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Abstract

Disordered packings of non-spherical particles and their mixtures are abundant in nature, but

have so far attracted only few systematic studies. Previous investigations of binary mixtures of

specific convex shapes have established two generic properties: (i) the existence of a unique density

maximum when shape or mixture composition of the two species are varied; (ii) the validity of

an ideal mixing law indicating that the packing density is independent of the segregation state.

These findings were so far only observed for mixtures of convex particles such as spherocylinders,

ellipsoids, and spheres. Here, we investigate the packing properties of binary mixtures of frictionless

dimer particles simulated by a gravitational pouring protocol in LAMMPS. Our results demonstrate

the validity of (i,ii) also for such packings of non-convex particles. Moreover, we investigate the

contact statistics of these packings to elucidate the microstructural features that underlie (i,ii).

Our results show that the contact number per species also satisfies a simple mixing law and that

similar microscopic rearrangements of contacts as in monodisperse dimer packings accompany the

formation of the density peak in binary mixtures largely independent of the mixture composition.
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I. INTRODUCTION

Jammed particle packings have been studied to understand the structures of amorphous

materials such as powders, reinforcing fibres, granular matter, and glasses [1]. Most studies

mainly focused on monodisperse packings of spherical and non-spherical particles for which a

plethora of experimental and theoretical results are available [2–5]. Elongated non-spherical

particles such as ellipsoids [6–9], spherocylinders [10–16], and dimers [17–20] exhibit a non-

monotonic variation of the packing density upon deviation from the spherical shape, with a

maximum at specific aspect ratios. Although unlike spheres these shapes include rotational

degrees of freedom, they do not fully represent realistic materials yet since polydispersity in

both shape and size is inevitable for particle aggregates in nature.

In fact, numerous studies of binary and polydisperse packings of spherical particles

demonstrate that changing the size distribution of the particles improves the packing density

[21–31]. On the other hand, there are only few systematic investigations of mixtures elucidat-

ing the effect of non-spherical particle shapes. Studies of jammed packings of spherocylinder–

sphere mixtures with the same diameter report a density maximum occurring at the same

aspect ratio of the spherocylinders as in monodisperse packings, regardless of the relative

volume fraction of the two species [16, 32, 33]. The density maximum is also present under

different conditions, such as when spherocylinders and spheres have equal volume or different

diameters [14, 34, 35]. For binary mixtures of two species of spherocylinders with the same

diameter but different aspect ratios α1, α2, the density maximum that arises upon varying

α2 while keeping α1 fixed, always occurs at the same aspect ratio of α2 [14, 35, 36]. This

aspect ratio likewise agrees with value at which the packing density of the monodisperse

spherocylinder packing is maximal.

Non-spherical particle mixtures also satisfy a remarkable empirical ideal mixing law, which

states that the inverse packing density is a linear superposition of the inverse packing den-

sities of pure (single species) phases weighted by their relative volume fraction [16, 37, 38].

For example, the total packing density φ of spherocylinder–sphere mixtures is then given by

φ−1 = X1φ
−1
1 + (1−X1)φ

−1
2 , (1)

where X1 denotes the relative volume fraction of spherocylinders with a monodisperse pack-

ing density of φ1 and likewise φ2 is the packing density of monodisperse spheres. For binary

mixtures the ideal mixing law establishes a linear dependence of φ−1 on the relative volume
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fraction of one species. Clearly, since the relative volume fraction is fixed by the setup, the

packing density of the mixture is then fully determined by the packing densities of the pure

phases and thus independent of the segregation state. This independence implies further

that particle orientations are completely uncorrelated showing an interesting similarity with

a plastic crystal [16].

All these results provide avenues to optimize the packing densities of granular materials by

mixing non-spherical particles, which might be relevant in industrial applications. Therefore,

it is a fundamental question whether the universal density maxima and the ideality in mixing

exist also for binary mixtures of elongated non-convex particles. In this study, we focus on

dimer shaped particles, a simple non-convex particle, obtained by overlapping two identical

spheres. We generate disordered packings of both dimer-sphere and dimer-dimer mixtures by

molecular dynamics (MD) simulations using a gravitational pouring protocol in LAMMPS

[39, 40]. In addition to the packing density, we also investigate the contact statistics of

the mixtures. In our recent work on the structural analysis of monodisperse packings of

dimers, we could associate the emergence of the density maximum with microstructural re-

arrangements that are manifest in the contact statistics of local configurations [20]. Whether

such re-arrangements are also related to the behaviour of the packing density in binary dimer

mixtures is thus an interesting open question.

The remainder of the paper is organized as follows. In Section II we present the details

of our simulation method with LAMMPS. In Section III and Section IV, we show results on

our analysis of the packing density, contact and coordination numbers for dimer-sphere and

dimer-dimer mixtures, respectively. Finally, we conclude in Section V with a discussion of

our results.

II. SIMULATION METHOD

We generate disordered packings of frictionless dimer–sphere and dimer–dimer mixtures

in three dimensions with MD simulations. A single dimer is formed by overlapping two

identical spheres with diameter d, whereby the dimer’s aspect ratio (length divided by

width) α is varied in the range 1.05 ≤ α ≤ 2, see Fig. 1. We use a packing-generation

protocol where N particles are poured under gravity into a three-dimensional box of side

length ≈ 20d. The box is constrained in the ẑ-direction by a rough surface at the bottom and
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an open top with periodic boundary conditions in the x̂-ŷ-plane. In our packing protocol,

the dimers are initially placed at random positions and with random orientations within

a specified insertion region 30 − 40d above the bottom and then released to settle in the

box under gravity. Similar gravitational pouring protocols have previously been employed

to generate jammed disordered packings of monodisperse spheres [41], ellipsoids [6, 7], and

dimers [17]. Since we model dimers as overlapping spheres, the interaction between two

dimers can be determined from the pairwise interaction of spheres, which we assume to

follow a spring-dashpot model as in the studies of frictional sphere packings of [41, 42] that

used MD simulations. In this model, two contacting spheres i and j having positions ri and

rj, respectively experience a relative normal compression with overlap δ = d − rij, where

rij = ri − rj and rij = |rij|. The resulting force on sphere i is Fij = Fn
ij + Ft

ij, where Fn,t
ij

are the normal and tangential contact forces, respectively, given as [42]:

Fn
ij = Knδ nij −

m

2
γnvn Ft

ij = −Kt∆st −
m

2
γtvt, (2)

where nij = rij/rij, vn,t are the normal and the tangential components of the relative velocity

of the spheres i and j, and ∆st is the elastic tangential displacement. Kn,t and γn,t are the

elastic and viscoelastic constants, respectively [42]. In a gravitational field g = −g ẑ, the

total force Ftot
i and torque τ toti on sphere i is then given as:

Ftot
i = mg +

∑
i 6=j

Fn
ij +

∑
i 6=j

Ft
ij, (3)

τ toti = −1

2

∑
i 6=j

rij × Ft
ij, (4)

where the sum runs over all j spheres in contact with sphere i. The equations of motion

are integrated with the MD solver LAMMPS [39, 40]. It allows in particular to define rigid

bodies like the dimers by fixing the distance between its two constituent spheres’ centres.

In every time step, each dimer particle’s total force and torque are computed as the sum

of the forces and torques on its constituent spheres. Then, the coordinates, velocities, and

orientations of the constituent spheres are updated so that the dimer moves and rotates as

a single entity. Simulations are run until a static equilibrium is achieved when the kinetic

energy per particle is less than 10−8mgd. The number of particles, material parameter

values, and time step used in the simulations of dimer-sphere and dimer-dimer mixtures are

given in Table I. Note that most of these values are chosen following the discussion in [41].
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(a) (b) (c)

FIG. 1: Dimer shape defined by the aspect ratio: (a) α = 1.05, (b) α = 1.4, (c) α = 2.

TABLE I: The number of particles N , material parameter values, and time step ∆t used in the

simulations of dimer-sphere and dimer-dimer mixtures.

mixtures N Kn (mg/d) Kt/Kn γn
√
g/d ∆t (

√
d/g)

dimer-sphere 12,000-18,000 2× 105 2/7 50 0.001

dimer-dimer 12,000 2× 105 2/7 50 0.001

We run ten independent simulations for both dimer–sphere and dimer–dimer mixtures and

average all data points in our plots over them.

III. DIMER–SPHERE MIXTURES

A. Packing Density

We investigate dimer–sphere mixtures for various relative dimer volume fractions Xd

defined as:

Xd =
NdVd

NdVd +NsVs
, (5)

where Ni and Vi are the number of particles and the particle volume of component i, respec-

tively, for component i ≡ d(dimers) and i ≡ s(spheres). An example of a disordered solid of

a dimer–sphere mixture is shown in Fig. 2.

In order to calculate the packing density of the disordered solid, we define a bulk region,

see Fig. 3. We observe that our packing protocol can result in some crystallization at the

bottom of the box, depending on many factors such as the box width, the time step and

the pouring height. In order to have results unaffected by this crystallization, we exclude

the particles within 5 − 8d from the box floor from our packing density calculation. To

determine the density, we need to calculate the total volume occupied by the particles. The

Voro++ package in LAMMPS uses a conventional Voronoi tessellation that provides the

Voronoi volume Wl of each sphere in the packing [40]. The Voronoi volume Wk of a dimer
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FIG. 2: A disordered solid of mixtures of dimers (coloured in blue) with α = 1.4 and spheres

(coloured in red) for the relative dimer volume fraction Xd = 0.5.

is obtained by summing the Voronoi volumes of its two constituent spheres. Note that the

Voronoi volumes of the particles within 5d from the upper-most particles in the packing can

not be determined accurately due to deficiencies in their neighbourhood. Therefore, we also

exclude those particles from the bulk region. The total bulk volume occupied by Ns spheres

and Nd dimers in the bulk is calculated as Vb =
∑Ns

l=1Wl+
∑Nd

k=1Wk and the packing density

is then determined as φ = (NsVs +NdVd)/Vb. Here, the volume of a dimer, Vd, is calculated

by subtracting the overlap volume from the sum of its constituent sphere volumes [20]. To

consider a dimer as a bulk particle, the centres of both constituent spheres should be within

the bulk. We calculate all average quantities discussed in the following for the bulk particles

only.

We plot the total packing density of the mixture as a function of the dimer aspect ratio

α in Fig. 4(a) for different relative dimer volume fractions. There are two limiting cases: we

obtain pure sphere and pure dimer packings when Xd = 0 and Xd = 1, respectively. It can

be seen from Fig. 4(a) that φ exhibits a non-monotonic behaviour with the dimer aspect

ratio by yielding a maximum at α ≈ 1.4, as in the case of monodisperse dimer packings

[17–20], independently of the relative volume fraction. We observe that the packing density

monotonically grows upon the increase in the relative amount of dimers up to the absolute

maximum (φ = 0.707) that has been achieved in our previous study of monodisperse dimer
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FIG. 3: The bulk region shown in the x̂-ẑ-plane.

packings using the exact same protocol [20]. The appearance of a unique maximum is in

agreement with previous studies of packings of spherocylinder–sphere mixtures with the

same diameter condition for various compositions [16, 32, 33] and have been explained by

the competition between local caging (a short spherocylinder can be oriented to minimize

the space left by its contacting neighbours) and excluded volume effects. Other studies

simulated the packings of spherocylinder–sphere mixtures only for one fixed spherocylinder

volume fraction and with different diameters, they still found a maximum in the packing

density at one unique rod aspect ratio [14, 34, 35].

In order to investigate the validity of the ideal mixing law Eq. (1) in our dimer–sphere

mixtures, we plot the inverse packing density as a function of the dimer volume fraction

Xd for several aspect ratios. As shown in Fig. 4(b), the different curves are indeed well

described by a linear relationship whose validity has also been established statistically, see the

discussion in Appendix A. This linearity suggests that the packing density of the mixture is

independent of the segregation state, i.e., a completely mixed packing has the same volume as

one consisting of two separate phases each composed of only dimers or spheres, respectively,

as discussed in detail in [16].
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FIG. 4: (a) The packing density φ of binary mixtures of dimer and sphere as a function of the dimer

aspect ratio α, (b) The inverse packing density φ−1 of the mixtures as a function of the relative

dimer volume fraction Xd for several dimer aspect ratios. Solid lines are given by Eq. (1) without

any fit parameter: the lines are fully specified by the packing densities of pure monodisperse sphere

and dimer packings.

B. Contact and coordination numbers

We measure the contact number z, the average number of contact points of a particle

and the coordination number n, the average number of neighbours of a particle. Here,

we define neighbours as particles sharing at least one contact point. Note that multiple

contacts between neighbouring particles are available for concave shapes like dimers, so

z ≥ n, whereas z = n for smooth convex shapes like spheres, ellipsoids, and spherocylinders.

In our definition, two dimers A and B are in contact if the distance between the centre of the

constituent sphere i of dimer A and the centre of the constituent sphere j of dimer B satisfies

rij ≤ d. We further define four types of contact numbers for the mixtures of dimers and

spheres: dimer-to-dimer zdd, dimer-to-sphere zds, sphere-to-sphere zss, and sphere-to-dimer

zsd, which denote the average number of contact points of the former component with the

latter one. The contact number of dimer particles zd and the contact number of spheres zs

are found as, respectively:

zd = zdd + zds (6)

zs = zsd + zss (7)
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The overall contact number z is then defined as:

z =
zdNd + zsNs

Nd +Ns

(8)

Similarly, there are four types of coordination number: dimer-to-dimer ndd, dimer-to-

sphere nds, sphere-to-sphere nss, and sphere-to-dimer nsd, which denote the average number

of neighbours of the former component with the latter one. The coordination number of

dimer particles nd and the coordination number of spheres ns are found as, respectively:

nd = ndd + nds (9)

ns = nsd + nss (10)

The overall coordination number n is then defined as:

n =
ndNd + nsNs

Nd +Ns

(11)
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FIG. 5: (a) The overall contact number z, (b) The overall coordination number n of dimer–sphere

mixtures vs the relative dimer volume fraction Xd for various dimer aspect ratios.

In Fig. 5(a), we show the overall contact number z as a function of the relative dimer

volume fraction Xd. As can be seen, for all aspect ratios, z monotonically increases from

the contact number of monodisperse sphere packings, 6.14 to that of pure dimer ones,

10.28 as Xd grows. These two limits for the contact number of monodisperse packings are

slightly above the isostatic values of z = 6 and z = 10, generally observed for disordered

sphere [5] and dimer packings [19, 43, 44], respectively. These differences are because of

the soft particle interaction model used in our gravitational packing protocol. The overall
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coordination number n of the mixtures is also strongly dependent on the relative dimer

volume fraction, as displayed in Fig. 5(b). The variation of n with the aspect ratio becomes

noticeable and approaches that for monodisperse dimer packings as Xd increases.
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relative dimer volume fraction, Xd

6.0

6.5

7.0

7.5

8.0

z s

α = 1.2
α = 1.4
α = 1.6
α = 1.8
α = 2

(b)

0.2 0.4 0.6 0.8

relative dimer volume fraction, Xd

8.0

8.5

9.0

9.5

10.0

10.5

11.0

z d

α = 1.2
α = 1.4
α = 1.6
α = 1.8
α = 2

FIG. 6: (a) The contact number of spheres zs (b) The contact number of dimers zd of binary

mixtures vs the relative dimer volume fraction Xd for several dimer aspect ratios.
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FIG. 7: (a) The coordination number of spheres ns, (b) The coordination number of dimers nd of

binary mixtures vs the relative dimer volume fraction Xd for several dimer aspect ratios.

The contact numbers of spheres and dimers, zs and zd are calculated separately and shown

in Fig. 6 as a function of Xd. Both zs and zd vary approximately linearly with Xd exhibiting

a positive slope for α ≤ 1.8 and a negative slope for α = 2. When α = 2, zs < 6 for large

dimer volume fractions, indicating that the spheres have fewer contacts than required for

mechanical stability in this regime. Similarly, while dimers of α = 2 have more contacts

than in the monodisperse case (zd > 10.28), shorter dimers lose some of their contacts in the
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TABLE II: Two distinct contact configurations of sphere and dimer (sd,ds) and five distinct contact

configurations of two neighbouring dimers (dd). We show illustrations for aspect ratio α = 2. The

total number of contact points for each type is: one (Type 1), two (Type 2,3), three (Type 4), four

(Type 5)

Pair Type 1 Type 2 Type 3 Type 4 Type 5

sd,ds

dd

dimer–sphere mixtures. Overall, we see that the isostatic condition is generally violated for

the individual components in the disordered packings of dimer–sphere mixtures. While one

species is hyperstatic, the other one is always hypostatic. We also calculate the coordination

numbers of spheres and dimers (ns, nd) separately and display them as a function of Xd in

Fig. 7. The dependence on Xd is also approximately linear with similar trends as for the

contact numbers, but the change in slope from positive to negative occurs now already for

α > 1.4.

The validity of a linear relationship of zs, zd, ns, and nd as a function of Xd highlights

that also the component-wise contact and neighbour numbers satisfy a simple superposition

principle for mixing and are fully specified by the corresponding numbers of monodisperse

packings.
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FIG. 8: The fractions of the contact configuration types of Table II between the components of

binary mixtures, contact pairs are indicated by lower indices: sphere-to-dimer, dimer-to-sphere

and dimer-to-dimer (sd,ds,dd) for different dimer volume fractions (a) Xd = 0.3, (b) Xd = 0.5,

(c) Xd = 0.7.

C. Contact configurations

In order to better understand changes in the microstructure of the packing due to shape

variations and mixing, we investigate five distinct contact configurations as defined in our

previous work on monodisperse dimer packings according to the number of contact points

shared by two neighbouring particles [20], see Table II. We count the number of contact types

occuring in the mixture per component pair and calculate the fractions of these contacts

as shown in Fig. 8. Here, the Type 1sd,ds fraction refers to the fraction of Type 1 contacts

among all contacts between dimers and spheres, i.e., the fractions of Type 1sd,ds and Type

2sd,ds add up to 1. Likewise, the fractions of the five different types of dimer–dimer contacts

add up to 1. Fig. 8 shows that these fractions change initially upon increasing the dimer

aspect ratio α up to the region at which the density peak occurs (α ≈ 1.4), but remain

approximately unchanged for α > 1.4. We also observe that the fraction of Type 1 contacts

increases, while that of Type 2 contacts decreases as the mixture packs more dense for

increasing α, which is somewhat counterintuitive, since Type 2 configurations are locally

more compact, see Table II. These observations are analogous to the monodisperse case,

which further supports the qualitative picture that the peak in the packing density arises due

to the interplay of structural rearrangements for small α and subsequent excluded volume

effects with unchanged structure. The latter means that if the structure is unchanged while

α increases, there is simply more empty space in the packing and the packing density has
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to decrease.

Surprisingly, all the different fractions in Fig. 8 show almost no variations with a change of

Xd. Indeed the fractions for the dimer–dimer contact configurations are almost identical to

the monodisperse case. We believe that this is not a simple consequence of the normalization

of these fractions. After all, it could have been expected that the fraction of Type 1 dimer–

dimer configurations is different when there are a lot of dimers available as contacts than if

there are few, but this is not the case.

IV. DIMER–DIMER MIXTURES

A. Packing Density

We measure the bulk packing density φ of binary dimer mixtures for various mixture

compositions. The two species of dimers (dimer 1 and dimer 2) have different aspect ratios,

α1 and α2, respectively. The relative volume fraction of dimer 1, X1 is defined as:

X1 =
N1V1

N1V1 +N2V2
(12)

where Ni and Vi (i=1,2) are the number of particles and the volume of the i-th component,

respectively. We follow the same steps as in Sec. III for the packing density calculation. The

mixture packing density variation with α1 and α2 is shown in a heat map for three different

X2 values in Fig. 9(a–c). For all fixed aspect ratios of one component (e.g. α1), φ exhibits

a non-monotonic relationship with the aspect ratio of the second species α2: it increases up

to a peak and subsequently decays, whereby the peak always occurs at α2 ≈ 1.4, i.e., at the

aspect ratio at which the monodisperse dimer packing has its density maximum [20]. This

behaviour is irrespective of the relative volume fractions of the two components. As in the

case of dimer–sphere mixtures, the packing density of binary dimer mixtures never exceeds

the maximum packing density observed for monodisperse dimer packings at φ = 0.707

[20]. These results agree with the findings of disordered packings of binary spherocylinders

[14, 35, 36].

We also plot the inverse packing density of the mixtures of dimer 1 with α1 = 1.4 and

dimer 2 with various aspect ratios α2 as a function of X2 and compare them with the results

from the ideal mixing law Eq. (1) in Fig. 9(d). As can be seen, the curves exhibit a linear

relationship with the volume fraction when α2 < 2. However, we observe that the inverse
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FIG. 9: The mixing packing density map of binary dimer mixtures for different aspect ratios of

the first and the second component, α1 and α2, respectively is shown for three volume fractions of

the first component (a) X2 = 0.3. (b) X2 = 0.5. (c) X2 = 0.7. We note that figures (a) and (c)

contain the same information. (d) The inverse packing density φ−1 of mixtures of dimer 1 with

α1 = 1.4 and dimer 2 with various aspect ratios α2 as a function of X2. Solid lines are given by

Eq. (1) without any fit parameter: the lines are fully specified by the packing densities of pure

monodisperse dimer 1 and dimer 2 packings.

density curve is slightly concave-upward for α2 = 2, exhibiting deviations from the ideal

mixing law. A statistical analysis confirming the validity of the ideal mixing law for α2 < 2

can be found in Appendix A. For α2 = 2 a perfect fit of the data can be obtained using a

4th order polynomial instead of a linear curve, see Fig. 14(b).
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B. Contact and coordination numbers

For the contact and coordination number analysis, we focus on the mixtures of dimer 1

with α1 = 1.4 and dimer 2 with various aspect ratios, α2. We use the same definitions for

partial contact and coordination numbers of the two components as in Sec. III. We also

measure the overall contact and coordination numbers of the mixtures. For all calculations,

we consider only bulk particles.
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FIG. 10: (a) The contact number z and the coordination number n of monodisperse dimer packings

as a function of aspect ratio α [20]. (b) The overall contact number z and the overall coordination

number n of the mixtures of dimer 1 with α1 = 1.4 and dimer 2 with different aspect ratios α2 vs

the relative volume fraction of the second component X2.
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FIG. 11: The contact number of each dimer species vs X2. Different α2 are shown and α1 = 1.4.

(a) z1. (b) z2.
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FIG. 12: The coordination number of each dimer species vs X2. Different α2 are shown and

α1 = 1.4. (a) n1. (b) n2.

We show the overall contact number z and the overall coordination number n as a function

of the relative volume fraction of the second species in Fig. 10. We observe that the coordi-

nation number n is sensitive to both changes in α2 and X2, while z is essentially constant

with z = 10.3, the same value of monodisperse dimer packings, see Fig. 10a [20]. Therefore,

disordered packings of binary dimer mixtures also satisfy the isostatic condition regardless

of the relative volume fraction of the components. In this context, we should mention that

previous studies of bidisperse and polydisperse sphere packings also found a constant mean

contact number, irrespectively of the particle size distribution and the relative amount of

different components [45–49]. Although the size effect is the only parameter in the sphere

case whereas we take into account both shape and size effects in our packings when α2 is

varied, a constant mean contact number seems a generic result of mixing two components

having the same isostatic value for their disordered monodisperse packings.

We calculate the contact and coordination numbers of the two components (z1, z2, n1

and n2) separately and display them as a function of X2 in Fig. 11 and Fig. 12, respectively.

All these numbers satisfy an approximate linear relationship as in the case of dimer–sphere

mixtures. Fig. 11 shows that the contact number of the longer dimer species is always

hyperstatic with a higher coordination number than in the monodisperse case (X2 = 0),

while the shorter dimer species is always hypostatic. Both contact and coordination numbers

exhibit a crossover from positive to negative slopes for α > 1.2. Comparing with the dimer–

sphere case (Fig. 6b), we see that dimers mixed with spheres need one to two fewer contacts
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at each aspect ratio than dimers mixed with another dimer species. On the other hand,

the coordination numbers of the dimers are very similar (compare Fig. 7b and Fig. 12b)

indicating that the extra contacts arise from multiple contacts between neighbouring dimer

pairs. The coordination number n2 exhibits an intersection of the α2 > 1.4 curves for

X2 = 0.9, whose origin is not clear.
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FIG. 13: The fractions of the five contact configuration types of Table II as a function of α2 for

each component of the binary dimer mixture with α1 = 1.4: the notation Type 12 refers to the

fraction of Type 1 contacts on dimer 2, etc. (a) X2 = 0.3. (b) X2 = 0.5. (c) X2 = 0.7.

C. Contact configurations

We also determine the fractions of the five contact configuration types of Table II for each

component (dimer 1 and 2) and display them as a function of the aspect ratio of the second

component α2 for three different volume fractions in Fig. 13. Comparing with the dimer–

sphere case, the fractions of the dimer 2 contact configurations are very close to those of

the dimers in dimer–sphere mixture and thus also to those of monodisperse dimer packings,

but a slight dependence on X2 can be observed, in particular for small α2. The Type 1

(Type 2) fractions of the dimer 1 contact configurations are considerably smaller (larger)

than those of spheres, but always larger (smaller) than those of dimer 2. The curves become

slightly flatter when X2 decreases, i.e., there are in particular more Type 1 and less Type

2 configurations for small α2, which is expected for the dimer 1 fractions, since they need

to approach constants when X2 → 0, but why those of dimer 2 change likewise is unclear.

Overall, as in the dimer–sphere and monodisperse dimer case, we see that the fractions

show the largest variation in the regime α2 < 1.4 and remain approximately unchanged for
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α2 ≥ 1.4.

V. CONCLUSIONS

Our investigation shows that the packing densities of dimer–sphere and dimer–dimer

mixtures exhibits a non-monotonic variation in the packing density as the aspect ratio of

one species is varied, confirming previous results of spherocylinder–sphere and ellipsoid–

sphere mixtures. We also confirm the validity of the ideal mixing law Eq. (1) for both types

of mixtures highlighting the independence of the packing density on the segregation state.

Somewhat surprising is the observation that the packing density of dimer–sphere and dimer–

dimer mixtures is always below the maximum packing density of monodisperse dimers (with

α = 1.4), while bidisperse spheres of different diameters, e.g., increase the packing density

compared with monodisperse spheres. However, this behaviour trivially follows from the

ideal mixing law, since the packing densities of the pure sphere or dimer phases are below

the maximum and thus the total packing density as well, see Eq. (1). Another manifestation

of this ideal mixing property is evident in the linear behaviour of the component-wise contact

and coordination numbers, which is not observed for the corresponding total contact and

coordination numbers. Our analysis of the contact configurations confirms the qualitative

picture that the peak in the packing density arises due to the competition of locally opti-

mal rearrangements and excluded volume effects, which is here manifest in the significant

variation of the configuration statistics as the dimer is elongated until the maximal packing

density is achieved at α = 1.4.

In terms of future work, it would be interesting to understand further what kind of

observables in the mixture exhibit similar ideal mixing properties. One caveat when studying

mixtures of non-spherical particles is the large parameter space, which complicates any

systematic analysis. In our case, the fact that we keep the diameters of the spheres that

constitute the dimers constant leads to both relative shape and size variation as the aspect

ratio of one dimer component is varied. Disentangling the effect of shape and size variation

as attempted e.g. in [36] could shed valuable further insight.
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Appendix A: Statistical analysis of the consistency of the linear mixing law with

our data
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FIG. 14: Statistical analysis of the consistency of the linear mixing law with our data. (a) The

inverse packing density φ−1 of the dimer–sphere mixtures as a function of the relative dimer

volume fraction Xd for several dimer aspect ratios (same data as shown in Fig. 4(b)). Solid lines

are obtained from Eq. (1), and dashed lines are fitted to the data points with linear regression.

Each shaded region shows the 99% confidence interval for the regression slope. (b) The inverse

packing density φ−1 of mixtures of dimer 1 with α1 = 1.4 and dimer 2 with various aspect ratios

α2 as a function of X2 (same data as shown in Fig. 9(d)). Solid lines are obtained from Eq. (1),

and dashed lines are fitted to the data points with linear regression for α2 < 2 (including the 99%

confidence interval) and with a 4th order polynomial for α2 = 2.

In order to evaluate whether the agreement of the linear mixing law with our data is sta-

tistically significant, we have checked whether the law is within the 99% confidence interval

of the predicted slope. To this end we have followed two steps: 1. We have fitted a linear

line to the data by ordinary least squares regression. 2. We have constructed the 99% confi-
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dence interval around the linear best-fit slope and compared with the ideal mixing law. The

results are shown in Fig. 14 for sphere–dimer and dimer–dimer mixtures demonstrating that

the ideal mixing law is consistent with a linear fit since it falls within the 99% confidence

interval for almost all of the datasets.

The only exception is the α2 = 2 case for dimer–dimer mixtures shown in Fig. 14(b). Here,

the linear regression fit is not valid due to the systematic deviation from a linear behaviour

visible in Fig. 9(d). Instead of a linear model, we have constructed a polynomial model, which

shows that contributions up to degree 4 are statistically significant. As Fig. 14(b) shows,

such a polynomial fit yields almost perfect agreement with the data and thus highlights the

onset of nonlinear behaviour for sufficiently large α2.
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