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Abstract

We study the parameterized problem of satisfying “almost all” constraints of a given formula F over a
fixed, finite Boolean constraint language Γ, with or without weights. More precisely, for each finite Boolean
constraint language Γ, we consider the following two problems. In Min SAT(Γ), the input is a formula F
over Γ and an integer k, and the task is to find an assignment α : V (F) → {0, 1} that satisfies all but at
most k constraints of F , or determine that no such assignment exists. In Weighted Min SAT(Γ), the input
additionally contains a weight function ω : F → Z+ and an integer W , and the task is to find an assignment α
such that (1) α satisfies all but at most k constraints of F , and (2) the total weight of the violated constraints
is at most W . We give a complete dichotomy for the fixed-parameter tractability of these problems: We
show that for every Boolean constraint language Γ, either Weighted Min SAT(Γ) is FPT; or Weighted
Min SAT(Γ) is W[1]-hard but Min SAT(Γ) is FPT; or Min SAT(Γ) is W[1]-hard. This generalizes recent
work of Kim et al. (SODA 2021) which did not consider weighted problems, and only considered languages
Γ that cannot express implications (u → v) (as is used to, e.g., model digraph cut problems). Our result
generalizes and subsumes multiple previous results, including the FPT algorithms for Weighted Almost
2-SAT, weighted and unweighted ℓ-Chain SAT, and Coupled Min-Cut, as well as weighted and directed
versions of the latter. The main tool used in our algorithms is the recently developed method of directed
flow-augmentation (Kim et al., STOC 2022).
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1 Introduction

Constraint satisfaction problems (CSPs) are a popular, heavily studied framework that allows a wide range of
problems to be expressed and studied in a uniform manner. Informally speaking, a CSP is defined by fixing a
domain D and a constraint language Γ over D controlling the types of constraints that are allowed in the problem.
The problem CSP(Γ) then takes as input a conjunction of such constraints, and the question is whether there
is an assignment that satisfies all constraints in the input. Some examples of problems CSP(Γ) for particular
constraint languages Γ include 2-SAT, k-Coloring, linear equations over a finite field, and many more. We use
SAT(Γ) for the special case of constraints over the Boolean domain D = {0, 1}.

More precisely, a constraint language over a domain D is a set of finite-arity relations R ⊆ Dr (where r is the
arity of R). A constraint over a constraint language Γ is formally a pair (X,R), where R ∈ Γ is a relation from
the language, say of arity r, and X = (x1, . . . , xr) is an r-tuple of variables called the scope of the constraint.
We typically write our constraints as R(X) instead of (X,R), or R(x1, . . . , xr) when the individual participating
variables xi need to be highlighted. Let α : X → D be an assignment. Then α satisfies the constraint R(X) if
(α(x1), . . . , α(xr)) ∈ R, and we say that α violates the constraint otherwise. A formula over Γ is then a conjunction
of constraints over Γ, and the problem CSP(Γ) is to decide, given a formula F over Γ, whether F is satisfiable,
i.e., if there is an assignment that satisfies all constraints of F . To revisit the examples above, if D = {0, 1} is
the Boolean domain and Γ contains only relations of arity at most 2 over D, then SAT(Γ) is polynomial-time
decidable by reduction to 2-SAT. Similarly, if each relation R ∈ Γ can be defined via linear equations over
GF(2), e.g., R(x1, . . . , xr) ≡ (x1+ . . .+xr = 1 (mod 2)), then SAT(Γ) is polynomial-time decidable via Gaussian
elimination. Finally, k-Coloring corresponds to CSP(Γ) over a domain D = {1, . . . , k} of cardinality k, and
with the constraint language Γ containing only the relation R ⊆ D2 defined as R(u, v) ≡ (u ̸= v). Note that
these reductions can also easily be turned into equivalences, i.e., there is a specific constraint language Γ such
that SAT(Γ) respectively CSP(Γ) is effectively equivalent to 2-SAT, k-Coloring, linear equations over a fixed
finite field, and so on.

By capturing such a range of problems in one framework, the CSP framework also allows us to study these
problems in a uniform manner. In particular, it allows for the complete characterisation of the complexity of
every problem in the framework – so-called dichotomy theorems. The most classical is by Schaefer [Sch78], who
showed that for every finite Boolean language Γ, either Γ is contained in one of six maximal tractable classes and
SAT(Γ) is in P, or else SAT(Γ) is NP-complete. Since then, many other dichotomy theorems have been settled
(many of them mentioned later in this introduction). Perhaps chief among them is the general CSP dichotomy
theorem: For every finite constraint language Γ over a finite domain, the problem CSP(Γ) is either in P or NP-
complete. This result was conjectured by Feder and Vardi in the 90’s [FV93], and only fully settled a few years
ago, independently by Bulatov [Bul17] and Zhuk [Zhu20].

The existence of dichotomy theorems allows us to formally study the question of what makes a problem in
a problem category hard – or rather, since hardness appears to be the default state, what makes a problem in a
problem category tractable? From a technical perspective, the answer is often phrased algebraically, in terms of
algebraic closure properties of the constraint language which describe abstract symmetries of the solution space
(see, for example, the collection edited by Krokhin and Zivný [KZ17]). But the answer can also be seen as
answering a related question: What algorithmic techniques are required to handle all tractable members of a
problem class? In other words, what are the maximal “islands of tractability” in a problem domain, and what
algorithmic techniques do they require?

Thus in particular, a dichotomy theorem requires you to both discover all the necessary tools in your
algorithmic toolbox, and to hone each of these tools to the maximum generality required by the domain.

As a natural variation on the CSP problem, when a formula F is not satisfiable, we might look for an
assignment under which as few constraints of F as possible are violated. This defines an optimization problem for
every language Γ. Formally, for a constraint language Γ, the problem Min CSP(Γ) takes as input a formula F
over Γ and an integer k, and asks if there is an assignment under which at most k constraints of F are violated.
Again, we use Min SAT(Γ) to denote the special case where Γ is over the domain {0, 1}. Equivalently, we may
consider the constraint deletion version of Min CSP(Γ) and Min SAT(Γ): Given a formula F over Γ and integer
k, is there a set Z ⊆ F of at most k constraints such that F − Z is satisfiable? This version tends to fit better
with our algorithms. We refer to such a set Z as deletion set.

Let us consider an example. Let Γ = {(x = 1), (x = 0), (x → y)}. Then Min SAT(Γ) is effectively equivalent
to finding a minimum st-cut in a digraph. Indeed, let F be a formula over Γ and define a digraph G on vertex
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set V (G) = V (F) ∪ {s, t}, with an arc (s, v) for every constraint (v = 1) in F , an arc (v, t) for every constraint
(v = 0) in F , and an arc (u, v) for every constraint (u → v) in F . Let S ⊆ V (G) be a vertex set with s ∈ S and
t /∈ S, and define an assignment αS : V (F) → {0, 1} by α(v) = 1 if and only if v ∈ S. Then the constraints of
F violated by αS are precisely the edges δG(S) leaving S in G, i.e., an st-cut in G. In particular, Min SAT(Γ)
is solvable in polynomial time. Naturally, by the same mapping we can also generate an instance (F , k) of Min
SAT(Γ) from a graph G with marked vertices s, t ∈ V (G), such that (F , k) is a yes-instance if and only if G has
an st-cut of at most k edges, justifying the claim that the problems are equivalent.

Unfortunately, for most languages Γ the resulting problem Min SAT(Γ) is NP-hard. Indeed, Khanna et
al. [KSTW00] showed that the above example is essentially the only non-trivial tractable case; for every constraint
language Γ, either formulas over Γ are always satisfiable for trivial reasons, or Min SAT(Γ) reduces to st-Min
Cut, or Min SAT(Γ) is APX-hard. (Furthermore, many interesting examples of Min SAT(Γ) do not appear to
even allow constant-factor approximations; see discussion below.)

However, Min SAT(Γ) is a natural target for studies in parameterized complexity. Indeed, taking k as a
natural parameter, many cases of Min SAT(Γ) have been shown to be FPT when parameterized by k, including
the classical problems of Edge Bipartization, corresponding to a language Γ = {(x ̸= y)}, and Almost 2-SAT,
corresponding to a language Γ containing all 2-clauses. The former is FPT by Reed et al. [RSV04], the latter
by Razgon and O’Sullivan [RO09], both classical results in the parameterized complexity literature. It is thus
natural to ask for a general characterisation: For which Boolean languages Γ is Min SAT(Γ) FPT parameterized
by k?

Indeed, following early FPT work on related CSP optimization problems [Mar05, BM14, KW10, KMW16],
the Min SAT(Γ) question was a natural next target. Unfortunately, for a long time this question appeared out
of reach, due to some very challenging open problems, specifically Coupled Min-Cut and ℓ-Chain SAT.
Coupled Min-Cut is a graph separation problem, never publically posed as an open problem, but long
known to be an obstacle to a dichotomy. It was settled to be FPT last year by Kim et al. [KKPW21] as an
application of the new flow augmentation technique. ℓ-Chain SAT is a digraph cut problem posed by Chitnis
et al. in 2013 [CEM13, CEM17], conjectured to be FPT; this conjecture was confirmed only this year by Kim et
al. [KKPW22a], as an application of the directed version of flow augmentation. With these obstacles now settled,
we find it is time to attack the FPT/W[1] dichotomy question for Min SAT(Γ) directly.

1.1 Our results As mentioned, we consider two variants of Min SAT(Γ), with and without constraint weights.
Let Γ be a finite Boolean constraint language. Min SAT(Γ) is the problem defined above: Given input (F , k),
where F is a conjunction of constraints using relations of Γ, decide if there is a deletion set of cardinality at most
k, i.e., a set Z ⊆ F of at most k constraints such that F − Z is satisfiable. In the weighted version Weighted
Min SAT(Γ), the input is (F , ω, k,W ), where the formula F comes equipped with a weight function ω : F → Z+

assigning weights to the constraints of F , and the goal is to find a deletion set of cardinality at most k and weight
at most W . Note that this is a fairly general notion of a weighted problem; e.g., it could be that there is an
assignment violating strictly fewer than k constraints, but that every such assignment violates constraints to a
weight of more than W .

We give a full characterization of Min SAT(Γ) and Weighted Min SAT(Γ) as being either FPT or W[1]-
hard when parameterized by the number of violated constraints k. This extends previous partial or approximate
FPT-dichotomies of Bonnet et al. [BEM16, BELM18] and Kim et al. [KKPW21].

Theorem 1.1. Let Γ be a finite Boolean constraint language. Then one of the following applies for the
parameterization by the number of unsatisfied constraints.

1. Weighted Min SAT(Γ) is FPT.

2. Min SAT(Γ) is FPT but Weighted Min SAT(Γ) is W[1]-hard.

3. Min SAT(Γ) is W[1]-hard.

Our characterization is combinatorial, and is given in terms of graphs that encode the structure of each
constraint. To state it, we first need some terminology. We say that a Boolean relation R is bijunctive if it is
expressible as a conjunction of 1- and 2-clauses, and R is IHS-B- (respectively IHS-B+) if it is expressible as a
conjunction of negative clauses (¬x1 ∨ . . . ∨ ¬xr), positive 1-clauses (x), and implications (x → y) (respectively
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positive clauses, negative 1-clauses, and implications). Here, IHS-B is an abbreviation for implicative hitting set,
bounded. A constraint language Γ is bijunctive, IHS-B+, respectively IHS-B- if every relation R ∈ Γ is bijunctive,
IHS-B+, respectively IHS-B-. Finally, Γ is IHS-B if it is either IHS-B+ or IHS-B-. (Note that this is distinct
from every relation R ∈ Γ being either IHS-B+ or IHS-B-, since the latter would allow a mixture of, e.g., positive
and negative 3-clauses, which defines an NP-hard problem SAT(Γ) [Sch78].)

We will characterise the structure of relations in two ways. Let R ⊆ {0, 1}r be a Boolean relation. First,
slightly abusing terminology in reusing a term from the literature, we define the Gaifman graph of R as an
undirected graph GR on vertex set [r] = {1, . . . , r}, where there is an edge {i, j} ∈ E(GR) if and only if the
projection of R onto arguments i and j is non-trivial, i.e., if and only if there are values bi, bj ∈ {0, 1} such
that for every t ∈ R it is not the case that t[i] = bi and t[j] = bj . Second, we define the arrow graph HR of
R as a directed graph on vertex set [r] where (i, j) ∈ E(HR) if R(x1, . . . , xr) implies the constraint (xi → xj)
without also implying (xi = 0) or (xj = 1). Finally, we say that GR is 2K2-free if there is no induced subgraph
of GR isomorphic to 2K2. Similarly, the arrow graph HR is 2K2-free if the underlying undirected graph of HR is
2K2-free.

For an illustration, consider the relation R(x, y, z) ≡ (x = 1)∧(y = z). Let us consider the full set of 2-clauses
implied by R(x, y, z), i.e.,

R(x, y, z) |= (x ∨ y) ∧ (x ∨ ¬y) ∧ (x ∨ z) ∧ (x ∨ ¬z) ∧ (¬y ∨ z) ∧ (y ∨ ¬z).

where (naturally) clauses such as (¬y ∨ z) could also be written (y → z). Then GR is a clique, since every pair
of variables is involved in some 2-clause. (Indeed, for the readers familiar with the term Gaifman graph from the
literature, if R is bijunctive then the Gaifman graph GR is precisely the Gaifman graph of the 2-CNF formula
consisting of all 2-clauses implied by R(X).) The arrow graph HR contains the arcs (2, 3) and (3, 2), due to the
last two clauses. On the other hand, despite the 2-clauses (y → x) and (z → x) being valid in R(x, y, z), HR does
not contain arcs (2, 1) or (3, 1) since they are only implied by the assignment (x = 1).

We can now present the FPT results.

Theorem 1.2. Let Γ be a finite, bijunctive Boolean constraint language. If for every relation R ∈ Γ the Gaifman
graph GR is 2K2-free, then Weighted Min SAT(Γ) is FPT.

Theorem 1.3. Let Γ be a finite, IHS-B Boolean constraint language. If for every R ∈ Γ the arrow graph HR is
2K2-free, then Min SAT(Γ) is FPT.

We note that Theorem 1.3 encompasses two language classes, corresponding to IHS-B+ or IHS-B-. By
symmetry of the problem, the resulting Min SAT problems are essentially equivalent (e.g., by exchanging x and
¬x in all relation definitions); hence it suffices to provide an FPT algorithm for one of the classes. We focus on
the IHS-B- case. We also note that for any relation R that is not bijunctive or IHS-B, such as a ternary linear
equation over GF(2) or a Horn clause R(z, y, z) ≡ (x ∧ y → z), any problem Min SAT(Γ) with R ∈ Γ is either
trivially satisfiable or W[1]-hard. Indeed, this follows from previous work [KKPW21, BELM18].

The final dichotomy in Theorem 1.1 now follows from showing that, except for a few simple cases, for any
language Γ not covered by Theorem 1.2 the problem Weighted Min SAT(Γ) is W[1]-hard, and if furthermore
Theorem 1.3 does not apply then Min SAT(Γ) is W[1]-hard.

Let us provide a few illustrative examples.

• First consider the problem Min SAT(Γ) for the language Γ = {(x = 1), (x = 0), R4}, where R4 is the
relation defined by R4(a, b, c, d) ≡ (a = b) ∧ (c = d). Then the Gaifman graph GR and the arrow graph
HR both contain 2K2’s, hence Min SAT(Γ) is W[1]-hard. In fact, this problem, together with the directed
version (a → b) ∧ (c → d), are the fundamental W[1]-hard case of the dichotomy.

On the other hand, consider Γ′ = {(x = 1), (x = 0), (x = y)}. Then Min SAT(Γ′) is in P, as observed
above. Furthermore, SAT(Γ) and SAT(Γ′) are equivalent problems, since any constraint R4(a, b, c, d) can
simply be split into (a = b) and (c = d). For the same reason, Min SAT(Γ) has a 2-approximation, since
breaking up a constraint over R4 into separate constraints (a = b) and (c = d) at most doubles the number
of violated constraints in any assignment. This illustrates the difference in the care that needs to be taken
in an FPT/W[1]-dichotomy, compared to approximability results.
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• The problem Edge Bipartization corresponds to Min SAT((x ̸= y)) and Almost 2-SAT to Min
SAT((x ∨ y), (x → y), (¬x ∨ ¬y)). Since each relation R here is just binary, clearly GR is 2K2-free. Hence
Theorem 1.2 generalizes the FPT algorithm for Weighted Almost 2-SAT [KKPW22a].

• Let (x1 → . . . → xℓ) be shorthand for the constraint R(x1, . . . , xℓ) ≡ (x1 → x2) ∧ . . . ∧ (xℓ−1 → xℓ). Then
Min SAT((x = 1), (x = 0), (x1 → . . . → xℓ)) is precisely the problem ℓ-Chain SAT [CEM17]. For our
dichotomy, note that this constraint can also be written R(x1, . . . , xℓ) ≡

∧
1≤i<j≤ℓ(xi → xj). Hence for this

relation R, both the graphs GR and HR are cliques, and ℓ-Chain SAT is contained in both of our tractable
classes. This generalizes the FPT algorithm for ℓ-Chain SAT [KKPW22a].

• Now consider a relation Rcmc(a, b, c, d) ≡ (a = b) ∧ (c = d) ∧ (¬a ∨ ¬c). Then Min SAT((x =
1), (x = 0), Rcmc) is known as Coupled Min-Cut, recently shown to be FPT after being a long-
standing (implictly) open problem [KKPW21]. Note that the Gaifman graph of Rcmc is isomorphic
to K4, hence Theorem 1.2 generalizes this result. The same holds for natural directed variants such
as R′(a, b, c, d) ≡ (a → b) ∧ (c → d) ∧ (¬a ∨ ¬c). Note that the Gaifman graph GR′ is a P4, i.e.,
2K2-free. On the other hand, the arrow graphs of both these relations contain 2K2’s, hence, e.g., Min
SAT((x = 1), (x = 0), Rcmc, (¬x ∨ ¬y ∨ ¬z)) is W[1]-hard.

• For an example in the other direction, consider a relation such as R(a, b, c, d) ≡ (¬a ∨ ¬b) ∧ (c → d).
Then the Gaifman graph GR is a 2K2, but the arrow graph HR contains just one edge, showing that Min
SAT((x = 1), (x = 0), R) is FPT but Weighted Min SAT((x = 1), (x = 0), R) is W[1]-hard. Similarly,
adding a constraint such as (x ̸= y) to the language yields a W[1]-hard problem Min SAT(Γ). Intuitively,
this is because having access to variable negation allows us to transform R to the “double implication”
constraint R′(a, b, c, d) ≡ R(a,¬b, c, d) from the W[1]-hard case mentioned above. Indeed, a lot of the
work of the hardness results in this paper is to leverage expressive power of Min SAT(Γ) and Weighted
Min SAT(Γ) to “simulate” negations, in specific and restricted ways, when (x ̸= y) is not available in the
language.

1.2 Previous dichotomies and related work Many variations of SAT and CSP with respect to decision
and optimization problems have been considered, and many of them are relevant to the current work.

Khanna et al. [KSTW00] considered four optimization variants of SAT(Γ) on the Boolean domain, analyzed
with respect to approximation properties. They considered Min Ones(Γ), where the goal is to find a satisfying
assignment with as few variables set to 1 as possible; Max Ones(Γ), where the goal is to find a satisfying
assignment with as many variables set to 1 as possible; Min SAT(Γ), where the goal is to find an assignment with
as few violated constraints as possible; and Max SAT(Γ), where the goal is to find an assignment with as many
satisfied constraints as possible. They characterized the P-vs-NP boundary and the approximability properties
of all problems in all four variants.

Note that although, e.g., Min SAT(Γ) and Max SAT(Γ) are equivalent with respect to the optimal
assignments, from a perspective of approximation they are very different. Indeed, for any finite language Γ,
you can (on expectation) produce a constant-factor approximation algorithm for Max SAT(Γ) simply by taking
an assignment chosen uniformly at random. For the same reason, Max SAT(Γ) parameterized by the number
of satisfied constraints k is trivially FPT, and in fact has a linear kernel for every finite language Γ [KMW16].
On the other hand, Min SAT(Γ) is a far more challenging problem from an approximation and fixed-parameter
tractability perspective. In fact, combining the characterisation of Min SAT(Γ) approximability classes of Khanna
et al. [KSTW00] with results assuming the famous unique games conjecture (UGC; or even the weaker Boolean
unique games conjecture [EM22]), we find that if the UGC is true, then the only cases of Min SAT(Γ) that admit
a constant-factor approximation are when Γ is IHS-B.

The first parameterized CSP dichotomy we are aware of is due to Marx [Mar05], who considered the problem
Exact Ones(Γ): Given a formula F over Γ, is there a satisfying assignment that sets precisely k variables
to 1? Marx gives a full dichotomy for Exact Ones(Γ) as being FPT or W[1]-hard parameterized by k, later
extended to general non-Boolean languages with Bulatov [BM14]. Marx also notes that Min Ones(Γ) is FPT by
a simple branching procedure for every finite language Γ [Mar05]. However, the existence of so-called polynomial
kernels for Min Ones(Γ) problems is a non-trivial question; a characterization for this was given by Kratsch
and Wahlström [KW10], and follow-up work mopped up the questions of FPT algorithms and polynomial kernels
parameterized by k for all three variants Min/Max/Exact Ones(Γ) [KMW16]
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Polynomial kernels for Min SAT(Γ) have been considered; most notably, there are polynomial kernels for
Edge Bipartization and Almost 2-SAT [KW20]. We are not aware of any significant obstacles towards a
kernelizability dichotomy of Min SAT(Γ); however, a comparable result for more general Min CSP(Γ) appears
far out of reach already for a domain of size 3.

Other, direct predecessor results of the current dichotomy include the characterization of fixed-parameter
constant-factor approximation algorithms for Min SAT(Γ) of Bonnet et al. [BEM16] and a partial FPT/W[1]
dichotomy of Kim et al. [KKPW21]. In particular, the latter paper provided an FPT/W[1]-dichotomy for all
cases of Min SAT(Γ) where Γ is unable to express the “directed edge” constraint (u → v). Finally, we recall that
the problem ℓ-Chain SAT was first published by Chitnis et al. [CEM17], who related its status to a conjectured
complexity dichotomy for the Vertex Deletion List H-Coloring problem. This conjecture was subsequently
confirmed with the FPT-algorithm for ℓ-Chain SAT [KKPW22a].

A much more ambitious optimization variant of CSPs are Valued CSP, VCSP. In this setting, instead of a
constraint language one fixes a finite set S of cost functions, and considers the problem VCSP(S), of minimising
the value of a sum of cost functions from S. The cost functions can be either finite-valued or general, taking values
from Q ∪ {∞} to simulate crisp, unbreakable constraints. Both Min Ones(Γ) and Min CSP(Γ) (and, indeed,
Vertex Deletion List H-Coloring) are special cases of VCSPs, as are many other problems. The classical (P-
vs-NP) complexity of VCSPs admits a remarkably clean dichotomy: There is a canonical LP-relaxation, the basic
LP, such that for any finite-valued S, the problem VCSP(S) is in P if and only if the basic LP is integral [TZ16].
A similar, complete characterization for general-valued VCSP(S) problems is also known [KKR17].

1.3 Technical overview The technical work of the paper is divided into three parts. Theorem 1.2, i.e., the
FPT algorithm for bijunctive languages Γ where every relation R ∈ Γ has a 2K2-free Gaifman graph; Theorem 1.3,
i.e., the FPT algorithm for IHS-B languages Γ where every relation R ∈ Γ has a 2K2-free arrow graph; and the
completion of the dichotomy, where we prove that all other cases are trivial or hard. We begin with the algorithmic
results.

Graph problem. In both our algorithmic results, we cast the problem at hand as a graph separation
problem, which we call Generalized Bundled Cut. An instance consists of

• a directed multigraph G with distinguished vertices s, t ∈ V (G);

• a multiset C of subsets of V (G), called clauses;

• a family B of pairwise disjoint subsets of E(G) ∪ C, called bundles, such that one bundle does not contain
two copies of the same arc or clause;

• a parameter k;

• in the weighted variant, additionally a weight function ω : B → Z+ and a weight budget W ∈ Z+.

We seek a set Z ⊆ E(G) that is an st-cut (i.e., cuts all paths from s to t). An edge e is violated by Z if e ∈ Z
and a clause C ∈ C is violated by Z if all elements of C are reachable from s in G− Z (i.e., a clause is a request
to separate at least one of the elements from s). A bundle is violated if any of its elements is violated. An edge,
a clause, or a bundle is satisfied if it is not violated. An edge or a clause is soft if it is in a bundle and crisp
otherwise. We ask for an st-cut Z that satisfies all crisp edges and clauses, and violates at most k bundles (and
whose total weight is at most W in the weighted variant). An instance is b-bounded if every clause is of size at
most b and, for every B ∈ B, the set of vertices involved in the elements of B is of size at most b.

Generalized Bundled Cut, in full generality, can be easily seen to be W[1]-hard when parameterized
by k, even with O(1)-bounded instances; see Marx and Razgon [MR09] and the problem Paired Minimum
s,t-Cut(ℓ) defined in the full version of the current paper [KKPW22b]. In both tractable cases, the obtained
instances are b-bounded for some b depending on the language and have some additional properties that allow for
fixed-parameter algorithms when parameterized by k + b.

In the reduction, the source vertex s should be interpreted as “true” and the sink vertex t as “false”; other
vertices are in 1-1 correspondence with the variables of the input instance. Furthermore, arcs are implications
that correspond to parts of the constraints of the input instance. The sought st-cut Z corresponds to implications
violated by the sought assignment in the CSP instance; a vertex is assigned 1 in the sought solution if and only
if it is reachable from s in G− Z.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited



Thus, in terms of constraints, arcs (u, v) correspond to implications (u → v) in the input formula, and clauses
{v1, . . . , vr} correspond to negative clauses (¬v1∨ . . .∨¬vr) in the input formula. Thereby, each bundle naturally
encodes an IHS-B- constraint. Capturing bijunctive constraints requires a little bit more work, since they can also
involve positive 2-clauses (u ∨ v), but this can be reduced to the IHS-B- case with clauses of arity 2 via standard
methods (e.g., iterative compression followed by variable renaming [KW20]). Thus we proceed assuming that the
Min SAT(Γ) instance has been reduced to an instance of Generalized Bundled Cut (with the appropriate
additional properties eluded to above).

Flow-augmentation. Let us first recall the basics of flow-augmentation of Kim et al. [KKPW22a]. Recall
that in Generalized Bundled Cut, we are interested in a deletion set Z ⊆ E(G) that separates t and possibly
some more vertices of G from s. Formally, Z is a star st-cut if it is an st-cut and additionally for every (u, v) ∈ Z,
u is reachable from s in G−Z but v is not. That is, Z cuts all paths from s to t and every edge of Z is essential
to separate some vertex of G from s. For a star st-cut Z, its core, denoted coreG(Z), is the set of those edges
(u, v) ∈ Z such that t is reachable from v in G − Z. That is, coreG(Z) is the unique inclusion-wise minimal
subset of Z that is an st-cut. A simple but crucial observation is that in Generalized Bundled Cut any
inclusion-wise minimal solution Z is a star st-cut.

Considered restrictions of Generalized Bundled Cut turn out to be significantly simpler if the sought
star st-cut Z satisfies the following additional property: coreG(Z) is actually an st-cut of minimum possible
cardinality. This is exactly the property that the flow-augmentation technique provides.

Theorem 1.4. (directed flow-augmentation [KKPW22a]) There exists a polynomial-time algorithm that,
given a directed graph G, vertices s, t ∈ V (G), and an integer k, returns a set A ⊆ V (G)×V (G) and a maximum

flow P̂ from s to t in G+A such that for every star st-cut Z in G of size at most k, with probability 2−O(k4 log k),
the sets of vertices reachable from s in G− Z and (G+A)− Z are equal (in particular, Z remains a star st-cut

in G + A), coreG+A(Z) is an st-cut of minimum possible cardinality, and every flow path of P̂ contains exactly
one edge of Z.

We call such a flow P̂ a witnessing flow. Note that each path of P̂ is obliged to contain exactly one edge
of coreG+A(Z) as coreG+A(Z) is an st-cut of minimum cardinality and P̂ is a maximum flow. However, we

additionally guarantee that P̂ does not use any edge of Z \ coreG+A(Z).
Bijunctive case. The most complex result is for tractable bijunctive languages. This can be seen as a

maximally general generalization of the algorithm for Weighted Almost 2-SAT of previous work [KKPW22a].
Here, the obtained instances of Generalized Bundled Cut satisfy the following requirements: They are b-
bounded, where b is the maximum arity in Γ, all clauses are of size 2, and for every bundle B ∈ B the following
graph GB is 2K2-free: V (GB) consists of all vertices involved in an element of B except for s and t, and
uv ∈ E(GB) if there is a clause {u, v} ∈ B, an arc (u, v) ∈ B, or an arc (v, u) ∈ B. The weighted version of the
Generalized Bundled Cut with these extra requirements is called Generalized Digraph Pair Cut, and
settling the fixed-parameter tractability of the latter problem is handled in Section 3 of the full version of the
paper [KKPW22b].

We give an overview of the algorithm forGeneralized Digraph Pair Cut. Suppose that the given instance
I = (G, s, t, C,B, ω, k,W ) is a Yes-instance with a solution Z of weight at most W and let κ := |Z|, i.e. the
number of edges violated by Z, x and let κc be the number of clauses violated by Z. As previously observed, we
can assume that Z is a star st-cut and via Theorem 1.4, we can further assume (with good enough probability)

that coreG(Z) is an st-cut with minimum cardinality and additionally an st-maxflow P̂ (with λG(s, t) flow paths)

that is a witnessing flow for Z is given. The ethos of the entire algorithm is that we use the witnessing flow P̂
at hand as a guide in search for Z and narrow down the search space. The algorithm is randomized and at each
step, the success probability is at least 2−poly(b,k). Below, we assume that all the guesses up to that point are
successful.

In the first stage of the algorithm (see Section 3.1 of [KKPW22b]), the goal is to obtain an instance I ′

of Generalized Digraph Pair Cut so that there is an optimal solution Z ′ to I ′ that is an st-cut of G′ of
minimum cardinality. As κ + κc ≤ 2kb2, each of these integers can be correctly guessed with high probability.
We may assume that κ > λG(s, t) = |coreG(Z)|; if not, we may either output a trivial No-instance or proceed
with the current instance I as the desired instance. When Z \ coreG(Z) ̸= ∅, this is because there is a clause
p ∈ C that is violated by coreG(Z) and some of the extra edges in Z \ coreG(Z) are used to separate an endpoint
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(called an active vertex ) of p from s to satisfy p. Even though we cannot sample an active vertex with high enough
probability, i.e. 1/f(k, b) for some f , we are able to sample a monotone sequence of vertices u1, . . . , uℓ with high
probability in the following sense: There exists a unique active vertex ua among the sequence, and all vertices
before ua are reachable from s in G−Z and all others are unreachable from s in G−Z. Once such a sequence is
sampled, the st-path visiting (only) u1, . . . , uℓ in order is added as soft arcs, each forming a singleton bundle of
weight W +1, and we increase the budgets k and W to k+1 and 2W +1 respectively. Let I ′ be the new instance.
Then Z ′ := Z ∪ {(ua−1, ua)} (where u0 = s) is a solution to I ′ violating at most k + 1 bundles with weight at
most 2W + 1. The key improvement is here that ua is connected to t with a directed path in G − Z ′, implying
that at least one of the extra edges in Z \ coreG(Z) used to cut ua from s (in addition to (ua−1, ua)) is now
incorporated into coreG′(Z ′), thus the value |Z \ coreG(Z)| strictly drops in the new instance. After performing
this procedure of “sampling a (monotone) sequence then adding it as an st-path” a bounded number of times, we
get a Yes-instance that has an st-mincut as an optimal solution with high enough probability.

We proceed with an instance I and an st-maxflow P̂ obtained from the previous stage, i.e., for which there
is an optimal solution Z that is an st-mincut whenever I is a Yes-instance. In the second stage of the algorithm
(presented in Section 3.2 of [KKPW22b]), we branch into f(k) instances each of which is either outright No-
instance or ultimately bipartite in the following sense. Suppose that an instance I admits a vertex bipartition
V (G) \ {s, t} = V0 ⊎ V1 such that (i) the vertices of any flow path Pi are fully contained in Vα ∪ {s, t} for some
α ∈ {0, 1}, (ii) for every edge (u, v) ∈ E(G), we have u, v ∈ Vα ∪ {s, t} for some α ∈ {0, 1}, and (iii) there is no
clause {u, v} ∈ C with {u, v} ⊆ Vα ∪ {s, t} for some α ∈ {0, 1}. If the instance at hand is ultimately bipartite, we
can eliminate the clauses altogether: Reverse the orientations of all edges in G1 := G[V1 ∪ {s, t}] and identify t
(s resp.) of the reversed graph with s (t resp.) of G0 := G[V0 ∪ {s, t}], and for any clause {u, v} with u ∈ V0 and
v ∈ V1, replace the clause {u, v} by the arc (u, v). Note that the reversal of G1 converts the property (in G− Z)
of “v being reachable / unreachable from s” to “v reaching / not reaching t” for all v ∈ V (G1). Hence, converting
a clause {u, v} to an arc (u, v) preserves the same set of violated vertex pairs, except that the violated clauses
now become violated edges.

After the aforementioned transformation into an instance without clauses (see Section 3.2.5 of [KKPW22b]),
the bundles maintain 2K2-freeness. Now, 2K2-freeness is used to argue that (after some preprocessing and
color-coding steps) the bundles are ordered along the flow paths, which allows us to transform (see Section 3.3
of [KKPW22b]) the instance to an instance of the Weighted Minimum st-Cut problem: Given an edge-
weighted directed graph G with s and t, find a minimum weight st-cut of cardinality λ, where λ is the cardinality
of a maximum st-flow. This problem is polynomial-time solvable. In Section 3.2.1 up to Section 3.2.4 of the full
version [KKPW22b], we present the branching strategies and preprocessing steps to reach the ultimately bipartite
instances.

IHS-B case. This algorithm can be seen as a mix of the Chain SAT algorithm of [KKPW22a] and the
Digraph Pair Cut algorithm of [KW20]. Here, the obtained instances of Generalized Bundled Cut are
unweighted and satisfy the following requirements: They are b-bounded, where b is the maximum arity in Γ, and
for every bundle B ∈ B the following graph G′

B is 2K2-free: V (G′
B) consists of all vertices involved in an element

of B except for s and t, and uv ∈ E(G′
B) if there is an arc (u, v) ∈ B or an arc (v, u) ∈ B. That is, clauses can

be larger than 2 (but of size at most b), but in a bundle all arcs not incident with s nor t form a 2K2-free graph.
By applying flow-augmentation, we can assume that for the sought solution Z it holds that coreG(Z) is an st-cut

of minimum cardinality and we have access to a witnessing flow P̂. Every path P ∈ P̂ contains a unique edge
eP ∈ E(P ) ∩ Z.

We perform the following color-coding step. For every bundle B and every P ∈ P̂ we randomly guess a value
e(B,P ) ∈ {⊥} ∪ (E(P ) ∩ B). We aim for the following: For every B violated by Z, and every P ∈ P̂, we want
e(B,P ) to be the unique edge of B ∩E(P )∩Z, or ⊥ if there is no such edge. We also branch into how the edges

eP are partitioned into bundles. That is, for every two distinct P, P ′ ∈ P̂, we guess if eP and eP ′ are from the
same bundle. Note that this guess determines the number of bundles that contain an edge of coreG(Z); we reject
a guess if this number is larger than k.

Assume that we guessed that eP , eP ′ ∈ B for some P, P ′ ∈ P̂ and a bundle B violated by Z. Then, as G′
B is

2K2-free, either eP or eP ′ is incident with s or t, or they have a common endpoint, or there is an arc of B from
an endpoint of eP to an endpoint of eP ′ , or there is an arc of B from an endpoint of eP ′ to an endpoint of eP .
We guess which cases apply. If eP or eP ′ is incident with s or t, there is only a constant number of candidates
for B, we guess it, delete it, decrease k by one, and restart the algorithm. All later cases are very similar to each
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other; let us describe here the case that B contains an arc f from an endpoint of eP to an endpoint of eP ′ .
Let B1 and B2 be two bundles that are candidates for bundle B; that is, for i = 1, 2 we have ei := e(Bi, P ) ̸= ⊥,

e′i := e(Bi, P
′) ̸= ⊥, and Bi contains an arc fi that is a candidate for f : has its tail in ei and its head in e′i.

Assume that e1 is before e2 on P but e′1 is after e′2 on P ′. The crucial observation (and present also in the
algorithm for Chain SAT of [KKPW22a]) is that it cannot hold that B = B2, as if we cut e2 and e′2, the edge
f1 ∈ B1 will provide a shortcut from a vertex on P before the cut to a vertex on P ′ after the cut. Thus, we may
not consider B2 as a candidate for the bundle B violated by Z. Furthermore, the remaining candidates for the
bundle B are linearly ordered along all flow paths P where B ∩ Z ∩ E(P ) ̸= ∅.

This allows the following filtering step: For every bundle B, we expect that {P | P ∈ P̂, e(B,P ) ̸= ⊥} is
consistent with the guessing and there is no other bundle B′ with the same set {P | e(B,P ) ̸= ⊥} that proves

that B is not violated by Z as in the previous paragraph. We also expect that {e(B,P ) | P ∈ P̂} extends to
a minimum st-cut. If B does not satisfy these conditions, we delete it from B (making all its edges and clauses
crisp).

Now, a simple submodularity argument shows that the first (closest to s) minimum st-cut Z0 (where only

edges e(B,P ) for some B ∈ B and P ∈ P̂ are deletable) has the correct structure: its edges are partitioned among
bundles as guessed. If Z0 is a solution, we return Yes; note that this is the step where we crucially rely on the
instance being unweighted. Otherwise, there is a clause C ∈ C violated by Z0. It is either indeed violated by the
sought solution Z or there is v ∈ C that is not reachable from s in G−Z. We guess which option happens: In the
first case, we delete the bundle containing C, decrease k by one, and restart the algorithm. In the second case,
we guess v and add a crisp arc (v, t), increasing the size of a minimum st-cut, and restart the algorithm. This
concludes the overview of the algorithm; note that the last branching step is an analog of the core branching step
of the Digraph Pair Cut algorithm of [KW20].

Dichotomy completion. Finally, in order to complete the dichotomy we need to show that the above
two algorithms cover all interesting cases. This builds on the previous, partial characterization of Kim et
al. [KKPW21]. Section 5 of the full version [KKPW22b] contains full proofs for completeness, but for the
purposes of this overview we can start from a result from the extended preprint version of a paper of Bonnet et
al. [BELM18]. Specifically, they show that for any language Γ that is not IHS-B or bijunctive, Min SAT(Γ) does
not even admit a constant-factor approximation in FPT time, parameterized by k. Clearly, there in particular
cannot exist exact FPT-algorithms for such languages, hence we may assume that Γ is bijunctive or IHS-B. By
a structural observation, we show that either Γ implements positive and negative assignments, i.e., constraints
(x = 1) and (x = 0), or Weighted Min SAT(Γ) is trivial in the sense that setting all variables to 1 (respectively
to 0) is always optimal. Hence we assume that Γ implements assignments. Furthermore, recall that our basic
W[1]-hard constraints are R4(a, b, c, d) ≡ (a = b) ∧ (c = d) or its variants with one or both equalities replaced by
implications.

First assume that Γ is bijunctive and not IHS-B. In particular, every relation R ∈ Γ can be expressed as a
conjunction of 1- and 2-clauses, but it does not suffice to use only conjunctions over {(x ∨ y), (x → y), (¬x)} or
over {(¬x ∨ ¬y), (x → y), (x)}. By standard methods (e.g., the structure of Post’s lattice [Pos41]), we may then
effectively assume that Γ contains the relation (x ̸= y). Furthermore, we assume that there is a relation R ∈ Γ
such that the Gaifman graph GR contains a 2K2. In fact, assume for simplicity that R is 4-ary and that GR has
edges {1, 2} and {3, 4}. Then R must be a “product” R(a, b, c, d) ≡ R1(a, b)∧R2(c, d), where furthermore neither
R1 nor R2 implies an assignment, as such a case would imply further edges of the Gaifman graph. It is now easy
to check that each of R1 and R2 is either Ri(x, y) ≡ (∼x =∼y) or Ri(x, y) ≡ (∼x →∼y), where ∼v represents
either v or ¬v. It is now not difficult to use R in combination with ̸=-constraints to implement a hard relation
such as R4, implying W[1]-hardness.

Next, assume that Γ is IHS-B, say ISH-B-, but not bijunctive. Then, again via Post’s lattice, we have access
to negative 3-clauses (¬x ∨ ¬y ∨ ¬z). We first show that either Γ implements equality constraints (x = y), or
Weighted Min SAT(Γ) has a trivial FPT branching algorithm. We then need to show that Weighted Min
SAT((x = 1), (x = 0), (x = y), (¬x ∨ ¬y ∨ ¬z)) is W[1]-hard, and that Min SAT(Γ) is W[1]-hard if Theorem 1.3
does not apply. To describe these W[1]-hardness proofs, we need a more careful review of the hardness reduction
for Min SAT((x = 1), (x = 0), R4). As is hopefully clear from our discussions, this problem corresponds to
finding an st-cut in an auxiliary multigraph G, where the edges of G come in pairs and the cut may use edges
of at most k different pairs. We show W[1]-hardness of a further restricted problem, Paired Minimum st-cut,
where furthermore the edges of the graph G are partitioned into 2k st-paths, i.e., the st-flow in G is precisely 2k
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and any solution needs to cut every path in precisely one edge.
The remaining hardness now all use the same basic idea. Say that a pair of st-paths P = (s = x1 = . . . =

xn = t) and P ′ = (s = x′
n = . . . = x′

1 = t) in a formula F over Γ are complementary if any min-cost solution to F
cuts between xi and xj if and only if it cuts between x′

j and x′
i. In other words, for a min-cost assignment α, we

have α(xi) ̸= α(x′
i) for every i ∈ [n]. This way, for the purposes of a hardness reduction from Paired Minimum

st-Cut only, we can act as if we have access to ̸=-constraints by implementing every path in the input instance
as a pair of complementary paths over two sets of variables xv, x

′
v in the output formula. Indeed, consider a

pair {{u, v}, {p, q}} of edges in the input instance, placed on two distinct st-paths. To force that the pair is cut
simultaneously, we wish to use crisp clauses such as (u ∧ ¬v → p) and (u ∧ ¬v → ¬q), enforcing that if {u, v} is
cut, i.e., α(u) = 1 and α(v) = 0 for the corresponding assignment α, then α(p) = 1 and α(q) = 0 as well. This is
now equivalent to the negative 3-clauses (¬u ∨ ¬v′ ∨ ¬p) and (¬u ∨ ¬v′ ∨ ¬q′).

We can implement such complementary path pairs in two ways, either with equality, negative 2-clauses, and
carefully chosen constraint weights, for hardness of Weighted Min SAT(Γ), or with a relation R such that the
arrow graph HR contains a 2K2, for the unweighted case. Here, although the truth is a bit more complex, we
can think of such a relation R as representing either R4 or a constraint such as the coupled min-cut constraint
R(a, b, c, d) ≡ (a → b) ∧ (c → d) ∧ (¬a ∨ ¬c). Note that the construction of complementary path pairs using such
a constraint is straight forward.

The final case, when Γ is both bijunctive and IHS-B-, works via a similar case distinction, but somewhat
more complex since we need to consider the interaction of the two theorems Theorem 1.2 and Theorem 1.3. The
full characterization of Min SAT(Γ) and Weighted Min SAT(Γ) as FPT or W[1]-hard, including explicit lists
of the FPT cases, is found in Lemma 5.22 of the full version [KKPW22b].
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