periods, and606

also the predictions from Scarlett et al. [3] when the turbine with rigid blades607

is subjected to the real flow conditions, measured at the EMEC tidal test site608

on November 22nd 2014. Our results match qualitatively both the unsteady609

and quasi-steady lift from Scarlett et al. [3]. The average discrepancies over610

56 periods are 6% compared to Scarlett’s quasi-steady model, and less than611

5% compared to the unsteady model, with maximum deviations of 18% and612

40% respectively. Discrepancies with Scarlett’s quasi-steady model might be613

partially due to geometric differences between the two airfoils, as the NREL614

S814 has double curvature and 3% maximum camber, whereas the NACA 63-615

418 has simple curvature and 2.2% maximum camber. Bigger differences are616

noticed against Scarlett’s unsteady model, however, these are due to unsteady617

phenomena and are noticed also between both of Scarlett’s models.618

There is no experimental data for a turbine with a morphing concept such as619

that discussed in this paper. Hence, the load predictions are validated for a rigid620

blade and cannot be validated for the morphing blade. However, Dai et. al [28]621

performed a 2-dimensional CFD investigation of the performance of a passively622

pitching NACA 63-427, which corresponds to the airfoil at r/R = 0.75 of the623

turbine blade used in the current study. They considered a rigid and an airfoil624

pitching passively around the axis at x̂A = 0.1c and subjected to a periodically625

varying inflow speed representing a blade rotating in shear flow. The passive626

pitch was modelled with an akin mass-damper-spring system to that in this627

paper. The CFD predicted a reduction of the amplitude of the load fluctuations628

within 7% of the predictions of the present analytical model (Fig. 14).629
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Figure 13: Comparison of lift coefficient between Scarlett et al. [3] unsteady results (black

line), quasi-steady results (red dashed line), and present quasi-steady results (blue dashed-

dotted line).

Figure 14: Comparison of CFD and analytical results showing the difference of CT between

rigid and morphing blades.
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6. Results630

6.1. Quasi-steady Analysis of a Morphing foil631

The results for the passive pitch control applied to a 2D foil are presented632

here. Figure 15 shows the evolution of α(t) and C2D
T (t) for the foil at r = 0.5R633

over the azimuthal coordinate ψ (Fig. 1), whereas Fig. 16 refers to the blade634

section at r = 0.75R. Both cases show the fluctuations over one revolution635

of the foils equipped with springs that are optimised to mitigate the thrust636

fluctuations for the respective flow conditions (Table 3). The non-dimensional637

stiffness Γ is defined as the ratio between spring stiffness κ and the hydrostatic638

stiffness ρwc
2U

2
(Eq. 24), and Γ0 is the optimal value. On both blade sections,639

the thrust fluctuations are almost perfectly cancelled.640

Similar performance can be achieved for any blade section as long as the641

stiffness and preload are optimised for the flow condition that the section ex-642

periences. Therefore, if each section can be equipped with the optimal stiffness643

and can deflect independently of the neighbouring sections, perfect unsteady644

load cancellation is possible also for the full blade.645

Such optimal behaviour is possible thanks to the angle of attacks that varies646

in opposition to the fluctuations of the inflow angle. In fact when the inflow647

angle ϕ reaches a peak value α is at a minimum, as observed by Shen et al. [29].648

(a) (b)

Figure 15: Section at r = 0.5R: evolution of angle of attack (a) and thrust coefficient (b).
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(a) (b)

Figure 16: Section at r = 0.75R: evolution of angle of attack (a) and thrust coefficient (b).

Optimal spring properties Thrust fluctuations ∆C2D
T

Blade section Γ0 [-] θ0 [deg] % mean C2D
T % reduction

r = 0.5R 6.5× 10−4 132 0.03 (13.46) 99.74

r = 0.75R 4.5× 10−4 233 0.02 (16.12) 99.85

Table 3: Minimum load fluctuations using optimal springs for two blade sections. The number

in parenthesis refer to the respective rigid blade sections.

649

This behaviour is explained in Fig. 17. The loads on the foil change because650

of the changes in the angle of attack but also in the flow velocity. When the blade651

is in the upper position, the foil pitches in order to compensate the incidence652

increase, such that both α and C2D
T are restored to their initial values (Fig. 17b).653

However, the inflow speed increases as well causing higher hydrostatic moments654

which further pitch the foil (Fig. 17c). Essentially, the angle of attack is reduced655

to a value which is lower than its initial value to compensate the increase in656

the inflow speed. Similarly, when the blade is in the lower position, the foil657

pitches to a higher incidence in order to cancel the effect of the reduction in the658
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(a) (b)

(c)

Figure 17: Reaction of the morphing foil to an increase of angle of attack and flow speed;

(a) reference condition; (b) effect of the angle of attack only and (c) combined effect of the

increase of both the angle of attack and flow speed.

incoming flow speed. Therefore, the spring that minimises the fluctuations of659

C2D
T is different from the one that minimises the oscillations of α. In particular,660

Fig. 18 shows the amplitude of the fluctuations of C2D
T (top) and α (bottom)661

for the blade section at r = 0.75R, for a range of values of Γ. It’s shown that662

a spring that minimises the fluctuations of α is stiffer than the spring that663

minimises the fluctuations of C2D
T .664

The results for 2D sections are summarised in Fig. 19, which shows the665

evolution of C2D
T and C2D

P during the revolution of the blade section at r =666

0.75R for different values of the non-dimensional stiffness Γ. The dotted lines667

on Fig. 19a show the blade azimuthal position. The maximum value Γ = 10668

represents the condition of a rigid foil, where the spring becomes too stiff to669

bend and the loads on the section are not effectively alleviated.670

In Fig. 19b, the range of Γ is narrowed to focus the reader attention around671

the optimal value Γ0 = 4.5× 10−4 which is highlighted by the dotted line. The672
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Figure 18: Fluctuations of C2D
T (top) and α (bottom) for the section at r = 0.75R, for a range

of values of Γ.

optimal stiffness is represented by a slightly curved line. Therefore, the C2D
T still673

exhibits small fluctuations throughout each revolution, although these fluctua-674

tions are negligible compared to the mean value and compared to fluctuations675

experienced by the rigid foil. The quasi-steady analysis shows that, for very low676

stiffness values, the variations of the thrust coefficient is reversed. The preload677

θ0 is inversely proportional to Γ (Eq. 20), which means that the lower the value678

of Γ the higher needs to be the preload in order to balance the hydrostatic mo-679

ment. Therefore, reducing the stiffness of the spring leads quickly to very high680

values of θ0. C
2D
P always oscillates around the same value whilst the amplitude681

of the oscillations is slightly reduced.682

6.2. Quasi-steady Analysis of the 3D Morphing Blade683

The analysis presented in Section 6.1 is extended to the entire blade. A684

spring with quasi-steady non-dimensional stiffness (Eq. 46) Cqs
κ = 6.0× 10−3

685

and quasi-steady preload angle θqs0 = 313 deg leads to variations of the thrust686
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Figure 19: Variations of the power and thrust coefficients as the inflow angle varies through

the rotation of the blade, (a) for a large range of values Γ ∈ [10−5, 10] and (b) around

Γ0 = 4.5× 10−4.

coefficient at each section that are negligible, whilst the mean power generated687

in one revolution is unaffected. Figure 20 shows the thrust fluctuations over the688

area swept by the blade for a rigid (Fig. 20a) and a morphing blade (Fig. 20b).689

In particular, we plot the thrust coefficient of the rigid blade C2D
T |κ→∞ and of690

the optimal morphing blade C2D
T divided by the maximum sectional thrust of691

the rigid blade. The load is concentrated in the outer half of the blade and692

it drops at the tips and towards the hub. The high thrust experienced by the693

blade when ψ = 90 deg (Fig. 20a) is reduced thanks to the blade flexibility,694

whereas the lower thrust at ψ = 270 deg is increased.695

The effectiveness of the blade flexibility is finally checked for the flapwise696

blade root bending moment shown in Fig. 21. Since the changes in the amplitude697

of the thrust fluctuations for the blade in the upward/downward positions are of698

opposite sign, the bending moment is kept nearly constant over each revolution.699

The morphing blade experiences RBM fluctuations with amplitude smaller than700

0.5% of the average bending moment. As the amplitude of the fluctuations701
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Figure 20: Map of the thrust coefficient over the rotor disc for (a) a rigid blade and (b) a

morphing blade.

on the rigid blade is 18%, the morphing blade mitigated 98% of the RBM702

fluctuations. Compared to the 2D analysis, the performance is slightly lower.703

Each section experiences a different load fluctuation amplitude that requires a704

different blade deflection. As the morphing blade is optimised in a global fashion,705

it affects mainly the sections that experience stronger load fluctuations, and it706

is thus sub-optimal for the sections that contribute the least to the blade loads707

causing a performance reduction.708

6.3. Dynamic Analysis of the 3D Morphing Blade709

We study to what extent the dynamics of the blade and the unsteadiness710

of the fluid loads affect the performances of the passive control system. From711

Eq. 42, we consider the centrifugal moment Mc, the hydrodynamic moment712

Mdy and that due to the mechanical damping of the blade µθ̇. The blade non-713

dimensional damping is initially set to Cµ = 10−3 (Eq. 46), which represents714

a negligible value. Its effect will be discussed in Section 6.4. Figure 22 shows715

that the effectiveness of the morphing blade in reducing the RBM oscillations is716

only marginally affected by the blade inertia and the unsteadiness of the flow.717

Figure 23 shows that the blade inertia and the fluid-induced damping have a718

small effect on the system effectiveness.719
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Figure 21: Quasi-steady analysis of the flapwise one-blade root bending moment CRBM. The

blade is equipped with a spring with Cqs
κ = 6.0× 10−3 and θqs0 = 313 deg.

Figure 22: Dynamic analysis of the evolution of CRBM. The blade is equipped with a spring

with Cdy
κ = 1.1× 10−2 and θdy0 = 171 deg.

Accounting for the additional moments, we find that the optimal non-dimensional720

stiffness and preload obtained for the dynamic model are Cdy
κ = 1.1× 10−2 and721

θdy0 = 171 deg. The optimal spring is stiffer than the one in the previous sec-722
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Figure 23: Dynamic contributions to the moment equilibrium of the blade, for

Cdy
κ = 1.1× 10−2 and θdy0 = 171 deg.

tion because of the presence of unsteady loads. Table 4 shows the reduction in723

the bending moment fluctuations. As the optimal spring for the dynamic case724

is different than the optimal spring obtained for the quasi-steady model, it is725

difficult to understand whether the difference in the performance are due to a726

different spring or to dynamic effects. For ease of comparison, in Table 4 we727

display two sets of results for the dynamic model and for the quasi-steady one728

(in parenthesis), both using the same spring optimised for the dynamic model.729

The performance estimated with the quasi-steady model is slightly lower than730

before as the spring is suboptimal. The system dynamics affect the blade perfor-731

mance only marginally, as the reduction of RBM fluctuations is only 5% lower732

compared to the best quasi-steady performance previously shown. It must be733

noted that the mean power generated is the same as for the rigid blade.734

6.4. Effect of Blade Mechanical Damping735

In this section, we consider the effects of the mechanical damping µ. Figure736

24 shows the reduction of the fluctuations of the bending moment coefficient for737

a range of values of the stiffness coefficient Cκ and of the damping coefficient738
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Optimal spring RBM fluctuations ∆CRBM

Cdy
κ [-] θdy0 [deg] % mean CRBM % reduction

Rigid − − 16(18) −

Morphing 1.1× 10−2 171 (177) 2.6 (< 1) 93 (96)

Table 4: Optimal dynamic results for the morphing blade model. The numbers within the

parenthesis refer to the quasi-steady analysis that employed the spring optimised for the

dynamic case.

Cµ. In particular, the amplitude of the bending moment fluctuation ∆CRBM is739

divided by the amplitude of the fluctuations for the rigid blade ∆CRBM|κ→∞.740

The optimal working point for each curve is their minimum. When Cµ is741

large compared to the hydrodynamic damping, the efficacy of the morphing742

blade is poor. Conversely, for Cµ = 1 the system performance improves consid-743

erably, and the fluctuations of the blade root bending moment are reduced by744

98%. Increasing the damping, the lowest point of each curve moves to higher745

values of Cκ, hence the optimal performance of the passive control system is746

achieved with stiffer springs. For high values of Cκ, all the curves in Fig. 24747

collapse and converge asymptotically to 1. The system is not very sensitive to748

small changes in the spring stiffness, as the reduction in the ∆CRBM does not749

vary significantly near the optimum.750

The blade does not experience any resonance phenomena, and, even for751

negligible mechanical damping Cµ, the fluid acts as a damper, the motion of752

the blade is effectively damped. In fact, by considering the blade damping as a753

lumped parameter, it is possible to define a damping ratio as754

ζ =
Ctot

2
√
JtotKtot

, (47)

where Jtot, Ctot and Ktot represent the inertia, the damping and the stiffness755

of the system respectively. Similarly, we define the natural frequency of such756

system as757
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Figure 24: Normalised amplitude of the root bending moment for a range of values of Cκ and

Cµ.

ΩN =

√
Ktot

Jtot
, (48)

where Jtot is the sum of all the inertial terms in Eq. 43, Ctot is the sum of all the758

terms that multiply δ̇θ and Ktot is the sum of the terms that multiply δθ, the759

damping ratio describes the coupled mechanical-hydrodynamic system. For the760

range of values of Cκ considered, the natural frequency of the coupled system761

is always greater than 2.8 rad/s. Since the frequency of the load fluctuations762

is ω = 1 rad/s, the blades are likely to experience no resonance. The damping763

ratio ζ changes with the spring stiffness, and at the minimum of each curve, it764

always takes values greater than 0.4. Therefore, the hydrodynamic contribution765

alone dampens the motion of the blade substantially. The effect of the damping766

can be observed in Fig. 25, which shows the blade motion amplitude ∆θ over767

the same range of Cκ and Cµ. All curves converge for stiff springs, for which768

∆θ tends to zero. For very flexible springs, ∆θ is never higher than 2 deg and769

it decreases for increasing damping values. On the other hand, the preload θ0770

is inversely proportional to the spring stiffness and increases rapidly from zero771

to more than 104 deg for Cκ < 10−4.772
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Figure 25: Evolution of ∆θ for a range of values of Cκ and Cµ.

6.5. Morphing blade performance in real flow conditions773

Figure 26: Root bending moment under real flow conditions for a rigid blade (blue line) and

a morphing blade (red dashed line).

The performance of morphing blades is estimated again, this time using774
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realistic inflow conditions, measured during a flood tide at the EMEC tidal775

testing site on the 22nd of November 2014. Figure 26 shows the root bending776

moment coefficient CRBM simulated over 10 rotational periods, for a rigid blade777

and a morphing blade that has been optimised to minimise the fluctuation778

of CRBM. Using a spring with quasi-steady non-dimensional stiffness Cqs
κ =779

5.1× 10−2, and quasi-steady preload angle θqs0 = 32 deg, the fluctuations of the780

root bending moment are reduced by 82%, whilst the average power coefficient781

has decreased by 2%. Results are resumed in Table 5.782

Optimal spring RBM fluctuations ∆CRBM

Cqs
κ [-] θqs0 [deg] % mean CRBM % reduction

Rigid − − 101 −

Morphing 5.1× 10−2 32 18 82

Table 5: Optimal morphing blade model when subjected to real flow conditions.

The efficacy of the morphing blade to mitigate the fluctuations induced by783

real inflow conditions is slightly lower than that shown in Sections 6.2 and 6.3 for784

a modelled shear flow. The shear flow induces periodic fluctuations at the blade785

rotational frequency, whereas the real flow conditions induce load fluctuations786

over a wide range of frequencies. Since the load fluctuations are dominated by787

the high-amplitude, low-frequency waves, the optimal morphing blade is tuned788

to operate around that frequency. Therefore, the system is not as effective at789

alleviating the high-frequency, low-amplitude fluctuations, as shown in Fig. 26.790

We have shown that morphing blades are capable of alleviating unsteady791

load fluctuations caused by shear flow and large waves. In our model, flow792

fluctuations are experienced by the blade as oscillations of the inflow speed and793

of the angle of attack, and a morphing blade mitigates the loads by inverting794

the sign of the angle of attack variations. The mechanism underlying load795

mitigation by morphing blade is independent of the flow condition. Hence, we796

believe that similar performance can be achieved for a wide range of unsteady797
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flow conditions, including turbulence, yaw misalignment, wakes of upstream798

turbines, and the proximity of other devices. As the frequency of the fluctuation799

increases, such as for small-scale turbulence, the inertia of the blade leads to800

a reduction of the system efficiency. Moreover, the model is not capable to801

consider the effect of high-frequency flow fluctuations with a period of the order802

of c/(ωR), such that the flow cannot be considered uniform along the chord. In803

such cases, a more sophisticated model should be used.804

7. Conclusions805

In this paper we discuss the underlying mechanism by which morphing blades806

can mitigate unsteady load fluctuations on tidal turbines.807

By neglecting mass and damping effects, and by further assuming indepen-808

dent blade sections at any spanwise location, we show that a morphing blade809

can completely cancel the thrust fluctuations (> 99% reduction) without affect-810

ing the mean torque and thus the energy harvested. This is possible because,811

when a gust occur, the increased flow speed makes the blade to pitch and this812

result in a reduction in the angle of attack. The optimum blade flexibility is813

such that the load increase due to the higher flow speed is cancelled by the load814

reduction due to the lower angle of attack.815

The condition that each blade section deflects independently of those at other816

spanwise locations is not critical for the effectiveness of the system. The opposite817

limiting condition is when all blade sections must pitch by the same amount,818

which is saying that the blade is rigid and has a passive pitching mechanism at819

the root. In this case, we show that the root bending moment fluctuations are820

decreased by more than 98% for a 18 m diameter, 1 MW turbine in a sheared821

tidal current operating at a tip speed ratio of 4.5.822

The effectiveness of the system is partially decreased by both the mass and823

damping of the system.824

Accounting for the unsteady hydrodynamics effects and the blade inertia,825

the root bending moment fluctuations are reduced by more than 93%. Their826
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effect, however, depends on the onset flow conditions. Hence, we also model827

the morphing blade in the tidal flow conditions measured at the EMEC site828

with more than 4 m significant wave height with a period of 10 s. In these829

conditions, the morphing blades enable a root bending moment reduction of830

more than 82%. Hence, we conclude that unsteady hydrodynamic effects and831

blade inertia are important, but do not undermine the general effectiveness of832

the morphing blades.833

On the other hand, a high mechanical damping can undermine the ability to834

mitigate unsteady loads. The damping depends on the design of the morphing835

blade and can be due to the viscous dissipation of the flexible material, or on836

the mechanical damping of a passive pitch mechanism. Our parameter study837

can be used by future researchers to estimate the unsteady load mitigation of838

different blade design concepts.839

This conceptual study does not consider the practicalities arising from the840

design and manufacturing of a morphing blade. Before this technology can be841

adopted by the industry, more research is needed to address the need for a842

new structural design, to identify the materials that can be adopted, and the843

associated manufacturing and the supply chain. Since tidal turbine blades are844

typically made of a composite structure reinforced with a boxspar, the use of a845

novel structure and materials will require extensive testing and characterisation846

to guarantee reliability and survivability of the blade. Overall this paper con-847

tributes by providing insights on the underlying mechanism of morphing blades848

and the blade behaviour that future designs need to achieve.849
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