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Abstract

Consider the high-order heat-type equation du/0t = £0Nu/dz™ for an integer N > 2 and
introduce the related Markov pseudo-process (X (t))¢>o0. In this paper, we study the sojourn time 7'(t)
in the interval [0, 4+00) up to a fixed time ¢ for this pseudo-process. We provide explicit expressions
for the joint distribution of the couple (T'(¢t), X (t)).

Keywords: pseudo-process, joint distribution of the process and its sojourn time, Spitzer’s identity.
AMS 2000 Subject Classification: Primary 60G20; Secondary 60J25, 60K35, 60J05.

*Dipartimento di Statistica, Probabilita e Statistiche Applicate, UNIVERSITY OF ROME ‘LA SAPIENZA’, P.le A. Moro 5,
00185 Rome, ITALY. E-mail address: valentina.cammarota@uniromal.it

TPole de Mathématiques/Institut Camille Jordan/CNRS UMR5208, Bét. L. de Vinci, INSTITUT NATIONAL DES SCIENCES
APPLIQUEES DE LYON, 20 av. A. Einstein, 69621 Villeurbanne Cedex, FRANCE. E-mail address: aime.lachal@insa-lyon.fr,
Web page: http://maths.insa-lyon.fr/™~lachal


https://core.ac.uk/display/54373097?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1 Introduction

Let N be an integer equal or greater than 2 and s, = (—1)'*V/2 if N is even, x, = %1 if N is odd.
Consider the heat-type equation of order N:

0 oN
Xk, (1.1)
ot oxN

For N = 2, this equation is the classical normalized heat equation and its relationship with linear

Brownian motion is of the most well-known. For N > 2, it is known that no ordinary stochastic process
can be associated with this equation. Nevertheless a Markov “pseudo-process” can be constructed by
imitating the case N = 2. This pseudo-process, X = (X (¢));>0 say, is driven by a signed measure as
follows. Let p(t;x) denote the elementary solution of Eq. (1.1), that is, p solves (1.1) with the initial
condition p(0; x) = §(z). This solution is characterized by its Fourier transform (see, e.g., [13])

+oo N
/ e p(t;x)de = el =)™

— 00

The function p is real, not always positive and its total mass is equal to one:

+oo
/ p(t;z)dx = 1.

Moreover, its total absolute value mass p exceeds one:

+ o0

o= [ lpta)ido> 1
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In fact, if N is even, p is symmetric and p < 400, and if NV is odd, p = +oo. The signed function p is

interpreted as the pseudo-probability for X to lie at a certain location at a certain time. More precisely,

for any time t > 0 and any locations z,y € R, one defines

P{X(t) € dy|X(0) = z}/dy = p(t;x — y).

Roughly speaking, the distribution of the pseudo-process X is defined through its finite-dimensional
distributions according to the Markov rule: for any n > 1, any times ¢1,...,t, such that 0 <t; < --- <1,
and any locations x,y1,...,y, € R,

P{X(t1) € dys,... X(tn) € dyn|X(0) = 2}/dyy ... dyn = [ [ p(t: — ticr:yiz1 — i)
i=1

where tyo = 0 and yp = z.

This pseudo-process has been studied by several authors: see the references [2] to [4] and the references
[8] to [20].

Now, we consider the sojourn time of X in the interval [0,400) up to a fixed time ¢:

T@=AMMMM@M&

The computation of the pseudo-distribution of T'(t) has been done by Beghin, Hochberg, Nikitin, Ors-
ingher and Ragozina in some particular cases (see [2, 4, 9, 16, 20]), and by Krylov and the second author
in more general cases (see [10, 11]).

The method adopted therein is the use of the Feynman-Kac functional which leads to certain dif-
ferential equations. We point out that the pseudo-distribution of T'(t) is actually a genuine probability
distribution and in the case where N is even, T'(t) obeys the famous Paul Lévy’s arcsine law, that is

]1(0,75)(5) .
my/s(t — s)

We also mention that the sojourn time of X in a small interval (—¢, ) is used in [3] to define a local time
for X at 0. The evaluation of the pseudo-distribution of the sojourn time T'(t) together with the up-to-
date value of the pseudo-process, X (t), has been tackled only in the particular cases N = 3 and N =4

P{T(t) € ds}/ds =



by Beghin, Hochberg, Orsingher and Ragozina (see [2, 4]). Their results have been obtained by solving
certain differential equations leading to some linear systems. In [2, 4, 11], the Laplace transform of the
sojourn time serves as an intermediate tool for computing the distribution of the up-to-date maximum
of X.

In this paper, our aim is to derive the joint pseudo-distribution of the couple (T'(¢), X (t)) for any
integer N. Since the Feynman-Kac approach used in [2, 4] leads to very cumbersome calculations, we
employ an alternative method based on Spitzer’s identity. The idea of using this identity for studying
the pseudo-process X appeared already in [8] and [18]. Since the pseudo-process X is properly defined
only in the case where IV is an even integer, the results we obtain are valid in this case. Throughout the
paper, we shall then assume that IV is even. Nevertheless, we formally perform all computations also in
the case where N is odd, even if they are not justified.

The paper is organized as follows.

e In Section 2, we write down the settings that will be used. Actually, the pseudo-process X is not well
defined on the whole half-line [0, +00). It is properly defined on dyadic times k/2", k,n € N. So,
we introduce ad-hoc definitions for X (¢) and T'(t) as well as for some related pseudo-expectations.
For instance, we shall give a meaning to the quantity

EQpv) =E [ / T e (T gy
0

which is interpreted as the 3-parameters Laplace-Fourier transform of (T'(t), X (¢)). We also recall
in this part some algebraic known results.

e In Section 3, we explicitly compute E (A, u, v) with the help of Spitzer’s identity. This is Theorem 3.1.

e Sections 4, 5 and 6 are devoted to successively inverting the Laplace-Fourier transform with respect
to u, v and X respectively. More precisely, in Section 4, we perform the inversion with respect to y;
this yields Theorem 4.1. Next, we perform the inversion with respect to v which gives Theorems 5.1
and 5.2. Finally, we carry out the inversion with respect to A and the main results of this paper
are Theorems 6.2 and 6.3. In each section, we examine the particular cases N = 3 (case of an
asymmetric pseudo-process) and N = 4 (case of the biharmonic pseudo-process). For N = 2 (case
of rescaled Brownian motion), one can retrieve several classical formulas and we refer the reader to
the first draft of this paper [6]. Moreover, our results recover several known formulas concerning
the marginal distribution of T'(t), see also [6].

e The final appendix (Section 7) contains a discussion on Spitzer’s identity as well as some technical
computations.

2 Settings

2.1 A first list of settings

In this part, we introduce for each integer n a step-process X, coinciding with the pseudo-process X on
the times k/2", k € N. Fix n € N. Set, for any k € N, X}, ,, = X (k/2") and for any ¢ € [k/2", (k+1)/27),
X(t) = Xj,n. We can write globally

Xn(t) = Z X j2n (1) /27 (1)
k=0

Now, we recall from [13] the definitions of tame functions, functions of discrete observations, and admis-
sible functions associated with the pseudo-process X. They were introduced by Nishioka [18] in the case
N =4.

Definition 2.1. Fiz n € N. A tame function for X is a function of a finite number k of obser-
vations of the pseudo-process X at times j/2", 1 < j < k, that is a quantity of the form Fy, =
F(X(1/2M),...,X(k/2")) for a certain k and a certain bounded Borel function F : R* — C. The
“expectation” of Fy ., is defined as

IE(F;”L):/ RkF(ml,...,xk)p(l/Q";a:—xl)...p(l/Q";xk_l—xk)dxl...dxk.



Definition 2.2. Fiz n € N. A function of the discrete observations of X at times k/2™, k > 1, is a
convergent series of tame functions: Fx, = > .7 Fy., where Fy, is a tame function for all k > 1.
Assuming the series Y p | [E(Fy )| convergent, the “expectation” of Fx, is defined as

o0

E(Fx,) =Y E(Fin).

k=1

Definition 2.3. An admissible function is a functional Fx of the pseudo-process X which is the limit
of a sequence (Fx, )nen of functions of discrete observations of X: Fx = lim, . Fx, , such that the
sequence (E(Fx, ))nen s convergent. The “expectation” of Fx is defined as

]E(Fx) = nh—>néo E(FXH)-

In this paper, we are concerned with the sojourn time of X in [0, 4+00):

7(0) = [ 3,400 (X(2)) d.

In order to give a proper meaning to this quantity, we introduce the similar object related to X,,:

T (t) = /0 Lo, +.00) (Xn(s)) d.

For determining the distribution of T;,(t), we compute its 3-parameters Laplace-Fourier transform:
o0
En()\v Hs V) =E |:/ €_>\t+uLX"(t)_VT"(t) dt:l .
0

In Section 3, we prove that the sequence (E,, (X, i, V))nen is convergent and we compute its limit:

lim E,(\ u,v) = E(\ u,v).

n—oo

Formally, E(\, s, v) is interpreted as
B\ p,v) =E [ | e dt}
0

where the quantity [ e~ *T#X =T (1) ¢ is an admissible function of X. This computation is performed
with the aid of Spitzer’s identity. This latter concerns the classical random walk. Nevertheless, since it
hinges on combinatorial arguments, it can be applied to the context of pseudo-processes. We clarify this
point in Section 3.

2.2 A second list of settings
We introduce some algebraic settings. Let 6;, 1 <i < N, be the N*® roots of , and
J={ie{l,...,N}: R6; >0}, K={ie{l,...,N}: R0, <0}.

Of course, the cardinalities of J and K sum to N: #J 4+ #K = N. We state several results related to
the 6;’s which are proved in [11, 13]. We have the elementary equalities

N N
DO+ =) 0:;=0, (H@)(H 9k> =10 = (D" 'x, (2.1)

jed keK i= jed keK
and
N N B
[[@-0)=]]@-06)=a" -k (2.2)
i=1 i=1
Moreover, from formula (5.10) in [13],
#K
I =60 => (~)fora®c, (2.3)
keK =0



where 09 = > gy <-..<hy Ok, - - Ok,. We have by Lemma 11 in [11]

k1,...,ke€K

1
if Vis even,

0;x — 9]' sin %
Zej H 0. —0. :Zejz_zak: 1 COS% . ) (24)
jeJ  ien{j} J jeJ keK —— = —=* if Nis odd.
2sin 5 sin &
Set Aj = [Lien emefi% for j € J, and Br = [;c g\ 1y # for k € K. The A;’s and By’s solve a
Vandermonde system: we have
S 4=y B
jed keK (2.5)
> A =0for 1 <m < T -1, > By =0for 1 <m < #K — 1.
jeJ kEK

Observing that 1/0; = 0; for j € J, that {0;,j € J} = {0;,7 € J} and similarly for the 6;’s, k € K,

formula (2.11) in [13] gives

A0; A 1
= 0, —x ;}1fﬁjx Hjej(l—ij)’

In particular,

5 A0, 1
Z40,—6,  NB,

By 1

Bkgk
Z Hk — X -

keK

>

Z Bkﬁk B 1
& 00, NA;

Py Opr  Tlper(l—Oka)

(2.6)

(2.7)

Set, for any m € Z, am = 3750 ; Aj07 and B = 3 4o Bibi'. We have, by formula (2.11) of [13],

= (=K (TThex 0k) (X pex Ok)- The proof of this
claim is postponed to Lemma 7.2 in the appendix. We sum up this information and (2.5) into

Bux = (—1)#ET], cx Ok Moreover, Bug i1

1 if m=0,
0 if 1 <m<#K -1,
B = (_1)#K71 erK Ok if m =#K,
(~D)#E N (Tlher Ok) (Crer Ok) ifm=#K+1,
Ky if m=N.
We also have 4
Ay = Z 97751 = Ky ZAJO;vim = KyQN—m
jeJ J jed
and then
1 if m =0,
i (—1)#771 (HjEJgj)(ZjeJej) ifm=4#K-1,
a—m = ke (DF e, 0 if m=#K,
0 if #K +1<m < N —1,
Ky if m=N.

In particular, by (2.1),

aofo =a_nBn =1, a_prBurx =1, oa_urxBars1 = Zej, o—pK Py = Z 0.

jeJ keK

Concerning the kernel p, we have from Proposition 1 in [11]

(%)
Nrtl/N
I () cos(57%)

p(t;0) =

if NV is even,

if N is odd.

Nrtl/N

5

(2.8)

(2.10)

(2.11)



Proposition 3 in [11] states

oo 0
x> 0p= [ an-0a=TL 0 px@<o- [ pn-ga-TE e

— 00

and formulas (4.7) and (4.8) in [13] yield, for A > 0 and p € R,

o 67)\,*, 0 ) W
eHe — - o
/0 t a [m( ) plti ~t)de =1 g(kg{ VA - zu9k>

ooefkt ooeip,f B N \/X
/Otdt/o( )(tﬁ)dﬁlgﬂf

jeJ A —ipb;
Let us introduce, for j € J,m < N —1 and = > 0,

N1 :m & i -m b T
Ij,m(TQ-’L‘) = 277: (e—zN'rr/ £N—m—le—T§N_9je N z€ df _ elﬁﬂ'/ §N—m—1e_T§N_0je N z¢ df) (2.14)
0 0

(2.13)

Formula (5.13) in [13] gives, for 0 <m < N —1 and = > 0,
/ e L(riz) dr = AN e VAT (2.15)
0

We introduce in a very similar manner the functions I, (7; ) for k € K and z < 0.

Example 2.1. Case N = 3.

e For k3 = +1, the third roots of k3 are 91 =1,0, =¢ = , 03 = e*i%w, and the settings read J = {1},
K={2,3}, A1 =1, By = , B3 =

f f ,ap=a_1=a_9=1, 6y =1, f_1 = —1. Moreover,

3i e 3_ %
Lio(m;z) = o ( ¢ eTTeIe et d§ —
0

2

o . =
52 67T£3767L§ﬂ7§ d§> )

0

e For k3 = —1, the third roots of kg are ) = €5, 0y = e7'5, 3 = —1. The settings read J = {1,2},

={3}, A1 = 3 , Ay = f , B3 =1, a0 =a-1 =1, By = B2 =1, -1 = —1. Moreover,

3i —iZ >~ —TES—eiszxf iz * —753—15
1171(T;$)=7 e '3 e dé —e's e d¢ |,

m 0 0

3 o [ 3 Y 3 —i2m
La(ria) = o (e—ls [ eemtag e [ g d&).

27T 0 0

Ac‘cually7 the three functions I; o, I11 and I ; can be expressed by mean of the Airy function Hi defined

3
as Hi(z) = f ERES d¢ (see, e.g., [1, Chap. 10.4]). Indeed, we easily have by a change of variables,
dlfferentlatlon and integration by parts, for 7 > 0 and z € C,

[e'e] *T§3+z§d _ T H V4
/0 € ¢ (37)4/3 ' V3r)’
) —T£3+Z§d _ s H,, 4
| e €= e ().
e’} 9 —753+Z€d _ Tz H V4 i
/0 e 3 e 5 +g

Therefore,

X s e %I‘ - e %x
Lio(riz) = —=—— | e'SHi — — + e 'SHi( — ; 2.16
1,0(7; ) 257 [e 1( Tar ) e 1( o )} (2.16)
3 i 2x
Lia(rz) = V3 {eigHi'( € x> +eigHi’( . ﬂ (2.17)

272/3

3 _i2n
I (riz) = ijg [eizm/(_ v ) +e‘i3Hi’(— < - ;”)} (2.18)




Example 2.2. Case N = 4: we have k4 = —1. ThlS is the case of the biharmonic pseudo-process. The
fourth roots of k4 are 6 = e~ 'T, fy = €'T, 5 = €’ T , 04 = e~**F and the notations read in this case

J={1,2}, K = {3,4}, Ay = Bs = ¢ ,A2=B4=e%, ag=as=1,a1=v2 f=p2=1,
B_1 = —/2. Moreover,

2 [ S 4,
La(rz) = p <el4/ £2 A d§+€711/ £2 T8 it d§>,

0 0

(2.19)
2 - oo . - oo
1271(7';56) _ ; <624/ 52 677547115 d§+ 6721/ 52 67754715 d€>
0 0

3 Evaluation of E(\, u,v)

The goal of this section is to evaluate the limit E(X, p, v) = limy 00 Ep (A, g, v). We write Ep (A, p,v) =
E[F.(\, p, V)] with

Fn(>\; My V) = /Oo 67>\t+iMX"(t)7VT"(t) dt.
0

Let us rewrite the sojourn time T, (¢) as follows:

R (1) /2m ([2"t]+1)/2"
L= [ TpsmXal)ds— L, ey (X (5)) ds

j=0Yi/2"

27t (j+1) /2" (I2rt]+1)/2"
= Z / ]1[07+oo)(Xj,n) ds — / ]1[0,+oo)(X[2"t],n) ds
j=0 Ji/2" t

2"
1
=57 > Mooe) (Xjim) +

=0

) L0,400) (X2n),n)-

Set Ty, = 0 and, for £ > 1,
k

1
= 50 2 Mo o0 (X
Jj=1

For k > 0 and t € [k/2™, (k +1)/2™), we see that

k—l—l

1

With this decomposition at hand, we can begin to compute F, (X, i, v):

Fo(A\ p,v) = /OO e MFIXn () =vTn(t) gy
0

(k1) /2" _ .
— / ef)‘t‘kl)uka,*ka,n*Tl{n’FV( Pi 7t)]l[0,+oo)(Xk,n) dt
k—o Y k/2™

0 (k+1)/2™
— e—l//2” § / e—)\t-i-u( k;;,,l ; ) eiuka—uTkm.
k=0"k/2"

The value of the above integral is

[)\+y]l[01+oo) (Xk,n)]/2™ _ 1

(k+1)/2"
/ oMV )10, ooy (X n) gy — = MEHD)/2" €
k/2n A+ V1o, 100) (Xk,n)

Therefore,
1 — e~ (A p)/2" 2

e Z e*/\k/2"+quk n—vTk, n]l[O too) (Xk n)
k=0

Fn()\,/l, V) =



—\/2m ©

nl— "o
671//2 6)\ Ze—)\k/2 +’L‘LLX’“’"7VTIC’"]1(_0070)(Xk7n).
k=0

Jr
Before applying the expectation to this last expression, we have to check that it defines a function of
discrete observations of the pseudo-process X which satisfies the conditions of Definition 2.2. This fact
is stated in the proposition below.

Proposition 3.1. Suppose N even and fix an integer n. For any complex A such that (X)) > 0 and
any v > 0, the series Y o e MW/ E[erXenvThnly o (Xin)] and Y pe e M2 E [ Xrn—vTin

1—w,0) (Xk,n)] are absolutely convergent and their sums are given by

X 2 SO y)
— [ n—V n _ € n s 1,V
Ze /2" [ X =T 4 o (X )] = e ,
k=0
x v/2" Q-
—\k/2" inXn n—vThn € (S, (A p,v) — 1]
Y e MR T T 1o ) (X)) = 7 1 :
k=0
where
o0 W e Mk/2" _
ST\ pv) =exp| — (1 — e vk/2 ) — E[e”‘x’“" ]l[O)Jroo)(Xk,n)] ,
k=1
o0 " e_>‘k/2n ,
Sy Ovmw) =exp| 3 (1= e M) S B[ 1) (Xkn)] |-
k=1
ProoOF

e Step 1. First, notice that for any k£ > 1, we have

|E[e"#Xkn=rThn Ty 4 ooy (Xim)]|

= ’/ . / eiHTE =S 2 ][°f+°°>(xj)P{X1 n€dxy,...,Xpn € dxk}’

RF—1[0,400) ' '

k 1 kot 1

= ‘/ . / TR =3 25—y 1[o,+oo>(xj)p(2n;m1) Hp(2n;xj — xj+1> dzy...dzyg

RF—1x[0,4+00) j=1

k—1
1 1
< [... —; —x; —
S ALE) e
k 1 k 400 1 .

=// 11 p(ww)’dyl-.-dykzﬂ/ ‘p(ww)’dw:p-

RE 35

j=177%
Hence, we derive the following inequality:

dxq...dzg

1
1— pe_ER(A)/Z" ’

Z ’eiAk/Q"]E[ei“X’“vnf”Th" ]l[O,-‘,-oc)(Xk,’n)]’ < Zpk ’efmc/zn
k=1 k=1

We can easily see that this bound holds true also when the factor 1jg o) (X#,n) is replaced by 1(_ o 0y (Xkn)-
This shows that the two series of Proposition 3.1 are finite for A € C such that pe=%(M/2" < 1, that is
R(A) > 2" log p.

e Step 2. For A € C such that ®(\) > 2" logp, the Spitzer’s identity (7.2) (see Lemma 7.1 in the
appendix) gives for the first series of Proposition 3.1

Z e~ /2" [eiﬂka_”T’““ {0, 400) (Xk,nﬂ
k=0

vjan oo k2 ei/\k/Q" X
S 1 |¢ TeP( - (1—6 )7k B[ g o) (Xkn)] | |- (3:1)



The right-hand side of (3.1) is an analytic continuation of the Dirichlet series lying in the left-hand side
of (3.1), which is defined on the half-plane {A € C: R(\) > 0}. Moreover, for any € > 0, this continuation
is bounded over the half-plane {\ € C: ®()\) > £}. Indeed, we have

WX too k el (kK
[E[e X4 Tg 4 o0y (Xkn)]| = ’/ 6““517(271; )df‘ < / ‘p(Qn; —E) ‘ dé < p
0 0

and then
oo g o—Mk/2" -

{55 ) D ey
k=1

2, e ROVE/2" —R(N)/2" 1
<eXp<ka :exp(—plog(l—e N/ )) :m.
k=1

Therefore, if R(A) > ¢,

%) . —Xk/2" )
exp (_ Z (1 _ e vk/2 ) GT E[e“‘x’“*"]l[o,-s-oo)(Xka")])

k=1

1
< —
= A=)

This proves that the left-hand side of this last inequality is bounded for R(\) > e. By a lemma of Bohr
([5]), we deduce that the abscissas of convergence, absolute convergence and boundedness of the Dirichlet
series > o e M/ E [et Xk v Thn ] ) (Xp,,)] are identical. So, this series converges absolutely on
the half-plane {A € C : R(A) > 0} and (3.1) holds on this half-plane. A similar conclusion holds for the
second series of Proposition 3.1. The proof is finished. B

Thanks to Proposition 3.1, we see that the functional F, (A, u,v) is a function of the discrete obser-
vations of X and, by Definition 2.2, its expectation can be computed as follows:

1-— 6_(>\+V)/2n ey/Q" — S:()V My V) + 1- e—)\/2" S;(/\7 My V) -1
A+v er/2" —1 A ev/2" —1
_ <6V/2"(1 _ e*()ﬁ%l/)/?") 1 — e N2" >

En()\7/1'71/) =

A+)(er/2"=1)  Mev/? —1)
1— ef)\/Q" 1— e*()\Jru)/Q"

R~ S _
+ )\(6”/2n _1) Sn( 7#,7/) (/\-FV)(@”/Q" _1)

ST\ p,v). (3.2)

Now, we have to evaluate the limit E(\, u,v) of E, (), u,v) as n goes toward infinity. It is easy to see
that this limit exists; see the proof of Theorem 3.1 below. Formally, we write E(\, u,v) = E[F(A, p, v)]
with -

F\ pv) = / e MmOV g,

0

Then, we can say that the functional F'(\, i, v) is an admissible function of X in the sense of Definition 2.3.
The value of its expectation E(\, u, ) is given in the following theorem.
Theorem 3.1. The 3-parameters Laplace-Fourier transform of the couple (T'(t), X (t)) is given by

1
HJEJ(W - iuej) erK(W — iuby) .

E(\p,v) = (3-3)

Proor

It is plain that the term lying within the biggest parentheses in the last equality of (3.2) tends to zero as
n goes towards infinity and that the coefficients lying before S (A, u,v) and S;, (A, 1, ) tend to 1/v. As
a byproduct, we derive at the limit when n — oo,

1,
E()\,ILL,I/):;[S ()\,/L,V)*S+(>\,,u,,l/)] (3.4)
where we set

. > ) o e
ST\ p,v) = 7Lh—>120 ST\, p,v) = exp (—/0 IE[e“‘X(t)]I[O,Jroo)(X(t))](l —e ) tdt>’



oo —At
ST\, pyv) = lim S, (\p,v) = exp(/ E[ei”X(t)]1(_0070)(X(t))}(1 —e ) eT dt).

0

We have

—At

/0 E[e X1 400y (X (2))](1 — e7) eT dt

) ) et o ) 67()‘+V)t
= / E[(e*® = 1)1 100) (X (2))] — / E[(e"¥ = 1)1 400y (X ()] ——dt
0 0
0o e~ M _ e—(>\+l/)t
+/ P{X(t) EO}fdt
0
0 e—/\t oo 00 e—(/\+u)t 0 )
:/ dt/ (ewf - 1)p(t; —€) dg—/ 7dt/ (e — 1) p(t; —€) d¢
o ¢ 0 0 t 0
—e —(A+v)t
+P{X(1) > O}/ —dt.
In view of (2.12) and (2.13) and using the elementary equality [ 57”75;(“”” dt = log (2£%), we have

—At

/oo E[e# XD 4 ooy (X(1)](1 — &) €T oy

0
VA VA+v #J A\ VA4 v —iub;
log<]g] \ffzuG ) 1g<H N\/)\—l—y—mﬁ >+ 10g< A )_log<.H ]\Vf)\fzﬂﬁj ’

jeJ jeJ

We then deduce the value of S*(A, u,v). By (2.2),

founn) =] —iph; TT-, (VA — ife)
iy N\/A+V—w9 Tl (VA + v = i) e (VX = ipaby)
_ A— Ky (i:u)N (3 5)
HjeJ(N\/ A+ v —iub;) erK(W — ip1fy,)
Similarly, the value of S~ (A, u, V) is given by
/\+V—29 A+ v —ky (ip)N
P — by Hjel,(\/)\—&-u—zu@j)HkGK( A — iuby)
Finally, putting (3.5) and (3.6) into (3.4) immediately leads to (3.3). W
Remark 3.1. We can rewrite (3.3) as
E( ) o 11 (3.7
y V) = 7 :
A )\—i-y#T ics )\+V_Zuejker z,uﬁk

Actually, this form is more suitable for the inversion of the Laplace-Fourier transform.

In the three next sections, we progressively invert the 3-parameters Laplace-Fourier transform E(A, p, v).

4 Inverting with respect to u

In this part, we invert E(\, s, ) given by (3.7) with respect to pu.
Theorem 4.1. We have, for \,v > 0,

/Oo e M[E(e "W, X (t) € do)/dz] dt
0

10



Bké)k —0. N2 +v .
— = Ajb; e VIVATTE it e >0,
)\#1\; # Z (ZGkW—ﬂjN\/A+y) /
_ JjeJ keK (4.1)
A;b;
_ > B —0NXe e <.
A#N*( B k;{ kk(jze;,ek\f 9\/A+u> fos

PROOF
By (2.6) applied to = = iu/¥/A + v and = = ip/ VA, we have

jeJ NV/\+V_W91 \f_wgk jeJli]\’/%ejkeKli%ek

A, B0
:Z __j Zi,u Z klju

jeJ eﬂ N +v keK o N2

A;By0;0)
= Y AXA+v L :
keK

Let us write that

1 1 1 1
ON N+ v —ip) (0NN —ip)  ONA— 0N T (ejN\/A +v—in GV — w)

[eS) 0
S 1 (/ eIn=0; V3 F e g0 4 / e(iu—‘%w)x d:c) .
Hk\f)\ — GJ’\V/m 0 -0

Therefore, we can rewrite E(\, p, v) as

1
E\ p,v) = — —
( H“V) )\#12,1()\4»1/)#.17\]1
AB/CG 9k . . —0. /X -0, N vz
e“”“ e VAT gi(x) F e tiVAtrEL s (2)) da

keEK

which is nothing but the Fourier transform with respect to p of the right-hand side of (4.1). W

Remark 4.1. One can observe that formula (24) in [11] involves the density of (T'(t), X (t)), this latter
being evaluated at the extremity X (t) = 0 when the starting point is . By invoking the duality, we
could derive an alternative representation for (4.1). Nevertheless, this representation is not tractable for
performing the inversion with respect to v.

Example 4.1. For N = 3, we have two cases to consider. Although this situation is not correctly
defined, (4.1) writes formally, with the numerical values of Example 2.1, in the case k3 = 1,

/00 e M [E(e‘”T(t), X(t) € dz)/dxz] dt
0

673/\+Vx
ifx >0,
N2/ 4 AN+ v)+ (AN +v)2/3
P ﬁ%cos(@x)—@?/)ﬂ—u—&— \ﬁ)sin(ﬁ%x) £ 2 < 0
if x <0,
V3 VA N2/3 4 AN+ )+ (AN +v)2/3 -
and in the case k3 = —1,

/OO e M [E(eil’T(t), X(t) € dz)/dx] dt
0

11



o~ V3 YA+ v cos( ‘/ESVQ)‘JFV z) + (VX+v+2VX)sin( \/532’\'“’ )

V3V A+ v A2/3 4+ 3NN+ ) + (A +1v)2/3
I
(&

N2/3 4 AN+ )+ (N +v)2/3

if x>0,

if z <0.

Example 4.2. For N = 4, formula (4.1) supplies, with the numerical values of Example 2.2,

/OO e M [E(eﬂ’T(t), X(t) € dz)/dx] dt
0

. W(ﬁf%ﬁﬁﬁ+ﬁ) e ) vRan(B )] ezo

5 Inverting with respect to v

In this section, we carry out the inversion with respect to the parameter v. The cases x < 0 and x > 0
lead to results which are not quite analogous. This is due to the asymmetry of our problem. So, we split

our analysis into two subsections related to the cases ¢ < 0 and x > 0.

5.1 The case £ <0

Theorem 5.1. The Laplace transform with respect to t of the density of the couple (T(t), X (t)) is given,

when x <0, by

/ Y [P{T(t) € ds, X (t) € dz}/(dsdx)] dt
0

As #K

e m 1 —0. N
= —m Z a_m ()\8) N El nLtV#J ()\S) Z Bk0?+ (& Ok \/X:E
AT TSN 0T keK

PROOF
Recall (4.1) in the case z < 0:

/OO e M [E(e*”T(t), X(t) € dz)/dx] dt

1 A6 N
= K_1 T_1 Byt — eiekﬁx'
)\#T()\Jrl/)#‘T Z ¥ k<ZQkW—QjN\//\+V>

keK jeJ

We have to invert with respect to v the quantity

v e ) .
J—1 N N S ~ .
A+ )5 G VA0V A +w O+ n)R (VA+v—g VY

By using the following elementary equality, which is valid for o > 0,

1 1 /OO —(Av)s ca—1 /OO —vs (sa—le—)\s>
= e Ss ds = e — | ds,
A+v)e T(a) Jo 0 [(a)

we obtain, for |3] < ¥+ v,

0o - o] r o
1 _ 1 L ZZ & T :Z ; 1 / e~ OFVIs gt -1 g4
Wtv=p5 Wtvi-gle S0+ns ST

12
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_ Ooefus g lg—Xs - (BY/s)" s
7/0 ( 3 e ) ds.

r=0

The sum lying in the last displayed equality can be expressed by means of the Mittag-Leffler function
(see [7, Chap. xv111]): E, (&) = > 02, %. Then,

e / (8 V/5)) ds. (5:2)

Next, we write

T m 3 / l 7_16_”214]» Ey 1 <Z’;W>1 ds, (5.3)

jeJ

where

i () - Xy () ks -3 (e S ) ey

jeJ jeJ r=0 r=0 jeJ J

When performing the euclidian division of r by N, we can write r as r = /N + m with £ > 0 and
0 <m < N —1. With this, we have 65" = (6))~°6;™ = £ 6;™ and 6}, = x{, 6;". Then,

DI ELD W E

jeJ J jeJ I

Hence, since by (2.9) the a_,,, #K + 1 < m < N, vanish,

ek oo #K )+ﬂ #K

and (5.3) becomes

#K
vs 7—1 —As m = 1
Z m 9k 7 / < e Z Q_pm 07 (As) E]qﬂLﬁ;()\S)) ds.

JjeJ m=0

As a result, by introducing a convolution product, we obtain

/OO e M[E(e™™W, X(t) € dv) /dz] dt
0

1 —0. /X 2
:—7#1(71 ZBk9k6 ek\/X

AN ek
00 s o,#‘fv_lflefko’ #K el
X / e V* (/ T(ESL x e A9 Z Q0P AN (s — o) 71E177n§7—1 (AMs—0)) do) ds.
0 0 ( N ) m=0

By removing the Laplace transforms with respect to the parameter v of each member of the foregoing
equality, we extract

/ b e MIP{T(t) € ds, X(t) € dz}/(dsdz)] dt
0

€_>‘s i m 1 0 A{/X . s U#_l m+1
=~y Yoo ( DAtV ) [ R (- 0) T (- ) b
m=0

keK

The integral lying on the right-hand side of the previous equality can be evaluated as follows:

#I-1_ 4

SU N m+l_ g m+1 1 S—U
/0 W(S_U) N El,mT“(A(S_U))dU:/O F(#J 1) (s —a)™™ Z Z+m+1 do

13



= ‘ T 1 o
£=0 0 F(#le 1) F(ngmX/r )
00 N\l 1

m,+#]71
=N A T REIE s (M)
=y 1,mAES
o D+ =5~) v

from which we deduce (5.1). W

Remark 5.1. An alternative expression for formula (5.1) is for x <0

/ T en [P{T(t) € ds, X (t) € dz}/(dsdx)] dt
0

—As 0
= _ﬁ Z A; By E#% <0k W) 6_9’“%”’. (5.4)
AN s =y z
kek
In effect, by (5.1),
/ e MP{T(t) € ds, X (t) € da}/(dsdx)] dt
0
— s co #K rpm
© m+1 (As)™T —0. N2z
= DD D em BT e
AN N S§™ 10 0 ek I‘((Jr T#)
—\s co N-1 m o4 m
€ Hk ()\8) N _9 %1
:_WZ ZAjBk%() ey AN )
AN TSN 0 m=0 jeJ 0;) T(¢+ mEE)
kek

In the last displayed equality, we have extended the sum with respect to m to the range 0 <m < N —1
because, by (2.9), the a_p,, #K +1 < m < N — 1, vanish. Let us introduce the index r = /N +m. Since

m I
Oy _— (O
(aj) 7(9j),wehave

/ "M [B{T(1) € ds, X(1) € da) /(dsd)] dt = -

sy

z
5
Va)

.
e N = (*97A ) 0, V/x
J _
K1 #K ZA?B’“Q’“Z r(rt# ¢ Lvae
ATNTSTN T r=0 ( N )
ek

which coincide with (5.4).

Example 5.1. Case N = 3. We have formally for z < 0, when k3 = —1:

o0 —As
e M s T sdz :e%” € 2 (A\s) — v
/0 P{T(#) € ds, X(¢) € da}/(ds )] dt < 7= Fup () ﬁ)

and when k3 = 1:

/ T e NPT € ds, X (1) € da}/(ds dx)] dt
0

= e\_f:\;g [\/g cos (@)(%Elj()\s) — (/\5)2/36>‘5)

+ mn(\/gfx)(«/%]fl (As) + (As)2/3eX —2F, (As))].

3

Example 5.2. Case N = 4. We have, for x > 0,

/ T en [P{T(t) € ds, X(t) € da}/(dsdz)]dt
0

= \/ie\/;;fw {cos<gx>(ml?l&(/\$) - \/Ee“) + sin<\4/\/X;>(\4/>\75E172()\5) - El,é(/\s))].

14



5.2 The case z >0

Theorem 5.2. The Laplace transform with respect to t of the density of the couple (T(t), X (t)) is given,
when x > 0, by

/ T [P{T(t) € ds, X(t) € dz}/(dsdz)]dt
0

- 1 Or ~
= )\#KN . E]A Bka/ oW 1E%7% (0] \/)\O’) Iigj_1(s—o;x)do (5.5)
VIS
kek

where the function I; 471 is defined by (2.14).

PROOF
Recall (4.1) in the case z > 0:

/OO e M[E(e™™W, X(t) € dv) /dz] dt
0

Bi0x —0,N/"Fv
S - 450, e 0V TV,
A#N_( #J Z <Z ek;%_ej]v/)\"—y)

jeJ keK

—GjN\/)\-H/J:

We have to invert the quantit, =~ with respect to v. Recalling (5.2) and (2.15),
q y >\+u)#‘1]v 1(W7%%) P g (5.2) ( )
1 _ Vs L1 _—)s N
Vil T B (6 V9))as
679jN\/)\+1/a: o \
—_—— = e " (e wy—1(s;)) ds,
(A + y)#z’v I /0 ( J# )

we get by convolution
e—0i V2 vz
A+ ) (VA+r - 3VX)
J

oo S 0
= / e’ (/ oN e ME, o (k V )\a) x e NI Ly (s — o3 x) da) ds
0 0 AN ’

= / e’ (e_)‘s/ a%_lE%% <Zk V /\U> Iigj—1(s—o;x) da) ds.
0 0 J

This immediately yields (5.5). W

Remark 5.2. Noticing that

O x ) X0 (Ao)F XN (AR e
E(” =D o rrreny = 9% T({1 E o M)V Ey s (M)
vt o, V) = L5 T L Lt ey ) B

and reminding that, from (2.8), the 8,,, 1 < m < #K — 1, vanish, we can rewrite (5.5) in the following
form. For z > 0,

/ T e NPT € ds, X (1) € du}/(ds dx)] dt
0

N—1 o #K+1 s
= e Z (ZB 9’”“) /O | mt1 (Z g Liwy—1(s— m))da

m=#K—-1 \keK jeJ I

N ok s

> B AT / N1 B m (A0) @p(s — o52) do (5.6)
m=#K 0

. A
with ®@,,(1;2) = ZjeJ 9,_"711 Iiwg_i(7;).
J
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Remark 5.3. For x = 0, using formula (5.1) which is valid for < 0, we get, by (2.8), (2.9) and (2.10),

/Oo e MP{T(t) € ds, X(t) € dz}/(dsdx) ,at
0 r=

e—)\s #K
= T\EET EK mz::()a_m Bm+1 (/\s)WELmJ;V#J (As)
ef)\s BK
= i (O B O8) By g () + ac g Brca ) K BLa(Ms))
AN SN
67/\3
- e (was) 1<As>+zek<xs>%*8>
AN s N ° N
jeJ keEK
— 0 e_ks E A N)\ As
= Jez; ; 1\75( 11— (As) = se ) (5.7)

On the other hand, with formula (5.6) which is valid for x > 0,

/ T MBI € ds, X (1) € da}/(ds ar)| _dr

N —
> BaA

m=#K

S

i g%*lEL%()\g) O, (s —0;0)do (5.8)

with

N3 A _#I=1 EIE N
(730) = o (ZemH)(e i _ / #K e ge

JjeJ I
I aERY  a,
- #K+1 -_m J— #K+1
TN r(i#]’v 1) TN
In view of (2.8), (2.9) and (2.10), we have
/ e MP{T(t) € ds, X(¢) € dz}/(ds d:c)‘ dt
0 =
gHE-1
0; / ———= E, #x(Ao)do
J— 1 Z ﬁ 1, 2%
F(# (jEJ ) ) N N
( Z 9k> \/>/ #K+1 EL#()\U) do]
keK 8 - U N
K K41
<Ze> As(ZB(é—F#jV’l_#NJF)/\ZSEI{,
J 1 K
SU)rEDT O\ e+ E
€_|_ #K+1 1_#1]{\[4»1) ;
sz £+ i) (As)

<Z9 > (En_,(As) VE&S)

JjeJ
Thus, we have checked that the two different formulas (5.7) and (5.8) lead to the same result.

Example 5.3. Case N = 3. For « > 0, (5.5) supplies formally with the numerical values of Example 2.1,
when k3 = —1,

/ T [P{T(t) € ds, X(t) € da}/(dsdz)]dt
0
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e As ir [° 5 .
_ = —2/3 _ s 3 _ e
=5 <66 /0 o E%%( e "sVAo) I11(s — o;x)do
(—e'5 Vo) Ir1(s — o3 2) da>
and when k3 =1,

/ T e NPT € ds, X (1) € du}/(ds dx)] dt
0

W=

e ?s 5 2 2m
_ —-2/3 —i4r 3 o
_\/?;\3[\</00 E%V(e 5 VAo ) I o(s — o;2) do
S
_/ 0_2/3Eé’é(eirzsﬂ\B/AU)Ilﬁo(s—a;m)da>.
0

The functions I; o, I11 and I3 ; above are respectively given by (2.16), (2.17) and (2.18).

Example 5.4. Case N = 4. For > 0, (5.5) supplies, with the numerical values of Example 2.2,

/ e [P{T(t) € ds, X(t) € da}/(dsdz)]dt
0

e (eig /s c—3AE
2\4/X 0

et o 3R (— iV )\0) Li(s—o;z)do

0

s s
+81T/ 0'_3/4El 1
0 474

S
+67’Lz / 0_73/4Evl
0 v

(—\4/%) Lai(s—o;z)do

=
=

)

Al
N

)

(i y /\0') Iy1(s—o;z)do

N

(=VAo) Ira(s — o3 2) da).

The functions I ; and I5; above are given by (2.19).

6 Inverting with respect to A

In this section, we perform the last inversion in F'(A, u, v) in order to derive the distribution of the couple
(T'(t), X(t)). As in the previous section, we treat separately the two cases x < 0 and x > 0.

6.1 The case £z <0
Theorem 6.1. The distribution of the couple (T(t), X (t)) is given, for x <0, by

P{T(t) € ds, X (t) € dz}/dsdz

Ni & megr [ mA#J _—(t—s)eN N
=—— Qs N 1 e K (2€) By mises (—s&) d§ (6.1)
2 "m0 0 N
where SH#EK —m—1 i % CHK—m—1 —iLe
Km(z) L Z Bkez’b-i-le—%e Nz _ g ogr—m Z Bkezl-i-le—@ke Nz
keK keK
Proor

Assume z < 0. Recalling (5.1), we have

/ b e MIP{T(t) € ds, X(t) € dz}/(dsdx)]dt
0

—As #K N
= _W Z afm()\S)WELm}#J ()\S) Z Bk92n+1€_9k\/xx

m=0 keK
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_ f —As Z 7mz )‘S €+m+#J Z BkezlJrle—Gk%x

é + ) keK
oo #K s o4 #K #K+1 V3
_ m41 (TR —/\.s 2] )\.L
3 S S : 2
£=0 m=0 kEK
We need to invert the quantity NP = Xs—0k VX fop ¢ >0 and 0 < m < #K with respect to \.

We intend to use (2.15) which is valid for 0 < m < N — 1. Actually (2.15) holds true also for m < 0;
the proof of this claim is postponed to Lemma 7.3 in the appendix. As a byproduct, for any ¢ > 0 and
0<m < #K,

oo
m—#K+1 _y. o N _ _
AN s akﬁx:e /\s/ e A"Ik,#Kfemeq(u;l‘)du
0

o)
= / e_AtIk’#K,gN,mfl(t — S5 CL') dt. (63)

Then, by putting (6.3) into (6.2) and next by eliminating the Laplace transform with respect to A, we
extract

P{T'(t) € ds, X (t) € dz}/(dsdx)

o #K €+m #K
== > T#JZBW*L«#K N-m-1(t = 87)
£=0 m=0 )kEK
oo #K €+7n #K
mA41 [ —EE=EN—m=1 > N—#K+IN+m —(t—s)eN —0,e' N ¢
X Z B0y e oy ¢ e d¢
kEK 0

o0 P
_ eiwﬁ / gN—#K+€N+m e—(t—s)gN—OkeﬂW z€ d§>

N m
= —2—7: A, S N Z B, 9,2”“
m=0 keK
oo 1
% <e—i#KN’”17r /Oo (Z (_SfN) >£m+#J e—(t—s)gN—ekei%xg de
m+#J
0 £=0 F(f + )
el jHEK—m—1 7n 1. / Z SfN €m+#J 67(t75)§N*9k67’i%15 dé_
0 - €_|_ m+#J)
. #K
N _
= —2—2 A, S e Z BkGI’C”H
™ m=0 keK

oo ;T
« (e—’i#KNTnlﬂ'/ §m+#J e—(t—s)gN—eke'Na:g El’mR#J (_851\7) de
0

0o T
_ ei#K m 171'/ €m+#J e—(t—s) N —Ope " Nag El,"”j\,#] (—SfN) df)
0

The proof of (6.1) is established. W

Remark 6.1. Let us integrate (6.1) with respect to z on (—o0,0]. We first compute, by using (2.8),

/_OOOICm(mé)dw:— (ZBk0k>( ”—ei#KN_m”)

keK

Sm(#K m>5 - 0‘ if 1 <m < #K,
5 N " ?Sin(#’j\{(ﬂ') ifm=0.
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We then obtain

P{T(t) € ds, X (t) < 0} /ds =

In the foregoing equality we must assume 0 < s < t/2 in order to make convergent the series. From this,
we extract

P{T(1) € ds, X(t) < 0} /ds = Sm(jf{”) (t - S)N . (6.4)

We retrieve Theorem 14 of [11].
Remark 6.2. Let us evaluate P{T'(t) € ds, X(¢) € dz}/(dsdx) at = 0. For 0 < m < #K,

4K -—mo1 HK—m—1 K-m-1
Kon(0) = e TN Bt — TN Byt = i sm<#N’” w) B

keK keK

Observing that sin(%w) =0if m = #K — 1, in view of (2.8), (2.9) and (2.10), we get

P{T(t) € ds, X (t) € dz}/ds

=0

L (T o s
:?Sln(ﬁ) OZ—#K/B#KH/O gN e~ )ENE1,1(*S§N) d§

fs1n (Z@)/ eN e dffsujlvﬂ_tyrzv Z g

jeJ

Thanks to (2.4) and (2.11), we see that

P{T(t) € ds, X(t) € dz}/ds

= —p(t;0)

and we deduce
P{T(1) € ds|X (1) = 0} /ds = 1O ?( )
that is, (T'(t)| X (¢t) = 0) has the uniform law on (0,¢). This is Theorem 13 of [11].

6.2 The case z >0

The case z > 0 can be related to the case x < 0 by using the duality. Let us introduce the dual process
(X])i>0 of (X¢)i>0 defined as X = —X, for any ¢ > 0. It is known that (see [11]):

e If N is even, the processes X and X* are identical in distribution (because of the symmetry of the
heat kernel p): X* 4 X;

e If N is odd, we have the equalities in distribution (X*)* £ X~ and (X)* £ X+ where X+ is the
pseudo-process associated with x, = +1 and X~ the one associated with x, = —1.

When N is even, we have {—0;,j € J} = {0y, k € K}. In this case, for any j € J, there exists a unique
k € K such that 0; = —0;, and then

0, —b 0.
T 0, —-0; —0; + 0, 0; — Oy ¥
ie N\ {45} i€ K\{k} i€ K\{k}

and
U =Y A;07 =" Br(—0k)" = (1) B
j€d keK
When N is odd, we distinguish the roots of &, in the cases x, = +1 and s, = —1:
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e For k, = +1, let 67, 1 <i < N, denote the roots of 1 and set J+* = {i € {1,..., N} : R(6;") > 0}
and Kt ={i e {1,...,N}: R(6;") < 0};

e For k, = —1,let §;,1 <i < N, denote the roots of —1 and set J~ ={i € {1,..., N} : R(¢; ) > 0}
and K- ={ie{l,...,N}: S‘E(l)<0}

We have {6,i € J~} = {—9,j,k € Kt} and {0,k € K~} = {-0],j € J*}. In this case, for any

j € J, there exists a unique k € K+ such that 9; = —9; and then
_ 6, —0; 0" N
Aj = H I = H _pt _pt = H 9 _ 9+ = B
i€J=\{j} * J ieKF\{k} * ko iert\{k} ¢

and similarly Aj = B, . Moreover, we have
= D A0 = D0 BEON™ = (-0 30 BT = (-1
JEJ~ keK+ keK+
and similarly o = (=1)™g,..

Now, concerning the connection between sojourn time and duality, we have the following fact. Set

t

() = /0 Losooy(X(w))du and T*(t) = /O 0100y (X ()

Since Spitzer’s identity holds true interchanging the closed interval [0, +-00) and the open interval (0, 4+-00),
it is easy to see that T'(¢) and T'(¢) have the same distribution. On the other hand, we have

t

76) = [ Moo (X () du = [ 1w (F @) = [ 1= T o) (¥ ()] du = ¢ = T (1)

We then deduce that T'(¢t) and ¢ — T*(t) have the same distribution. Consequently, we can state the
lemma below.

Lemma 6.1. The following identity holds:
P{T(t) € ds, X (t) € dz}/(dsdx) = P{T*(t) € d(t — 5), X" (t) € d(—x)}/(dsdx).
As a result, the following result ensues.
Theorem 6.2. Assume N is even. The distribution of (T(t), X (t)) is given, for x > 0, by

P{T(t) € ds,X( )€ dx}/(ds dz)

_ Zﬁ (t — 5) N"/O I o= 7 (0) B, g (—(t — 5)E™) d (6.5)

where

ZAeerl —GeNz_i ZAeerl —Gei%Z.

jedJ JjeJ

Im(2) =

PROOF
When N is even, we know that X* is identical in distribution to X and (T*(t), X*(t)) is then distributed
like (T'(t), X (t)). Thus, by (6.1) and Lemma 6.1, for 2 > 0,

P{T(t) € ds, X (¢) € dz}/(dsdz)
= IP’{T(t) € d(t —s), X(t) € d(—2)}/(ds dz)
- —& Ot —5) T / Tt () By s (—(t — 5)6V) d€.

0
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The discussion preceding Lemma 6.1 shows that
K (Z)_ —#Iom=ly ZA m+1 GeNz_ i#BI=mel ZA m+1 Gei%z
m(z) = :
jeJ jeJ

We see that K,,(2) = (=1)™"1J,,(—2) where the function J,, is written in Theorem 6.2. Finally, by
replacing a_,, by (—=1)"p_,, and #J, #K by #K, #J respectively (which actually coincide since N is
even), (6.5) ensues. W

If N is odd, although the results are not justified, similar formulas can be stated. We find it interesting
to produce them here. We set TF (¢ fo [0,400) (XE (w)) du.

Theorem 6.3. Suppose that N is odd. The distribution of (TT(t), Xt (t)) is given, for x >0, by
P{T*(t) € ds, X" (t) € dz}/(dsdw)

Ni o
m—gt st m s

Zm (1= )" [T em A o @) By e (- ) dE (6
where

_imﬂ- m _oteiN i#J*—m—lﬂ_ m _0te iR,

Tre) = R T apgyre R S S ety
j€J+ jeJ+

Proor

When N is odd, we know that (X+)* £ X~ and then ((TF)*(8), (X+)*(t)) £ (T~ (t), X~ (t)). Thus,
by (6.1) and Lemma 6.1, for z > 0,
P{T™"(t) € ds, X (t) € dz}/(dsdzx)

=P{T(t) ed(t — s), X (t) € d(—2)}/(ds dz)

Ni &
:_ﬁ o (t—s _85 K, ( -T@ 1rn+#J_( (t—s)§ )d§
m=0
where
’C;L(Z):e_l#K —m—1_ Z B m+1 —0; et Nz_ jHEK T —m—1 Sme 1o Z B m+1 —o7e ilz.
keK— keK—

As in the proof of Theorem 6.2, we can write K,,(z) = (—1)™ 17+ (—z) where the function J,} is defined
in Theorem 6.3. Finally, by replacing ., by (=1)™3; and #J~, # K~ by # K™, #J7 respectively, (6.6)
ensues. W

Formula (6.6) involves only quantities with associated ‘4’ signs. We have a similar formula for X~
by changing all ‘+’ into ‘—’. So, we can remove these signs in order to get a unified formula (this is (6.5))
which is valid for even N and, at least formally, for odd N without sign.

Remark 6.3. Let us integrate (6.5) with respect to = on [0,00). We first calculate, recalling that
TIm(z) = (=1)™T1K,,(—2) and referring to Remark 6.1,

N o 0 i1 <m<#J
| dnde=0mt [ K@= o gy
0 —0 —z 51n(N7r> if m=0.

Then,

P{T(t) e ds, X (t) > 0}/ds = ———_F+




In the foregoing equality we must assume ¢/2 < s < ¢ in order to make convergent the series. From this,
we extract

#J

N

sin (%2 s
P{T(t) € ds, X(t) > 0}/ds = (f;’ ™) ( ) (6.7)
7), w

t—s

and we retrieve Theorem 14 of [11]. By adding (6.4) and (6.
Paul Lévy’s arc-sine law stated in [11] (Corollary 9):

we obtain the counterpart to the famous

P{T'(t) € ds}/ds =

6.3 Examples
In this part, we write out the distribution of the couple (T'(t), X (¢)) in the cases N =3 and N = 4.

Example 6.1. Case N = 3. Let us recall that this case is not fully justified. Nevertheless, we find it
interesting to produce the formal correspondging results.
e Suppose k3 = 1. Using Ej 3 (—553) = e7*¢" and the values of Example 2.1, (6.1) writes, for z < 0,

P{T'(t) € ds, X (t) € dz}/(dsdz)

V3 <32/3 /Ooé.ef(tfs)f’; Ko(w€) By 1 (—s¢®) ¢
0

2m
451/ / T 8 B (at) By z(—s6%)dé + / T8 Ry (a) d£>
0 0

where

/€o<z>=—i¢§;co<z):ez_e—z/2( L B \/3)

Ki(z) = —iV3Ki(2) = —€* + e /2 <c \[ /3 \/§Z>
\/§z
5

Ka(z) = —iv3Ky(2) = e* + 2¢7*/2 cos
For = > 0, (6.6) gives
P{T(t) € ds, X (t) € dx}/(ds d:r)
o (= [ @ B By (-0 ac [ e ac)

where

jo(z) =iJo(z) = 2¢ %% sin \/2327

T(2) = —iJi(z) = e */? (\/3 cos \/SZ — sin \/gz)
e Suppose k3 = —1. Likewise, for z <0,

P{T'(t) € ds, X (t) € dz}/(dsdz)
fi i/wfz 7(t75)53,€ E _s£3) 4 > 3 453,@ d
T 2r \ s /o € o(z€) 1,%( s£%) dé + ; §e 1(z€) dg
where

Ko(z) = —i Ko(2) = —2¢*/? sin @Z
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Ki(z) = —iKa(z) = e*/? (\/g Cos \/2?:2 + sin \/2?:2)
For z > 0,
P{T(t) € ds, X(t) € dz}/(ds dx)

\/§((t

T or

=P [T R By (- 0@) s+ [T € Gl ac)
0 0

)72/3/0 ges¢ Jo(x€) E, 1 (—(t—9)€%) de

where

jo(z)zi\/ﬁjo(z):e—z_ezn( f s \/§z>

Fi(2) = ~iVBIi(2) = —e 7 + &2 ( f VEsm Y3 )
fz

Jo(2) = iV3Ta(z) = e +2€*/? cos =
Example 6.2. Case N = 4. Referring to Example 2.2, formula (6.1) writes, for 2 < 0,
P{T(t) € ds, X (t) € dz}/(ds dx)
2/1 [= (t_s)ed =
== (\/g | et Rogwe) By y (") ag

* g /O € eI Ky (x¢) By g (—s€") ¢ + /O gte 1 Ka(at) dg)

where

Ko(z) = —iKo(z) = € —cosz —sin z,
Ki(z) = —iK1(2) = —€* + cos z — sin z,

Ka(z) = =i Ka(2) = €* + cos z + sin 2.
For x > 0, (6.5) reads

P{T'(t) € ds, X (t) € dz}/(dsdz)
2 1 oo 2 set 7o et
=2 (= [ e A By (- e a

€8 Fi(a6) By g (—(t - 5)€0) de + / Tete € y(ae) df)

+
\4/ t—s 0
where

Jo(2) =i Jo(z) = e™* — cos z + sin z,
Ji(z) = =i Ji(z) = —e™% 4 cos z + sin z,
Jo(2) =i Ja(z) = e ™* + cosz — sin 2.

7 Appendix

Lemma 7.1 (Spitzer). Let (&;)r>1 be a sequence of independent identically distributed random variables
and set Xo =0 and Ty =0 and, for any k> 1,

k
Xe=&+ - +&  To=Y_ 1o so0)(Xk).
j=1
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Then, for p € R, v >0 and |z| < 1,

oo 00 3
ZE[eip,kauTk] Zk = exp < Z E |:6ip,Xk,7uk1[0)+oo)(Xk):| Zk) , (71)
k=0

o & k

Z E[ei“xk_”T’*‘ 10, +00) (Xk)] P - ! 1 |f2 — exp (— (1- e k) E[e“‘x’“ 10, +00) (Xi)] 2)] , (7.2)
k=0 =1

s eV k
ZE[eiuXk—uTk ﬂ(—m,o)(Xk)] P — lexp<z 1—e vk ka ﬂ(_oc,O)(Xk)] Zk> - 1‘| . (7.3)
k=0 e

PROOF
Formula (7.1) is stated in [21] without proof. So, we produce a proof below which is rather similar to one
lying in [21] related to the maximum functional of the X}’s.

e Step 1. Set, for any (z1,...,2,) € R" and 0 € &,, (&, being the set of the permutations of 1,2,...,n),

n k
U(.Il, cee 733n) = Z ]1[0700) (ZIJ>
k=1 j=1

and

V(o;a1,...,2n) = Z #cr(0) 10,00 ( Z xj>.
k=1

j€ck (o)

In the definition of V' above, the permutation ¢ is decomposed into n, cycles: o = (¢1(0))(c2(0)) - .. (cn, (o).
In view of Theorem 2.3 in [21], we have the equality between the two following sets:

{U(o(z1),...,0(xp)),0 € 6} ={V(o;21,...,20),0 € &y }.

We then deduce, for any bounded Borel functions ¢ and F,

(Zga(])) 0 glaagn))]

In particular, for ¢(x) = e'*® and F(x) = e ¥* (where u € R and v > 0 are fixed),

(32 ¥ &Y s 3 s))]

E[p(Xn)F(U (&1, ---,60))] :% Y E

ce6,

E eiMXn_szzl ]1[074»90)(2?:1 51):| — n' Z ]E

oceG, k=1 jéeck (o) j€ck(o)
Z H]E exp(z,u Z & — v (#er(0)) 10,00 < Z 53))]
JEG k=1 j€ck (o) j€ck (o)
#ck (o) #cp (o)
n' Z HIE exp(z,u Z § —v(#erlo 000)( Z 5]))]
oc€G, k=1

Denote by r¢(o) the number of cycles of length ¢ in o for any £ € {1,...,n}. We have ri(o) 4 2r2(c
-+ 4+ nry(o) =n. Then,

n
E[ei,an—uTn] _ % Z H (E[eiyxl—uz1[0,m>(X()D

re(0)

f0€B, (=1
1 n ' "
E Xo—vLl 1y 00y (X
- n! Ny, ke H (E{e’“ £=vL 1[0 00)( tz)D
' ki,....kn>0: (=1

ki42ko+--+nk,=n

where Ny, ., is the number of the permutations o of n objects satisfying (o) = k1, ...,7mn(0) = kn;
this number is equal to
n!

N, = '
Rk = TTR) (g 12R2) (Kl )
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Then,

E[ewxnfuTn] _ Z H kelgktz ( [ ipnXp—vit 1[0,oo>(Xe)}>k£.

ki,..., kn>0:
k1+2ko+-- +nk =n

e Step 2. Therefore, the identity between the generating functions follows: for |z| < 1,

iE[eanfuTn] oM = Z H . ( [ i;LXefué]l[o,x)(Xe)] z;)ke
n=0

n>0k1o kn >0:
k1+2k2+ +nkn—n

- ¥ H <[wm uHm)(Xe)} )

k1,k2,-->0¢=1

.

{
:ﬁ oo l ]E|: inXe—vl 1o, o) XZ) i
£ k! E

ke

=1 =1
o0
— HGXP E{ei#&xe*lff ]l[O,oo)(XZ):| Z)
(=1 ¢
o n
= exp (Z E {eiuX7ﬁV”11[o,+oc)(Xn)} Z> )
n
n=1

The proof of (7.1) is finished.

e Step 3.
Using the elementary identity e*14(*) —1 = (e® —1)14(z) and noticing that T}, = Ty_1 + Lo, +00) (Xk),
we get for any k& > 1,
eV 1o, 4+00) (Xk) _ 1 1

E[ei,uXk—ka ]1[0,+oo) (Xkﬂ - ei/LXk—VTk pr— _ T [E(ew‘xk_Vkal) _ E(eiuXk—uTk)] .

Now, since Xy = X_1 + &, where Xi_1 and & are independent and & have the same distribution as &7,
we have, for k£ > 1,
]E(eiMXk*VTk—l) _ E(eiﬂ‘fl) E(eiMXk—lfVTk—l).

Therefore,
Z]E[ei“x’“’”T’“ ]1[07+OO)(X]€)] ko 1 1 E ewx,ruTk_l] _ E[ei“x’“’”T’“]) Sk
k=1 k=1
(oo} (oo}
= — (E 1#51 ZE[ekaa—kaa] Zk _ ZE[@WX’“_VT’“} Zk>
k=1 k=1
= ( (M) = 1) Y E[emXevTk] ok 4 1). (7.4)
k=0
By putting (7.1) into (7.4), we extract
ZE[eiﬂX’“ﬂ’Tk 1o, +00) (Xk)] 2k = eyl_ 1 [e" — (1 - zE(ei“gl)) S(p,v, z)] (7.5)

k=0

where we set

00 . k
S(p, v, z) = exp(ZE[e’”Xk_”kl[0=+°°>(Xk)} Z)

k=1
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Next, using the elementary identity 1 — ¢ = exp[log(1l — )] = exp[f Sy Ck/k] valid for |¢| < 1,

1_2E(ew&):exp<_i@a(ew&)] Zk)-exp( f:E i) )

k=1

and then

o0 k
(1 - ZE(ewgl)) S(p, v, z) = exp(ZE{@“‘X’“_”“[&“@(X“ — e”‘X’“} Zk>

= exp <_ Z (1 _ e—I/k)) E[eka ][[0 +oo )(Xk)] k’) . (7.6)

Hence, by putting (7.6) into (7.5), formula (7.2) entails.
By subtracting (7.5) from (7.1), we obtain the intermediate representation

[(e” — zE(ei“ﬁl)) S(p,v,z) —€”].

ZE[eiMXk*VTk ]1(_0070) (Xk)] Zk _ T
k=0

By writing, as previously,

oo —uk k
) z
v _ -k w€1 _ E ka
e z (e =e exp( g A >7
k=1
we find

o0
(eu - ZE(ewgl)) S(p,v,z2) =€ exp(ZE{ inXe=vklp, o) (Xk) _ ginXp— ”k} Zk )

Finally, (7.3) ensues. W

Lemma 7.2. The following identities hold:

By = (—1)FFT H O, Bur+1 = (—1)FF! <H 9k><z 9k>.

keK keK keK

PrOOF
We label the set K as {1,2,3,...,#K}. By (2.5), we know that the By’s solve a Vandermonde system.
Then, by Cramer’s formulas, we can write them as fractions of some determinants: By = Vj/V where

U | T ... 1 11 1
9; N 972/#1( 0% . 9};,1 0 0]2€+1 . 6‘3&[{

vo| o k| g ve| o R 0 B Ok
K-1 K-1 K—-1 K-1 K—-1 K-1

0F i o7 Lot o 973:1 . 0L

By expanding the determinant V}, with respect to its k" column and next factorizing it suitably, we easily
see that

01 o O O Ok
02 ... 6 e,f+1 A
Vi = (=1)** : : : :
K-1 K-1 K-1 K-1
i .07 e;j;l .0k
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1 .. 1 1 . 1
0 con Ok 0 .0
e 6| 62 o, 6. 0
— (_1)k+1 ’LEK K3 1 k—1 k+1 #K
Ok
B
1 e Vg k+1 o Uug
With this at hands, we have
1 e 1 1 . 1
01 cen O Op+1 .. Opk
Bpx = 3 BOFS = [kex O S (g 02 ... 0, 0. ... 0ig
keK keK
K—2 K—2 K—2 K—2
0¥ L OERT R L 0k

We can observe that the sum lying on the above right-hand side is nothing but the expansion of the
determinant V' with respect to its last row multiplied by the sign (—1)#%~1. This immediately ensues
that Bux = (71)#1(71 erK 0. Similarly,

1 . 1 1 . 1
01 ek—l 9[€+1 H#K
2
Buri1 = Z BkazﬁK+1 _ M Z(_l)k+19;§éK 07 ceo 02, 91%+1 972%”{
keK keK
#E—2 #K—2 K2 HK—2
07 07 Or 1 H#K

The above sum is the expansion with respect to its last row, multiplied by the sign (—1)#K~1 of the
determinant V' defined as

11
0 ... Ok
2 2
/ 03 ... Ok
V' = . .
HK—2 HK—2
o7 I 0 b
o7 L OEE

Let Ro,R1,Ra,...,Rux—2, Rux_1 denote the rows of V/. We perform the substitution Rux_1 «

Ruk_1+ Zfzfg(—l)ewR#K,g where the oy’s are defined by (2.3). This substitution does not affect the
value of V' and it transforms, e.g., the first term of the last row into

#K
075+ (~1)fo 07
£=2

Recall that oy = Zl§k1<~~-<kg<#K O, .. .0k,. We decompose oy, by isolating the terms involving 6, into

! !
0, E Oky - - O, + E Ok, Oky - Ok, = 61091 + 0y
2<ko< <k <#K 2<k1 <k < <ke<#K

P r_
where we set 0y, = 0 and o), = Z2§k1<k2<m<k[§#K 0k, 0k, . .. Ok,. Therefore, we have

#K #K #K
K K—¢ K K—0+1 K—t
07"+ (1)o7 =07+ > (—1) o 07T 1Y (1) oy 67
=2 =2 =2

=075 4o 0 T =070, + o)) = 07! (Z 0k>.
keK

The foregoing manipulation works similarly for each term of the last row of V'. So, we deduce that
V= (X hex 0k) V and finally Buri1 = (=D ([Tck 06)(Crer bc). W
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Lemma 7.3. For any integer m < N — 1 and any x > 0,
/ e M (uy ) du = AR VAa, (2.15)
0

PRrROOF
This formula is proved in [13] for 0 < m < N — 1. To prove that it holds true also for negative m, we
directly compute the Laplace transform of I ., (u; z). We have

) N NZ . [e%e] EN—m—l P l% ¢ i oogN—m—l 0 71.% ¢
/O e Ij7m(U;I)dU:2ﬂ_(€ N /0 me 7T dé—eN /0 me 7 - df)

Let us integrate the function H : z — j?f—;; e~ for fixed a and M such that R(a) > 0 and M > 0 on the
contour I'g = {pe’? € C: o =0,p € [0,R]} U{pe’? € C: p € (0,—2F),p=R}U{pe’¥ € C: p = —2T,
p € (0, R]}. We get, by residues theorem,

o L M-1 yir o L M-1 P N .
— e ®dz+e *NT —e *dz = 2imw Residue( H, Ve i®
0 ZN + )\ 0 ZN + )\

T (RN et a VR

_ 2m A%—le—i%ﬂe—al\’ Ne i

N1

For M =N —m and a =0; e'~ z, this yields
o0 . . N, ) N,
/ e M (usx) du = —e T TRTATN x (felﬁﬂ)efafﬁm =\ R 0V,
0

Hence, (2.15) is valid form < N —1. W
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