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ABSTRACT1

2

We develop a deep learning model (DL) for Indian Summer Monsoon (ISM)3

short-range precipitation forecasting using a ConvLSTM network. The model is4

built using daily precipitation records from both ground-based observations and5

remote sensing. Precipitation datasets from the Tropical Rainfall Measuring Mission6

and the India Meteorological Department are used for training, testing, forecasting,7

and comparison. For lead days 1 and 2, the correlation coefficient (CC), which8

was determined using predicted data from the previous five years and corresponding9

observational records (from both in-situ and remote sensing products), yielded values10

of 0.67 and 0.42, respectively. Interestingly, the CCs are even higher over the Western11

Ghats and Monsoon trough region. The model performance evaluated based on skill12

scores,Normalized Root Mean Squared Error (NRMSE), Mean absolute percentage13

error (MAPE) and ROC curves show a reasonable skill in short-range precipitation14

forecasting. Incorporating multivariable-based DL has the potential to match or15

even better the forecasts made by the state-of-the-art numerical weather prediction16

models.17

KEYWORDS18

ConvLSTM model; Remote sensing ; TRMM Data; Station Data; Indian Summer19

Monsoon ; Short-range forecasting; Custom Loss Function.20

1. Introduction21

The modeling studies on monsoon have been traditionally performed using numerical22

models of the weather and climate (Krishnan et al. 2020), which solve partial differen-23

tial equations of the atmosphere-ocean-land coupled systems. In general, methods for24

predicting different meteorological variables use numerical weather prediction (NWP)25
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techniques by solving a set of higher-order non-linear differential equations. In the In-1

dian context, the models focusing on different temporal scales of the Indian monsoon,2

viz., short-range (1-3 days) to climate scale (10’s years), are being used in research3

and operational mode to understand the monsoon better and disseminate the informa-4

tion to the stakeholders. In recent times, the need for better forecasting has risen for5

several specific applications whereas the skills of dynamical models are still modest.6

Numerical models have their own limitations, which is being further complicated by7

additional forcing in the form of climate change.8

Short-range weather forecasting, is significant, particularly, in the context of the9

monsoon as high-impact weather events are increasing with global warming (Goswami10

et al. 2006; Pörtner et al. 2022). An accurate assessment of sub-district scale weather a11

few days ahead can arm the administration to take necessary measures. For example,12

the usage of NWP towards short-range precipitation forecasts can help in mitigating13

the impacts of cloud bursts, and heavy-to-very-heavy extreme rainfall etc. Short-range14

weather prediction in India is being carried out by a suite of dynamical models; at15

present the highest spatial resolution of these models in operational mode is ≈12.5km16

(Rajeevan and Santos 2020; Mukhopadhyay et al. 2019). Having shown tremendous17

progress in the last decade, such models sometimes fail to capture extreme rainfall18

events and/or do not produce realistic rains on the land regions. For example, the19

National Centers for Environmental Prediction (NCEP) based Global Forecast System20

(GFS) T1534 (≈12.5 km), has shown significant improvements in the short-range21

operational forecasts over India (Mukhopadhyay et al. 2019). However, even such an22

advanced model underestimates heavy to very heavy rainfall, while the extremely23

heavy rainfall categories are only better at shorter lead times. There could be various24

reasons for these issues, such as the complex, non-linear and turbulent weather in the25

tropical regions and the usage of parameterization schemes generating precipitation26

in the model. When the forecasts are issued in ensemble mode, one more issue is the27

uncertainty or spread associated with such forecasts which need to be properly taken28

care of. Some recent studies have suggested a mixed approach to improve the existing29

forecasts, which we would discuss in the subsequent text.30

Other than numerical models, statistical and feature selection-based Artificial Neu-31

ral Network (ANN) models have been used in the past to predict rainfall at different32

time scales with some success (Saha et al. 2016; Dasgupta et al. 2020). These mod-33

els employ two popular concepts: feature selection and followed by prediction using34

statistical or simple machine learning algorithms (Saha et al. 2016; Goswami and35

Xavier 2003; Chattopadhyay et al. 2008). Recently, machine learning algorithms have36

also been applied to generate rainfall forecasts at short and long time scales (Moon37

et al. 2019; Diez-Sierra and del Jesus 2020). Yin et al. (2022) combined support vec-38

tor machine (SVM) regression with quantile-based bias correction method to improve39

real-time NWP based precipitation forecasts. Moghaddam et al. (2022) found that use40

of ML or DL based inference with numerical models improves surface/ground fluxes41

beneath river systems. Ehsani et al. (2021) applied ML-based retrieval algorithm to42

obtain statistically better estimation of snowfall than remote sensing based datasets43

alone. Samadianfard et al. (2022) reported that implementing classification algorithms44

and decision trees along with past meteorological data, improves prediction of daily45

precipitation. Recently, ensemble weather forecasting has picked up pace instead of46

relying on a single NWP model output. Again, it is important to incorporate the47

uncertainty in different ensemble members. Bias and dispersion errors in NWP ensem-48

ble precipitation forecasts are minimised through statistical post-processing. However,49

traditional approaches only incorporate ensemble mean as the predictor, ignoring en-50
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semble spread which can serve as a crucial parameter for forecast uncertainty. Zhao1

et al. (2022) proposed forecasts calibrated using the two-step calibration considering2

both the dynamically flow-dependent ensemble spread from raw ensemble forecasts3

and the seasonally coherent calibrated ensemble spread that contains statistically gen-4

erated uncertainty information. The study reported an improvement in the forecasts5

as compared to those done only with seasonally coherent calibrations.6

In the last decade, deep learning has emerged as a potential methodology to solve7

complex, non-linear problems by un-wrapping the nonlinearities in different layers of8

the deep neural network (Zeiler and Fergus 2014). Moghaddam et al. (2021) applied a9

deep learning model, UNET, to determine the effective hydraulic conductivity and re-10

ported the ML/DL techniques can be applied to other areas of surface hydrology. The11

non-linear operators that have gained prominence in the Computer Vision community12

can be applied to weather and climate science problems, particularly the problem of13

deciphering accurate precipitation forecasts in the numerical weather prediction mod-14

els (Reichstein et al. 2019). For example, forecasts based on NWP models suffer from15

biases which need to be corrected while issuing forecasts. Li et al. (2022) developed a16

convolutional neural network (CNN)-based post-processing method for precipitation17

forecasts which outperformed traditional methods in forecast accuracy and reliability,18

especially for heavy rain events. Recent studies prove that progress made by dynamic19

models should not be ignored in favour of deep learning, but rather should be supple-20

mented by emerging new techniques (Dasgupta et al. 2020; Singh et al. 2021b).21

Deep learning methods can learn complex mapping between inputs and outputs22

which result in better forecasts. These methods have shown remarkable results in var-23

ious fields including meteorology, where it can be used to forecast the precipitation24

(Shi et al. 2017). The present study aims to develop a deep learning model for fore-25

casting spatio-temporal sequences and apply it to ISM precipitation data obtained26

from satellite and ground-based stations. Satellite based precipitation estimates are27

obtained from the Tropical Rainfall Measuring Mission (TRMM) (see Huffman et al.28

(2010)) data have been used to understand precipitation processes in several studies29

(see Singh et al. (2021a) and references therein). Also, we use gridded data prepared30

by the India Meteorological Department (IMD) which provides long-term reliable pre-31

cipitation data based on in-situ ground station records. Recently these satellite and32

ground-based rainfall estimates are being widely used to develop empirical as well33

machine learning models.34

Viswanath et al. (2019) attempted to study the active and break spell of monsoon35

using Long Short Term Method (LSTM)-based networks. Borah et al. (2013) used36

self organizing maps (SOM) for the ensemble extended range forecast of active/break37

cycles ISM. In the work by Barzegar et al. (2021), a CNN-LSTM based model was38

employed to forecast the level of water in a lake. Li et al. (2022) used a CNN-LSTM-39

based deep learning method to predict 3-hour precipitation, which outperformed tra-40

ditional machine learning methods in terms of prediction performance. The study by41

Siami-Namini et al. (2018) also shows the power of LSTM which outperformed the42

Autoregressive Integrated Moving Average (ARIMA) model by reducing the error rate43

up to 87%. Further studies, such as (Khan and Maity 2020) , have shown the effective-44

ness of using a hybrid model with conv2D and Multi-Layer Perceptron (MLP) to do a45

multivariate prediction for rainfall. When compared with a simple MLP and an SVM,46

this hybrid model was found better. The convolutional 1D and MLP together better47

captured the complex relationship of rainfall with the other variables. The work by re-48

searchers in (Ham et al. 2019; Saha and Nanjundiah 2020) demonstrates the power of49

convolutional neural-network-based architecture to predict the El Nino–Southern Os-50
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cillation (ENSO) variations effectively. Their model was able to give skillful forecasts1

for lead time up to one and a half years. The nino3.4 index of the model was found to2

be better than other state-of-the-art dynamic models. Most of the above models used3

either only convolutional or LSTM based architectures to capture rainfall patterns.4

These models also only tried to either classify or detect patterns in the future.5

For precipitation forecasting, a model has to be more powerful, able to capture the6

temporal and spatial structure of the data and hence, we note the usage of ConvLSTM7

based architectures in (Shi et al. 2017; Kim et al. 2017; Shi et al. 2015). In Shi et al.8

(2015), the effectiveness of ConvLSTM over linear regression is established by working9

with multichannel radar data. ConvLSTM model is a hybrid model that uses spatio-10

temporal information to generate the forecast. For dispersive waves (such as Rossby11

waves, convectively coupled waves) which have typical wave-frequency spectral signa-12

tures and generate skewed weather states (e.g. extreme weather events), this type of13

spatio-temporal information based model is a natural choice. For the present study,14

we, therefore, chose this model as we want a state-of-art model (Shi et al. 2015) which15

is already successful in similar applications but has not been applied for the monsoon16

forecast. The research by Shi et al. (2015) is the best work for the application of Con-17

vLSTM, where the model’s effectiveness is established for spatio-temporal sequence18

prediction problems. The ConvLSTM based model was also shown to outperform the19

state-of-the-art optical flow-based ROVER algorithm (Shi et al. 2015). The above20

points motivate us to utilize it for precipitation forecasting in this study. A sketch of21

the network used in this work, based on Shi et al. (2015), is shown in Figure 1. The22

main contribution of this work is the application of a hybrid AI models for precipita-23

tion forecasting. We evaluated three models, ARIMA and ConvGRU and ConvLSTM.24

The ConvLSTM approach was chosen for this work. The conclusions drawn from these25

methods are discussed. After being integrated with a high-performance computing ap-26

plication, it is anticipated that the ConvLSTM will be extremely efficient (with a large27

training cycle, for example). Our prototype model is only a starting point for further28

development. As mentioned before, in this study, we have worked on two types of29

Geoscience data for forecasting precipitation. One of them is the ground-based in-situ30

precipitation data from the India Meteorological Department (IMD) and the other31

is remotely-sensed Tropical Rainfall Measuring Mission (TRMM) data which includes32

data from (i) Lightning Imaging Sensor (ii) TRMM Microwave Imager, and (iii) Visible33

Infrared Scanner.34

The next section provides details of the data and methodology used in this study.35

The problem statement is described in Section III and the architecture of Artificial36

Intelligence (AI) model developed for sub-district (25Ö 25km) scale and aimed to-37

wards short range (1-3 days) forecasting is explained in section IV. Section V provides38

descriptions and discussion on the results obtained from the model. This study’s con-39

clusions are contained in section VI. The possible future work is provided in the last40

section.41

2. METHODOLOGY AND DATA42

The LSTM networks were first introduced by Hochreiter and Schmidhuber (1997). It43

typically has a forget gate, an input gate, an output gate with its weights in which44

it can control what information to retain and what to forget, thus learning long-45

term associations. ? developed the architecture of ConvLSTM when designing a model46

for learning spatio-temporal correlation in precipitation nowcasting problem. In this47
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Figure 1. A sketch of ConvLSTM architecture based on (Shi et al., 2015) used in this study.

architecture, convolutional operations replace the typical fully connected architecture1

within LSTM.2

2.1. Dataset3

The ConvLSTM model was tested on two main datasets. They are station based IMD4

gridded data (Pai et al. 2014) and remote sensing based TRMM data (Huffman et al.5

2016). Details of these datasets are given below:6

The IMD dataset is obtained from interpolation of ground station data, over the7

Indian landmass, into a gridded form Pai et al. (2014). The dataset was created from8

the ground data obtained from various stations across India. The stations were chosen9

based on their density to avoid any inhomogeneities. The Shepard interpolation, based10

on weights calculated from distance to nearest grid point and direction, was applied for11

generating the interpolated values. This effort generated a ground-based daily gridded12

data with resolution of 0.25o × 0.25o over Indian landmass, which was found to be13

more accurate than the other global gridded datasets (Rajeevan et al. 2006). We used14

this data, in this study, for the period 1974-2015.15

NASA and Japanese Space Agency Jointly own the TRMM which contains the data16

obtained from satellite measurements and the same is available globally from 50o N to17

50o S. The TRMM source data is in mm/hr unit, therefore a factor of 3 is multiplied18

to the sum for every grid cell. We have used the daily accumulated precipitation19

(mm/day) product for the period 1998-2015 from research quality 3-hour TRMM20

Multi-Satellite Precipitation Analysis (TMPA-3B42). The resolution of the data was21

0.25o × 0.25o having invalid values which were set as -9999. The TRMM accumulated22

precipitation is obtained as follows:23
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Figure 2. Sample total rainfall on a day (18-06-2011) from the IMD high-resolution dataset (in the left

panel). The right panel shows a typical rainfall on a day from TRMM high-resolution dataset.

Ψd = 3×
∑
i,j

(ψi,j × δ(ψi,j)) (1)

Ψdc =
∑
i,j

= δ(ψi,j) (2)

Where ψi,j represent the true value of the precipitation at a grid location (i, j). The1

δ(ψi,j) =0 if the data point is absent otherwise 1. Ψd is daily precipitation value and2

Ψdc stands for the daily count of those values. The data set is available from January3

1, 1998 to date. We have chosen the data for the present study till December 3, 20154

and between 6.375o N to 38.625o N and 66.375o E to 100.125o E. Thus, both data5

were utilized on a daily basis, with each frame reflecting the total rainfall of the day.6

A sample of total rainfall for a particular day from these datasets is shown in the7

Figure 2. For both datasets, separate models were developed (refer to sections 2.3 and8

4 ).9

2.2. Data processing10

The ConvLSTM network used in this work receives data in 5 dimensions, namely: no.11

of samples, time steps, latitude, longitude, and variables. It is essential to clean up and12

prepare the data in a supervised learning format. During the processing of data for13

both datasets, different techniques described in the following subsections have been14

adopted.15

2.2.1. Station based (IMD) Dataset16

This dataset had several undefined values which were assigned as ‘NaN’. There were17

some points which were assigned as ‘NaN’ in all frames and others were those which18

were rarely absent. The points under the second category were interpolated spatially19

from their closest neighbors. Special treatment had to be given to the points having20

‘NaN’ in all frames to avoid losing spatial structure of the data while treating NaN21

values. We have implemented a new and efficient method for this problem, detailed in22
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Section 2.5.1.1

2.2.2. Remote sensing based (TRMM) Dataset2

There are a significant number of invalid points within the TRMM Dataset. We spa-3

tially interpolated them from the nearest neighbours. Although a high degree of skew-4

ness was a specific difficulty that was faced while dealing with this data, we wrote a5

custom loss function for TRMM data training. A similar approach was used in Shi6

et al. (2017). The details of the custom loss function are provided in subsection 2.4.1.7

2.3. Models8

We have mainly employed following three machine learning models9

• ARIMA (Autoregressive Integrated Moving Average) is a forecasting model10

which works on the past values given in a time series.11

• ConvGRU (Convolutional Gate Recurrent Unit) (Ballas et al. 2015) operates on12

the spatio-temporal data for forecasting purpose. It was developed for imagset.13

• ConvLSTM method introduced by Shi et al. (2017) which is based on the LSTM14

method but operates on spatio-temporal data. Shi et al. used this method for15

precipitation nowcasting using radar data.16

Each of these three methods was evaluated on the aforementioned data. The convL-17

STM algorithm was determined to be the most effective model based on the metrics18

discussed in section 2.4. Therefore, the ConvLSTM was chosen as the primary tech-19

nique for this investigation. Architectural details of the ConvLSTM method is provided20

in the section 4.21

2.4. Metrics for assessing the robustness of results22

We used a new custom loss function (λmse) to deal with the invalid points in the23

TRMM dataset. One of the metrics used to validate our model is correlation coef-24

ficient (CC),calculated based on predicted and true values as given in equation 5.25

Furthermore, we calculated the ROC curves (using equation 6) to analyze the skill of26

the forecasts. The details of these metrics are provided in the following subsection.27

2.4.1. A New custom loss function for TRMM data training28

Since the TRMM data training is a regression problem, Mean Squared Error (MSE) is29

the usual choice of the objective function (loss function). However, the skewness in the30

data resulted in the model not predicting large values in the ground truth (> 30mm).31

It was quite important to capture the high rainfall values for our study. Therefore, the32

model was trained with a custom loss function (λmse) given as follows:33

λmse =
1

N

N∑
1

L1∑
1

L2∑
1

Wn,i,j ∗ (ψn,i,j − ψ̂n,i,j)2 (3.1)

34
W = 1 if ψi,j >= 0.15 (3.2)

35
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Figure 3. Comparing the variation of custom loss with MSE on TRMM Data (X-axis- epochs, Y-axis- Error).

W = 0.1 if ψi,j < 0.15 (3.3)

Here ψij represents the value from the TRMM data set which was normalized for1

model input using the min-max method. ψ̂i,j is predicted values of the precipitation.2

The L1 and L2 represent the total number latitude and longitude respectively. Total3

number of samples is denoted by N .4

The choices for the hyper parameters in equations 3.2 and 3.3 were arrived at by trial5

and error approach. A higher weightage needed to be given to the higher value because6

the rainfall data was skewed and the extreme events were required to be captured7

appropriately. The choices of the limits and the weight are empirical. A comparison of8

the custom loss function with MSE defined in equation (4), is presented in Figure 3.9

In the figure X-axis and Y-axis represent epochs and error respectively. Training was10

stopped at early stage as shown because no further reduction in validation loss was11

found after those epochs. Use of the custom loss function allowed to not let the higher12

precipitation values ignored by the model. This type of approach has been adapted in13

the study by Shi et al. (2017) where they used a function called ‘weighted loss function’14

to capture frequencies of different rainfall levels which were highly imbalanced.15

MSE =

∑
N

(∑
L1

∑
L2

(ψ̂i,j − ψi,j)2
)

N × L1 × L2
(4)

It should be noted that the custom loss function (eq. 3.1) is used for TRMM data16

only. For the other data we have used MSE defined in equation 4.17

2.4.2. Correlation, normalized RMSE and MAPE18

In meteorology and geophysical fields, we generally get the data in the 3-dimensional19

space in particular, any variable in the data can be represented as ψi,j ∈ [L1, L2, T ],20

where T represents time. Thus, the data is in the form of space coordinates which21

represents spatial pattern maps in [L1, L2] plane for a given time slice. One can have22

a temporal correlation between two variables at a given location, for a set of time23

coordinates, or alternately, for a given time, a correlation between the two variables24

for spatial locations. This metric is known as the pattern correlation coefficient (rψ).25

It signifies that for a given time how the spatial variances are related between two26

variables. In other words, it represents how well the two variables (say rainfall from27

observation and from forecast) are spatially collocated. It is calculated with the fol-28

lowing formula (Weisstein 2020).29

8



rψ =

∑[
(ψ̂i,j − µ̂)(ψi,j − µ)

]
√∑

(ψ̂i,j − µ̂)2
∑

(ψi,j − µ)2

(5)

Here, µ represents the mean value of original data and µ̂ is mean value of the1

predicted data. The summation is taken over the test data. We calculated this metric2

for TRMM data set, with corresponding IMD data, shown in the results section. Apart3

from the custom loss function for the TRMM data, we have used an efficient approach4

for dealing with ‘NaN’ values in IMD data, described in the next section. We also5

calculated the normalized root mean squared error (NRMSE) at each grid by dividing6

the RMSE with the standard deviation for the entire test and training data. Similarly,7

the MAPE has been calculated for each grid.8

2.4.3. Receiver Operating Characteristics (ROC) curve9

Another metric, used in this work, to validate the results is ROC. It is an important tool10

for forecast verification and decision-making processes. It is a plot which illustrates the11

diagnostic ability of an forecast classification system, using its varying discrimination12

threshold (see (Marzban 2004) ). The ROC curve is created by plotting the hit rate or13

True Positive Rate (TPR) against the False Positive Rate (FPR) at various threshold14

settings. The ROC analysis provides the ways to select possibly optimal models and15

to discard suboptimal ones independently from (and prior to specifying) the cost16

context or the class distribution. This analysis is related, in a direct and natural17

way, to cost-benefit analysis of diagnostic decision making. Hence, it is a standard18

method of forecast skill analysis for operational rainfall forecast. While the correlation19

method can’t discriminate the threshold criteria for more false positive occurrence,20

the ROC method can do so. The ROC method applied here shows a better fidelity of21

the proposed model. The formula for calculating these rates are given in equation (7).22

TPR =
TP

NH
(6.1)

23

FPR =
FP

NL
(6.2)

Where, TP denotes True Positive and it is number of days when both area averaged24

values of ground truth and prediction are above average. NH is the number of days25

when area averaged ground truth values is higher than the threshold values chosen26

based on minimum and maximum rainfall values in the data. FP denotes False positive27

and it represents days for area averaged value of prediction above the threshold when28

the prediction value is below the level. The number of days when area averaged ground29

truth rainfall values lower than the threshold is represented by NL in the equation 6.2.30

2.5. Data preparation31

For IMD data, we have chosen 22 years of data for training and 5 years for testing. For32

the TRMM dataset, 12 years were set for training while 5 for the model testing (refer33

table 1). Both data sets have 1 day time resolution. With a window size of 5 days,34

we used moving windows method for input data generation, comparable to studies35

9



using RNN architecture (Lara-Beńıtez et al. 2021). Depending on the situation, the1

window moves throughout the training or test period (train and test durations are2

specified in the table 1). With an input sample of 5 days of spatial data (captured by3

the moving window) and a corresponding label of spatial rainfall data for the day after4

the window, the data is converted to a supervised learning format for training. Each5

sample in the input has a dimension (timesteps, channels, rows, columns) and a 2-6

dimensional (rows, columns) format for the corresponding label.There are 5 timesteps7

in each input sample, 1 channel (only the precipitation variable is used in the input),8

and rows × column(lat × lon) =129*135. Both the IMD and TRMM datasets have9

the same input dimension.10

Table 1. Details of the data segregation for training and testing purposes.

Data set Training set Testing set
IMD 1975-1996 2011-2015

TRMM 1998-2009 2011-2015

2.5.1. Method For Dealing With undefined (‘NaN’) Value11

The given IMD dataset has undefined precipitation values marked as ‘NaN’. To deal12

with these ‘NaN’ values, a new strategy was employed in this work. A detailed de-13

scription of the strategy is provided in this subsection.14

As mentioned in section 2.2.1, two kinds of ‘NaN’ values were present in the data:15

(i) points which are ‘NaN’ in all frames which refers to those points which correspond16

to ocean and lie outside India and, (ii) points that are occasionally missing due to17

lack of observation on a day because of equipment malfunctions etc. The occasionally18

missing ‘NaN’ points were spatially interpolated from their nearest neighbours values.19

The ‘NaN’ values (in point (i) above) cannot be extrapolated as there is no sufficient20

data for so many points. Also they can’t be replaced by ‘0’ because ‘0’ number has21

a significant value for precipitation as it indicates no rains (depicted in Figure 4).22

Therefore, in the real space, data would furnish wrong information to the model. In23

this study, a new method was tried out to deal with ‘NaN’ values falling outside of24

the Indian landmass. This involves taking the data into exponential space and then25

assigning ‘0’ for missing values represented by ‘NaN’. This is done keeping in mind26

the practice that; in general, it is safe to input missing points with ‘0’ provided that27

it doesn’t represent a meaningful value. The condition of ‘0’ not being a meaningful28

value is not met in the real space because the locations with no rainfall are marked as29

‘0’ in the raw data. Hence, an efficient transformation was required which we chose as30

exponential space as discussed in the previous paragraph and illustrated in Figure 4.31

While converting the whole data from ‘real space’ to ‘exponential space’, we got rid32

of the issue of wrong information (Figure 4). The network learns from exposure to the33

data to treat the value ‘0’ as missing and start ignoring them in the transformed space34

(Chollet 2017). We found that this method is best suitable for the model training in35

the present scenario since it is one of the effective techniques which can take care of36

sharp gradients in spatial patterns of rainfall that we see along the west coast of India.37

In meteorological data, dealing with the missing values is an essential problem and the38

said transformation is one of the effective methods which can be used operationally.39

With this transformation the data preparation is done, as explained below (also refer40

to Figure 4).41

1. Identify all non-NaN points and normalize them with maximum value in the42

10



Figure 4. Illustration of data transformation from real space to exponential space. The conversion in ex-

ponential space has the benefit of considering ‘0’ during model training as it doesn’t possess any meaningful
value.

dataset (for all points).1

2. Apply the transformation f = eax∀x ∈ R| R is set of real numbers having no2

NaN.3

3. Substitute zero for all NaN locations in the rearranged dataset (legitimate values4

now range from 1 to ea).5

4. The choice of ‘a’ is appropriate when the range of the initial dataset and trans-6

formed dataset approximately match. In this way ‘0’ rainfall value is transformed7

to 1 so the whole range of allowed values becomes [1,∞).8

5. Network maps input to output in exponential space.9

6. The spatial structure of data is preserved; hence spatial correlations can be10

learned.11

In our knowledge, no models in literature describe treating such missing values (i.e.,12

where observation values are unavailable) in an effective way and it is the first time13

such a transform has been used in the field of meteorology for AI model training.14

Hence, this method may be treated as a novel approach to deal with missing data15

values.16

The overview of the data and methodology adopted in this study and describes in17

the current section is depicted in the figure 5.18

3. Problem Formulation19

Usually, weather predictions come with probabilistic scoring, which is why problem20

statements of weather prediction can be written as most likely N-sequence selection21

from an ensemble of prediction. As a spatiotemporal sequence forecasting problem (for22
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Figure 5. An overview of methodology used in this study.

monsoon rainfall), our input state can be represented as vectors of variables over a1

spatial grid of L1 × L2 locations as described in Section 2.4.2.2

On these locations, say, total Np variables are measured. Therefore, any observa-3

tion at a given time is represented in a mathematical space R(L1×L2×Np), where R4

is the domain of the observed variables. Given a certain amount of the past data,5

it can be represented as a sequence of elements from this aforementioned space as6

Ψ1,Ψ2,Ψ3, · · ·Ψt, where Ψn = ψi,j is precipitation value at a particular grid location.7

Then the forecasting problem is defined as to predict the least error K-length sequence8

in the future given the previous ‘t’ observations (including the current one) as input.9

Following Shi et al. (2015), this can be represented as10

Ψ̂t+1, · · · , Ψ̂t+k = argmax
Ψt+1,···Ψt+k

p (Ψt+1, · · · ,Ψt+k|Ψ1,Ψ2,Ψ3, · · · ,Ψt) (7)

where Ψ̂ is the predicted output sequence. In other words, our problem reduces11
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to finding a suitable architecture among various possibilities of hyper-parameters and1

layer choices which reduces the error between the predicted and the ground truth of2

observations. We started with simple ConvLSTM-based architecture and tuned it to3

improve our predictions but were constrained by the number of layers and layer-specific4

hyper-parameters that could be chosen given an upper limit of RAM and processing5

power of the Graphics Processing Unit (GPU).6

4. Details of ConvLSTM architecture used in this study7

As mentioned before, we decided to employ the ConvLSTM method, thus developed8

the model for this algorithm and carried out several experiments to mature the ar-9

chitecture. The experiments were mainly based on data pre-processing and techniques10

used for handling the undefined rainfall values assigned as ‘NaN’. In the case of IMD11

data, we used the exponential space to train the model. Once the algorithm and kind12

of Neural Network architectures are decided, the network’s fine-tuning, called hyper-13

parameter optimization, is accomplished. Various combinations of kernel sizes, number14

of filters, activations, number of layers, optimization algorithm, and learning rate are15

tried out during training before asserting the best final architecture. For both datasets,16

the developed models were trained using the Keras API with TensorFlow running as17

a backend. The choice of the last layer to be fitted to the ConvLSTM output was18

selected from the following options:19

1. Conv3D Layer: This layer is applied to the 5-dimensional sequential output of20

the connected ConvLSTM layers. It performs a 3D convolution over space and21

time dimensions to produce the final output.22

2. Conv2D Layer: To apply this layer, the ConvLSTM is set to return only the23

output corresponding to the last time-step in an input. Therefore, this layer uses24

a 2D spatial convolution on the spatial dimensions alone to give the output.25

3. Locally Connected 2D Layer: This layer acts similar to Conv2D but in a gener-26

alized form. The kernel used is different at each location throughout an image.27

It has more parameters compared to Conv2D, but spatially localized patterns28

could be learned.29

The developed model used the Conv2D as the last layer based on the MSE value.30

A comparison of MSE among different layers is provided in Table 2.31

Table 2. A comparison of MSE among different layers used as final layer. The least value was obtained using
Conv2D layer, hence, it was chosen as last layer.

Layer Conv3D Locally connected 2D Conv2D
MSE 3.1× 10−2 2.94× 10−2 2.76× 10−2

This study is an attempt to provide a proof of concept for applying the ConvLSTM32

method for ISMR forecasting. The study by ? proved that this method is better than33

other state of art machine learning methods available for forecasting meteorological34

variables. The details of the model architecture used for IMD and TRMM data are35

summarised in Table 2 and Table 3. The total number of parameters trained for IMD36

and TRMM datasets are 43559 and 284409, respectively.37
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Table 3. The model architecture used for training on the IMD rainfall dataset. Total 7 layers were used for

this model.

LN Layer name
Architecture
type

Activation
Kernel
size

# Filter

1 ConvLSTM2 1
Convolutional
LSTM

tanh (3,3) 4

2 ConvLSTM2 2
Convolutional
LSTM

tanh (3,3) 8

3 ConvLSTM2 3
Convolutional
LSTM

tanh (3,3) 8

4 ConvLSTM2 4
Convolutional
LSTM

tanh (3,3) 16

5 ConvLSTM2 5
Convolutional
LSTM

tanh (3,3) 16

6 Conv2D 1 Convolutional relu (3,3) 15
7 Conv2D 2 Convolutional relu (3,3) 1

Figure 6. Comparing the 1 day lead predictions from a model using kernel sizes (13,13) and (3,3) with

Ground truth, respectively (on TRMM Data).

4.1. Kernel size optimization1

Furthermore, we did experiments with different kernel sizes. It was observed that2

smaller kernel sizes tend to do better than larger ones. An example for 1 day lead time3

prediction is shown in Figure 6 when the Kernel is large (13, 13) and one with small4

(3, 3). Figure 6 suggests that a smaller kernel of size (3, 3) can capture larger values5

effectively and also over more regions as compared to the larger one (13, 13).6

4.2. Hyper-parameters7

The hyper-parameters used in both data sets are provided in the table 5. The learning8

rate and number of epochs are different for both data sets. The Adam optimizer was9

used for the adaptive estimation of first-order and second-order moments.10
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Table 4. The model architecture used for training on the TRMM data set. Total 5 layers were used for this

model.

LN Layer name
Architecture
type

Activation
Kernel
size

# Filter

1 ConvLSTM2 1
Convolutional
LSTM

tanh (3,3) 8

2 ConvLSTM2 2
Convolutional
LSTM

tanh (3,3) 12

3 ConvLSTM2 3
Convolutional
LSTM

tanh (3,3) 6

4 Conv2D 1 Convolutional relu (3,3) 6
5 Conv2D 2 Convolutional relu (3,3) 1

Table 5. The hyper-parameters used for IMD and TRMM data sets with (lat, lon)= (129,135).

Epochs 500 (TRMM = 200)
Learning rate 10−4 (TRMM = 10−3 )
Optimizer Adam (β1 = 0.9, β2 = 0.999)
Stride (1,1) for each layer
Dropout rate 0
Timesteps in each sample 5
Tensorflow 2.2.0
Keras 2.4.3

5. Results and discussion1

We solved a regression problem rather than classification as described in equation2

(7) in the section 3. However, classifications are made to understand the fidelity of3

the generated forecast. Normally, it is known that forecasts are skillful for rainfall4

above or below certain amplitude (or certain frequency). Verification of meteorological5

forecast is made in multi-category classification to emphasize the more skilful category.6

Operational forecasters always require such information to see the reliability of the7

forecast when the output values are above a certain threshold. The categories are8

made based on standard World Meteorological Organization manuals. As mentioned9

in the section 2.3, we considered five different metrics to verify our forecast. The results10

obtained from model and analysis of metrics are presented in this section.11

5.1. Model comparison12

As discussed in the section 2.3, we have employed three different machine learning13

algorithms on these data sets. One of them is the baseline method ARIMA and rest14

of two are ConvGRU and CnvLSTM. The ConvGRU is a new generation of RNN ans15

is more straight froward then LSTM. We evaluated the performances of these models16

by comparing the metrics. In this, comparison, the ConvLSTM method stood as best17

method to forecast the rainfall values. Thus, we employed the convLSTM method18

on two sets of data: IMD gridded data and remote sensing TRMM data. Since both19

data sets have different pre-processing, as discussed in section II, two separate models20

were developed for them and were tested on validation data as given in Table 1. We21

compared the correlation coefficient (rψ) for these three methods as depicted in figure22

7. The ConvLSTM method has better correlation and similar NRMSE among these23
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three methods. Thus, the ConvLSTM has been found to be the winner. As a result,1

in this study, we chose the ConvLSTM method as main method for precipitation2

forecasting.3

Figure 7. Correlations obtained using the ConvLSTM, ConvGRU, and ARIMA methods are compared (left

panel). The right panel displays the RMSE pdfs for all three methods, which are nearly identical.

5.2. Comparison with Ground Truth4

The outputs obtained by applying model on both data sets were compared with avail-5

able ground truth.6

5.2.1. IMD homogeneous regions:7

First, we analyzed predicted data from the model for the homogeneous regions de-8

fined by the Indian Meteorology Department (IMD) (Kothawale and Rajeevan 2017).9

There are a total of 6 homogeneous rainfall regions categorized based on the rainfall10

percentage in monsoon seasons during the period from 1871-2016. We calculated the11

Coefficient of Correlation (CC) for area-averaged data for 5 years’ time series and12

area-averaged rainfall for the 5 years duration from 2011-2015 for the IMD homoge-13

neous regions. A comparison of these metrics with ground truth and model data for14

the west-central region is shown in figure 8.15

Table 6. List of skills metric for different homogeneous regions. The correlation coefficient (CC) drops from
0.79 (West Central) to 0.52 (South Peninsular). There is no specific trend for RMSE values.

Region CC (RMSE) 1st day CC (RMSE) 2nd day
West Central 0.79 (3.70) 0.56 (5.18)
Central NE 0.7 (3.92) 0.42 (5.11)
Northwest 0.76 (3.77) 0.58 (4.64)
Hilly Regions 0.53 (4.19) 0.24 (4.93)
Northeast 0.55 (5.85) 0.3 (6.84)
South Peninsular 0.52 (4.15) 0.31 (4.46)

It is to be noted that the model can capture the rainfall up to 2 days lead time in16

the central region. A similar comparison for the Central North East region is provided17

in figure 9. The skills for other homogeneous regions are presented in the Table 5. The18

CC values in this table varies between 0.79 over West Central region to 0.52 over South19

peninsular. The CC and Root Mean Square Error (RMSE) values, obtained from this20

16



Figure 8. : Comparison of area-averaged correlation coefficient (CC) and RMSE (panel a) for 5 years time
series (IMD) data and area-averaged rainfall for 5 years duration (2011-2015) for West Central region (panel

b-f). The days on X- axis starts from 1th June and ends at 30th September (the JJAS period). The Ld1 refers

to lead day one and similarly Ld2.

model, are comparable to state-of-the-art dynamical models such as present as shown1

by (Mukhopadhyay et al. 2019).2

5.2.2. Comparison using entire landmass area3

Calculating the area average rainfall and comparing it with the ground truth for the4

homogeneous region is one way to test the model’s accuracy. Further, we compared5

the spatial pattern of the forecast skill of the precipitation forecast for up to 2 days6

lead time for IMD and TRMM data for every grid point. One such comparison is7

depicted in Figure 10. The TRMM dataset can capture localized as well as large-scale8

organized precipitation patterns. Previous studies have noted the capability of TRMM9

derived precipitation in capturing rainy spells and the extremes. It is beneficial over10

the regions of complex topography where in-situ data are often not available. However,11

it also predicts some false positives, predicting rainfall at places, not in the ground12

truth. The data was taken for August 8, 2011, for IMD, and August 7, 2011, for13

TRMM. The difference of 1 day between TRMM and IMD is due to the convention14
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Figure 9. : Comparison of area-averaged correlation coefficient (CC) and RMSE (panel a) for 5 years time

series (IMD) data and area-averaged rainfall for 5 years duration (2011-2015) for Central North East region
(panel b-f). The days on X- axis starts from 1 June. The time period is JJAS.

that IMD rainfall for a day is the rainfall obtained in the last 24 hours of the recorded1

time, while for TRMM, it is the rainfall in the next 24 hours of the recorded time.2

The ISM rainfall shows significant variability in space and time. On some occasions3

when the monsoon is in ‘active or organized’ phase, the rainfall patterns are widespread4

in space while during the ‘break or weak’ phase we see isolated spells across the region5

(Singh et al. 2021a) . It is to be noted that the rainfall memory (in time) is less6

as compared to other meteorological variables (e.g. temperature). Our aim here is to7

understand how well the model retains this memory and produces rainfall in space and8

time. Figure 10 compares the 1 and 2 day lead predictions generated by the model9

with the IMD and the TRMM data. It is to be noted that the training of the model10

was performed for both sets of data (the training periods were different). Therefore11

while comparing the model forecasts, corresponding observations are also used. The12

observation days here correspond to the model lead days and the bias is nothing but the13

difference (in space) between the observed rainfall for that day and the corresponding14

model forecast. It is seen that overall biases in both first (denoted Ld1) and second15

day (denoted as Ld2) lead times are smaller for the IMD data compared to the TRMM16

data. Though rainfall over the core monsoon zone shows less bias, there is significant17
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Figure 10. : Comparing the 2 days lead predictions from the ground truth. The upper panels to show the

comparison for IMD data, and the lower ones are for TRMM data in both Ld1 and Ld2 cases. The plot for Ld1
is for August 8, 2011 (IMD), and August 7, 2011, for TRMM. The plots in the last columns represent biases.

A similar comparison was present output obtained from dynamical model in Huffman et al. (2016).

bias over the regions of high elevations for both cases (e.g. over the Western Ghats,1

the Himalayan region). The analysis presented here helps us to identify the regions2

where the model has good or poor fidelity in reproducing the actual rainfall and also3

indicates the spatial coherency between the two.4

5.3. Comparison of CC, NRMSE and MAPE5

We calculated the pattern correlation coefficient (CC), NRMSE and MAPE as de-6

scribed in section 2.4.2 for both datasets.7

5.3.1. IMD Data8

The pattern correlation and normalized RMSE (NMRSE) obtained from the IMD9

data is shown in Figure 11. It is seen that pattern correlation worsens from lead day 110
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Figure 11. Correlation (panels a & b) , NRMSE (panels c & d) and the MAPE (panels e & f) of Ld1 and

Ld2 for IMD data.

to 2. Further, the pattern correlation shows large variations across the Indian region.1

The best correlations are noted over the west coast and monsoon trough region, while2

the lowest values are noted over the northern regions. The 2 lead days’ patterns are3

reasonably correlated over the Western Ghats and monsoon trough region ( 0.8 on4

lead day 1 and 0.6 for lead day 2). However, the model fares poorly over the parts of5

Himalayas regions and Rajasthan.6

Over these regions, the pattern correlations deteriorate quickly after lead day one7

(Ld1) and reach below 0.4 on lead day 2 (Ld2). One plausible reason behind the8

poor correlation over these regions might be the sparse density of IMD stations (as9

mentioned in Pai et al. (2014)).10

Nevertheless, the model reasonably captures the variability in the short term. The11

normalized RMSE for the Ld1 and Ld2 are shown in the lower panel of Figure 11.12

The normalized RMSE (NRMSE) is considerably low in most regions except in some13

parts of the North East area (around the Sikkim region). Relatively higher values of14

NRMSE can also be seen in the Western Ghats area for both Ld1 and Ld2. The model’s15

performance is comparable to state of art numerical weather prediction models (Rao16

et al. 2019; Rajeevan and Santos 2020). Similarly, the mean absolute percentage error17

(MAPE) is about 1% in the entire except the Sikkim region.18
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Figure 12. Correlation (panels a & b), normalized RMSE (panels c & d) and the MAPE (panels e & f) of

Ld1 and Ld2 for TRMM data.

5.3.2. TRMM data1

In TRMM data case, with increasing lead time, the pattern correlation decreases2

significantly as shown in Figure 12 (panels a & b). The model requires improvements3

to capture the rainfall for TRMM data better. One possible improvement can be to4

use multivariable input for training. The NRMSE for Ld1 and Ld2 for TRMM data are5

presented in lower panels (panels c and d) of Figure 12. It is noted that the Western6

Ghat area has higher CC and lower NRMSE. The MAPE, presented in the panels e7

& f have higher values in North-east regions for both Ld1 and Ld2.8

5.3.3. Homogeneous regions of IMD data9

The pattern correlations for homogeneous regions show a similar trend as in the entire10

Indian territory, which means it deteriorates after day 1. Figure 13 depicts the pattern11

correlations for West Central (panel a) and Central North-East (panel b) regions. A12

better CC was obtained in the Central NE area for the Ld1.For the second day lead13

time, the CC falls quickly in both areas as shown in Figure 13. Further, we calculated14

the PDF of RMSE for Ld1 and Ld2 of heavy rainfall in these regions. The heavy15

rainfall days were selected by taking only those days in which atleast 10 percent of16
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Figure 13. Comparison of the pattern correlation for Central North East (left panel) and West Central (right
panel) for 2 days lead time for the IMD data.

the grid points in the homogeneous region had more than 95 percentile rainfall value.1

A comparison of PDFs is provided in Figure 14. The Ld1 RMSE is found to be less2

than Ld2 for three homogeneous regions, namely, Central NE, West Central and North3

East. There was no difference in RMSE between Ld1 and Ld2 forecasts was found for4

the other three regions.5

Figure 14. A comparison of PDF of RMSE calculated for lead day 1 (Ld1) and lead day 2 (Ld2). The RMSE
for Ld1 is found to be less than Ld2 in the upper panels representing three regions: Central NE, West Central

and North East.

5.4. Comparison of Receiver Operating Characteristics (ROC) curve6

Another skill metric calculated for homogeneous regions is receiver operating charac-7

teristics (ROC), defined in section 2.4. A description of the application of the same8

method is provided in Marzban (2004), highlighting it as a measure of classification9

performance.10

In our study, we have used a simple skill verification method as well as category (or11

threshold) based classifier verification. We calculated TPR and FPR (equation 7.1) for12

rainfall values in all six regions after binning the rainfall in different categories. The13

categories are determined based on minimum and maximum rainfall values and then14
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slices them in 1mm intervals. Category-wise comparison indicates the skill of different1

rainfall bins, thus giving an idea on how the skill varies in different rainfall categories.2

Comparisons of these rates for all regions are provided in Figure 15. The blue dots3

indicate Ld1 forecast and orange dot represent the Ld2 forecast. The blue curve has4

larger Area Under the Curve (AUC) values, consistent with the correlation values (i.e.5

skill of Ld1 greater than the skill of Ld2) for these regions. The North West region6

does not show much difference in Ld1 and Ld2 skill.7

Figure 15. Comparison of ROC skill for different homogeneous regions. The Ld1 TPR is better for three

regions: Central NE, West Central and North West.

5.5. Comparative Skills vs state-of-the-art operational numerical model8

We have also compared the skill score of the employed model to that reported for a9

state-of-the-art numerical model Rao et al. (2019) for GFS T1534. For this purpose10

we have compared the Peirce Skill score (PSS) (Manzato 2007) as obtained from the11

ConvLSTM model and to that of a sophisticated numerical model (see Fig 3(b) of12

Rao et al. (2019)). Figure 16 illustrates one such comparison for the year 2011. For13

Ld1, the PSS skill obtained from the ConvLSTM method is better to GFS up to a14

15 mm rainfall threshold, whereas for Ld3, the PSS skill derived from the ConvLSTM15

method is stronger up to a 6 mm rainfall threshold value. A drop in skill score for16

various rainfall thresholds is depicted in figure 3(b) of Rao et al. (2019). We observed17

that the skills for Ld1 and Ld2 based on ConvLSTM method, for the year 2011,18

have superior or comparable skill for at least wet and moderate spells. We have also19

compared the PSS for years 2012-2015 and obtained results ( see the supplementary20

figure S1) with good skill.21

5.6. Using multi-variables22

Multivariate learning is essential to capture the low-frequency variability of rainfall as23

low-frequency sub-seasonal waves are convectively coupled waves with moisture, the24

surface low-pressure, and wind. We also tested the model for some more variables and25
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Figure 16. Peirce skill Score (PSS) obtained from ConvLSTM method for lead day 1 and lead day 3 forecast.

The PSS can be compared with the same obtained from GFS T1534 cf. Fig 3(b) of Rao et al. (2019).

found little improvement with 6 variable inputs as depicted in figure 17. These six1

input variables are (i) rainfall, (ii) orography, (iii) speific humidity at 700 hPa(q700)2

(iv) at 850 hPa (q850) and (v) specific pressure and soil moisture.3

Figure 17. Comparison Ld1 correlation for multiple variables.

The figure indicates that the majority of the improvement in the six-variable input4

model can be accounted for by just two variables (q700 and q850).5

6. Conclusions6

This study focused on implementing a deep learning model, for the short-range fore-7

casting of the ISMR. Three deep learning models, ARIMA, ConvGRU, and Con-8

vLSTM, were tested on two separate datasets constructed using ground observation9

(IMD) and remote sensing techniques (TRMM). The ConvLSTM model was found10

to be the best method among three. ConvLSTM based models have been used for11

short-range forecasts/nowcasts in literature with some success. The proposed model12

is a proof-of-concept which can capture the spatio-temporal structure of the forecast13

data.14

The convolution operation is not well-defined in the literature when we do not have15

data over a certain spatial domain. The IMD data, for example, do not have values over16

the ocean. Such sharp gradient at land-sea boundaries can be potentially problematic17
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for convolution operation due to the absence of data. We applied an efficient approach1

and tackled the undefined values (i.e., grids having no data). For which the data were2

first transformed from real space to exponential space. The model training was done3

in exponential space allowing rainfall values to span (1,∞); replacing the NaN values4

with ‘0’, as ‘0’ was no more significant value in this space. The remote sensing TRMM5

data has skewness and model was not able to capture the high rainfall values. To6

resolve this issue, a custom loss function has been defined.7

The model-produced forecast shows reliable skill with observations (the ground8

truth); however, up to 2 days lead time only. The model performance was evaluated9

using five metrics: (i) CC, (ii) NRMSE/RMSE, (iii) MAPE, (iv) ROC and (v) Peircs10

Skill Score (PSS). The efficiency quickly goes down after that, as seen in the pat-11

tern correlations. A low correlation is seen at the northern and North Western parts12

along the east coast of India. The forecast is also done separately for homogenous13

monsoon regions described in the Kothawale and Rajeevan (2017). In this case, the14

area-averaged correlation for 5 years’ time series is found to be reasonably good, and15

the RMSE for this data is significantly low. However, the pattern correlations again16

fall quickly after 1 day lead time. The model performed best in three homogeneous17

regions, as shown in table 6, namely West Central, Central NE, and Northwest regions.18

The forecast obtained from this deep learning model is comparable to state of the art19

dynamical models such as provided in Mukhopadhyay et al. (2019) and the PSS from20

Rao et al. (2019). We found that the ConvLSTM skills for Ld1 and Ld3 are superior21

or comparable to those in this manuscript for wet and moderate spells.22

The forecast skill was also analysed using the ROC curve for homogeneous regions.23

The ROC analysis was found to be consistent with correlation. We note that the24

present model reasonably captures the widespread precipitation but still have issues25

with localized events which might be related to the fact that large scale organized26

systems have more lifetime and spatial scale which can be captured based on the27

single variable model attempted here. While the localized extremes are often of short28

duration and do not have enough memory with them to be taken for the next day29

when dealing with daily data. Therefore it is still a challenge even for state-of-the-art30

NWP models to predict such events.31

This work is a demonstration of deep machine learning-based algorithms for weather32

forecasting using only a single variable, which is probably a reason for the steep33

fall in the efficiency of forecasts after 2 days. However, it is noted that the two day34

lead predictions of this model compare reasonably against the global forecast system35

(GFS) T574L64 (≈5 km), adopted from National Centers for Environmental Predic-36

tion (NCEP), and tested by the IMD during the 2010s (Durai and Bhowmik 2014).37

The study reported that areas of negative mean errors spread over most parts of the38

country from the lead day-2 onwards. With the adoption of higher resolution and im-39

proved GFS T1534 ( ≈ 12.5 km), the efficiency of short range operational forecasts40

have increased (Mukhopadhyay et al. 2019). It has been reported that GFS T1534 has41

much improved skill in moderate (15.6 - 64.5 mm day - 1) rainfall categories while there42

is underestimation for the heavy to very heavy (64.5 - 204.05 mm day - 1) rainfall.43

Also the extremely heavy rainfall categories are only better on the shorter lead times.44

This ensemble based state-of-the-art forecasting is efficient but resource intensive and45

has issues as discussed.46

The present model is a proof of concept for a pure AI-based model for short-term47

rainfall forecasting of the Indian summer monsoon. Despite the fact that the model48

is fairly simple and only employs one variable, it has given high correlation in several49

locations. We acknowledge that there may be alternative models that may successfully50
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predict rainfall. We are also experimenting to improve the model. The main purpose of1

the current study is to introduce an AI model which can be used to forecast monsoon2

rainfall on short scale.3

7. Future work4

We observed that the majority of the improvement in the six-variable input model can5

be accounted for by just two variables (q700 and q850). Thus, the model, in the present6

form has limitations. Hence, the potential variables which can be used in further7

studies are sea level pressure, sea surface temperature (SST) and air temperature.8

The technique can be improved by using more layers in the training and the tuning of9

hyper parameters.10

The custom loss function used for TRMM data can also be experimented on the IMD11

dataset to improve the data training. Another modification that can be done to handle12

datasets like IMD with NaN values is to generalize the convolution operator to act on13

irregular shapes (Vialatte et al. 2016; Pasdeloup et al. 2017). This model has potential14

to be utilized in short-range forecasting of monsoon precipitation, fire prediction and15

heat/cold wave forecasting. One can develop a multi-model ensembles using different16

architectures. Furthermore, there are other models available in the literature including17

Unet and Transformer (Bojesomo et al. 2021), which can be applied to short range18

forecasting.19
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