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Abstract: Let {(Xi, Yi)}i∈{1,...,n} be an i.i.d. sample from the random
design regression model Y = f(X) + ε with (X, Y ) ∈ [0, 1] × [−M,M ]. In
dealing with such a model, adaptation is naturally to be intended in terms
of L2([0, 1], GX) norm where GX(·) denotes the (known) marginal distri-
bution of the design variable X. Recently much work has been devoted to
the construction of estimators that adapts in this setting (see, for example,
[5, 24, 25, 32]), but only a few of them come along with a easy–to–implement
computational scheme. Here we propose a family of estimators based on the
warped wavelet basis recently introduced by Picard and Kerkyacharian [36]
and a tree-like thresholding rule that takes into account the hierarchical
(across-scale) structure of the wavelet coefficients. We show that, if the re-
gression function belongs to a certain class of approximation spaces defined
in terms of GX(·), then our procedure is adaptive and converge to the true
regression function with an optimal rate. The results are stated in terms of
excess probabilities as in [19].

AMS 2000 subject classifications: Primary 62G07, 60K35; secondary
62G20.
Keywords and phrases: Regression with random design, Wavelets, Block
thresholding, Warped Wavelets, Adaptive Approximation, Universal Algo-
rithms, Muckenhoupt weights.

1. Introduction

Wavelet bases are ubiquitous in modern nonparametric statistics starting from
the 1994 seminal paper by Donoho and Johnstone [27]. What makes them so
appealing to statisticians is their ability to capture the relevant features of
smooth signals in a few “big” coefficients at high scales (low frequencies) so
that zero thresholding the small ones, results in an effective denoising scheme
(see [47]).

Although these well known results about thresholding techniques were usually
obtained assuming a fixed (and possibly equispaced) design [27, 28], it was quite
reassuring to see how they carry over almost unchanged to the irregular design
case. As a matter of fact, in the case of irregular design, various attempts to
solve this problem has been made: see, for instance, the interpolation methods
of Hall and Turlach [34] and Kovac and Silverman [38]; the binning method
of Antoniadis et al. [3]; the transformation method of Cai and Brown [14],
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or its recent refinements by Maxim [40] for a random design; the weighted
wavelet transform of Foster [29]; the isometric method of Sardy et al. [44]; the
penalization method of Antoniadis and Fan [2]; and the specific construction of
wavelets adapted to the design of Delouille et al. [21, 22] and Jansen et al. [46].
See also Pensky and Vidakovic [41], and the monograph [32].

The main drawback common to most of the methods just mentioned can be
found, with no surprise, on the computational side: compared, for instance, with
the usual thresholding technique, the calculations are, in general, less direct. To
fix this problem, Kerkyacharian and Picard [36] propose warped wavelet ba-
sis. The idea is as follow. For a signal observed at some design points, Y (ti),
i ∈ {1, . . . , 2J}, if the design is regular (tk = k/2J), the standard wavelet de-
composition algorithm starts with sJ,k = 2J/2Y (k/2J) which approximates the
scaling coefficient

∫
Y (x)φJ,k(x)dx, with φJ,k(x) = 2J/2φ(2Jx− k) and φ(·) the

so–called scaling function or father wavelet (see [39] for further information).
Then the cascade algorithm is employed to obtain the wavelet coefficients dj,k

for j 6 J, which in turn are thresholded. If the design is not regular, and we still
employ the same algorithm, then for a function H(·) such that H(k/2J) = tk,
we have sJ,k = 2J/2Y (H(k/2J)). Essentially what we are doing is to decom-
pose, with respect to a standard wavelet basis, the function Y (H(x)) or, if
G◦H(x) ≡ x, the original function Y (x) itself but with respect to a new warped
basis {ψj,k(G(·))}(j,k). In the regression setting, this means replacing the stan-
dard wavelet expansion of the function f(·) by its expansion on the new basis
{ψj,k(G(·))}(j,k), where G(·) is adapting to the design: it may be the distri-
bution function of the design, or its estimation, when it is unknown (not our
case). An appealing feature of this method is that it does not need a new al-
gorithm to be implemented: just standard and widespread tools. Of course the
properties of this basis depend on the warping factor G(·). In [36] the authors
provide the conditions under which this new basis behaves, at least for statistical
purposes, as well as ordinary wavelet bases with respect to L

p([0, 1], dx) norms
with p ∈ (0,+∞). This condition properly quantifies the departure from the uni-
form distribution and happens to be associated with the notion of Muckenhoupt
weights (see [31, 45]).

Now the problem is that we do not need good estimators in L
p([0, 1], dx).

What we need are (easy to compute) estimators that adapt in L
2([0, 1], GX). As

a matter of fact it is possible to prove that the main results contained in [36]
can be extended to this new setting once we assume GX(·) to be known as in
[15], the case of an unknown GX(·) being beyond the scope of this work (see
[35]).

Here we propose a particular variation on the basic thresholding procedure
advanced in [36], that can be motivated as follow. In a variety of real–life sig-
nals, significant wavelet coefficients often occur in clusters at adjacent scales
and locations. Irregularities, like a discontinuity for example, in general tend to
affect the whole block of coefficients corresponding to wavelet functions whose
“support” contains them. For this reason it is reasonable to expect that the
risk of “blocked” thresholding rules might compare quite favorably with other
classical estimators based on level–wise or global thresholds. The literature is
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Fig 1. Examples of thresholding rules: [A] - Original wavelet coefficients; [B] - Linear
thresholding; [C] - Nonlinear (hard) thresholding; [D] - Vertical (hard) thresholding.

filled with successful examples of “horizontally” (within scales) blocked rules
derived from both, purely frequentist arguments [11, 13, 15, 33], or Bayesian
reasonings of some flavor [1, 16, 48]. Recently, an increasing amount of work has
been devoted to study a new class of “vertically” (across scales, see Figure 1)
blocked or treed rules [4, 10, 17, 30, 43], that have proved to be of invaluable
help in at least two settings of great importance: the construction of adaptive
pointwise confidence intervals [42] and the derivation of pointwise estimators
of a regression function that adapt rate optimally under what we could call a
focused performance measure [12].

For this reason, adapting some techniques developed in [5] to the current
(simplified) setting, in Section 2 we show how vertically zero–thresholding the
warped wavelet coefficients actually results in an universal smoother with good
properties in L

2([0, 1], GX) over reasonably large approximation spaces.

2. Tree–Structured Warped Approximations

We shall now discuss in greater details nonlinear approximation processes based
on warped wavelet bases where a tree structure is pre–imposed on the preserved
coefficients. We will start following closely [5] by reviewing some basic facts
about partitions and how they are related to adaptive approximation. Then
we present the universal algorithm based on adaptive partitions coming from a
warped wavelet decomposition and its theoretical properties.
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In the spirit of the recent paper by Cucker and Smale [20], we will measure
the performances of our estimator by studying its convergence both in prob-
ability and expectation. More specifically, let P{·} be a – generally unknown
or partially unknown– Borel measure defined on Z = X × Y ⊂ R

d × R, and
consider again a nonparametric regression problem where we want to estimate
the conditional mean f(x) = E(Y |X = x) from an i.i.d. sample of size n,
z = zn = {(xi, yi)}i∈{1,...,n}, drawn from P{·}. Assume further that, chosen an
hypothesis space H from which our candidate estimators fz(·) comes from, we
shall measure the approximation error of fz(·) in the L

2(X , GX) norm, where
GX(·) is the (marginal) distribution of the design variable X. Here, as in the
previous section, we will assume GX(·) to be known. So, given fz ∈ H, the
quality of its performance is measured by

‖f − fz‖ = ‖f − fz‖L2(X ,GX).

Clearly this quantity is stochastic in nature and, consequently, it is generally not
possible to say anything about it for a fixed z. Instead we look at the behavior
in probability as measured by

P
⊗n {z : ‖f − fz‖ > η} , η > 0

or the expected error

E
⊗n
(
‖f − fz‖

)
=

∫
‖f − fz‖dP

⊗n,

where P
⊗n{·} denotes the n–fold tensor product of P{·}. Clearly, given a bound

for P
⊗n {z : ‖f − fz‖ > η}, we can immediately obtain another bound for the

expected error since

E
⊗n
(
‖f − fz‖

)
=

∫ +∞

0

P
⊗n {z : ‖f − fz‖ > η}dη. (1)

As we will see in Section 4, bounding probabilities like P
⊗n{·} usually requires

some kind of concentration of measure inequalities (see [8]).
Now, suppose that we have chosen a reasonable hypothesis space H. We still

need to address the problem of how to find an estimator fz(·) for the regression
function f(·). One of the most widespread criteria (see [20, 24, 32], and references
therein) is the so called empirical risk minimization (least–square data fitting).

Empirical risk minimization is motivated by the fact that the regression func-
tion f(·) is the minimizer of

E(w) =

∫
[w(x) − y]

2
dP.

That is
E(f) = inf

w∈L2(X ,GX)
E(w).
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This suggests to consider the problem of minimizing the empirical loss

Ez(w) =
1

n

n∑

i=1

[w(xi) − yi]
2,

over all w ∈ H. So, in the end, we found an implementable form for our candidate
estimator

fz = fz,H = arg min
w∈H

Ez(w),

the so–called empirical minimizer. Notice that given a finite ball in a linear or
nonlinear finite dimensional space, the problem of finding fz(·) is numerically
solvable.

In the following we will see how to build the hypothesis space H from refinable
partitions of the design space X and then, how this is related to (warped) wavelet
basis. Typically H = Hn depends on a finite number J(n) of parameters as, for
example, the dimension of a linear space or, equivalently, the number of basis
functions we use to generate it. In many cases, this number J is chosen using
some a priori assumption on the regression function. In other procedures, the
number J avoids any a priori assumptions by adapting to the data. We shall be
interested in estimators of the latter type.

2.1. Partitions, Adaptive Approximation and Least–Squares Fitting

We will now review some basic facts about partitions and how they are related
to adaptive approximation. The treatment follows closely [5]. A partitions Λ of
X ⊂ [0, 1]d is usually built through a refinement strategy. We first describe the
prototypical example of dyadic partitions and then, in the following section, we
will make the link with orthonormal expansions through a wavelet basis. So let
X = [0, 1]d, and denote by Dj = Dj(X ) the collection of dyadic subcubes of X
of sidelength 2−j and D =

⋃∞
j=0 Dj . These cubes are naturally aligned on a tree

T = T (D). Each node of the tree T is a cube I ∈ D. If I ∈ Dj , then its children
are the 2d dyadic cubes of J ∈ Dj+1 with J ⊂ I. We denote the set of children of
I by C(I). We call I the parent of each such child J and write I = P(J). The cubes
in Dj(X ) form a uniform partition in which every cube has the same measure
2−j d.

More in general, we say that a collection of nodes T̃ is a proper subtree of T
if:

• the root node I ≡ X is in T̃ ,
• if I 6= X is in T̃ then its parent P(I) is also in T̃ .

Any finite proper subtree T̃ is associated to a unique partition Λ = Λ(T̃ ) which

consists of its outer leaves, by which we mean those J ∈ T such that J /∈ T̃
but P(J) is in T̃ . One way of generating adaptive partitions is through some
refinement strategy. One begins at the root X and decides whether to refine X
(i.e. subdivide X ) based on some refinement criteria. If X is subdivided, then
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one examines each child and decides whether or not to refine such a child based
on the refinement strategy.

We could also consider more general refinements. Assume, for instance, that
a > 2 is a fixed integer. We assume that if X is to be refined, then its children
consist of a subsets of X which are a partition of X . Similarly, for each such
child there is a rule which spells out how this child is refined. We assume that
the child is also refined into a sets which form a partition of the child. Such a
refinement strategy also results in a tree T (called the master tree) and children,
parents, proper trees and partitions are defined as above for the special case of
dyadic partitions. The refinement level j of a node is the smallest number of
refinements (starting at root) to create this node. Note that to describe these
more general refinements in terms of basis functions, we need to introduce the
concept of warped multi–wavelets and wavelet packets, but this is beyond the
scope of the present work.

We denote by Tj the proper subtree consisting of all nodes with level < j and
we denote by Λj the partition associated to Tj , which coincides with Dj(X ) in
the above described dyadic partition case. Note that in contrast to this case, the
a children may not be similar in which case the partitions Λj are not spatially
uniform (we could also work with even in more generality and allow the number
of children to depend on the cell to be refined, while remaining globally bounded
by some fixed a). It is important to note that the cardinalities of a proper tree

T̃ and of its associated partition Λ(T̃ ) are equivalent. In fact one easily checks
that

card
(
Λ(T̃ )

)
= (a− 1) card

(
T̃
)

+ 1,

by remarking that each time a new node gets refined in the process of building
an adaptive partition, card(T̃ ) is incremented by 1 and card(Λ) by a− 1.

Given a partition Λ, we can easily use it to approximate functions supported
on X . More specifically, let us denote by SΛ the space of piecewise constant
functions – normalized in L

2(X , GX) – subordinate to Λ. Each f ∈ SΛ can then
be written as

f(·) =
∑

I∈Λ

cI
1√

GX(I)
1I(·),

where 1I(·) denotes the indicator function of any set I ⊂ X . The best approxi-
mation of a given function f ∈ L

2(X , GX) by the elements of SΛ is given by

ΠΛ(f)(·) =
∑

I∈Λ

sI
1√

GX(I)
1I(·),

where

sI =

〈
f, 1√

GX(I)
1I

〉

L2(GX)

, (2)

and sI ≡ 0 in case GX(I) ≡ 0.
In practice, we can consider two types of approximations corresponding to

uniform refinement and adaptive refinement. We first discuss uniform refine-
ment. Let

EJ(f) = ‖f − ΠΛJ
(f)‖L2(GX), J ∈ N0,
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which is the error for uniform refinement. The decay of this error to zero is
connected with the smoothness of f(·) as measured in L

2(X , GX). We shall
denote by As the approximation space (see the review in [23]), consisting of all
functions f ∈ L

2(X , GX) such that

EJ(f) 6 M0a
−J s, J ∈ N0. (3)

Notice that card(ΛJ) = aJ, so that the decay in Equation (3) is like N−s with
N the number of elements in the partition. The smallest M0 for which Equation
(3) holds serves to define the semi-norm |f |As on As. The space As can be
viewed as a smoothness space of order s > 0 with smoothness measured with
respect to GX(·). For example, if GX(·) is the Lebesgue measure and we use
dyadic partitioning then As/d = B2,s

∞ , s ∈ (0, 1], with equivalent norms. Here
B2,s
∞ is the Besov space which can be described in terms of the differences as

‖w(· + h) − w(·)‖L2(dx) 6 M0|h|s, x, h ∈ X .

Instead of working with a–priori fixed partitions there is a second kind of
approximation where the partition is generated adaptively and will vary with
f(·) . Adaptive partitions are typically generated by using some refinement
criterion that determines whether or not to subdivide a given cell. We shall
consider a refinement criteria that was introduced to build adaptive wavelet
constructions such as those given by Cohen et al. in [17] for image compression.
This criteria is analogous to thresholding wavelet coefficients. Indeed, it would
be exactly this criteria if we were to construct a wavelet (Haar like) bases for
L

2(X , GX). For each cell I in the master tree T and any w ∈ L
2(X , GX) we

define

νI = νI(w) =

√ ∑

J∈C(I)

s2J − s2I , (4)

which describes the amount of L
2(X , GX) energy which is increased in the pro-

jection of w(·) onto SΛ when the element I is refined. It also accounts for the
decreased projection error when I is refined. If we were in a classical situation
of Lebesgue measure and dyadic refinement, then ν2

I (w) would be exactly the
sum of squares of the (scaling) Haar coefficients of w(·) corresponding to I.

We can use νI(w) to generate an adaptive partition. Given any λ > 0, let
T (w, λ) be the smallest proper tree that contains all I ∈ T for which νI(w) > λ.
This tree can also be described as the set of all J ∈ T such that there exists
I ⊂ J which verifies νI(w) > λ. Note that since w ∈ L

2(X , GX), the set of nodes
such that νI(w) > λ is always finite and so is T (w, λ). Corresponding to this
tree we have the partition Λ(w, λ) consisting of the outer leaves of T (w, λ). We
shall define some new approximation spaces Bs which measure the regularity of
a given function w(·) by the size of the tree T (w, λ).

Given s > 0, we let Bs be the collection of all w ∈ L
2(X , GX) such that the

following is finite

|w|pBs = sup
λ>0

{
λp

card (T (w, λ))
}
, with p = (s+ 1

2 )−1. (5)
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We obtain the norm for Bs by adding ‖w‖L2(GX) to |w|Bs . One can show that

‖w − ΠΛ(w,λ)(w)‖L2(GX) 6 C(s) |w|
1

2s+1
Bs λ

2s
2s+1 6 C(s) |w|BsN−s, (6)

where N = card(T (w, λ)) and the constant C(s) depends only on s (see Cohen
et al. [17]). It follows that every function w ∈ Bs can be approximated to order
O(N−s) by ΠΛ(w)(·) for some partition Λ with card(Λ) = N . This should be
contrasted with As which has the same approximation order for the uniform
partition. It is easy to see that Bs is larger than As. In classical settings, the
class Bs is well understood. For example, in the case of Lebesgue measure and
dyadic partitions we know that each Besov space Bτ,s

q with τ > (s/d + 1/2)−1

and q ∈ (0,∞] arbitrary, is contained in Bs/d (see [17]). This should be compared
with the As where we know that As/d = B2,s

∞ as we have noted earlier. In the
next section we will see how to “visualize” these approximation spaces when we
use warped wavelet bases to build our partitions.

Until now, we have only considered the problem of approximating elements of
some smoothness class by approximators associated to (adaptive) partitions of
their domain X : no data, no noise; just functions. Here, instead, we assume that
f(·) denotes, as before, the regression function and we return to the problem of
estimating it from a given data-set. Clearly, we can use the functions in H = SΛ

for this purpose, so that the “incarnation” in this context of what we called the
empirical minimizer, is given by

fz,Λ = argmin
w∈SΛ

1

n

n∑

i=1

[w(xi) − yi]
2,

the orthogonal projection of y = y(x) onto SΛ with respect to the empirical
norm

‖y‖2
L2(X ,δX) =

1

n

n∑

i=1

|y(xi)|2,

with y(xi) = yi, and we can compute it by solving card(Λ) independent prob-
lems, one for each element I ∈ Λ. The resulting estimator can than be written
as

fz,Λ(·) =
∑

I∈Λ

sI(z)
1√

GX,n(I)
1I(·),

where, for each I ∈ Λ,

sI(z) =
1

n

n∑

i=1

yi
1√

GX,n(I)
1I(xi) and GX,n(I) =

1

n

n∑

i=1

1I(xi),

are the empirical counterparts of the theoretical coefficients defined in Equation
(2). With the coefficients {sI(z)}I∈Λ at hand, we can build linear estimators fz(·)
corresponding to uniform partitions with cardinality suitably chosen to balance
the bias and variance of fz(·) when the true regression function f(·) belongs to
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Algorithm: Least–Squares on Adaptive Partitions

Require: Sample z = {(xi, yi)}i∈{1,...,n}; threshold λn, γ > 0 smoothness index
Output: An estimator fz(·) for the regression function f(·)
Setup:

1 : Define J⋆ = min
{
j ∈ N : 2j 6 λ

−1/γ
n

}

Generator:

2 : Compute νI(z) for the nodes I at a refinement level j < J⋆

3 : Threshold {νI(z)}I at level λn obtaining the set: Σ(z, n) = {I ∈ TJ⋆ : νI(z) > λn}
4 : Complete Σ(z, n) to a tree T (z, n) by adding nodes J ⊃ I ∈ Σ(z, n)
7 : Return The estimator fz(·) that minimizes the empirical risk on Λ(z, n)

Table 1

Least–squares on adaptive partitions driven by the empirical residuals νI(z) defined in
Equation (7). Adapted from [5].

some specific smoothness class. Alternatively, defining the empirical versions of
the residuals introduced in Equation (4) as

νI(z) =

√ ∑

J∈C(I)

s2J(z) − s2I (z), (7)

we can mimic the adaptive procedure introduced in the previous section (see
Table 1) to get universal1 estimators based on adaptive partitions. These par-
titions have the same tree structure as those used in the CART algorithm [9],
yet the selection or the right partition is quite different since it is not based
on an optimization problem but on a thresholding technique applied to to em-
pirical quantities computed at each node of the tree which play a role similar
to wavelet coefficients as we will see in the following (see [26] for a connection
between CART and thresholding in one or several orthonormal bases).

2.2. A Universal Algorithm Based on Warped Wavelets

The choice we made in the previous Section of adopting piecewise constant
functions as approximators, severely limits the optimal convergence rate to ap-
proximation spaces corresponding to smoothness classes of low or no pointwise
regularity (see [6] for an interesting extension based on piecewise polynomial
approximations). A possible way to fix this problem would be to use the com-
plexity regularization approach for which optimal convergence results could be
obtained in the piecewise polynomial context (see for instance Theorem 12.1 in
[32], and the paper by Kohler [37]).

In the present context where the marginal design distribution GX(·) is as-
sumed to be known, we have another option based on the warped systems in-
troduced in Section 1.

It is worth mentioning that in this section we will concentrate on the X ≡
[0, 1]. The present setting could be generalized to the case where GX(·) is a d–

1A synonymous of “adaptive”: the estimator does not require any prior knowledge of the
smoothness of the regression function f(·).
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dimensional tensor product. However, the full generalization to dimension d > 1
is more involved and will not be discussed here.

To “translate” the concepts highlighted in the previous two sections in terms
of warped systems, consider a compactly supported wavelet basis {ψj,k(·), j >

−1, k ∈ Z}, where ψ−1,k(·) = φ0,k(·) denotes the scaling function, and its warped
version {ψj,k(GX(·)), j > −1, k ∈ Z}. Then, for each f ∈ L

2([0, 1], GX), consider
its expansion in this basis

f(x) =
∑

j,k

dj,kψj,k(GX(x)).

In this context, a tree is a finite set T of indexes (j, k), j ∈ N0 and k ∈
{0, . . . , 2j − 1}, such that (j, k) ∈ T implies (j − 1, ⌊k/2⌋) ∈ T , i.e., all “an-
cestors” of the point (j, k) in the dyadic grid also belong to the tree.

One can then consider the best tree–structured approximation to f(·), by
trying to minimize ∥∥∥∥∥∥

f −
∑

(j,k)∈T
dj,kψj,k(G)

∥∥∥∥∥∥

2

L2(GX )

,

over all tree T having the same cardinality N , and all choices of dj,k. However
the procedure of selecting the optimal tree is costly in computational time, in
comparison to the simple reordering that characterize the classical thresholding
procedure described in the previous section. A more reasonable approach is to
use suboptimal tree selection algorithms inspired by the adaptive procedure
introduced before. In detail, we start from an initial tree T0 = {(0, 0)} and let
it “grow” as follow:

1. Given a tree TN , define its “leaves” L(TN ) as the indexes (j, k) /∈ TN such
that (j − 1, ⌊k/2⌋) ∈ TN .

2. For (j, k) ∈ L(TN ) define the residual

νj,k =

√ ∑

Iℓ,m⊂Ij,k

|dℓ,m|2,

with Ij,k = [2−jk, 2−j(k + 1)].
3. Choose (j0, k0) ∈ L(TN ) such that

νj0,k0
= max

(j,k)∈L(TN )
νj,k,

4. Define TN+1 = TN ∪ {(j0, k0)}.
Note that this algorithm can either be controlled by the cardinality N of the
tree, or by the size of the residuals as in Table 1.

Now, let Λ be the dyadic partition associated to any such tree, and define

ΠΛ(f)(x) =
∑

I∈Λ

dIψI(G(x)), with dI = 〈f, ψI(G)〉L2(GX) ,
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and their empirical counterparts

fΛ,z(x) =
∑

I∈Λ

dI(z)ψI(G(x)), with dI(z) =
1

n

n∑

i=1

YiψI(G(Xi)).

Then, by adapting the techniques used in [5], in Section 4.1 we prove the fol-
lowing result for uniform partitions:

Theorem 2.1. (Optimality for uniform partitions) Assume that f ∈ As and
define the estimator fz = fz,ΛJ⋆ , with

J⋆ = J⋆(n) = min
{
j ∈ N : 2j (1+2s)

> n
log(n)

}
.

Then, given any β > 0, there is a constant c̃ such that

P
⊗n

{
‖f − fz‖2

L2(GX ) > (c̃+ |f |As)
(

log n
n

) s
2s+1

}
6 Cn−β

and

E
⊗n
{
‖f − fz‖2

L2(GX)

}
6 (C + |f |2As)

(
log n

n

) 2s
2s+1

,

where C depends only on M .

Theorem 2.1 is satisfactory in the sense that the rate
[

log(n)
n

]−s/(2s+1)

is

known to be optimal (or minimax) over the class As save for the logarithmic
factor. However, it is unsatisfactory in the sense that the estimation procedure
requires a–priori knowledge of the smoothness parameter s which appears in
the choice of the resolution level j. Moreover, as noted before, the smoothness
assumption f ∈ As is too severe. Consequently, our next task, will consist in
deriving a method capable of treating both defects. To this end, mimicking
Equation (7), we define the empirical residuals as

νj,k(z) =

√ ∑

Iℓ,m⊂Ij,k

|dℓ,m(z)|2.

Then, for some2 κ > 0, let

λn = κ

√
log(n)

n
,

be a given threshold. Now, adapting the algorithm given in Table 1, assume that
the estimator fz(·) is generated as detailed in Table 2. Then, in Section 4.2, we
prove the following

2κ is essentially a smoothing parameter to be selected by cross–validation, for instance).
Notice that in our theoretical developments we will only assume that κ is “large enough” to
ensure the desired concentration inequalities.
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Algorithm: “Treed” Approximations from Warped Wavelets

Require: Sample z = {(xi, yi)}i∈{1,...,n}; threshold λn, γ >
1
2

smoothness index
Output: An estimator fz(·) for the regression function f(·)
Setup:

1 : Define J⋆ = min
{
j ∈ N : 2j 6 λ

−1/γ
n

}

Generator:

2 : Compute νj,k(z) for any node (j, k) at a refinement level j < J⋆

3 : Threshold {νj,k(z)}j,k at level λn obtaining: Σ(z, n) = {(j, k) ∈ TJ⋆ : νj,k(z) > λn}
4 : Complete Σ(z, n) to a tree T (z, n) by adding nodes (ℓ,m) ∈ P

(
{(j, k)}

)

for all (j, k) ∈ Σ(z, n)
7 : Return The estimator fz(·) =

∑
(j,k)∈Λ(z,n)

dj,k(z)ψj,k(GX(·))
Table 2

Tree–structured approximations from warped wavelet decompositions.

Theorem 2.2. (Optimality for “growing” adaptive partitions) Let β and γ > 1
2

be arbitrary. Then, there exists κ > 0, such that, whenever f ∈ Aγ ∩Bs for some
s > 0, the following inequalities hold

P
⊗n

{
‖f − fz‖L2(GX ) > c̃

(
log n

n

) s
2s+1

}
6 Cn−β,

and

E
⊗n
{
‖f − fz‖2

L2(GX)

}
6 C

(
log n

n

) 2s
2s+1

,

where the constants c̃ and C do not depend on the sample size n.

Theorem 2.2 is definitively more satisfactory than Theorem 2.1 in two re-
spects:

• The optimal rate
[

log(n)
n

]−s/(2s+1)

is now obtained under weaker smooth-

ness assumptions on the regression function, namely, f ∈ Bs in place of
f ∈ As, with the extra assumption f ∈ Aγ with γ >

1
2 arbitrary.

• The estimator we obtain is adaptive (universal), in the sense that the
value of s does not enter the definition of the algorithm. The procedure
automatically extract information about the regularity of the regression
function from the data at hand.

It is interesting to notice that in standard thresholding (standard denoising or
density estimation, for instance) one usually sets the highest level J⋆ so that
2J⋆ ∼ n/ log(n); here we have to stop much sooner, namely, 2J⋆ ∼

√
n/ log(n),

as in [36]. This is especially necessary to obtain the exponential inequalities in
Section 4.1 and 4.2.

A final remark on the approximation spaces As and Bs is in order. In a
previous section, we mentioned that, when GX(·) is the Lebesgue measure, then
the spaces As and Bs are well understood. In particular, each Besov space Bτ,s

q

with τ > (s + 1/2)−1 and q ∈ (0,+∞], is contained in Bs (see Cohen et al.
[17, 18]), whereas As = B2,s

∞ . For general partitions it is not totally clear how
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to express the content of these approximation spaces in terms of reasonably
simple variations of common smoothness classes. Things get slightly simpler
when we employ a warped wavelet basis to generate the partition. As a result,
we can map approximation properties imposed on f(·) to regularity properties
over its warped version f ◦G−1

X (·). So, assuming f ∈ As is equivalent to impose
f ◦G−1

X ∈ B2,s
∞ as soon as As is defined in terms of warped wavelets.

3. Discussion

The dependence on the design marginal GX(·) is so far a clear weakness of our
approach from both a theoretical and a practical perspective. Nevertheless, an
obvious option to extend our tree–structured procedure to the case of an un-
known GX(·), would probably end up combining the arguments introduced in
[5] with those considered by Kerkyacharian and Picard in [36] and [35]. An-
other practical option might be to adopt a split sample approach and measure
smoothness in terms of the discrete norm induced by the data. Here we also
mention the fact that in Theorem 2.2 we require the knowledge of the param-
eter γ which can be arbitrary close to 1/2. As in [5], it is probably possible to
remove the dependency on γ at the price of using the much more complicated
construction proposed by Binev and DeVore in [7].

4. Proofs for Section 2

4.1. Proof of Theorem 2.1

For any given partition Λ, a natural way to control ‖f − fz,Λ‖2
L2(GX)

is by

splitting it into a bias and variance term denoted respectively with e1 and e2 in
the following equation

‖f − fz,Λ‖2
L2(GX) = ‖f − ΠΛ(f)‖2

L2(GX) + ‖ΠΛ(f) − fz,Λ‖2
L2(GX) = e1 + e2. (8)

e1 will be controlled by using the smoothness assumptions we made in the
statement of the theorem, whereas the variance term e2 will be controlled by
Bernstein’s inequality.

Lets start with this second step observing that, by denoting [dI − dI(z)] with
∆I(z), then by orthonormality of the warped system we have

‖ΠΛ(f) − fz,Λ‖2
L2(GX) =

∥∥∥∥
∑

I∈Λ
[dI − dI(z)]ψI(GX(·))

∥∥∥∥
2

L2(GX )

=
∑

I∈Λ
∆2

I (z).

Hence, for any η > 0,

P
⊗n
{
‖ΠΛ(f) − fz,Λ‖L2(GX) > η

}
= P

⊗n
{∑

I∈Λ
∆2

I (z) > η2
}

6 (9)

6 card(Λ) · P⊗n
{
∆2

I (z) >
η2

card(Λ)

}
=

= card(Λ) · P⊗n

{
|∆I(z)| > η√

card(Λ)

}
,
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Consequently to control e2 we just need to control |∆I(z)| and the cardinality
of Λ. Now, if we define U = Y ψj,k(X), then

• M = ‖U − E{U}‖∞ 6 2 · 2j/2‖ψ‖∞‖f‖∞,
• σ2 = E

{
|U − E(U)|2

}
6 E

{
|U |2

}
6 ‖f‖2

∞,

as

E
{
|ψj,k(G(X))|2

}
=

∫
|ψj,k(G(x))|2dGX(x) =

1∫

0

∣∣ψj,k

(
G(G−1(y))

)∣∣2dy =

=

1∫

0

|ψj,k(y)|2dy = 1.

Hence, for any η > 0, by Bernstein’s inequality we get

P⊗n
{
|∆I(z)| >

η√
card(Λ)

}
6 2 exp



− n η2

2 card(Λ)

[
‖f‖2

∞ +
2‖ψ‖∞‖f‖∞

3
2j/2√
card(Λ)

η

]



 6

6 2 exp

{
− 3n η2

C′card(Λ)(3 + η)

}
, (10)

where C′ = 2 max{‖f‖2
∞, 2‖ψ‖∞‖f‖∞}, and the last inequality comes from the

fact that for any I ∈ Λ we have 2j = |I|−1 6 card(Λ) = 2J for some J ∈ N, being
Λ a dyadic partition.

Now, back to our specific case. First of all remember that, by definition,

J⋆ = J⋆(n) = min
{
j ∈ N : 2j (1+2s)

>
n

log(n)

}
,

so

card(ΛJ⋆) 6 2J⋆+1
6 222J⋆−1

6 22
[

log(n)
n

]− 1
1+2s

. (11)

Hence, by definition of As, we get the following bound for e1:

‖f − ΠΛJ⋆ (f)‖L2(GX) 6 |f |As2−J⋆s
6 |f |As

[
log(n)

n

] s
1+2s

. (12)

From Equation (8) we then get

‖f − fz,ΛJ⋆‖2
L2(GX) 6 |f |2As

[
log(n)

n

] 2s
1+2s

+ e22,

therefore, for all δ > 0

P
⊗n
{
‖f − fz,ΛJ⋆‖L2(GX) > δ

}
6 P

⊗n

{
e2 > δ − |f |As

[
log(n)

n

] s
1+2s

}
.
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Taking δ = (c̃ + |f |As)
[

log(n)
n

] s
2s+1

as in the statement of Theorem 2.1, and

applying Equations (9) and (10) noticing that
[

log(n)
n

] s
2s+1

< 1 for every s > 0,

we obtain

P⊗n
{
e2 > c̃

[
log(n)
n

] s
1+2s

}
6 2card(ΛJ⋆ ) exp

{
−
(

n
card(ΛJ⋆ )

[
log(n)
n

] 2s
1+2s

)
3 c̃2

C′(3+c̃)

}
.

But from Equation (11) we know how to bound the cardinality of our partition,
therefore

(
n

card(ΛJ⋆ )

[
log(n)
n

] 2s
1+2s

)
3 c̃2

C′(3 + c̃)
>

(
n
22

[
log(n)
n

] 1
1+2s

[
log(n)
n

] 2s
1+2s

)
3 c̃2

C′(3 + c̃)
=

= g(c̃) · log(n),

with

g(c̃) =
3 c̃2

4C′(3 + c̃)
,

so that

P
⊗n
{
‖f − fz,ΛJ⋆‖L2(GX) > δ

}
= P

⊗n

{
e2 > c̃

[
log(n)

n

] s
1+2s

}
6

6 2 · 22
[

log(n)
n

]− 1
1+2s

exp
{
log
[
n−g(c̃)

]}
6

6 8n−[g(c̃)−1]
6 8n−β,

where the last inequality holds as soon as g(c̃) − 1 > β. And this complete the
proof since from here we can easily derive a bound for the risk by using Equation
(1).

4.2. Proof of Theorem 2.2

Lets start with a bit of notation. First of all, for each λ > 0, we will denote by

• T (f, λ): smallest tree which contains all dyadic intervals I such that νI > λ.
• Λ(f, λ): partition induced by the outer leaves of T (f, λ).
• T (f, λ, z): smallest tree which contains all dyadic intervals I such that
νI(z) > λ.

• Λ(f, λ, z): partition induced by the outer leaves of T (f, λ, z).

If Λ0 and Λ1 are partitions associated to the tree T0 and T1, then we denote by

• Λ0 ∨ Λ1 the partition associated to the tree T0 ∪ T1,
• Λ0 ∧ Λ1 the partition associated to the tree T0 ∩ T1.
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Finally, let λn = κ
√

log(n)
n for some κ > 0, and

J⋆ = min
{
j ∈ N : 2j

6 λ−1/γ
n

}
.

Then for each λ > 0, define the partitions

• Λ(λ) = Λ(f, λ) ∧ ΛJ⋆ ,
• Λ(λ, z) = Λ(f, λ, z) ∧ ΛJ⋆ .

Therefore, in this section, we consider the adaptive estimator

fz,n(x) = fz,Λ(λn,z)(x) =
∑

I∈Λ(τn,z)

dI(z)ψI(GX(x)).

Lets now start the proof observing that, using the triangle inequality, we can
decompose the loss as follow

‖f − fz,n‖L2(GX) = e1 + e2 + e3 + e4,

where

• e1 = ‖f − ΠΛ(λn,z)∨Λ(2λn)(f)‖L2(GX ),
• e2 = ‖ΠΛ(λn,z)∨Λ(2λn)(f) − ΠΛ(λn,z)∧Λ(2−1λn)(f)‖L2(GX),
• e3 = ‖ΠΛ(λn,z)∧Λ(2−1λn)(f) − fz,Λ(λn,z)∧Λ(2−1λn)‖L2(GX ),
• e4 = ‖fz,Λ(λn,z)∧Λ(2−1λn) − fz,Λ(τn,z)|L2(GX).

This type of splitting is frequently used in the analysis of wavelet thresholding
procedures to deal with the fact that the partition built from those I such that
νI(z) > λn, does not exactly coincides with the partition which would be chosen
by an oracle based on those I such that νI > λn. This is accounted by the
terms e2 and e4 which correspond to those dyadic interval I such that νI(z) is
significantly larger or smaller than νI respectively, and which will proved to be
small in probability. The remaining terms e1 and e3 correspond respectively
to the bias and variance of oracle estimators based on partitions obtained by
zero–thresholding based on the unknown quantities {νI}I.

The first term e1, being a bias, is treated by a deterministic estimate as
in [5]. More specifically, since Λ(λn, z) ∨ Λ(2λn) is a refinement of Λ(2λn) =
Λ(f, 2λn) ∧ ΛJ⋆ , we have (almost surely):

e1 6 ‖f − ΠΛ(2λn)(f)‖L2(GX) 6

6 ‖f − ΠΛ(f,2λn)(f)‖L2(GX) + ‖ΠΛ(f,2λn)(f) − ΠΛ(2λn)(f)‖L2(GX ) 6

6 ‖f − ΠΛ(f,2λn)(f)‖L2(GX) + ‖f − ΠΛJ⋆ (f)‖L2(GX ) 6

6 C(s)[2λn]
2s

2s+1 |f |Bs + 2−γ J⋆ |f |Aγ 6

6 C(s)[2λn]
2s

2s+1 |f |Bs + 2−γλn|f |Aγ .

Therefore

e1 6 C(s)

{
(2κ)

2s
2s+1 + 2γκ

}
max { |f |Aγ , |f |Bs}

[
log(n)

n

] s
2s+1

= c1

[
log(n)

n

] s
2s+1

,
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as soon as f ∈ Bs ∩Aγ , with c1 = C(s)

{
(2κ)

2s
2s+1 + 2γκ

}
max { |f |Aγ , |f |Bs}.

The third term e3 is treated by the estimate provided by combining Equations
(9) and (10)

P
⊗n {e3 > η} 6 2card(Λ3) exp

{
− 3n η2

C′card(Λ3)(3 + η)

}
, (13)

where Λ3 = Λ(λn, z) ∧ Λ(2−1λn). So

card(Λ3) 6 card
(
Λ(2−1λn)

)
= card

(
Λ(f, 2−1λn) ∧ ΛJ⋆

)
6

6 card
(
Λ(f, 2−1λn)

)
6 (2−1λn)−p |f |pBs = 2pλ

− 2
1+2s

n |f |pBs =

= 2pκ
− 2

1+2s |f |pBs

[
log(n)

n

]− 2
2(1+2s)

= c3

[
log(n)

n

]− 1
1+2s

, (14)

where we have used the fact that 1/p = 1/2 + s.
For the remaining two terms, e2 and e4 we will show that ∀ β > 0 we fix,

there exists a constant C′ > 0 such that:

P
⊗n {e2 > 0} + P

⊗n {e4 > 0} 6 C′ n−β . (15)

Before we prove this, lets show why it is sufficient. Let 0 < δ = c̃
[

log(n)
n

] 1
1+2s

as in the statement of Theorem 2.2. Then we have

P⊗n
{
‖f − fz,n‖L2(GX ) > δ

}
6 P⊗n {e1 + e2 + e3 + e4 > δ} 6

6 P⊗n
{
e2 + e3 + e4 > (c̃− c1)

[
log(n)
n

] s
2s+1

}
6

6 P⊗n {e2 > 0} + P⊗n {e4 > 0} + P⊗n
{
e3 > δ̃

}
6

by Eq.(15)

6 C′n−β + P⊗n
{
e3 > δ̃

}
,

where δ̃ = (c̃ − c1)
[

log(n)
n

] s
2s+1

. Repeating the steps used to derive the bound

we needed in Section 4.1, from Equations (13) and (14), we obtain

(
n

card(Λ3)

[
log(n)

n

] 2s
1+2s

)
3 (c̃− c1)

2

C′[3 + (c̃− c1)]
>

>

(
n
c3

[
log(n)

n

] 1
1+2s

[
log(n)

n

] 2s
1+2s

)
3 (c̃− c1)

2

C′[3 + (c̃− c1)]
=

= g(c̃) · log(n),

where

g(c̃) =
3 (c̃− c1)

2

c3C′[3 + (c̃− c1)]
.
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Therefore

P
⊗n
{
e3 > δ̃

}
6 2c3

[
log(n)

n

]− 1
1+2s

n−g(c̃)
6 c′n−[g(c̃)−1]

6 c′n−β ,

as soon as g(c̃) − 1 > β. And this would conclude the proof of Theorem 2.2.
We need to prove Equation (15). The main tool is the following lemma

Lemma 4.1. For each I ∈ ΛJ⋆, we have

• P
⊗n ({νI(z) 6 λn} ∩ {νI > 2λn}) 6 4n−g(κ),

• P
⊗n
(
{νI(z) > λn} ∩ {νI 6 2−1λn}

)
6 4n−g(κ),

where

g(κ) =
3κ2

8C′
(

3 + κ
1− 1

2γ

) .

Before we prove Lemma 4.1, lets show why this is sufficient. Remember that

e2 = ‖ΠΛ(λn,z)∨Λ(2λn)(f) − ΠΛ(λn,z)∧Λ(2−1λn)(f)‖L2(GX).

Consequently

• e2 ≡ 0 if T (λn, z) ∪ T (2λn) ≡ T (λn, z) ∩ T (2−1λn),
• e2 > 0 if

T (λn, z) ∪ T (2λn) ⊃ T (λn, z) ∩ T (2−1λn) ⇐

{
T (λn, z) 6⊂ T (2−1λn)
or
T (2λn) 6⊂ T (λn, z)

⇐ ∃ I s.t.

{ {νI(z) 6 λn} ∩ {νI > 2λn}
or

{νI(z) > λn} ∩ {νI 6 2−1λn}
.

Therefore

P
⊗n {e2 > 0} 6

∑

I∈ΛJ⋆

P
⊗n ({νI(z) 6 λn} ∩ {νI > 2λn}) + (16)

+
∑

I∈ΛJ⋆

P
⊗n
(
{νI(z) > λn} ∩ {νI 6 2−1λn}

)
= R1 +R2.

Then, by applying the first part of Lemma 4.1, we get

R1 6 card(ΛJ⋆) 4n−g(κ)
6 card(Λ0) 2J⋆

4n−g(κ)
6 (17)

6 card(Λ0)λ
−1/γ
n 4n−g(κ)

6 card(Λ0)κ
−1/γ

[
n

log(n)

] 1
2γ

4n−g(κ)
6

6 card(Λ0)κ
−1/γn

1
γ 4n−g(κ) = C′ n

−
[
g(κ)− 1

γ

]

,

and analogously, by the second part of Lemma 4.1, we obtain

R2 6 C′ n
−
[

g(κ)− 1
γ

]

. (18)
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Applying again the second part of Lemma 4.1, we are also able to bound e4
as follow

P
⊗n {e4 > 0} 6

∑

I∈ΛJ⋆

P
⊗n
(
{νI(z) > λn} ∩ {νI 6 2−1λn}

)
6 C′ n

−
[

g(κ)− 1
γ

]

.

(19)
Combining Equations (16), (17), (18), and (19), we complete the proof of Equa-
tion (15). In fact, given β and γ >

1
2 , we can find κ such that the theorem

holds.

4.2.1. Proof of Lemma 4.1

Lets starting noticing that, for each η > 0,

{νI(z) 6 η} ∩ {νI > 2η} ⊆ {|νI(z) − νI| > η} ,

hence
P
⊗n ({νI(z) 6 η} ∩ {νI > 2η}) 6 P

⊗n {|νI(z) − νI| > η} .
In addition

|νI(z) − νI| =

∣∣∣∣
√∑

J∈C(I)
d2

I (z) −
√∑

J∈C(I)
d2

I

∣∣∣∣ = |‖d(z)‖2 − ‖d‖2| 6

6 ‖d(z) − d‖2

dyadic
=

√[
dI+(z) − dI+

]2
+
[
dI−(z) − dI−

]2
,

where I
+ and I

− denote respectively the left and right child of I. So

{|νI(z) − νI| > η} ⇔
{
|νI(z) − νI|2 > η2

}
⇐

{
[dI+(z) − dI+ ]2 >

η2

2

[dI−(z) − dI− ]2 >
η2

2

⇔
{

|dI+(z) − dI+ | >
η√
2

|dI−(z) − dI− | >
η√
2

.

Therefore

P
⊗n ({νI(z) 6 λn} ∩ {νI > 2λn}) 6 P

⊗n
(
|∆I+(z)| >

η√
2

)
+ P

⊗n
(
|∆I−(z)| >

η√
2

)
.

If we now take η = κ
√

log(n)
n , by applying the Bernstein’s inequality as in Section

4.1, for J ∈ {I+, I−} we obtain3

P
⊗n

(
|∆J(z)| > κ√

2

√
log(n)

n

)
6 2 exp



− 3κ2 log(n)

2C′
[
3 + 2(j+1)/22−1/2κ

√
log(n)

n

]



 6

6 2 exp



− 3κ2 log(n)

8C′
[
3 + 2j/2κ

√
log(n)

n

]



 .

3Compare with the proof of Proposition 3 in [36].
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Now, by hypothesis, we know that

2j
6 λ−1/γ

n =
[

1
κ

√
n

log(n)

] 1
γ ⇒ 2j/2

6

[
1
κ

√
n

log(n)

] 1
2γ
,

therefore

2j/2

1
κ

√
n

log(n)

6

[
1
κ

√
n

log(n)

]−
(

1− 1
2γ

)

=

[
κ

√
log(n)

n

]1− 1
2γ γ>

1
2

6 κ
1− 1

2γ ,

hence

P
⊗n

(
|∆J(z)| > κ√

2

√
log(n)

n

)
6 2 exp



− 3κ2 log(n)

8C′(3 + κ
1− 1

2γ
)



 =

= 2 exp {−g(z) log(n)} = 2n−g(z),

with

g(κ) =
3κ2

8C′
(

3 + κ
1− 1

2γ

) .

So finally
P
⊗n ({νI(z) 6 λn} ∩ {νI > 2λn}) 6 4n−g(z).

Now, lets evaluate the other term in a similar manner, starting from

P
⊗n
(
{νI(z) > λn} ∩ {νI 6 2−1λn}

)
6 P

⊗n
{
|νI(z) − νI| > 2−1λn

}
6

6
∑

J∈{I+,I−}
P
⊗n
(
|∆J(z)| >

λn

2
√

2

)
.

By the same arguments adopted before, we see that, for each J ∈ {I+, I−},

P
⊗n
(
|∆J(z)| >

λn

2
√

2

)
6 2n−g(z),

and consequently

P
⊗n
(
{νI(z) > λn} ∩ {νI 6 2−1λn}

)
6 4n−g(z).
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