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Algos gone wild: What drives the extreme order cancellation rates in modern markets?

Abstract

97% of orders in US stock markets are cancelled before they trade, straining market infrastruc-

ture and raising concerns about predatory or manipulative trading. To understand the drivers of

these extreme cancellation rates, we develop a simple model of liquidity provision and find that

growth in order-to-trade ratios (OTTRs) is driven by fragmentation of trading and technological

improvements that lower monitoring costs. High OTTRs occur legitimately in stocks with high

volatility, fragmented trading, small tick sizes, and low volume. OTTRs are usually within lev-

els consistent with market making, but occasionally spike to levels that may indicate illegitimate

trading such as spoofing.
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1 Introduction

Who is Wall Street? Think Goldman Sachs, JP Morgan and Morgan Stanley drive today’s equity

markets? Fuhgeddaboudit. Today’s largest trading firms are Citadel Securities, GTS, HRT, IMC,

Susquehanna/G1X, and Virtu.

Larry Tabb

In today’s markets, liquidity is provided almost entirely by electronic market makers, operat-

ing across fragmented markets and equipped with fast data feeds and smart market monitoring

technologies. One manifestation of electronic market making is high order-to-trade ratios (OTTRs:

number of order enter/amend/cancel messages divided by the number of trades). OTTRs have in-

creased more than ten-fold since the year 2000 (Committee on Capital Markets Regulation, 2016).

In 2013, the US Securities and Exchange Commission (SEC) reported that 96.8% of all orders

were cancelled before they traded, with 90% being cancelled within one second. The response of

policymakers has been to curb OTTRs by imposing messaging taxes, which have been proposed

in some countries (such as the US) and already implemented in others (e.g., Australia, Italy, and

Germany). This paper investigates the drivers of OTTRs, whether their growth warrants concern,

and the impacts of constraining OTTRs with regulatory measures.

High OTTRs have been in the public spotlight, with concerns that they are a symptom of

predatory or manipulative behavior of high-frequency traders (Biais, Foucault, & Moinas, 2011).

These concerns are accompanied by a recent surge in prosecutions of spoofing, a trading strategy

that involves misleading other market participants with orders that are cancelled before they are

able to execute. For example, the US Commodity and Futures Trading Commission (CFTC) in

2018 took action against a record number of spoofing cases: five times more than the average in the

previous eight years.1 It is true that market manipulation strategies such as spoofing, layering, or

quote stuffing generate spikes in order activity and high cancellation rates. Therefore, high OTTRs

are used by regulatory surveillance systems to identify spoofing and have been used in courts as

evidence of spoofing.2 However, high OTTRs can also arise from trading that is neither illegal

nor harmful. For example, as we show in this paper, market making can result in high OTTRs,

1See https://www.wsj.com/articles/u-s-market-manipulation-cases-reach-record-1540983720.
2For example, see Egginton, Van Ness, & Van Ness (2016) and Putnins (2020).
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in particular when posting quotes across multiple exchanges and adjusting the quotes rapidly in

response to new information. It is therefore crucial to be able to distinguish between legitimate

and illegitimate levels of OTTRs.

High OTTRs also place considerable strain on market infrastructure due to the massive amounts

of data generated in the trading process. In 2013, NYSE received four to five terabytes of data a

day, according to Forbes.3 That number (4 × 1012 bytes) represents a substantial fraction of the

total global daily data usage (estimated at 1018 bytes as of 2018).4 The costs include the immense

processing power needed by exchanges and market participants, the bandwidth consumed in data

transmission, and the burden on regulators to conduct surveillance over such large datasets. In

response to the concerns about illicit trading activity and the costs of the large volumes of market

data, a number of regulators have imposed taxes on high-OTTR traders (see Friedrich & Payne,

2015; Jørgensen, Skjeltorp, & Ødegaard, 2018). If such regulation curbs harmful behavior of high-

frequency traders (HFTs), the tax could improve liquidity and other measures of market quality.

However, if the regulation negatively affects market makers by constraining legitimate liquidity

provision, market liquidity could deteriorate. Therefore, the optimal design of message traffic taxes

requires an understanding of the levels and variation in OTTRs that result from legitimate market

making.

To understand the drivers of the high OTTRs in today’s markets and to provide a benchmark

against which to evaluate whether an OTTR is excessive, we develop and calibrate a simple illus-

trative model of liquidity provision. In the model, a market maker in a fragmented market monitors

several sources of information (“signals”) and updates quotes to avoid being “picked off” (trading

at stale prices). His monitoring intensity is endogenous: the market maker decides which signals to

monitor by weighing up the benefit (reduced “picking-off risk”) against the cost (the computing and

data feed costs). Consequently, the OTTR emerges endogenously as a function of monitoring cost,

market conditions (e.g., volume, volatility), stock characteristics (e.g., how closely correlated the

stock is with other securities), and the extent of fragmentation of trading across multiple exchanges.

Starting with the time-series drivers, our empirical tests suggest that the long-term growth in

3See https://www.forbes.com/sites/tomgroenfeldt/2013/02/14/at-nyse-the-data-deluge-overwhelms-traditional-
databases/4493d9805aab.

4See https://www.forbes.com/sites/bernardmarr/2018/05/21/how-much-data-do-we-create-every-day-the-mind-
blowing-stats-everyone-should-read/268546af60ba.
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OTTRs is largely driven by the introduction of automatic quoting (Autoquote), increasing market

fragmentation, and decreasing monitoring costs. For example, while the average US stock at the

start of our sample (year 1998) was traded on around two stock exchanges, by 2018 that number

had increased to ten. Microprocessor speeds increased 14-fold during our sample period and data

storage costs fell by a factor of 2 000, collectively reflecting a substantial reduction in the costs of

monitoring a large number of digital signals. Yet around these longer term trends, we find that the

short-term dynamics of OTTRs are closely related to market volatility, consistent with those being

periods of large changes in security values and therefore high picking-off risk.

Our analysis also sheds light on why OTTRs are considerably higher in some securities compared

to others. Our empirical tests support the model predictions that OTTRs are higher in more volatile

stocks, higher price-to-tick stocks, lower volume stocks, and in ETFs compared to stocks. The

intuition for these effects is as follows. In more volatile markets, information arrives more frequently.

Frequent information causes market makers to update quotes (amend or cancel and replace) more

often to avoid being picked off by informed traders, which increases OTTRs. Similarly, market

makers update quotes more often in stocks that have a small minimum price increment relative to

their price level (high price-to-tick stocks) because the higher resolution in prices allows smaller

changes in valuations to be reflected with quote updates. ETFs naturally have higher OTTRs

compared to stocks, because ETFs have a number of highly relevant signals available for monitoring,

such as the prices of the underlying stocks or the index.

The third dimension of variation in OTTRs explained by our model is across markets. We

find that OTTRs are naturally much higher on markets with lower shares of total trading volume.

The intuition is as follows. When a security trades on multiple markets, a liquidity provider often

duplicates their quotes in each (or at least some) of the different markets. Each time the market

maker updates their quoted prices or volumes, they send order amendment or cancellation messages

to all of the markets in which they are quoting, and consequently the amount of messaging activity

(the OTTR numerator) across the different markets is approximately equal. Yet if the number

of trades in a market with a low share of total trading volume is considerably lower, the smaller

OTTR denominator results in a higher OTTR for that market.

In the last part of the paper we apply a calibrated version of the model to assess how often

OTTRs spike to levels beyond what is expected under regular market making. In this analysis we

4
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account for the large number of factors that drive natural variation in OTTRs. We find that in

most stocks and on most days, the empirically observed OTTRs in 2018 are consistent with levels

that would be expected from liquidity provision in a fragmented market, even under conservative

assumptions. However, the empirical distribution of OTTRs is right-skewed and 17% of observations

exceed the theoretical natural level. This exercise of benchmarking actual OTTRs against the

natural OTTR expected given the characteristics of the stock, day, and market, is an approach

regulators could use to detect abnormal order activity that warrants further investigation. By

accounting for the substantial natural variation in OTTRs, this approach is likely to lead to more

efficient allocation of regulatory resources and surveillance effort than using arbitrary unconditional

OTTR thresholds to trigger investigation.

Our findings have implications for policy measures and regulatory proposals that aim to curb

OTTRs, such as messaging taxes and OTTR limits. Because the recent levels of OTTRs, in most

cases, are within the levels expected under legitimate liquidity provision, restricting order activity

is likely to have adverse effects on market making. The adverse effects are likely to be more severe

in securities that would naturally have higher OTTRs, for example, securities with low volume and

high volatility. As a result, securities with already low liquidity are likely to be disproportionately

impacted by such policy measures. Similarly, if the restrictions were applied uniformly across

securities, ETFs would be disproportionately affected, because of their high natural OTTRs in

ETFs due to the availability of precise, frequent signals. Furthermore, messaging taxes create a

non-level playing field between exchanges, because venues with a lower share of total volume will

naturally have higher OTTRs.

Our paper is related to empirical studies of OTTRs, such as those that examine the effects of

policies designed to reduce OTTRs. For example, Friedrich & Payne (2015) find that a fee on high

OTTRs introduced in the Italian Stock Exchange resulted in less deep and less resilient markets,

although spreads were not substantially affected. The underlying mechanism seems to be that

the regulation constrained the order activity of HFTs, thereby negatively affecting their ability to

provide liquidity. In contrast, Jørgensen, Skjeltorp, & Ødegaard (2018) show that a fee on OTTRs

introduced in the Oslo Stock Exchange did not substantially impact measures of market quality.

The difference in the case of Oslo seems to be that the regulation was accompanied by incentives for

liquidity provision. Therefore, these empirical studies are consistent with our model’s implication

5
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that a restriction in OTTRs without accompanying incentives for liquidity provision is likely to

harm liquidity.

The theoretical underpinnings of our analysis rely on models of modern market makers (e.g.,

Foucault, Röell, & Sand̊as, 2003; Liu, 2009; Foucault, Kadan, & Kandel, 2013; Lyle & Naughton,

2018), but unlike the previous work, we address the issue of what drives OTTRs and whether

they are excessive. We also contribute to the small number of studies that have identified specific

factors related to OTTRs, including price-time priority (Yao & Ye, 2018; Wang & Ye, 2017), cross-

venue strategies by fast and slow traders (van Kervel, 2015), limit order profitability (Dahlström,

Hagströmer, & Nordén, 2018) and the difficulty to value a stock (Rosu, Sojli, & Tham, 2020).

We characterize a broader set of drivers of OTTRs, including fragmentation, monitoring costs,

and technological advances, which we argue are the most salient drivers of the growth in OTTRs.

Further, we build on studies of cancellations (Nikolsko-Rzhevska, Nikolsko-Rzhevskyy, & Black,

2020; Jain & Jordan, 2017), but we focus on measuring messaging activity overall, as modern

market making is manifested through high overall OTTR levels.

There is currently no consensus in the literature on how market fragmentation affects quoting

activity and liquidity. For example, recent work by Budish, Lee, & Shim (2020) implies that

fragmentation is irrelevant for the equilibrium quoting behavior. At the same time, multiple studies

suggest that fragmentation matters for liquidity (e.g., Chowdhry & Nanda, 1991; Biais, Martimort

& Rochet, 2000; Pagnotta & Philippon, 2018; Baldauf & Mollner, 2019).

Finally, by providing a novel benchmark for identifying abnormal OTTRs, our paper contributes

to the recent literature on layering and spoofing in markets (see Putnins (2020) for an overview).

In particular, the benchmark for abnormal OTTRs that we propose may be useful in detecting or

confirming the presence of layering or spoofing in markets.

2 A framework of what drives OTTRs

2.1 Primitives

Agents. Consider a single, representative market maker that posts bid and ask quotes for a

given asset in a given market, and a continuum of traders that arrive at the market and trade

against the market maker.

6
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Agents’ action space. The market maker can choose to monitor one or more signals from a

set of signals, Ωs = {s1, s2, . . . , sN}. The signals could be prices of related securities, prices of the

same security in another exchange, the state of the order book, and so on. Each signal is a flow of

time-series data that changes at stochastic times (termed “information arrivals”) given by Poisson

processes with intensity λn for the nth signal. The quality of signal n, qn, is the probability that

when there is a change in that signal (an “information arrival”), the market maker will want to

update his posted quotes, resulting in a “cancel and enter” or “amend” message from the market

maker. Events that trigger such quote revisions are termed “relevant information arrivals”.

There is a cost c to the market maker to process each information arrival. Hence, the expected

monitoring cost for signal n per unit time is proportional to the intensity of information arrivals:

λnc. This cost can be interpreted as the processing capacity that is required to interpret information

arrivals and determine whether/how to respond. It can be thought of as including the required

technology (telecommunications bandwidth, computational capacity, and so on) and the cost of

subscribing to the data feed (e.g., buying real-time streaming market data from an exchange).

Individual traders arrive at the market at stochastic times given by a Poisson process with

arrival rate λm, and trade against the market maker’s posted quotes by submitting a market order.

The market maker’s benefit from monitoring comes from avoiding having stale quotes picked off.

When a market order arrives after a relevant information update, but the market maker has not

updated their quotes in response to the information (this occurs when relevant information arrives

for a signal that is not monitored by the market maker), then the market maker’s (stale) quotes

are picked off and he incurs a picking-off cost, k. It follows that the more signals the market maker

monitors, the less often his quotes will be picked off. It also follows that for a given monitoring

intensity, the picking-off cost per unit time increases with the frequency of relevant information

arrivals, i.e., with the asset’s fundamental volatility.

2.2 Equilibrium OTTRs

The market maker chooses which signals (if any) to monitor by weighing up the costs of monitoring,

λnc, against the benefits of monitoring, namely reducing picking-off risk. The benefits depend on

the arrival intensity of market orders and the arrival intensity of relevant information. Hence, the

7
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choice of monitoring intensity is endogenous in the model.5

To help understand the optimal choice of which signals to monitor, we define a signal’s useful-

ness, un, as the arrival intensity of relevant information from the signal (signal changes that cause

the market maker to want to revise his quotes): un = λnqn. The expected benefit (per unit time)

from monitoring a given signal n is the saved losses that would have occurred from having quotes

picked off. This benefit is the expected number of times the market maker’s quotes would be hit

by a market order when he would have wanted to revise them had he seen the signal, multiplied by

the cost of getting hit by a market order without having updated quotes, k. In one unit of time,

the expected number of market order arrivals is λm and the probability that a given market order

is preceded by useful information from signal n is λnqn
λm+λnqn

. Therefore, the expected benefit per

unit time of monitoring signal n is λm

(
λnqn

λm+λnqn

)
k = λm

(
un

λm+λnqn

)
k. As this expression reveals,

the benefits of monitoring signal n are increasing with the signal’s usefulness (un), increasing in

the picking-off cost (k), and increasing in the market order arrival rate (λm).

Recall there is also a cost of monitoring a signal and therefore a market maker will optimally

monitor all signals for which the benefit exceeds the cost. The expected cost per unit time of

monitoring signal n is λnc, giving a net benefit of λm

(
λnqn

λm+λnqn

)
k − λnc from monitoring the

signal. The market maker adds signals to his “monitored list” from greatest to least expected net

benefit until the marginal expected net benefit of adding the next signal is less than or equal to

zero. The market maker therefore monitors all signals for which:

λm

(
λnqn

λm + λnqn

)
k − λnc > 0 (1)

We denote the set of monitored signals Ωs∗ . Condition 1 determines monitoring intensity (the

number of monitored signals). As a result of monitoring signals, executing trades, and updating

quotes, the market maker generates messaging activity (messaging includes order entry, cancella-

5In the interests of maintaining a parsimonious model, we do not explicitly model the width of the bid-ask spread.
One could endogenize and model the bid-ask spread by, for example, considering the spread as being set by a zero
expected profit condition as is standard in models of market making under perfect competition. The width of the
bid-ask spread would be a function of the picking off risk, the monitoring intensity, and trade arrival rates. However,
adding this to the model would not help much in understanding the drivers of the OTTR, as the tradeoff between
picking off costs and monitoring costs, which determines the OTTR in our model, would exist irrespective of the
width of the spread.
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tion, and amendment messages) at an expected rate of Q messages per unit time:6

Q =
∑
n∈Ωs∗

2λnqn + 2λm (2)

The first term,
∑

n∈Ωs∗
2λnqn, is due to quote updates in response to relevant information arrivals

on monitored signals, and the second term, 2λm, is due to reposting liquidity after being hit by

a market order. Both terms are multiplied by two reflecting the fact that after observing useful

information or being hit by a market order, the market maker updates his view of the fundamental

value and thus adjusts both bid and ask quotes (adjusting the price and / or volume of those

quotes).

Recognizing that the expected number of trades per unit time is just the market order arrival

intensity, λm, the expected OTTR is given by:

OTTR =

∑
n∈Ωs∗

2λnqn + 2λm

λm
(3)

The model makes some simplifying assumptions. We assume that in response to new informa-

tion, the market maker updates both his bid and ask quotes symmetrically; that the market maker

is rational; and that other traders use market orders. These assumptions allow us to focus on the

key mechanism, which is the trade-off between the cost of monitoring and the benefit of not being

picked off.

2.3 Model with fragmented markets

If the number of markets increases from 1 to M , the single (representative) market maker can

choose to post liquidity across multiple venues. The incentive for a market maker to do so is that

they want to trade against incoming market orders, however they cannot tell in which market the

next market order will arrive. Having invested in monitoring signals to determine what prices to

quote, in the absence of any message taxes or exchange fees, there is zero marginal cost to the

market maker duplicating their quotes in multiple trading venues. Yet there is the benefit of being

6We treat different types of messaging traffic equally, because in our framework messaging activity is simply a way
for market makers to react to new information arrivals. For characteristics of different order placement techniques
and their effects on market quality, see Nikolsko-Rzhevska, Nikolsko-Rzhevskyy, & Black (2020).
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able to trade with more of the incoming market orders.7 Therefore, the representative market

maker will optimally duplicate their quotes in each of the trading venues.

The aggregate market order arrival rate, λm, is assumed to remain the same as in the single-

market case, just split across multiple venues. Therefore, the overall quoting activity of the market

maker consists of two components: (a) quote updates resulting from relevant information received

by monitoring signals, 2M
∑

n∈Ωs∗
λnqn (market maker updates quotes on allM markets in response

to monitored signals), and (b) reposting liquidity / revising quotes on all markets after getting a fill

on market orders, 2Mλm (market order arrivals constitute useful signals, from the market maker’s

viewpoint). Note that market fragmentation does not affect the signal monitoring decision of the

market maker, who chooses the set of signals to monitor in the same manner as in a single-market

case. For a given security, the resulting expected OTTR across venues is therefore:8

OTTR =
2M(

∑
n∈Ωs∗

λnqn + λm)

λm
(4)

Consider the OTTR of individual markets j = 1 . . .M . The market share of trading volume (market

orders) for each individual market j is ρj . The market maker updates his quotes on market j in

response to the following:

(a) every time a piece of relevant information is received from the monitored signals, which results

in the number of quote updates 2
∑

n∈Ωs∗
λnqn

(b) after being hit by a market order on market j, which results in the number of quote updates

2ρjλm

(c) after being hit by a market order on any other market besides market j, which results in the

number of quote updates 2(1− ρj)λm, since market order arrivals constitute useful signals.

Then, the OTTR for market j is:

7In practice, there might be a marginal cost of posting quotes in multiple trading venues such as the infrastructure
cost of connecting to a trading venue and the possibility of higher picking off risk if market orders are able to execute
against duplicated resting orders before the market maker is able to revise the quotes. Such marginal costs are likely
to result in market makers posting liquidity on several but not necessarily all trading venues. We investigate this
possibility in the empirical tests.

8We define OTTR in line with regulatory reports of e.g., US SEC and FINRA. In our empirical analysis, security-
day OTTRs are equally weighted averages. In principle, another way of defining average OTTRs is by computing
share-weighted averages. However, to the best of knowledge, none of the existing academic and regulatory studies
apply the share-weighting approach to compute OTTRs.
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OTTRj =
2
∑

n∈Ω∗s
λnqn + 2ρjλm + 2(1− ρj)λm

λmρj
(5)

Simplifying Eq. 5:

OTTRj =
2
∑

n∈Ω∗s
λnqn + 2λm

λmρj
(6)

2.4 Comparative statics

We now derive propositions about the relation between OTTRs, monitoring intensity and fragmen-

tation. First, we establish the link between OTTRs and fragmentation (Proposition 2.1). Second,

we show how OTTRs are related to market shares (Proposition 2.2). Third, we relate OTTR to all

the model parameters (Propositions 2.3 – 2.6). We provide the economic intuition for these propo-

sitions below, and the proofs in Appendix A. Corresponding empirical hypotheses are presented in

Table 1.

[Table 1 about here.]

Proposition 1. The OTTR for a given security increases with the extent of fragmentation of the

security’s trading across multiple exchanges.

The intuition is simple. As markets fragment, the market maker posts quotes on several ex-

changes rather than one, hence every time the market maker updates his quotes (due to information

arrival or a trade) it requires order messages be sent to each of the exchanges, driving OTTRs up.

Although the model makes a number of simplifying assumptions, such as considering OTTRs of a

single market maker that posts bids and asks across all available exchanges, a similar scaling effect

(higher OTTR with higher fragmentation) will occur, if the market maker quotes across only a few

exchanges or only on one side (bid or ask). In such a scenario, OTTRs would still increase with

fragmentation, but at a lower rate than implied by the model.

Empirically, we should observe higher OTTRs for securities with more fragmented trading

(Hypothesis 1a). Similarly, from the exchange perspective, we expect higher OTTRs on exchanges

that trade more fragmented securities (Hypothesis 1b).
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Proposition 2. The OTTR for a given exchange is inversely related to its market share.

This effect occurs, because if a market maker posts quotes on all exchanges and updates them all

at the same time, the messaging activity (the OTTR numerator) will be approximately the same

across venues, but the number of trades (the OTTR denominator) will be different. Therefore,

empirically, we expect higher OTTRs for exchanges that have lower market shares (Hypothesis 2).

Proposition 3. The OTTR for a given security increases with the quality of signals available for

monitoring.

Monitoring intensity and OTTR are closely related, because the market maker posts quotes

as a result of his monitoring. Recall that monitoring intensity in the model is endogenous, and

arises from the market-maker’s cost-benefit analysis. For example, if the market maker faces higher

quality signals (keeping other things constant), he enjoys higher marginal benefit of monitoring and

therefore monitors more signals and posts more frequent order updates. This in turn means higher

OTTRs.

Empirically, we should observe higher OTTRs in securities with high-quality signals. For ex-

ample, exchange-traded funds (ETFs) should have higher OTTRs than stocks (Hypothesis 3a),

as ETFs follow a predefined index and typically have easily observable high-quality signals (e.g.,

related trading instruments on the same index, including futures contracts, options, underlying

stocks etc.). Similarly, securities that are highly correlated with the market index (including both

highly positive or highly negative correlations) can be seen as having high-quality signals available

(i.e., a simple data feed of market index updates would provide a fairly precise signal for the value

of security that is highly correlated with the market). Therefore, we should observe higher OTTRs

in securities that are highly correlated with the broad market index such as S&P500 (Hypothesis

3b).

The tick size is also likely to affect how often a market maker updates their quotes. This effect

can be understood through the signal quality parameter. Recall the signal quality is the probability

that when there is a change in the signal, the market maker will want to update his quotes. With

a very large tick size, there has to be a very large change in the security value before the market

maker would want to repost quotes at the next tick. On the contrary, with a very fine pricing grid,

even very small changes in security value will warrant quote updates. Therefore, we expect higher
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OTTRs for stocks with a smaller percentage tick size, i.e., a higher price-to-tick ratio (Hypothesis

3c).

For similar reasons, we also expect higher OTTRs in markets with a finer pricing grid, such

as taker-maker markets (Hypothesis 3d). Because taker-maker markets charge limit orders and

compensate market orders, this effectively allows trades at sub-penny increments (net of fees)

thereby offering more granular pricing. The effect is therefore similar to a smaller tick size: market

makers update quotes more often, because the finer pricing grid allows them to respond to small

changes in value.

Proposition 4. The OTTR for a given security increases with lower monitoring costs.

When the monitoring cost per signal is lower, the market maker has an incentive to monitor

more signals, which results in higher OTTRs. Therefore, in the cross-section of stocks, we expect

higher OTTRs for stocks that have more low-cost (or free) signals, such as large stocks that have

rich public information widely available to investors (Hypothesis 4a). Also, we should observe an

upward trend in OTTRs through time, as data processing costs have decreased significantly in the

last two decades (Hypothesis 4b).

Proposition 5. The OTTR for a given security increases with picking-off cost.

When faced with a higher cost of trading at stale prices, the market maker has stronger incen-

tives to monitor more signals to minimize the costs of being hit by market orders without having

updated quotes. Therefore, higher picking-off costs lead to higher monitoring intensity and higher

OTTRs.

The cost of being picked off is larger when there are greater changes in the value of the underlying

security. For example, if in a given period of time, the security value changes by 10 basis points

(bps) and the market maker fails to adjust quotes before getting hit by a market order, they incur

a loss of about 10 bps. Yet if the value changes by 100 bps and the market maker is hit before

they manage to update quotes, their loss is around 100 bps. Therefore, picking-off costs (and thus

OTTRs) are expected to be higher in more volatile securities and more volatile times (Hypotheses

5a and 5b).

Proposition 6. The OTTR for a given security decreases with the trading frequency, holding the

monitoring intensity constant.
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Holding market maker’s monitoring intensity fixed, a higher rate of market order arrivals de-

creases OTTRs, as every trade is associated with fewer quote updates on average. Therefore, we

expect lower OTTRs in stocks with higher trading volumes (Hypothesis 6).

3 Empirical analysis

3.1 Data and descriptive statistics

The sample starts on January 1, 1998 and ends on December 31, 2018, covering a period in which

OTTRs experienced substantial growth. We analyze a representative cross-section of stocks and

ETFs, chosen using random sampling with stratification by size. To construct this sample, we

obtain the full cross-section of US stocks as of December 2018 from Center for Research in Security

Prices (CRSP) database, sort them by size (market capitalization) and pick every 20th stock. The

resulting sample contains 241 stocks in 2018. Next, we take the market capitalizations of those

241 stocks, and calculate their inflation-adjusted equivalents (using the GDP deflator) in each prior

year (2017, 2016, and so on). Then, in each year (1998 – 2017), we select the 241 stocks (from the

universe of stocks in CRSP) that most closely correspond to the 241 inflation-adjusted sizes (via

sampling without replacement).

This approach constructs a sample that in every year is representative of today’s market with

respect to the distribution of market capitalizations. Hence the sample allows us to identify trends

in OTTRs that happen for reasons other than changes in the composition of the market. We

know from prior studies that the composition of stocks in equity markets has changed substantially

through time towards fewer, but considerably larger listed companies (e.g., Doige et al., 2017). The

sampling approach allows us to control for this tendency in the time series.

We also construct a random, stratified sample of ETFs. Given that ETF markets are relatively

young (the first US ETF was launched in 1993) and have been growing rapidly, it is not possible

to take today’s distribution of assets under management (AUM) and find matching ETFs in 1998.

We therefore sample ETFs by sorting them by AUM in each year, and selecting every 20th ETF.

This makes sampled ETFs representative of the AUM distribution in each year, and ensures that

we sample the same proportion of ETFs as stocks.9

9The number of ETFs in our sample increases from 2 in 1998 to 68 in 2018, in proportion to the total number

14

Electronic copy available at: https://ssrn.com/abstract=3719765



We obtain order book data (orders and trades) from the Thomson Reuters Tick History (TRTH)

database and stock characteristics from the CRSP database. The data cover 14 US exchanges:

NYSE American, NASDAQ Boston, NSX, Direct Edge X, Direct Edge A, Investors Exchange,

CME Chicago, NYSE, NASDAQ, NYSE Arca, NASDAQ Philadelphia, OTC Markets, BATS-Z,

and BATS-Y.

We aggregate the intraday trade and quote data to daily observations per stock and per ex-

change. We compute the OTTR as the number of order messages that result in changes to bid

or ask prices or volumes at the best bid and ask prices, divided by the number of trades.10 The

numerator of this measure sums the number of times in a given day the best bid changes either in

price or quantity and the number of times the best ask changes either in price or quantity. Each

order entry, amendment, and cancellation at the best bid or ask will trigger a change to the price

or quantity at the best bid and ask and therefore contribute to the numerator.11 Table 2 provides

detailed definitions of all the variables used in further regression analysis.

[Table 2 about here.]

Table 3 reports descriptive statistics. The dataset contains 1,210,225 stock-day observations,

215,748 ETF-day observations, and 48,772 exchange-day observations.12 The sample period in-

cludes 5,284 trading days. We winsorize the OTTR variable in the security-day dataset at the 99th

percentile to reduce the effects of outliers. The winsorization is done separately for the stock-day

and ETF-day datasets. To compute exchange-day OTTR, we average the (winsorized) security-

exchange-day observations by exchange.

[Table 3 about here.]

of ETFs available in the market. We identify ETFs as CRSP securities with code=73, and require at least 100 days
with non-zero trades per year.

10When computing OTTRs, to capture the period of continuous trading and avoid contamination from market
opening and closing mechanisms, we use the number of messages and trades between 10 am and 3 pm.

11The measure does not consider order messages beyond the best quotes. In unreported analysis we use SEC
MIDAS data that includes order cancellations and amendments at all levels and find that the two versions of OTTR
(that computed from SEC MIDAS data and that from TRTH data) are very closely correlated (correlation coefficient
of 0.64), although different in their magnitude. We use the TRTH data rather than MIDAS data, because the former
allows us to obtain a long time series that captures the period of growth in OTTRs, while the latter is only available
starting from year 2012.

12We use “stock-day” and “ETF-day” to refer to the observations for stocks and for ETFs respectively. We use
“security-day” to refer to the units of observation for both types of securities (stocks and ETFs) on particular days.
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An average stock in the sample has daily OTTR of 16.87, daily volume of 0.99 million shares, and

trades on 5.44 markets on an average day between 1998 and 2018. The average market capitalization

is $5.7 billion, average absolute correlation with the S&P500 index is 0.39, and average range of daily

high-low prices is 4.06%. ETFs have an order of magnitude higher OTTRs (349.41 on average),

trade on slightly fewer markets (4.76 on average), but in comparable volumes (1 million shares

daily), experience lower daily volatility (1.04% average high-low range, similar to daily S&P500

volatility of 1.35%), and have a higher absolute correlation with the S&P500 index (0.67) due to

diversification of idiosyncratic risk. The average ETF in the sample has assets under management

of $1.85 billion. ETFs also have lower average tick-to-price ratios, compared to stocks (4 bps for

ETFs vs 23 bps for stocks). Note that tick-to-price ratios reflect the tick size changes in the US

markets following the introduction of decimalization (effective as of April 9, 2001), as well as the

tick size changes related to the SEC Tick Size Pilot 2016 – 2018.13

An average exchange in the sample has a daily OTTR of 70.16 across all securities it trades

(both stocks and ETFs). OTTRs vary across exchanges: from the average of 41.15 on NYSE (which

has an average market share of 41.03% in our sample) to 157.77 on NASDAQ Philadelphia (market

share of 0.91%). Two other exchanges with high OTTRs are BATS-Y and NASDAQ Boston, which

are taker-maker markets. The average exchange-day OTTR is higher than the average stock-day

OTTR, because the high OTTRs of ETFs drive the mean exchange OTTR up. The average market

shares of venues are 9.79% in stocks and 10.77% in ETFs.

3.2 Time series trends in OTTRs and concurrent market structure changes

The time series of OTTRs (see Figure 1) reflect key market structure changes in US markets,

including the introduction of Autoquote and the order protection rule (Rule 611 of Regulation

National Market System). The first increase in stock OTTRs coincides with the introduction of

Autoquote in January 2003, as NYSE started disseminating order book updates automatically. As

discussed in Hendershott, Jones, & Menkveld (2011), the phase-in of Autoquote resulted in a 50%

increase in order message traffic almost immediately and laid the foundation for electronic market

13The tick size changes relevant to the sample period are as follows. In 1997, the New York Stock Exchange and
NASDAQ reduced the tick size from 1/8th of a dollar to 1/16th. In April 2001, all US exchanges switched to a tick
size of one cent for stocks priced above one dollar and 0.01 cents for stocks priced below one dollar. Between October
3, 2016 and September 28, 2018, as part of the SEC Tick Size Pilot, 1,400 stocks had an increase in tick size from
$0.01 to $0.05.
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making. Autoquote increased the arrival intensity of signals as order book information became

more accessible. It also created demand for fast data feeds, in particular by market makers that

drastically reduced their reaction time to new information. In other words, the arrival rates of

relevant signals increased, while the marginal cost of monitoring signals decreased, resulting in

more frequent quote updates by market makers and a substantially higher OTTR. The year 2003

is also the effective start of HFT in US markets according to Aitken et al. (2015) using the order

cancellations and trade size approaches. HFTs use technology to bring down the marginal cost of

monitoring signals and therefore, consistent with our model, they are likely to contribute to the

increase in OTTRs from around 2003 onward.

[Figure 1 about here.]

OTTRs further increased in 2005, when the SEC enacted the order protection rule (OPR) of

Regulation National Market System (Reg NMS). The rule forces orders to be routed to the exchange

that offers the best quotes. As a result, new exchanges emerged and trading fragmented across

multiple exchanges. In 2001, an average stock in the sample traded on two venues, but by 2008 it

traded on four. ETF trading also fragmented around the OPR.

Stock OTTRs remain high during the period 2007–2013. These high OTTR levels coincide

with several potential drivers. First, the global financial crisis of 2007–2009 was associated with

very high volatility and high correlations of stocks and ETFs with the market index. Both of these

factors are positively related to OTTRs, as highlighted by the model. Second, trading continued

to become more fragmented, contributing to high OTTRs. Finally, this period also coincides with

growth in high-frequency trading (HFT), underpinned by technological advances that decreased

the costs of monitoring a large set of high-frequency data feeds.

3.3 Cross-sectional and time-series determinants of OTTRs

We test the relation between OTTRs and the drivers implied by the theory model using regressions.

Broadly, we ask how the hypothesized factors such as market fragmentation, monitoring intensity,

picking-off risk and so on are related to OTTRs through time and in the cross-section. The empirical

design does not explicitly address endogeneity issues other than including a large number of control
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variables. Instead, the regressions examine non-causal relations between observed OTTR levels and

hypothesized drivers of OTTR, using the theory model for guidance.

[Table 4 about here.]

[Table 5 about here.]

Tables 4 - 8 report the regression results. In Table 4, we use variables aggregated at the security-

day level and thus focus mainly on security-level characteristics, Table 5 provides a robustness check

by excluding ETFs from the sample. In Table 7, we use aggregation at the exchange-day level and

therefore include market-level variables. Table 8 replicates the same analysis excluding ETFs.14

There is a positive relation between OTTRs and fragmentation, consistent with the model.

For each additional market on which the security is traded (Frag1), the OTTR increases by ap-

proximately 8%, all else equal (see regression (1) in Table 4).15 Using alternative proxies for

fragmentation (e.g., Herfindahl-Hirschman index) confirms this result. So does analysis aggregated

at the exchange level (the positive coefficient on NumMkts in regression (1) of Table 7). This evi-

dence supports Hypotheses 1a and 1b that OTTRs are higher for securities with more fragmented

trading and markets that trade more fragmented securities. The model suggests that this effect

occurs because liquidity providers duplicate their quotes across multiple venues, leading to more

order activity for the same amount of trading.

The regression results also confirm that securities with high-quality signals have higher OTTRs.

OTTRs are 135% higher for ETFs compared to stocks, after controlling for other factors (see regres-

sion (4) in Table 4).16 OTTRs are also higher for securities that have stronger correlations with the

market index. This evidence supports Hypotheses 3a–3b and is consistent with liquidity providers

revising their quotes more often when there is a richer stream of relevant information about the

14In these robustness checks, we confirm that our results hold after excluding ETFs from the sample.
15Note that in discussing these results, we approximate the change in OTTR with the change in (1+OTTR). For

example, the precise interpretation would be to say that for each unit increase in Frag1, (1+OTTR) increases by
approximately 8%, all else equal. However, the difference is negligible for observed OTTR levels, so for convenience
of discussion, we phrase the results with respect to effect on OTTRs, rather than on (1+OTTR). Also note that
the effects described as percentage impacts on OTTRs are log growth rates because of the log dependent variable
rather than simple percentage changes. For small effect sizes the log growth rates are approximately equal to simple
percentage changes. The rest of the regression results are interpreted in a similar manner.

16Univariate analysis suggests that average ETF OTTRs are an order of maginitude higher than stock OTTRs
(349.42 vs 16.87, t-statistic of 207.37).
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security value. ETFs, as index-tracking securities, have a particularly frequent and relevant set of

signals (e.g., underlying stock prices, index futures, and so on), leading to a considerably higher

rate of order revisions and OTTRs. Similar logic applies to securities that are highly correlated

with the S&P500 index because for such securities the S&P500 futures and ETFs can be used as

signals for updating quoted prices.

The relative tick size (the minimum price increment scaled by the price) also impacts the OTTR

because it determines how often arriving information will be substantial enough to warrant revising

the quotes by an entire tick. To illustrate, consider two stocks. Stock A is priced at $50, and stock

B at $5. Suppose the tick size is $0.01 and stock A’s quotes are $49.99 – $50.00, while stock B’s

quotes are $4.99 – $5.00. If news arrives implying a 3 bps increase in the stock fundamental value,

the change in midquote that reflects that change in fundamental value is ($49.995×0.0003 = $0.015)

for stock A, but only ($4.995× 0.0003 = $0.0015) for stock B. Because the change in fundamental

value is greater than the minimum tick size for stock A ($0.015 > $0.01), the market maker in A will

update his quotes (shifting the mid-quote from $49.995 to $50.005, as the new bid-ask becomes $50

– $50.01). However, the market maker in stock B will not update quotes, as the value change lies

within the bid-ask spread (3 bps improvement translates into $0.0015 value, which is smaller than

the minimum price increment). If the two securities have the same volatility in the fundamental

value, the market maker in security A (low tick-to-price security) will revise his quotes more often

due to the finer pricing grid than the market maker in security B (high tick-to-price security).

Empirically, regression (4) in Table 4 suggests that a 1% higher tick-to-price ratio is associated

with 13.14% lower OTTRs (in line with Hypothesis 3c). This finding complements evidence in Yao

& Ye (2018) that a large relative tick size constrains competition in prices and results in lower

OTTRs.

The regression results show that OTTRs are higher for large stocks, in line with Hypothesis

4a, and consistent with evidence in O’Hara (2015) and Rosu et al. (2020). As shown in regression

model (4) in Table 4, a 1% higher market capitalization is associated with a 4% higher OTTR, all

else equal. Because information about large stocks is more frequently updated and more readily

available (e.g., more analyst coverage, more news stories, better data coverage) large stocks have

higher monitoring intensity by liquidity providers and therefore higher OTTRs.

We also find that OTTRs increase with microprocessor speeds (positive coefficient on the CPU
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speed variable) as data processing costs decrease, supporting Hypothesis 4b. The regression re-

sults also confirm that OTTRs increase with the introduction of Autoquote in the US even after

controlling for the other factors.

As an alternative to Autoquote, we include a dummy variable that takes the value of one after

the effective date for HFT introduction in the US following Aitken et al. (2015). The significant

positive coefficient indicates that OTTRs are higher in the period of HFT activity, controlling for

other factors. These results are consistent with Aitken et al. (2015), confirming that HFT market

makers are among the leaders in exploiting faster data processing speeds and the availability of

rich, real-time market data. Since HFTs tend to be more active towards the end of a trading day,

as they seek to offload their holdings, we also test whether OTTRs are higher in the last hour

before the stock market close. We find that consistent with a positive relation between HFTs and

OTTRs, average OTTRs in the last hour of trading are 52.89, compared to 16.87 between 10 am

and 3 pm. The difference is statistically significant with a t-statistic of 307.19.

[Figure 2 about here.]

The results also indicate a positive relation between volatility and OTTRs, consistent with

increased monitoring when picking-off risks are high. Regression (3) in Table 4 estimates that a

one percentage point increase in market volatility (high-low range) increases OTTRs by 3.05%.

This results supports the hypothesis (5a) that as the risk of trading at stale prices increases with a

rise in volatility, markets makers increase their monitoring intensity, leading to higher OTTRs. It

is also consistent with a higher arrival intensity of new information during periods of high volatility.

Regression (4) in Table 4 confirms a similar (though lower in magnitude) relation between OTTR

and individual stock volatility (in line with Hypothesis 5b).

To assess the economic significance and relative importance of the various factors driving OT-

TRs, we standardize the coefficients and plot their relative magnitude in Figure 3. The plot quan-

tifies the effect on OTTRs of a one standard deviation increase in each of the explanatory variables.

Panel A confirms that the ETF dummy, traded dollar volume, autoquote, and the security’s corre-

lation with the S&P500 are economically important determinants of OTTRs. For example, a one

standard deviation increase in volume is associated with a 42.18% decrease in OTTR, while a one

standard deviation increase in a security’s correlation with the S&P500 index is associated with a
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22.25% increase in OTTRs.

[Figure 3 about here.]

As a further test of how a stock’s information environment (the availability of relevant signals)

affects its OTTR, we analyze a natural experiment in which the NYSE introduced order book

transparency. On January 24, 2002, NYSE introduced a new system that allowed market partici-

pants to see the orders in the limit order book (see Boehmer et al. (2005)). Importantly, Nasdaq

did not change its level of transparency at that time, making stocks that traded predominantly

on Nasdaq a natural control group. To examine how this exogenous increase in the availability of

high-frequency, stock-specific information (corresponding to relevant signals in our model) affected

OTTRs we estimate difference-in-differences models. The dependent variable is the log OTTR,

while the key independent variable is the interaction of a post transparency dummy and the frac-

tion of the stock’s trading volume that is executed on NYSE as a measure of which stocks were

most affected by the change.

The results in Table 6 support the model’s prediction that OTTRs are higher when there is

a greater availability of relevant information for monitoring. The interaction term coefficient is

positive and statistically significant in all specifications. In this analysis, we also control for the

same OTTR determinants as in our baseline regressions in Table 5. Our findings are consistent

with results in Boehmer et al. (2005), who also find that post-transparency cancellation rates on

NYSE increase, and time-to-cancellation of limit orders shortens.

[Table 6 about here.]

3.4 How OTTRs vary across markets

A third dimension in which OTTRs vary (in addition to time-series and cross-sectional variation)

is across markets. The theory predicts that markets with a lower share of trading volume have

higher OTTRs (see Equation (6)). To test this conjecture, we relate the average OTTR observed

on a given exchange to the exchange’s market share while controlling for other factors, such as

fragmentation, volatility, and a CPU speeds.
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We find that the average OTTR for an exchange is inversely related to its share of stock trading

volume, consistent with Hypothesis 2. Regression model (2) in Table 7 suggests that OTTRs

decrease by 2% for each 1% increase in an exchange’s market share. This result is consistent with

market makers executing trades on small venues less frequently, but updating quotes across venues

at similar frequency. The estimated coefficient for ETF market share is also negative in Table 7,

but is not statistically significant.

[Table 7 about here.]

[Table 8 about here.]

Differences in exchange fee structures also lead to variation in OTTRs across markets. We

distinguish between the “taker-maker” markets (Edge-A, Bats-Y, and NASDAQ Boston) and the

“maker-taker” markets (the rest). “Maker-taker” is a trading fee structure that charges a higher

fee to “liquidity takers” (those submitting market orders) than to “liquidity makers” (those posting

limit orders), with the latter sometimes being rewarded with a rebate for executed limit orders.

“Taker-maker” markets do the opposite: they charge limit orders and compensate market orders.

The taker-maker fee model effectively allows trades at sub-penny increments (net of fees) thereby

offering more granular pricing. The taker-maker fee structure is therefore expected to have a similar

effect to a smaller tick size: market makers update quotes more often, because the finer pricing grid

allows them to respond to small changes in value. The univariate analysis indicates that OTTRs are

higher on taker-maker markets (103.28 vs 64.87, with t-statistics of 91.02). Multivariate regression

results (e.g., regression (3) in Table 7, ) suggest that OTTRs are 32% higher on markets with

taker-maker fee structures, controlling for other covariates, consistent with Hypothesis 3d.

The economic significance of the exchange-level results is presented in Panel B of Figure 3.

The effects of CPU speeds and market share are very strong at the exchange level: OTTRs for

exchanges increase at an average rate of 42.21% per standard deviation of CPU speed. Market

share is the second most important factor: a one standard deviation increase in market share is

associated with a 23.21% decrease in OTTRs.
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3.5 The non-linear effects of fragmentation and market share

Recall that Equation (4) of the theory suggests that OTTRs scale up linearly with the number of

markets on which a security is traded. The key assumption that generates this prediction is that

market makers post quotes on all of the markets that trade a security. The regressions in Table

4 confirm that OTTRs are positively related to fragmentation. However, whether the relation is

linear or not depends on whether liquidity providers post quotes across all markets or only some.

To examine the potential non-linearity in how OTTRs relate to the number of markets, we

introduce a squared term in the regression model (7) in Table 4. We then plot the fitted values

of OTTRs at different levels of fragmentation and compare them to the theoretical, linear OTTR-

fragmentation relation to see whether the non-linearity is meaningful. The fitted OTTR is computed

using coefficients from regression model (7) in Table 4, with explanatory variables (apart from

Frag1) fixed at their average levels from Table 3. Therefore, the approach controls for the effects

of other confounding variables when examining the empirical relation between fragmentation and

OTTRs.

The plotted theoretical relation between OTTR and fragmentation uses Equation (4) and varies

the number of markets from 1 to 14, keeping other parameters fixed. We conservatively assume

that liquidity providers monitor only one signal (the S&P500 ETF, SPY), and compute the signal

quality as the daily proportion of same-direction mid-quote changes in SPY and a given stock, out of

the total number of mid-quote changes in SPY (similar to Dobrev & Schaumburg (2017)). Trading

(quoting) intensity in a given stock is just the average daily number of trades (quote updates).

The result, in Figure 4, shows that for moderate levels of fragmentation (2–4 markets), the

empirically observed OTTRs from the regression are broadly in line with the theoretically predicted

OTTRs. However, for higher levels of fragmentation (5–14 markets), the empirically observed

OTTRs are lower than those implied by the linear theoretical relation. This result is consistent

with the notion that market makers post their orders on several exchanges but not all 14 and

therefore OTTRs increase with fragmentation, but at a decreasing marginal rate.

[Figure 4 about here.]

Next, we examine the relation between an exchange’s market share and its OTTR. The theory
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predicts that an exchange’s OTTR is inversely related to its share of trading. The empirical results

in Table 7 confirm the inverse relation between market share and OTTR. Similar to the approach

taken in examining the non-linear effects of fragmentation, we augment the regression models by

adding squared market share (see model (7) in Table 7). We then plot the fitted values of the

non-linear regression, varying market share from 0.02 to 0.32 and holding other variables at their

means. Finally, we compare this empirical relation between OTTR and market share with the

theoretic relation obtained from Equation (6).

The result in Figure 4 shows that the empirical relation between OTTRs and market share

is not as non-linear as predicted by the theory. In particular, at very low levels of market share

such as 0-0.1, the empirically observed OTTRs do not spike as much as predicted by the theory.

The theoretical OTTRs spike for very low market shares because of the assumption that liquidity

providers replicate their quotes across all exchanges that trade a security. Under this assumption,

the number of order messages (quote updates) across the various exchanges is approximately con-

stant and so an exchange with a very low amount of trading will have a much higher OTTR. The

empirically observed relation between OTTRs and market shares suggests that the number of order

messages is not constant across exchanges, but instead it tends to decrease with market share.

4 A benchmark for regulatory surveillance of OTTRs

Abnormally high OTTRs can be a sign of illegal trading strategies such as spoofing. But what is an

“abnormal” OTTR? How can regulators tell whether a security with twice the OTTR of another

security should raise concerns about potential manipulation versus simply being a security with a

naturally higher OTTR? How can regulators tell whether a spike in OTTRs on a particular day

reflects suspicious trading or just different market conditions? The challenge is that OTTRs vary

substantially through time, across stocks, and across markets for perfectly legitimate reasons.

The theory model provides a simple way to examine whether the OTTR in a given setting is

abnormal by considering the drivers of natural variation in OTTRs. For example, by using Equation

(4), and the empirical proxies for the theoretical parameters, we can estimate the expected OTTR

of a given security on a given day. This provides a benchmark for a “normal” OTTR, against which

to gauge whether an observed OTTR is abnormal and to what extent. A regulator can use such
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an OTTR benchmark to monitor markets and identify suspicious trading activity.

To demonstrate this approach, we use a conservatively calibrated version of the theory model

to estimate theoretical OTTRs for 715 stock-days in November 2018 (every 5th stock in the sample

by size). We then compare the distribution of theoretical OTTRs to the distribution of observed

OTTRs for those same stock-days.

We obtain the conservatively calibrated theoretical OTTRs in two steps. First, we calculate

the following OTTR base rate for each stock-day:

OTTRit =
2Mit(λSPYtqit + λmit)

λmit
(7)

where Mit is the number of markets trading stock i on day t, λSPYt is the number of mid-quote

updates in the SPY ETF, which is assumed, conservatively, to be the only signal monitored by

liquidity providers. The SPY, being one of the most liquid market-tracking securities, is likely

to provide a market maker with one of the most relevant indications of changes in market-wide

valuations. We estimate the quality of this signal, qit, as the proportion of same-direction mid-

quote changes in SPY and the given stock i, out of the total number of mid-quote changes in SPY,

similar to Dobrev & Schaumburg (2017). Recall that theoretically, the quality of a signal is the

probability that a change in the signal value results in a revised quote for the stock. Finally, λmit

is the number of trades in stock i on day t.

In the second step, we account for the natural variation in OTTRs across stocks and in different

market conditions. To do this, we start with the “conservative” OTTR base rate calculated above

and add the variation implied by the estimated drivers of OTTRs. That is, we take the fitted

(predicted) OTTRs for each stock-day from regression (1) in Table 4, normalize them to have

zero mean (subtract their average), and then add them to the theoretical OTTR base rate. This

approach effectively adds the natural variation in OTTRs to the conservatively estimated mean

levels. Using these estimates of the natural or expected OTTRs as a benchmark, we obtain the

excess OTTR for each stock-day by subtracting the benchmark from the actual OTTR.

[Figure 5 about here.]

[Table 9 about here.]

25

Electronic copy available at: https://ssrn.com/abstract=3719765



In Figure 5, we plot the empirical distribution of actual OTTRs in Panel A and the distri-

bution of excess OTTRs in panel B. Table 9 provides the descriptive statistics for the same two

distributions. On average, the observed OTTRs are lower than the conservative theoretical OTTRs

expected to arise from liquidity provision. However, the empirical distribution of observed OTTRs

is right-skewed and for 17% of stock-day observations the empirical OTTRs are higher than the

theoretical benchmark values. Given we calculated the theoretical OTTRs conservatively by as-

suming only one signal is monitored, the results suggest that most of the time empirically observed

OTTRs are well within levels that are consistent with legitimate market making, but that they

occasionally spike to abnormal levels. By scrutinizing “excess OTTRs” as opposed to raw OTTRs,

regulators can better identify areas of concern for further investigation.

5 Conclusions and policy implications

Our results shed new light on why OTTRs have grown so rapidly in equity markets and whether

they warrant concern. We find that the growth in OTTRs through time is largely due to three

major changes in US stock markets: (i) the proliferation of exchanges and fragmentation of trading

following regulatory changes that encouraged competition between exchanges (e.g., Reg NMS); (ii)

automation of quote dissemination, increasing the availability and timeliness of market data; and

(iii) technological improvements such as increased computational power that increase the ability

of market participants to monitor a large set of data feeds. Fragmentation of trading increases

OTTRs because limit orders are often duplicated across markets, leading to a larger number of

quote messages for the same number of trades. Automation of quote dissemination encouraged

growth in algorithmic trading, which typically involves more frequent quote updates than manual

market making. Finally, by increasing the ability to process data feeds, technological improvements

lead to more frequent quote updates as prices or volumes change in other securities.

In light of these drivers, we show that OTTRs in the most recent part of our sample are, in

most cases, well within the levels that would be expected to prevail under normal market making.

Our benchmark for what is expected under normal market making is calculated under conservative

assumptions (providing a lower bound on what is a normal OTTR) and accounts for the degree of

fragmentation in today’s markets and the high frequency of market data. We therefore conclude
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that the overall levels of OTTRs in the market are consistent with legitimate market making, but

occasionally they spike to levels that warrant further investigation.

When investigating whether a given OTTR is abnormal, it is important to account for the

substantial cross-sectional and time-series variation in what is a “normal” OTTR. The model of

the determinants of OTTRs provides one way to achieve this. The results show that OTTRs tend to

be higher in more volatile stocks and market conditions (due to more frequent information arrivals),

higher price-to-tick stocks (due to the higher resolution of price increments), lower volume stocks

(due to smaller denominator), and in ETFs (because of the availability of frequent and precise

signals about an ETF’s value). We find that OTTRs are naturally much higher on markets with

lower market shares. All of these effects are consistent with a model of market making and therefore

should be considered when evaluating whether an OTTR is abnormal, such as in a surveillance

system that monitors a market for suspicious activity.

Our findings have implications for how regulatory measures that aim to constrain the level

of order activity are likely to affect market quality. The model shows that the OTTR emerges

endogenously as liquidity providers balance the tradeoff between the costs of monitoring signals

and updating their quotes and the costs of having their quotes adversely selected when they have

not updated them in response to new information. Adding a fee, a tax, or a limit on order messages

raises the costs of keeping quotes up to date. Our model implies the outcome is lower monitoring

and updating intensity by liquidity providers, which comes at the expense of higher adverse selection

risk. Intuitively, if it is more costly to keep quotes up to date with the latest informational arrivals

and changes in market conditions, those quotes will more often be “picked off” and execute when

it is unfavorable for the liquidity provider. The ultimate consequence is less liquidity provision

(wider spreads and/or less depth) and higher trading costs as liquidity providers recoup the higher

adverse selection costs.

The reduction in liquidity due to an order message tax or limit is likely to be the largest when

OTTRs would naturally be at high levels, such as periods of high volatility or in low-volume stocks.

Such a tax might therefore disproportionately harm liquidity where liquidity is already scarce.

Conversely, if OTTR limits or taxes are set to take effect only beyond a certain level, then as long

as that level is above the natural OTTR that arises from market making, then the limits/taxes

may not impede liquidity provision, and may instead help reduce excessive OTTRs. A limit/tax
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on OTTRs beyond a particular threshold should take into account that OTTRs will naturally tend

to be much higher on exchanges that have lower market shares and for ETFs compared to stocks.
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Appendix A. Proofs

Proposition 2.1. The OTTR for a given security increases with the extent of fragmentation of

the security’s trading across multiple trading venues.

Proof of Proposition 2.1.

Recall the expression for the OTTR for a market maker who provides liquidity in a given

stock in M markets: OTTR =
2M(

∑
n∈Ωs∗

λnqn+λm)

λm
. Taking the first derivative with respect to

the number of markets: dOTTR
dM =

2(
∑
n∈Ωs∗

λnqn+λm)

λm
. This expression is strictly positive, because

2
∑
n∈Ωs∗

λnqn

λm
+ 2 > 0, since λnqn ≥ 0 and λm > 0, which means that OTTR is increasing in the

number of markets (fragmentation).

Intuitively, for a single market case (M = 1), OTTR ≥ 2 as it takes at least two messages to

generate a trade: posting both a bid and an ask quote. If no additional information is obtained

from the signals (i.e., signal quality is 0), OTTR=2, which is the case only if qn = 0 ∀ n ∈ Ωs∗ .

As qn ≥ 0 by construction (signal quality cannot be negative), OTTR > 2 for all cases except for

qn = 0. As the number of markets increases (e.g., M = 2), the OTTR increases, because a market

maker now updates quotes twice as often: (a) on two markets rather than one, when a new useful

signal n arrives, and (b) on two markets rather than one, when a new market order arrives on at

least one market.

Proposition 2.2 The OTTR for a given trading venue is inversely related to its market share.

Proof of Proposition 2.2

Recall the expression for the OTTR for a given trading venue j: OTTRj =
2
∑
n∈Ωs∗

λnqn+2

λmρj
.

Taking the first derivative with respect to the market share:
dOTTRj
dρj

= −
2
∑
n∈Ωs∗

λnqn+2

λmρ2
j

< 0 ∀ρj ∈

(0, 1) , λn, qn, λm. The negative first derivative of OTTRj with respect to market share means that

a trading venue’s OTTR decreases when its market share increases.

Proposition 2.3. The OTTR for a given security increases with the quality of signals available

for monitoring.

Proof of Proposition 2.3.

Recall that a market maker’s monitoring intensity is an important driver of the OTTR: OTTR =
2M(

∑
n∈Ωs∗

λnqn+λm)

λm
, where monitoring intensity is the number of monitored signals in the set Ω∗s.
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As more signals are monitored, the liquidity provider posts proportionally more quote updates in

response to those signals, driving the OTTR up. The liquidity provider monitors all signals for

which the marginal benefit of monitoring, λm

(
λnqn

λm+λnqn

)
k, exceeds the marginal cost, λnc. Because

improved signal quality increases the marginal benefit of monitoring without affecting the marginal

cost, the liquidity provider will monitor more when he receives better quality signals.

Proposition 2.4. The OTTR for a given security increases with lower monitoring costs.

Proof of Proposition 2.4.

The market maker’s cost of processing an information arrival is c. Therefore, his cost of

monitoring signal n per unit time is λnc. Marginal net benefit of monitoring (per unit time)

is:
(

λnqn
λm+λnqn

)
k − λnc.

To see that the monitoring intensity (and therefore the OTTR) increases with a lower cost of

monitoring, take the first derivative of marginal net benefit with respect to c:
d
((

λnqn
λm+λnqn

)
k−λnc

)
dc =

−λn < 0, as λn > 0 by the properties of Poisson processes (signal intensity, or the number of signal

updates per unit time, can only be a positive number). Because a lower c reduces the marginal

cost of monitoring without affecting the marginal benefit, the liquidity provider will monitor more

signals when his cost of monitoring is lower.

Proposition 2.5. The OTTR for a given security increases with picking-off cost.

Proof of Proposition 2.5.

The market maker incurs the cost k each time he is hit by a market order without having

updated his quotes. Taking the derivative of marginal net benefit of monitoring with respect to

k:
d
((

λnqn
λm+λnqn

)
k−λnc

)
dk = λnqn

λm+λnqn
> 0. This expression is strictly positive for all non-zero quality

signals, hence monitoring intensity (and therefore OTTR) increases with higher picking-off cost.

Proposition 2.6. The OTTR for a given security decreases with the trading frequency, holding

the monitoring intensity constant.

Proof of Proposition 2.6.

For a given monitoring intensity, trading frequency only enters the OTTR expression to reflect

quote updates in response to executed trades (in the numerator), and the number of executed trades

(in the denominator). Taking the first derivative of the OTTR with respect to trading frequency:
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dOTTR
dλm

=
−2M

∑
n∈Ωs∗

λnqn

λ2
m

. Because dOTTR
dλm

< 0 for all parameter values that correspond to non-zero

quality signals, OTTR decreases as the trading frequency increases.
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Table 1: Summary of propositions and empirical hypotheses

Propositions and empirical hypotheses Empirical
support

Proposition 2.1. The OTTR for a given security increases with the extent
of fragmentation of the security’s trading across multiple exchanges.

Hypothesis 1a. OTTRs are higher for securities with more fragmented trad-
ing.

yes

Hypothesis 1b. OTTRs are higher for exchanges that trade more fragmented
securities.

yes

Proposition 2.2. The OTTR for a given exchange is inversely related to
its market share.

Hypothesis 2. OTTRs are higher for markets with lower market shares. yes

Proposition 2.3. The OTTR for a given security increases with the quality
of signals available for monitoring.

Hypothesis 3a. ETFs have higher OTTRs compared to stocks. yes

Hypothesis 3b. Securities with higher absolute correlation with the market
index have higher OTTRs.

yes

Hypothesis 3c. OTTRs are higher for securities with higher price-to-tick
ratios.

yes

Hypothesis 3d. OTTRs are higher on markets with taker-maker fee struc-
tures.

yes

Proposition 2.4. The OTTR for a given security increases with lower
monitoring costs.

Hypothesis 4a. OTTRs are higher for stocks with higher market capitaliza-
tion.

yes

Hypothesis 4b. OTTRs increase as data processing speeds increase. yes

Proposition 2.5. The OTTR for a given security increases with picking-off
cost.

Hypothesis 5a. OTTRs are higher on days with higher market volatility. yes

Hypothesis 5b. OTTRs are higher for more volatile stocks. yes

Proposition 2.6. The OTTR for a given security decreases with the trad-
ing frequency, holding the monitoring intensity constant.

Hypothesis 6. OTTRs are inversely related to trading volumes. yes
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Table 2: Variable definitions

Variable
name

Variable definition

Security-day observations

OTTR Number of order messages between 10 am and 3 pm (enter, amend,
and cancel) at the best quotes, divided by the number of trades.
Winsorized at 99th percentile.

Frag1 Number of exchanges on which a security has at least one trade on
the given day.

Frag2 One minus the Herfindahl-Hirschman index (HHI) of dollar volumes.
The HHI is the sum of squared market shares of all exchanges trading
a given security.

Frag3 One minus the HHI of the number of trades. The HHI is the sum of
squared market shares of all exchanges trading a given security.

ETFDummy Takes the value of one for exchange-traded funds, and zero otherwise.

AbsCorrelS&P Absolute value of the security’s 22-day correlation with S&P500 in-
dex. Calculated using daily returns.

TickToPrice Tick size (minimum price increment) divided by the closing price.

HighLowVolat Daily stock volatility measure, computed as the daily high minus low
price, divided by the average of the high and low prices.

MktCap Market capitalization in thousand USD. For ETFs, MktCap is AUM
(as reported in CRSP).

Volume Number of shares traded.

Exchange-day observations

OTTR Average of the OTTR traded on the exchange, computed from the
winsorized security-day OTTRs.

NumMkts Average of the number of exchanges (Frag1) of stocks and ETFs
traded on the exchange.

MktShareStocks Exchange’s market share in stock trading, computed from dollar vol-
umes.

MktShareETFs Exchange’s market share in ETF trading, computed from dollar vol-
umes.

TakerDummy Takes the value of one if the exchange has a taker-maker fee structure
and zero otherwise.

Time series observations

HighLowVolatMkt Daily market volatility measure, computed as the daily high minus
low S&P500 level, divided by the average of daily high and low.

VIX Level of the VIX volatility index.

Autoquote Takes the value of one after January 29, 2003 (the phase-in of Auto-
quote) and zero otherwise.

HFTdate Takes the value of one after July 31, 2003 (the HFT effective date
according to Aitken et al. (2015) using the order cancellations ap-
proach) and zero otherwise.

CPUSpeed Microprocessor speed in Hertz, pulses per second ×10−10, average
per year.
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Table 3: Descriptive statistics

This table reports descriptive statistics for the variables used in regression analysis. The sample con-
tains 1,210,225 stock-day observations, 215,748 ETF-day observations, 48,772 exchange-day obser-
vations, and 5,284 time-series observations. OTTR is the order-to-trade ratio. Frag1 is a measure
of fragmentation based on number of markets. Frag2 (Frag3) is a measure of fragmentation based
on the Herfindahl-Hirschman index of market shares by dollar volume (trades). AbsCorrelS&P
is the absolute correlation of the security returns with the S&P500 index. HighLowV olat is a
security-level volatility measure, computed from the high/low price range. HighLowV olatMkt is
a market-level volatility measure, computed from the high/low range of the S&P500 index. The
sample period covers years 1998 to 2018, and includes 241 stocks and 68 ETFs.

Mean StdDev 25th pctl 50th pctl 75th pctl

Stock-day observations

OTTR 16.88 35.28 4.00 7.33 13.66

Frag1 5.45 3.22 3.00 5.00 8.00

Frag2 0.47 0.26 0.26 0.53 0.70

Frag3 0.53 0.26 0.33 0.61 0.75

AbsCorrelS&P 0.39 0.24 0.18 0.37 0.58

TickToPrice, % 0.23 0.89 0.03 0.07 0.21

HighLowVolat, % 4.06 4.06 1.79 2.95 4.95

MktCap, $ bn 5.70 24.15 0.11 0.54 2.36

Volume, mln 0.99 3.84 0.02 0.15 0.62

ETF-day observations

OTTR 349.42 744.69 23.96 82.62 300.19

Frag1 4.76 2.81 2.00 4.00 7.00

Frag2 0.50 0.27 0.34 0.57 0.72

Frag3 0.54 0.26 0.43 0.61 0.75

AbsCorrelS&P 0.67 0.28 0.49 0.77 0.89

TickToPrice, % 0.04 0.07 0.01 0.02 0.04

HighLowVolat, % 1.04 2.66 0.37 0.68 1.21

MktCap, $ bn 1.85 8.26 0.04 0.19 0.89

Volume, mln 1.00 7.42 0.01 0.03 0.18

Exchange-day observations

OTTR 70.16 48.57 34.69 60.44 98.01

NumMkts 6.53 2.74 3.57 7.50 8.84

MktShareStocks 0.09 0.14 0.01 0.05 0.13

MktShareETFs 0.11 0.17 0.00 0.03 0.14

Time series observations

HighLowVolatMkt, % 1.35 1.00 0.71 1.09 1.68

VIX 20.21 8.50 13.89 18.55 24.05

CPUSpeed, Hertz×10−10 1.22 1.18 0.27 0.79 2.05
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Table 4: Determinants of OTTRs using security-day observations

This table reports OLS regression results for regression models with security-day observations.
The dependent variable is LogOTTR = Ln(1 + OTTR). Independent variables are in the first
column. Variable definitions are in Table 2, noting that LogT ickToPrice = Ln(1 +TickToPrice),
LogMktCap = Ln(MktCap), LogV IX = Ln(V IX). Standard errors are clustered by security
and day. T-statistics are reported in parentheses. ∗∗∗, ∗∗, and ∗ indicate statistical significance at
1%, 5%, and 10% levels, respectively. The sample period covers years 1998 to 2018, and includes
241 stocks and 68 ETFs.

Log Log Log Log Log Log Log Log Log
OTTR (1) OTTR (2) OTTR (3) OTTR (4) OTTR (5) OTTR (6) OTTR (7) OTTR (8) OTTR (9)

Frag1 0.08∗∗∗ 0.15∗∗∗

(25.22) (9.67)

Frag12 -0.01∗∗∗

(-5.29)

Frag2 0.70∗∗∗ 0.65∗∗∗ 0.69∗∗∗ 0.66∗∗∗ 0.25∗∗∗ 0.24∗∗∗

(15.17) (13.80) (15.02) (13.96) (6.72) (6.33)

Frag3 0.50∗∗∗

(11.67)

ETFDummy 1.44∗∗∗ 1.35∗∗∗ 1.34∗∗∗ 1.35∗∗∗ 1.35∗∗∗ 1.35∗∗∗ 1.43∗∗∗ 1.38∗∗∗ 1.38∗∗∗

(24.20) (22.58) (22.64) (22.87) (22.50) (22.83) (24.03) (23.90) (23.84)

AbsCorrelS&P 1.13∗∗∗ 1.13∗∗∗ 1.14∗∗∗ 1.16∗∗∗ 1.15∗∗∗ 1.13∗∗∗ 1.10∗∗∗ 1.00∗∗∗ 1.00∗∗∗

(20.85) (20.63) (21.47) (21.29) (20.65) (20.32) (20.00) (18.14) (18.14)

LogTickToPrice -14.88∗ -14.23∗∗ -13.94∗∗ -13.14∗ -14.23∗∗ -13.09∗ -14.52∗ -7.57 -7.83∗

(-1.96) (-1.96) (-2.21) (-1.83) (-1.96) (-1.83) (-1.95) (-1.64) (-1.65)

HighLowV olatMkt 2.28∗∗∗ 3.24∗∗∗ 3.05∗∗∗ 3.25∗∗∗ 2.43∗∗∗ 6.41∗∗∗ 6.32∗∗∗

(2.93) (4.51) (4.22) (4.35) (3.17) (8.49) (8.37)

LogMktCap 0.01 0.03∗∗∗ 0.03∗∗∗ 0.04∗∗∗ 0.03∗∗∗ 0.04∗∗∗ 0.02∗ 0.07∗∗∗ 0.07∗∗∗

(1.57) (3.33) (3.08) (3.76) (3.08) (3.79) (1.92) (7.98) (7.88)

LogV olume -0.29∗∗∗ -0.29∗∗∗ -0.28∗∗∗ -0.29∗∗∗ -0.28∗∗∗ -0.29∗∗∗ -0.30∗∗∗ -0.30∗∗∗ -0.30∗∗∗

(-38.84) (-38.10) (-38.55) (-36.95) (-37.81) (-36.83) (-39.67) (-38.97) (-38.79)

LogV IX 0.03
(0.98)

HighLowV olat 0.63∗∗∗ 0.39∗∗ 0.65∗∗∗ 0.64∗∗∗

(3.83) (2.33) (4.06) (3.99)

Autoquote 1.00∗∗∗

(30.06)

CPUSpeed 0.09∗∗∗ 0.11∗∗∗ 0.08∗∗∗ 0.09∗∗∗ 0.09∗∗∗

(7.50) (9.16) (6.81) (7.16) (7.23)

HFTdate 0.98∗∗∗

(29.57)

Adj. R2 53% 54% 54% 54% 54% 54% 53% 57% 57%
ClusteredStd Errors Security Security Security Security Security Security Security Security Security

&Day &Day &Day &Day &Day &Day &Day &Day &Day
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Table 5: Determinants of OTTRs in the security-day sample excluding ETFs

This table reports OLS regression results for regression models with stock-day observations. The
dependent variable is LogOTTR = Ln(1 + OTTR). Independent variables are in the first col-
umn. Variable definitions are in Table 2, noting that LogT ickToPrice = Ln(1 + TickToPrice),
LogMktCap = Ln(MktCap), LogV IX = Ln(V IX). Standard errors are clustered by stock and
day. T-statistics are reported in parentheses. ∗∗∗, ∗∗, and ∗ indicate statistical significance at 1%,
5%, and 10% levels, respectively. The sample period covers years 1998 to 2018, and includes 241
stocks.

Log Log Log Log Log Log Log Log Log
OTTR (1) OTTR (2) OTTR (3) OTTR (4) OTTR (5) OTTR (6) OTTR (7) OTTR (8) OTTR (9)

Frag1 0.08∗∗∗ 0.24∗∗∗

(29.98) (17.58)

Frag12 -0.01
(-12.29)

Frag2 1.02∗∗∗ 0.98∗∗∗ 1.02∗∗∗ 0.98∗∗∗ 0.41∗∗∗ 0.40∗∗∗

(23.14) (21.61) (23.16) (21.58) (12.31) (11.96)

Frag3 0.72∗∗∗

(17.39)

AbsCorrelS&P 0.66∗∗∗ 0.61∗∗∗ 0.68∗∗∗ 0.61∗∗∗ 0.66∗∗∗ 0.61∗∗∗ 0.59∗∗∗ 0.50∗∗∗ 0.50∗∗∗

(22.93) (23.19) (24.43) (23.12) (24.85) (22.54) (21.69) (20.38) (20.38)

LogTickToPrice -12.08∗ -10.93∗∗ -11.56∗∗ -9.84∗ -10.77∗∗ -9.83∗ -11.13∗ -5.37 -5.64
(-1.95) (-1.97) (-2.20) (-1.86) (-1.97) (-1.86) (-1.94) (-1.63) (-1.64)

HighLowV olatMkt 0.30 0.59 0.17 0.38 0.58 4.59∗∗∗ 4.47∗∗∗

(0.40) (0.91) (0.25) (0.58) (0.82) (8.00) (7.80)

LogMktCap 0.05∗∗∗ 0.08∗∗∗ 0.07∗∗∗ 0.09∗∗∗ 0.07∗∗∗ 0.09∗∗∗ 0.06∗∗∗ 0.12∗∗∗ 0.12∗∗∗

(6.63) (10.42) (9.35) (11.03) (9.93) (11.03) (8.00) (16.75) (16.51)

LogV olume -0.26∗∗∗ -0.27∗∗∗ -0.26∗∗∗ -0.28∗∗∗ -0.27∗∗∗ -0.28∗∗∗ -0.28∗∗∗ -0.27∗∗∗ -0.27∗∗∗

(-36.71) (-36.58) (-35.85) (-35.16) (-36.52) (-35.19) (-38.90) (-38.02) (-37.77)

LogV IX -0.10∗∗∗

(-4.07)

HighLowV olat 0.62∗∗∗ 0.60∗∗∗ 0.82∗∗∗ 0.81∗∗∗

(4.04) (3.79) (5.80) (5.66)

Autoquote 0.88∗∗∗

(31.40)

CPUSpeed 0.03∗∗∗ 0.07∗∗∗ 0.02∗∗ 0.02 0.02∗∗

(2.58) (5.85) (2.15) (1.46) (2.20)

HFTdate 0.86∗∗∗

(30.26)

Adj. R2 27% 29% 28% 28% 29% 28% 28% 35% 35%
ClusteredStd Errors Stock&Day Stock&Day Stock&Day Stock&Day Stock&Day Stock&Day Stock&Day Stock&Day Stock&Day
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Table 6: OTTRs and information environment

This table reports results from difference-in-differences models with stock-day observations. The
dependent variable is LogOTTR = Ln(1 + OTTR). The key independent variable is the interac-
tion term DPost ∗ ShareNY SE . DPost is a dummy variable that takes the value of one after the
NYSE introduced pre-trade transparency for its order book (January 24, 2002). ShareNY SE is the
average fraction of the stock’s traded volume executed on NYSE in the period January 1, 2001 -
January 24, 2002. The control variables and corresponding regression numbers are the same as in
Table 5 (excluding regression (9), which requires a longer time period). The control variable for
fragmentation is Frag1 (number of markets) in all regressions to avoid multicollinearity between
Frag2, Frag3, and ShareNY SE . Standard errors are clustered by stock and day. T-statistics are
reported in parentheses. ∗∗∗, ∗∗, and ∗ indicate statistical significance at 1%, 5%, and 10% levels,
respectively. The sample includes 241 stocks and covers the period January 1, 2001 – December
31, 2002.

Log Log Log Log Log Log Log Log
OTTR (1) OTTR (2) OTTR (3) OTTR (4) OTTR (5) OTTR (6) OTTR (7) OTTR (8)

DPost ∗ ShareNY SE 0.32∗∗ 0.32∗∗ 0.32∗∗ 0.41∗∗∗ 0.34∗∗ 0.41∗∗∗ 0.26∗∗ 0.41∗∗∗

(2.46) (2.43) (2.43) (3.08) (2.57) (3.11) (2.49) (3.14)

ShareNY SE -0.82∗∗∗ -0.81∗∗∗ -0.81∗∗∗ -1.04∗∗∗ -0.90∗∗∗ -1.05∗∗∗ -0.38∗∗∗ -1.05∗∗∗

(-5.44) (-5.38) (-5.38) (-6.49) (-5.94) (-6.59) (-2.90) (-6.64)

DPost -0.08 -0.11 -0.11 -0.15 -0.15 -0.17∗ -0.08 -0.13
(-0.71) (-1.08) (-1.08) (-1.54) (-1.47) (-1.74) (-0.89) (-1.23)

Adj. R2 21% 21% 21% 22% 23% 23% 28% 23%
Controls Yes Yes Yes Yes Yes Yes Yes Yes
Clustered Std. Errors Stock Stock Stock Stock Stock Stock Stock Stock

&Day &Day &Day &Day &Day &Day &Day &Day
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Table 7: Determinants of OTTRs using exchange-day observations

This table reports OLS regression results for regression models with exchange-day observations.
The dependent variable is LogOTTR = Ln(1 + OTTR), where OTTR is a simple average of the
OTTRs of stocks and ETFs traded on a given exchange. Independent variables are in the first
column. Variable definitions are in Table 2, noting that LogV IX = Ln(V IX). Standard errors
are clustered by exchange and day. T-statistics are reported in parentheses. ∗∗∗, ∗∗, and ∗ indicate
statistical significance at 1%, 5%, and 10% levels, respectively. The sample period covers years
1998 to 2018, and includes 241 stocks and 68 ETFs traded across 14 exchanges.

Log Log Log Log Log Log Log Log
OTTR (1) OTTR (2) OTTR (3) OTTR (4) OTTR (5) OTTR (6) OTTR (7) OTTR (8)

NumMkts 0.15∗∗∗

(3.98)

TakerDummy 0.39∗∗∗ 0.54∗∗∗ 0.32∗∗ 0.32∗∗ 0.32∗∗ 0.29∗∗ 0.34∗∗ 0.32∗∗

(2.78) (3.23) (2.31) (2.34) (2.32) (2.03) (2.40) (2.37)

MktShareStocks -2.00∗∗∗ -1.75∗∗∗ -1.75∗∗∗ -1.75∗∗∗ -1.79∗∗∗ -1.33 -1.76∗∗∗

(-2.86) (-3.43) (-3.40) (-3.41) (-3.64) (-1.34) (-3.58)

MktShareETFs -0.36 -0.92 -0.61 -0.61 -0.61 -0.55 1.58∗

(-0.51) (-1.00) (-0.86) (-0.84) (-0.86) (-1.02) (1.89)

MktShareStocks2 -1.08
(-0.93)

MktShareETFs2 -3.47∗∗∗

(-3.61)

HighLowV olatMkt 0.80 -7.32∗∗ 2.42
(0.24) (-2.06) (0.62)

LogV IX 0.18 0.28∗ 0.29∗

(0.87) (1.75) (1.91)

Autoquote 0.50∗∗

(2.08)

CPUSpeed 0.31∗∗∗ 0.33∗∗∗ 0.31∗∗∗ 0.27∗∗∗ 0.28∗∗∗ 0.28∗∗∗

(4.70) (4.24) (4.76) (2.91) (3.99) (3.04)

HFTdate 0.51∗

(1.74)

Adj. R2 28% 20% 34% 34% 34% 37% 38% 36%
Clustered Std Errors Exch Exch Exch Exch Exch Exch Exch Exch

&Day &Day &Day &Day &Day &Day &Day &Day
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Table 8: Determinants of OTTRs in the exchange-day sample excluding ETFs

This table reports OLS regression results for seven regression models with exchange-day observa-
tions. The dependent variable is LogOTTR = Ln(1 + OTTR), where OTTR is a simple average
of the OTTRs of stocks traded on a given exchange. Independent variables are in the first column.
Variable definitions are in Table 2, noting that LogV IX = Ln(V IX). Standard errors are clustered
by exchange and day. T-statistics are reported in parentheses. ∗∗∗, ∗∗, and ∗ indicate statistical
significance at 1%, 5%, and 10% levels, respectively. The sample period covers years 1998 to 2018,
and includes 241 stocks traded across 14 exchanges.

Log Log Log Log Log Log Log Log
OTTR (1) OTTR (2) OTTR (3) OTTR (4) OTTR (5) OTTR (6) OTTR (7) OTTR (8)

NumMkts 0.16∗∗∗

(4.11)

TakerDummy 0.40∗∗∗ 0.60∗∗∗ 0.35∗∗∗ 0.35∗∗∗ 0.35∗∗∗ 0.32∗∗ 0.38∗∗∗ 0.36∗

(3.10) (3.68) (2.67) (2.69) (2.68) (2.39) (2.71) (1.92)

MktShareStocks -1.97∗∗∗ -1.72∗∗∗ -1.72∗∗∗ -1.72∗∗∗ -1.77∗∗∗ -0.69 -2.19∗∗∗

(-3.22) (-3.51) (-3.49) (-3.51) (-3.60) (-0.55) (-3.70)

MktShareStocks2 -1.90
(-1.19)

HighLowV olatMkt 0.86 -8.00∗ 2.39
(0.27) (-1.77) (0.61)

LogV IX 0.18 0.29∗ 0.05
(0.90) (1.94) (0.54)

Autoquote 0.52∗

(1.80)

CPUSpeed 0.33∗∗∗ 0.35∗∗∗ 0.32∗∗∗ 0.28∗∗∗ 0.31∗∗∗

(4.34) (4.25) (4.25) (3.15) (4.17)

HFTdate 0.66∗∗∗

(3.22)

Adj. R2 28% 17% 33% 33% 33% 36% 33% 30%
Clustered Std Errors Exch Exch Exch Exch Exch Exch Exch Exch

&Day &Day &Day &Day &Day &Day &Day &Day
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Table 9: Empirical OTTRs vs a theoretical benchmark

This table reports descriptive statistics for empirically observed OTTRs of 715 stock-days (every
5th stock from the sample during November 2018) and theoretical OTTRs for these stock-days.
The empirically observed OTTRs are calculated using daily data on the number of trades and quote
messages. Theoretical OTTRs are calculated as described in the main text.

Mean StdDev 25th pctl 50th pctl 75th pctl

Empirical OTTR 18.37 18.00 9.30 14.03 21.08

Theoretical OTTR 33.77 33.16 20.85 27.54 35.84

Difference (Empirical - Theoretical) -15.40 33.38 -20.45 -12.61 -4.64
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Panel A. OTTR and fragmentation

Panel B. OTTR, correlation with S&P 500, and market volatility

Figure 1: Time series of OTTRs and explanatory variables

This figure plots the annual averages of OTTRs and explanatory variables. Frag1 is the number
of stock exchanges trading sample securities. AbsCorrelS&P500 is the absolute correlation of the
security’s returns with the S&P 500 index. 10x HighLowV olat (market) is daily S&P 500 volatility
multiplied by 10. The sample period covers years 1998 to 2018, and includes 241 stocks and 68
ETFs.
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Figure 2: Order-to-trade ratios and data processing speed

This figure plots the time series of OTTRs against the microprocessor clock speed measured in
hertz (a proxy for technology advancement as in Kurzweil (2005)). The variables are computed
as annual averages. The sample period covers years 1998 to 2018, and includes 241 stocks and 68
ETFs.
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Panel A. Security-day observations

Panel B. Exchange-day observations

Figure 3: Standardized regression coefficients for the drivers of OTTRs

This figure plots the percentage change in (1 + OTTR) associated with a one standard deviation
change in the explanatory variables. The explanatory variables are on the horizontal axis. The
percentage change in (1 + OTTR) is on the vertical axis. For example, one standard deviation
increase in the fragmentation measure (Frag2) is associated with 3.67% increase in (1 + OTTR),
holding other factors constant. The sample period covers years 1998 to 2018, and includes 241
stocks and 68 ETFs.
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Panel A. Security-day observations

Panel B. Exchange-day observations

Figure 4: The relation between OTTRs, fragmentation, and market shares

Panel A plots security-day OTTRs for different levels of fragmentation. Panel B plots exchange-day
OTTRs for different market shares. The dashed line is the empirically observed relation between
OTTRs and fragmentation / market share. The solid line is the theoretical relation.

47

Electronic copy available at: https://ssrn.com/abstract=3719765



Panel A. Empirical OTTRs

Panel B. Empirical minus theoretical OTTRs

Figure 5: Distribution of theoretical vs empirical OTTRs

Panel A plots the distribution of empirically observed OTTRs on 715 stock-days (every 5th stock
from the sample during November 2018) and theoretical OTTRs for these stock-days. Panel B plots
the distribution of differences between the empirically observed OTTRs and the OTTRs predicted
by the theory model for these same stocks. The vertical axis plots the frequency of observations in
stock-days. The horizontal axis plots the values of OTTRs.
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