Mathematics

Research article

Further results on stability analysis of Takagi-Sugeno fuzzy time-delay systems via improved Lyapunov-Krasovskii functional

Rupak Datta ${ }^{1}$, Ramasamy Saravanakumar ${ }^{2, *}$, Rajeeb Dey ${ }^{3}$ and Baby Bhattacharya ${ }^{1}$
${ }^{1}$ Department of Mathematics, National Institute of Technology Agartala, Tripura 799046, India
${ }^{2}$ Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527, Japan
${ }^{3}$ Department of Electrical Engineering, National Institute of Technology Silchar, Assam 788010, India

* Correspondence: Email: saravanamaths30@ gmail.com.

Abstract

The problem of delay-range-dependent (DRD) stability analysis for continuous time Takagi-Sugeno (T-S) fuzzy time-delay systems (TDSs) is addressed in this paper. An improved DRD stability criterion is proposed in an linear matrix inequality (LMI) framework by constructing an appropriate delay-product-type (DPT) Lyapunov-Krasovskii functional (LKF) to make use of BesselLegendre polynomial based relaxed integral inequality. The modification in the proposed LKF along with the judicious choice of integral inequalities helps to obtain a less conservative delay upper bound for a given lower bound. The efficacy of the obtained stability conditions is validated through the solution of three numerical examples.

Keywords: T-S fuzzy system; LKF; DRD stability; LMI; TDS
Mathematics Subject Classification: 34D20, 34E05

1. Introduction

Most of the physical models are nonlinear in nature, and they frequently involve many complex input-output relationships. Over the years, different nonlinear control techniques were developed to obtain the actual behavior of the nonlinear models [1,2]. The Takagi-Sugeno (T-S) fuzzy model approach is recognized as an effective tool for approximation of complex nonlinear systems among several control methods [3]. The development and application of the T-S fuzzy model have greatly increased for the study of nonlinear systems. The universal approximation principle, which states that a T-S fuzzy model may estimate any smooth nonlinear system with any degree of certainty, made it possible to use a T-S fuzzy model to investigate nonlinear systems. The T-S can represent a nonlinear
system into local linear models through nonlinear membership functions so that established stability and control theories can be applied directly [4-6]. The major purpose of the T-S fuzzy control technique is that the stability and control architectures can be transformed into the linear matrix inequality (LMI) framework. [7].

Time delay is inherently present in most engineering systems, and it is one of the primary reasons of instability and performance degradation [8,9]. Numerous results addressing the synthesis and analysis of T-S fuzzy systems with variable time-delay conditions have been obtained as a result of the industrial need [20-40]. The Lyapunov second approach can be used to analyze the stability of time-delay systems in two ways, (i) delay-dependent stability [8-14], and (ii) delay-independent stability [15]. A Lyapunov-Krasovskii functional (LKF) with an integral term is developed to obtain an efficient delaydependent stability condition. Constructing a suitable LKF and estimating the integral term in the derivative of the LKF is the most common strategy for minimizing conservativeness. So far, various methods have been presented for processing the integral term and reducing the conservatism, such as model transformation method [10], free-weighting matrix approach was proposed in [11], Jensen's inequality technique in [5, 8, 17], reciprocal convex lemma in [12], Wirtinger-based inequality [13], auxiliary-function-based inequality [14]. In order to further improve the stability conditions of timedelay systems, quadratic function negative-determination lemma was introduced in [16, 18].

Apart from the various bounding inequalities, constructing a appropriate LKF is another key point. In the recent years, delay-partitioning LKFs and augmented LKFs are broadly studied and successful results have been achieved [21,22]. However, introducing too many free matrices makes computing LMIs immensely challenging, increasing processing complexity. Recently, a line integral fuzzy Lyapunov function was used to analyze the stability of T-S fuzzy systems in [23]. In the meantime, the concept was utilized for LMI based control design in [24]. Although the line integral Lyapunov function can be utilized to avoid time derivatives, it can also result in bilinear matrix inequalities in the controller design, which can be difficult to extrapolate for higher-order systems [25-30]. In the recent years, augmented LKF technique and Bessel-Legendre ploynomial based integral inequality have been used to obtain the less conservative results for T-S fuzzy TDS in [31-40]. As a result, a less conservative criterion can be obtained by selecting a suitable LKF and developing a new integral inequality. A unique LKF construction method, called delay-product-type (DPT) functional approach, was recently introduced and analyzed in [31,34,36,39], taking into account both conservatism and computational burden. Specifically, this LKF construction method multiplies time-varying delay terms with integral and non-integral terms, resulting in a LKF with additional time-delay information. Also, because the restriction on certain places is eased when using the DPT functional method, the LKF have a more comprehensive form. Thus, by combining the new Bessel-Legendre polynomial-based relaxed integral inequality with the augmented and DPT LKF, it is possible to obtain a less conservative admissibility condition for T-S fuzzy systems with time-varying delays. This is the motivation of this paper.

The aim of this paper is to study the stability of T-S fuzzy systems with time-varying delays. The main contributions of this study are listed as follows:
(i) A less conservative stability condition is established for T-S fuzzy TDS by constructing a suitable DPT augmented LKF. The proposed LKF has the motivation that, situations of various delay derivative nature can be handled with ease and less complexity.
(ii) Bessel-Legendre polynomial based relaxed integral inequality is used to estimate the integral
terms coming out from the derivative of LKF.
(iii) The advantages of the proposed stability criteria are demonstrated using three numerical examples and a comparison of maximum delay upper bound results with various recent stability criteria.

Notation: Throughout this paper, A^{T} and A^{-1} stands for the transpose and the inverse of the matrix respectively, \mathbb{R}^{n} denotes the n -dimensional Euclidean space; $\mathbb{R}^{n \times m}$ is the set of all $n \times m$ real matrices; $P>0$ means that the matrix is positive definite; $S y m(A)$ is defined as $A+A^{T}$; for any square matrix A and B, define $\operatorname{diag}\{A, B\}=\left[\begin{array}{cc}A & 0 \\ 0 & B\end{array}\right]$. The notation I stands for the identity matrix and $\left[\begin{array}{ll}A & B \\ * & C\end{array}\right]$ stands for $\left[\begin{array}{cc}A & B \\ B^{T} & C\end{array}\right]$.

2. Problem formulation and useful lemmas

Consider the following nonlinear system with time delay as

$$
\begin{align*}
& \dot{\eta}(t)=f(t, \eta(t), \eta(t-\gamma(t))), \quad t \geq 0, \tag{2.1}\\
& \eta(t)=\phi(t), \quad-\gamma_{2} \leq t \leq 0,
\end{align*}
$$

where $\eta(t) \in \mathbb{R}^{n}$ is the state vector, ' f^{\prime} is a non-linear function, $\eta(t)=\phi(t)$ denote the initial condition on $\left[-\gamma_{2}, 0\right]$ and $\gamma(t)$ is the time-varying delay differential function.

The T-S fuzzy model of the system given in (2.1) can be described by following IF-THEN form as Rule i: IF $\theta_{1}(t)$ is $\mathcal{G}_{i 1}$ and \ldots... and $\theta_{p}(t)$ is $\mathcal{G}_{i p}$ THEN

$$
\begin{align*}
& \dot{\eta}(t)=\mathcal{A}_{i} \eta(t)+\mathcal{A}_{\gamma_{i}} \eta(t-\gamma(t)), \quad t \geq 0, \tag{2.2}\\
& \eta(t)=\phi(t), \quad-\gamma_{2} \leq t \leq 0,
\end{align*}
$$

where $\theta_{1}(t), \theta_{2}(t), \ldots ., \theta_{p}(t)$ are the premises variables, $\mathcal{G}_{i j}$ are the fuzzy membership functions with $i=1,2,3, . ., r, j=1,2,3, \ldots, p$, the scalars r and p indicates the number of fuzzy IF-THEN rules and number of premise variable, respectively. $\mathcal{A}_{i}, \mathcal{A}_{\gamma_{i}}$ are known system matrices of appropriate dimensions. The delay differential function $\gamma(t)$ satisfy the following:

$$
\begin{equation*}
0<\gamma_{1} \leq \gamma(t) \leq \gamma_{2}, \quad v_{1} \leq \dot{\gamma}(t) \leq v_{2} \tag{2.3}
\end{equation*}
$$

where $\gamma_{1}, \gamma_{2}, \nu_{1}$ and ν_{2} are given positive scalars represent the lower and upper bound of $\gamma(t)$ and $\dot{\gamma}(t)$, respectively.

If $\theta_{j}(t)=\theta_{j}^{0}$ are given, where θ_{j}^{0} are singletons, then for each $i^{\text {th }}$ fuzzy rule, the aggregation of the fuzzy rule using fuzzy 'min' operator can be expressed as

$$
\begin{equation*}
\lambda_{i}(\theta(t))=\left(\mathcal{G}_{i 1}\left(\theta_{1}(t)\right) \wedge \ldots \wedge \mathcal{G}_{i p}\left(\theta_{p}(t)\right)\right), i=1,2, \ldots, r \tag{2.4}
\end{equation*}
$$

where $\mathcal{G}_{i 1}\left(\theta_{1}(t)\right), \ldots ., \mathcal{G}_{i p}\left(\theta_{p}(t)\right)$ is the grade of the membership of $\theta_{1}(t), \ldots ., \theta_{p}(t)$ in $\mathcal{G}_{i j}$.
By fuzzy blending technique, the final output of (2.2) is calculated as

$$
\begin{equation*}
\dot{\eta}(t)=\frac{\sum_{i=1}^{r} \lambda_{i}(\theta(t))\left\{\mathcal{A}_{i} \eta(t)+\mathcal{A}_{\gamma_{i}} \eta(t-\gamma(t))\right\}}{\sum_{i=1}^{r} \lambda_{i}(\theta(t))}=\sum_{i=1}^{r} w_{i}(\theta(t))\left\{\mathcal{A}_{i} \eta(t)+\mathcal{A}_{\gamma_{i}} \eta(t-\gamma(t))\right\}, \tag{2.5}
\end{equation*}
$$

where $w_{i}(\theta(t))=\frac{\lambda_{i}(\theta(t))}{\sum_{i=1}^{r} \lambda_{i}(\theta(t))}, \forall t$ and $i=1,2, \ldots, r$, is called the fuzzy weighting function and $\lambda_{i}(\theta(t))=\prod_{j=1}^{p} \mathcal{G}_{i j}\left(\theta_{j}(t)\right)$. Since $\lambda_{i}(\theta(t))>0$, it holds that $w_{i}(\theta(t)) \geq 0$ and $\sum_{i=1}^{r} w_{i}(\theta(t))=1$ for all $i=1,2, \ldots, r$. Further, $w_{i}(\theta(t))$ will be denoted as w_{i} for simplicity.

The objective of this study is to derive a delay-range-dependent stability condition for T-S fuzzy time delay system (2.5). Following lemmas are used to obtain our main result.

Lemma 1. ([40]) For a positive definite matrix $R>0$, and any continuously differentiable function $\eta():.\left[\delta_{1}, \delta_{2}\right] \rightarrow \mathbb{R}^{n}$, the following inequality holds

$$
\begin{equation*}
\delta_{12} \int_{\delta_{1}}^{\delta_{2}} \dot{\eta}^{T}(\rho) R \dot{\eta}(\rho) d \rho \geq \Psi_{1}^{T} R \Psi_{1}+3 \Psi_{2}^{T} R \Psi_{2}+5 \Psi_{3}^{T} R \Psi_{3}+7 \Psi_{4}^{T} R \Psi_{4}, \tag{2.6}
\end{equation*}
$$

where

$$
\begin{aligned}
& \Psi_{1}=\left[\eta\left(\delta_{2}\right)-\eta\left(\delta_{1}\right)\right], \delta_{12}=\left(\delta_{2}-\delta_{1}\right), \\
& \Psi_{2}=\left[\eta\left(\delta_{2}\right)+\eta\left(\delta_{1}\right)-\frac{2}{\delta_{12}} \int_{\delta_{1}}^{\delta_{2}} \eta(\rho) d \rho\right], \\
& \Psi_{3}=\left[\eta\left(\delta_{2}\right)-\eta\left(\delta_{1}\right)+\frac{6}{\delta_{12}} \int_{\delta_{1}}^{\delta_{2}} \eta(\rho) d \rho-\frac{12}{\delta_{12}^{2}} \int_{\delta_{1}}^{\delta_{2}} \int_{\theta}^{\delta_{2}} \eta(\rho) d \rho d \theta\right], \\
& \Psi_{4}=\left[\eta\left(\delta_{2}\right)+\eta\left(\delta_{1}\right)-\frac{12}{\delta_{12}} \int_{\delta_{1}}^{\delta_{2}} \eta(\rho) d \rho+\frac{60}{\delta_{12}^{2}} \int_{\delta_{1}}^{\delta_{2}} \int_{\theta}^{\delta_{2}} \eta(\rho) d \rho d \theta-\frac{120}{\delta_{12}^{3}} \int_{\delta_{1}}^{\delta_{2}} \int_{\theta}^{\delta_{2}} \int_{\lambda}^{\delta_{2}} \eta(\rho) d \rho d \lambda d \theta\right] .
\end{aligned}
$$

Lemma 2. ([40]) Let $\eta(t)$ be a continuously differentiable function, $R \in \mathbb{R}^{n \times n}$ be real symmetric positive definite matrix and $\psi_{1}(t), \psi_{2}(t) \in \mathbb{R}^{4 n \times n}$ are real vectors, $\epsilon_{1}, \epsilon_{2} \in[0,1], \delta_{1} \leq \delta(t) \leq \delta_{2}$ are positive real scalars and τ satisfies $\tau \in(0,1)$. If there exists any real symmetric matrices $M_{1}, M_{2} \in$ $\mathbb{R}^{4 n \times 4 n}$ and any appropriately dimensioned matrices $X_{1}, X_{2} \in \mathbb{R}^{4 n \times 4 n}$,

$$
\left[\begin{array}{cc}
\mathfrak{R}-M_{1} & X_{1} \tag{2.7}\\
* & \mathfrak{R}-\epsilon_{2} M_{1}
\end{array}\right] \geq 0,\left[\begin{array}{cc}
\mathfrak{R}-\epsilon_{1} M_{2} & X_{2} \\
* & \mathfrak{R}-M_{2}
\end{array}\right] \geq 0,
$$

such that the inequality

$$
\begin{align*}
-\delta_{12} \int_{t-\delta_{2}}^{t-\delta_{1}} \dot{\eta}^{T}(\rho) R \dot{\eta}(\rho) d \rho \leq & -\chi^{T}(t)\left[\psi_{1}^{T}\left(\mathfrak{R}+(1-\tau) M_{1}+\epsilon_{1} \frac{(1-\tau)^{2}}{\tau} M_{2}\right) \psi_{1}\right. \\
& -\operatorname{Sym}\left\{\psi_{1}^{T}\left(\tau X_{1}+(1-\tau) X_{2}\right) \psi_{2}\right\} \\
& \left.-\psi_{2}^{T}\left(\mathfrak{R}+\tau M_{2}+\epsilon_{2} \frac{\tau^{2}}{1-\tau} M_{1}\right) \psi_{2}\right] \chi(t) \tag{2.8}
\end{align*}
$$

holds, where

$$
\begin{aligned}
\chi(t)= & {\left[\eta^{T}\left(t-\delta_{1}\right), \eta^{T}(t-\delta(t)), \eta^{T}\left(t-\delta_{2}\right), \frac{1}{\delta(t)-\delta_{1}} \int_{t-\delta(t)}^{t-\delta_{1}} \eta^{T}(\rho) d \rho,\right.} \\
& \frac{1}{\delta_{1}-\delta(t)} \int_{t-\delta_{2}}^{t-\delta(t)} \eta^{T}(\rho) d \rho, \frac{2}{\left(\delta(t)-\delta_{1}\right)^{2}} \int_{t-\delta(t)}^{t-\delta_{1}} \int_{\theta}^{t-\delta_{1}} \eta^{T}(\rho) d \rho d \theta
\end{aligned}
$$

$$
\begin{aligned}
& \frac{2}{\left(\delta_{2}-\delta(t)\right)^{2}} \int_{t-\delta_{2}}^{t-\delta(t)} \int_{\theta}^{t-\delta(t)} \eta^{T}(\rho) d \rho d \theta, \frac{6}{\left(\delta(t)-\delta_{1}\right)^{3}} \int_{t-\delta(t)}^{t-\delta_{1}} \int_{\theta}^{t-\delta_{1}} \int_{\lambda}^{t-\delta_{1}} \eta^{T}(\rho) d \rho d \lambda d \theta, \\
& \left.\frac{6}{\left(\delta_{2}-\delta(t)\right)^{3}} \int_{t-\delta_{2}}^{t-\delta(t)} \int_{\theta}^{t-\delta(t)} \int_{\lambda}^{t-\delta(t)} \eta^{T}(\rho) d \rho d \lambda d \theta\right], \\
\psi_{1}= & {\left[\begin{array}{lll}
\sigma_{1}^{T} & \sigma_{2}^{T} & \sigma_{3}^{T} \\
\sigma_{4}^{T}
\end{array}\right]^{T}, \psi_{2}=\left[\begin{array}{lll}
\sigma_{5}^{T} & \sigma_{6}^{T} & \sigma_{7}^{T} \\
\sigma_{8}^{T}
\end{array}\right]^{T}, } \\
\mathfrak{R}= & \operatorname{diag}\{R, 3 R, 5 R, 7 R\}, \sigma_{1}=\left(\bar{e}_{1}-\bar{e}_{2}\right), \\
\sigma_{2}= & \left(\bar{e}_{1}+\bar{e}_{2}-2 \bar{e}_{4}\right), \sigma_{3}=\left(\bar{e}_{1}-\bar{e}_{2}+6 \bar{e}_{4}-6 \bar{e}_{6}\right), \sigma_{5}=\left(\bar{e}_{2}-\bar{e}_{3}\right), \sigma_{6}=\left(\bar{e}_{2}+\bar{e}_{3}-2 \bar{e}_{5}\right), \\
\sigma_{7}= & \left(\bar{e}_{2}-\bar{e}_{3}+6 \bar{e}_{5}-6 \bar{e}_{7}\right), \sigma_{4}=\left(\bar{e}_{1}+\bar{e}_{2}-12 \bar{e}_{4}+30 \bar{e}_{6}-20 \bar{e}_{8}\right), \\
\sigma_{8}= & \left(\bar{e}_{2}+\bar{e}_{3}-12 \bar{e}_{5}+30 \bar{e}_{7}-20 \bar{e}_{9}\right), \\
\bar{e}_{q}= & {\left[0_{n \times(q-1) n} I_{n \times n} 0_{n \times(9-q) n}\right], q=1,2, \ldots, 9 . }
\end{aligned}
$$

Remark 1. It is worth noting that Lemma 2 is coupled to the two predefined individual factors ϵ_{1} and $\epsilon_{2} . \epsilon_{1}$ and ϵ_{2} can be determined independently because they are distinct of each other and unrestricted.

Lemma 3. ([19]) Let $f(s)=a_{2} s^{2}+a_{1} s+a_{0}$, where $s \in\left[h_{1}, h_{2}\right]$ and $a_{0}, a_{1}, a_{2} \in \mathbb{R}$. Suppose that the following conditions are satisfied

$$
\text { (i) } f\left(h_{1}\right)<0 \text {, (ii) } f\left(h_{2}\right)<0, \text { (iii) }-a_{2}\left(h_{2}-h_{1}\right)^{2}+f\left(h_{1}\right)<0 \text {. }
$$

Then, $f(s)<0$.

3. Stability analysis

In this section, an improved DRD stability condition is established for the T-S fuzzy TDS (2.5). The following notations are defined for simplicity:

$$
\begin{aligned}
\xi(t)= & {\left[\eta^{T}(t), \eta^{T}\left(t-\gamma_{1}\right), \eta^{T}(t-\gamma(t)), \eta^{T}\left(t-\gamma_{2}\right), \dot{\eta}^{T}(t), \dot{\eta}^{T}\left(t-\gamma_{1}\right), \dot{\eta}^{T}(t-\gamma(t)), \dot{\eta}^{T}\left(t-\gamma_{2}\right),\right.} \\
& \frac{2}{\gamma_{1}} \int_{t-\gamma_{1}}^{t} \eta^{T}(\rho) d \rho, \frac{1}{\gamma(t)-\gamma_{l}} \int_{t-\gamma(t)}^{t-\gamma_{l}} x^{T}(\rho) d \rho, \frac{1}{\gamma_{2}-\gamma(t)} \int_{t-\gamma_{2}}^{t-\gamma(t)} \eta^{T}(\rho) d \rho, \\
& \frac{2}{\gamma_{1}^{2}} \int_{t-\gamma_{1}}^{t} \int_{\theta}^{t} \eta^{T}(\rho) d \rho d \theta, \frac{2}{\left(\gamma(t)-\gamma_{1}\right)^{2}} \int_{t-\gamma(t)}^{t-\gamma_{1}} \int_{\theta}^{t-\gamma_{1}} \eta^{T}(\rho) d \rho d \theta, \\
& \frac{2}{\left(\gamma_{2}-\gamma(t)\right)^{2}} \int_{t-\gamma_{2}}^{t-\gamma(t)} \int_{\theta}^{t-\gamma(t)} \eta^{T}(\rho) d \rho d \theta \frac{6}{\gamma_{1}^{3}} \int_{t-\gamma_{1}}^{t} \int_{\theta}^{t} \int_{\lambda}^{t} \eta^{T}(\rho) d \rho d \lambda d \theta, \\
& \frac{6}{\left(\gamma(t)-\gamma_{1}\right)^{3}} \int_{t-\gamma(t)}^{t-\gamma_{1}} \int_{\theta}^{t-\gamma_{1}} \int_{\lambda}^{t-\gamma_{1}} \eta^{T}(\rho) d \rho d \lambda d \theta \\
& \left.\frac{6}{\left(\gamma_{2}-\gamma(t)\right)^{3}} \int_{t-\gamma_{2}}^{t-\gamma(t)} \int_{\theta}^{t-\gamma(t)} \int_{\lambda}^{t-\gamma(t)} \eta^{T}(\rho) d \rho d \lambda d \theta\right]^{T}, \gamma_{12}=\left(\gamma_{2}-\gamma_{1}\right), \alpha=\frac{\gamma(t)-\gamma_{1}}{\gamma_{12}}, \\
\bar{\xi}(t)= & {\left[\eta^{T}(t), \eta^{T}(t-\gamma(t)), \eta^{T}\left(t-\gamma_{2}\right), \dot{\eta}^{T}(t), \dot{\eta}^{T}(t-\gamma(t)), \dot{\eta}^{T}\left(t-\gamma_{2}\right), \frac{1}{\gamma(t)} \int_{t-\gamma(t)}^{t} x^{T}(\rho) d \rho,\right.} \\
& \frac{1}{\gamma_{2}-\gamma(t)} \int_{t-\gamma_{2}}^{t-\gamma(t)} \eta^{T}(\rho) d \rho, \frac{2}{(\gamma(t))^{2}} \int_{t-\gamma(t)}^{t} \int_{\theta}^{t} \eta^{T}(\rho) d \rho d \theta,
\end{aligned}
$$

$$
\begin{aligned}
& \frac{2}{\left(\gamma_{2}-\gamma(t)\right)^{2}} \int_{t-\gamma_{2}}^{t-\gamma(t)} \int_{\theta}^{t-\gamma(t)} \eta^{T}(\rho) d \rho d \theta \frac{6}{(\gamma(t))^{3}} \int_{t-\gamma(t)}^{t} \int_{\theta}^{t} \int_{\lambda}^{t} \eta^{T}(\rho) d \rho d \lambda d \theta, \\
& \left.\frac{6}{\left(\gamma_{2}-\gamma(t)\right)^{3}} \int_{t-\gamma_{2}}^{t-\gamma(t)} \int_{\theta}^{t-\gamma(t)} \int_{\lambda}^{t-\gamma(t)} \eta^{T}(\rho) d \rho d \lambda d \theta\right]^{T}, \bar{\alpha}=\frac{\gamma(t)}{\gamma_{2}} \text {, } \\
& \widehat{e}_{p}=\left[\begin{array}{lll}
0_{n \times(p-1) n} & I_{n \times n} & 0_{n \times(6-p) n}
\end{array}\right], p=1,2, \ldots, 6, e_{q}=\left[\begin{array}{lll}
0_{n \times(q-1) n} & I_{n \times n} & 0_{n \times(17-q) n}
\end{array}\right], q=1,2, \ldots, 17, \\
& \widetilde{e}_{r}=\left[\begin{array}{lll}
0_{n \times(r-1) n} & I_{n \times n} & 0_{n \times(3-r) n}
\end{array}\right], r=1,2,3, \bar{e}_{s}=\left[\begin{array}{lll}
0_{n \times(s-1) n} & I_{n \times n} & 0_{n \times(12-s) n}
\end{array}\right], s=1,2, \ldots, 12 .
\end{aligned}
$$

Theorem 1. For given scalars $\gamma_{1}, \gamma_{2}, v_{1}$ and ν_{2}, the $T-S$ fuzzy TDS (2.5) with (2.3), is asymptotically stable if there exist symmetric positive definite matrices $\mathcal{P}_{1} \in \mathbb{R}^{6 n \times 6 n}, \mathcal{P}_{2} \in \mathbb{R}^{4 n \times 4 n}, Q_{l} \in \mathbb{R}^{2 n \times 2 n},(l=$ $1,2,3,4), \quad \mathcal{R}_{k} \in \mathbb{R}^{n \times n}$, symmetric matrices $\mathcal{M}_{k} \in \mathbb{R}^{4 n \times 4 n}$, and any matrices $\mathcal{Y}_{k} \in \mathbb{R}^{4 n \times 4 n}(k=1,2)$ and $\mathcal{N}_{p}(p=1,2,3)$ with suitable dimension such that the following LMIs are satisfied for all $\dot{\gamma}(t) \in$ $\left[v_{1}, v_{2}\right], i=1,2, \ldots, r$:

$$
\begin{align*}
& \mathcal{P}_{1}+\gamma_{1} \Upsilon^{T} \mathcal{P}_{2} \gamma>0, \mathcal{P}_{1}+\gamma_{2} \Upsilon^{T} \mathcal{P}_{2} \Upsilon>0, \tag{3.1}\\
& {\left[\begin{array}{cc}
\widehat{\mathcal{R}}_{2}-\mathcal{M}_{1} & \mathcal{y}_{1} \\
* & \widehat{\mathcal{R}}_{2}-\mathcal{M}_{1}
\end{array}\right] \geq 0,\left[\begin{array}{cc}
\widehat{\mathcal{R}}_{2} & \boldsymbol{y}_{2} \\
* & \widehat{\mathcal{R}}_{2}-\mathcal{M}_{2}
\end{array}\right] \geq 0,} \tag{3.2}\\
& {\left[\begin{array}{cc}
\widehat{\mathcal{R}}_{2}-\mathcal{M}_{1} & \boldsymbol{y}_{1} \\
* & \widehat{\mathcal{R}}_{2}
\end{array}\right] \geq 0,\left[\begin{array}{cc}
\widehat{\mathcal{R}}_{2}-\mathcal{M}_{2} & \boldsymbol{y}_{2} \\
* & \widehat{\mathcal{R}}_{2}-\mathcal{M}_{2}
\end{array}\right] \geq 0,} \tag{3.3}
\end{align*}
$$

and

$$
\begin{array}{r}
f(0, \dot{\gamma}(t))<0, \quad f(1, \dot{\gamma}(t))<0, \\
-\Xi_{2}+f(0, \dot{\gamma}(t))<0, \tag{3.5}
\end{array}
$$

where

$$
\begin{aligned}
& f(0, \dot{\gamma}(t))=\left.f(\alpha, \dot{\gamma}(t))\right|_{\alpha=0}, f(1, \dot{\gamma}(t))=\left.f(\alpha, \dot{\gamma}(t))\right|_{\alpha=1}, \\
& f(\alpha, \dot{\gamma}(t))=\alpha^{2} \Xi_{2}+\alpha \Xi_{1}+\left(\Xi_{0}+S y m\left\{\Delta_{21} \Theta_{i}\right)\right\}, \\
& \Xi_{0}= S y m\left\{\left(\Delta_{1 a}^{T}+\Delta_{1 c}^{T}\right) \mathcal{P}_{1} \Delta_{2}\right\}+\gamma_{1} \operatorname{Sym}\left\{\left(\Delta_{3 a}^{T}+\Delta_{3 c}^{T}\right) \mathcal{P}_{2} \Delta_{4}\right\}+\dot{\gamma}(t)\left(\Delta_{3 a}^{T}+\Delta_{3 c}^{T}\right) \mathcal{P}_{2}\left(\Delta_{3 a}+\Delta_{3 c}\right) \\
&+e_{5}^{T}\left(\gamma_{1}^{2} \mathcal{R}_{1}+\gamma_{12}^{T} \mathcal{R}_{2}\right) e_{5}+\Delta_{5}^{T}\left(Q_{1}+Q_{2}\right) \Delta_{5}+\Delta_{6}^{T}\left(-Q_{1}+Q_{3}\right) \Delta_{6}+(1-\dot{\gamma}(t)) \Delta_{7}^{T}\left(-Q_{3}+Q_{4}\right) \Delta_{7} \\
&+\Delta_{8}^{T}\left(-Q_{2}-Q_{4}\right) \Delta_{8}-\Delta_{9}^{T} \mathcal{R}_{1} \Delta_{9}-3 \Delta_{10}^{T} \mathcal{R}_{1} \Delta_{10}-5 \Delta_{11}^{T} \mathcal{R}_{1} \Delta_{11}-7 \Delta_{12}^{T} \mathcal{R}_{1} \Delta_{12} \\
&-\Psi_{1}^{T}\left(\widehat{\mathcal{R}}_{2}+\mathcal{M}_{1}+\mathcal{M}_{2}\right) \Psi_{1}-\Psi_{2}^{T} \widehat{\mathcal{R}}_{2} \Psi_{2}-S y m\left\{\Psi_{1}^{T} \mathcal{Y}_{2} \Psi_{2}\right\}, \\
& \Xi_{1}= \operatorname{Sym}\left\{\left(\Delta_{1 b}^{T}-\Delta_{1 c}^{T}\right) \mathcal{P}_{1} \Delta_{2}\right\}+\gamma_{1} S y m\left\{\left(\Delta_{3 b}^{T}-\Delta_{3 c}^{T}\right) \mathcal{P}_{2} \Delta_{4}\right\}+\dot{\gamma}(t) S y m\left\{\left(\Delta_{3 a}^{T}+\Delta_{3 c}^{T}\right) \mathcal{P}_{2}\left(\Delta_{3 b}-\Delta_{3 c}\right)\right\} \\
&+\gamma_{12} S y m\left\{\left(\Delta_{3 a}^{T}+\Delta_{3 c}^{T}\right) \mathcal{P}_{2} \Delta_{4}\right\}-\Psi_{1}^{T}\left(-\mathcal{M}_{1}-2 \mathcal{M}_{2}\right) \Psi_{1} \\
&-\Psi_{2}^{T} \mathcal{M}_{2} \Psi_{2}-S y m\left\{\Psi_{1}^{T} \mathcal{Y}_{1} \Psi_{2}\right\}+\operatorname{Sym}\left\{\Psi_{1}^{T} \mathcal{Y}_{2} \Psi_{2}\right\}, \\
& \Xi_{2}= \dot{\gamma}(t)\left(\Delta_{3 b}^{T}-\Delta_{3 c}^{T}\right) \mathcal{P}_{2}\left(\Delta_{3 b}-\Delta_{3 c}\right)+\gamma_{12} S y m\left\{\left(\Delta_{3 b}^{T}-\Delta_{3 c}^{T}\right) \mathcal{P}_{2} \Delta_{4}\right\}-\Psi_{1}^{T} \mathcal{M}_{2} \Psi_{1}-\Psi_{2}^{T} \mathcal{M}_{1} \Psi_{2}, \\
& \Upsilon= {\left[\widehat{e}_{1}^{T}, \widehat{e}_{2}^{T}, \widehat{e}_{3}^{T}, \widehat{e}_{4}^{T}\right]^{T}, \widehat{\mathcal{R}}_{2}=\operatorname{diag}\left\{\mathcal{R}_{2}, 3 \mathcal{R}_{2}, 5 \mathcal{R}_{2}, 7 \mathcal{R}_{2}\right\}, \Delta_{1 b}=\left[0,0, \gamma_{12} e_{10}^{T}, 0,0,0\right]^{T}, } \\
& \Delta_{1 a}= {\left[e_{1}^{T}, \gamma_{1} e_{9}^{T}, 0,0, \gamma_{1} e_{12}^{T}, \gamma_{1} e_{15}^{T}\right]^{T}, \Delta_{1 c}=\left[0,0,0, \gamma_{12}^{T} e_{11}^{T}, 0,0\right]^{T}, }
\end{aligned}
$$

$$
\begin{aligned}
& \Delta_{2}=\left[e_{5}^{T},\left(e_{1}-e_{2}\right)^{T},\left(e_{2}-(1-\dot{\gamma}(t)) e_{3}\right)^{T},\left((1-\dot{\gamma}(t)) e_{3}-e_{4}\right)^{T}, 2\left(e_{1}-e_{9}\right)^{T}, 3\left(e_{1}-e_{12}\right)^{T}\right]^{T}, \\
& \Delta_{3 a}=\left[e_{1}^{T}, \gamma_{1} e_{9}^{T}, 0,0\right]^{T}, \Delta_{3 b}=\left[0,0, \gamma_{12} e_{10}^{T}, 0\right]^{T}, \Delta_{3 c}=\left[0,0,0, \gamma_{12} e_{11}^{T}\right]^{T}, \\
& \Delta_{5}=\left[e_{1}^{T}, e_{5}^{T}\right]^{T}, \Delta_{6}=\left[e_{2}^{T}, e_{6}^{T}\right]^{T}, \Delta_{7}=\left[e_{3}^{T}, e_{7}^{T}\right]^{T}, \Delta_{8}=\left[e_{4}^{T}, e_{8}^{T}\right]^{T}, \\
& \Delta_{4}=\left[e_{5}^{T},\left(e_{1}-e_{2}\right)^{T},\left(e_{2}-(1-\dot{\gamma}(t)) e_{3}\right)^{T},\left((1-\dot{\gamma}(t)) e_{3}-e_{4}\right)^{T}\right]^{T}, \\
& \Delta_{9}=\left(e_{1}-e_{2}\right), \Delta_{10}=\left(e_{1}+e_{2}-2 e_{9}\right), \Delta_{12}=\left(e_{1}+e_{2}-12 e_{9}+30 e_{12}-20 e_{15}\right), \\
& \Delta_{11}=\left(e_{1}-e_{2}+6 e_{9}-6 e_{12}\right), \Psi_{1}=\left[\Delta_{13}^{T}, \Delta_{14}^{T}, \Delta_{15}^{T}, \Delta_{16}^{T}\right]^{T}, \Psi_{2}=\left[\Delta_{17}^{T}, \Delta_{18}^{T}, \Delta_{19}^{T}, \Delta_{20}^{T}\right]^{T}, \\
& \Delta_{13}=\left(e_{2}-e_{3}\right), \Delta_{14}=\left(e_{2}+e_{3}-2 e_{10}\right), \Delta_{15}=\left(e_{2}-e_{3}+6 e_{10}-6 e_{13}\right), \\
& \Delta_{17}=\left(e_{3}-e_{4}\right), \Delta_{19}=\left(e_{3}-e_{4}+6 e_{11}-6 e_{14}\right), \Delta_{18}=\left(e_{3}+e_{4}-2 e_{11}\right), \\
& \Delta_{16}=\left(e_{2}+e_{3}-12 e_{10}+30 e_{13}-20 e_{16}\right), \Delta_{20}=\left(e_{3}+e_{4}-12 e_{11}+30 e_{14}-20 e_{17}\right), \\
& \Delta_{21}=\left[e_{1}^{T} \mathcal{N}_{1}+e_{3}^{T} \mathcal{N}_{2}+e_{5}^{T} \mathcal{N}_{3}\right], \Theta_{i}=\left[\mathcal{A}_{i} e_{1}+\mathcal{A}_{\gamma_{i}} e_{3}-e_{5}\right] .
\end{aligned}
$$

Proof. Choose the delay-dependent LKF as follows:

$$
\begin{equation*}
V\left(\eta_{t}\right)=\sum_{q=1}^{4} V_{q}\left(\eta_{t}\right), \tag{3.6}
\end{equation*}
$$

where

$$
\begin{aligned}
V_{1}\left(\eta_{t}\right)= & \varpi_{1}^{T}(t) \mathcal{P}_{1} \varpi_{1}(t), \quad V_{2}\left(\eta_{t}\right)=\gamma(t) \varpi_{2}^{T}(t) \mathcal{P}_{2} \varpi_{2}(t), \\
V_{3}\left(\eta_{t}\right)= & \int_{t-\gamma_{1}}^{t} \varpi_{3}^{T}(s) Q_{1} \varpi_{3}(s) d s+\int_{t-\gamma_{2}}^{t} \varpi_{3}^{T}(s) Q_{2} \varpi_{3}(s) d s \\
& \quad+\int_{t-\gamma(t)}^{t-\gamma_{1}} \varpi_{3}^{T}(s) Q_{3} \varpi_{3}(s) d s+\int_{t-\gamma_{2}}^{t-\gamma(t)} \varpi_{3}^{T}(s) Q_{4} \varpi_{3}(s) d s, \\
V_{4}\left(\eta_{t}\right)= & \gamma_{1} \int_{-\gamma_{1}}^{0} \int_{t+\lambda}^{t} \dot{\eta}^{T}(s) \mathcal{R}_{1} \dot{\eta}(s) d s d \lambda+\gamma_{12} \int_{-\gamma_{2}}^{-\gamma_{1}} \int_{t+\lambda}^{t} \dot{\eta}^{T}(s) \mathcal{R}_{2} \dot{\eta}(s) d s d \lambda,
\end{aligned}
$$

with

$$
\begin{gathered}
\varpi_{1}(t)=\left[\eta^{T}(t), \quad \int_{t-\gamma_{1}}^{t} \eta^{T}(s) d s, \int_{t-\gamma(t)}^{t-\gamma_{1}} \eta^{T}(s) d s, \int_{t-\gamma_{2}}^{t-\gamma(t)} \eta^{T}(s) d s, \frac{2}{\gamma_{1}} \int_{-\gamma_{1}}^{0} \int_{t+\lambda}^{t} \eta^{T}(s) d s d \lambda,\right. \\
\left.\frac{6}{\gamma_{1}^{2}} \int_{-\gamma_{1}}^{0} \int_{\lambda}^{0} \int_{t+\theta}^{t} \eta^{T}(s) d s d \theta d \lambda\right]^{T}, \varpi_{3}(t)=\left[\eta^{T}(t), \dot{\eta}^{T}(t)\right]^{T}, \\
\varpi_{2}(t)=\left[\eta^{T}(t), \quad \int_{t-\gamma_{1}}^{t} \eta^{T}(s) d s, \int_{t-\gamma(t)}^{t-\gamma_{1}} \eta^{T}(s) d s, \int_{t-\gamma_{2}}^{t-\gamma(t)} \eta^{T}(s) d s\right]^{T} .
\end{gathered}
$$

In order to meet the stability condition of the fuzzy system (2.5) using the Lyapunov method, first we show the positive definiteness of $V\left(\eta_{t}\right)$. From the LKF $V_{1}\left(\eta_{t}\right)$ and $V_{2}\left(\eta_{t}\right)$, we deduce

$$
\begin{equation*}
V_{1}\left(\eta_{t}\right)+V_{2}\left(\eta_{t}\right)=\varpi_{1}^{T}(t)\left[\mathcal{P}_{1}+\gamma(t) r^{T} \mathcal{P}_{2} \gamma\right] \varpi_{1}(t)=\varpi_{1}^{T}(t)\left[\mathcal{P}_{1}+\left(\gamma_{1}+\alpha \gamma_{12}\right) r^{T} \mathcal{P}_{2} \gamma\right] \varpi_{1}(t) \tag{3.7}
\end{equation*}
$$

where γ is defined after (3.5).
Therefore, if the LMIs (3.1) is holds; then $V_{1}\left(\eta_{t}\right)+V_{2}\left(\eta_{t}\right)>\epsilon\left\|\eta_{t}\right\|^{2}$ should be fulfilled with $\epsilon>0$. Hence, the positivity of $V\left(\eta_{t}\right)$ ensure when the LMIs in (3.1) and $Q_{l}, \mathcal{R}_{k}>0(l=1,2,3,4, k=1,2)$ hold.

Finding the time derivative of (3.6) along with the trajectory of (2.5), one can obtain

$$
\begin{equation*}
\dot{V}\left(\eta_{t}\right)=\sum_{q=1}^{4} \dot{V}_{q}\left(\eta_{t}\right) \tag{3.8}
\end{equation*}
$$

where

$$
\begin{align*}
\dot{V}_{1}\left(\eta_{t}\right) & =2 \varpi_{1}^{T}(t) \mathcal{P}_{1}\left[\begin{array}{c}
\dot{\eta}(t) \\
\eta(t)-\eta\left(t-\gamma_{1}\right) \\
\eta\left(t-\gamma_{1}\right)-(1-\dot{\gamma}(t)) \eta(t-\gamma(t)) \\
(1-\dot{\gamma}(t)) \eta(t-\gamma(t))-\eta\left(t-\gamma_{2}\right) \\
2 \eta(t)-\frac{2}{\gamma_{1}} \int_{t-\gamma_{1}}^{t} \eta(s) d s \\
3 \eta(t)-\frac{6}{\gamma_{1}^{2}} \int_{t-\gamma_{1}}^{t} \int_{\lambda}^{t} \eta(s) d s d \lambda
\end{array}\right] \\
& =2 \xi^{T}(t)\left[\left(\Delta_{1 a}^{T}+\alpha \Delta_{1 b}^{T}+(1-\alpha) \Delta_{1 c}^{T}\right) \mathcal{P}_{1} \Delta_{2}\right] \xi(t) \\
& =\xi^{T}(t)\left[\operatorname{Sym}\left\{\left(\Delta_{1 a}^{T}+\Delta_{1 c}^{T}\right) \mathcal{P}_{1} \Delta_{2}\right\}+\alpha \operatorname{Sym}\left\{\left(\Delta_{1 b}^{T}-\Delta_{1 c}^{T}\right) \mathcal{P}_{1} \Delta_{2}\right\}\right] \xi(t) . \tag{3.9}
\end{align*}
$$

Similarly, we obtain

$$
\begin{align*}
& \dot{V}_{2}\left(\eta_{t}\right)=\dot{\gamma}(t) \varpi_{2}^{T}(t) \mathcal{P}_{2} \varpi_{2}(t)+2 \gamma(t) \varpi_{2}^{T}(t) \mathcal{P}_{2} \dot{\varpi}_{2}(t) \\
& =\xi^{T}(t)\left[\dot{\gamma}(t)\left(\Delta_{3 a}^{T}+\alpha \Delta_{3 b}^{T}+(1-\alpha) \Delta_{3 c}^{T}\right) \mathcal{P}_{2}\left(\Delta_{3 a}+\alpha \Delta_{3 b}+(1-\alpha) \Delta_{3 c}\right)\right. \\
& \left.+\left(\gamma_{1}+\alpha \gamma_{12}\right) \operatorname{Sym}\left\{\left(\Delta_{3 a}^{T}+\alpha \Delta_{3 b}^{T}+(1-\alpha) \Delta_{3 c}^{T}\right) \mathcal{P}_{2} \Delta_{4}\right\}\right] \xi(t) \\
& =\xi^{T}(t)\left[\dot{\gamma}(t)\left(\Delta_{3 a}^{T}+\Delta_{3 c}^{T}\right) \mathcal{P}_{2}\left(\Delta_{3 a}+\Delta_{3 c}\right)+\gamma_{1} \operatorname{Sym}\left\{\left(\Delta_{3 a}^{T}+\Delta_{3 c}^{T}\right) \mathcal{P}_{2} \Delta_{4}\right\}\right. \\
& +\alpha\left\{\gamma_{1} \operatorname{Sym}\left\{\left(\Delta_{3 b}^{T}-\Delta_{3 c}^{T}\right) \mathcal{P}_{2} \Delta_{4}\right\}\right. \\
& \left.+\dot{\gamma}(t) \operatorname{Sym}\left\{\left(\Delta_{3 a}^{T}+\Delta_{3 c}^{T}\right) \mathcal{P}_{2}\left(\Delta_{3 b}-\Delta_{3 c}\right)\right\}+\gamma_{12} \operatorname{Sym}\left\{\left(\Delta_{3 a}^{T}+\Delta_{3 c}^{T}\right) \mathcal{P}_{2} \Delta_{4}\right\}\right\} \\
& \left.+\alpha^{2}\left\{\left(\Delta_{3 b}^{T}-\Delta_{3 c}^{T}\right) \mathcal{P}_{2}\left(\Delta_{3 b}-\Delta_{3 c}\right)+\gamma_{12} \operatorname{Sym}\left\{\left(\Delta_{3 b}^{T}-\Delta_{3 c}^{T}\right) \mathcal{P}_{2} \Delta_{4}\right\}\right\}\right] \xi(t), \tag{3.10}\\
& \dot{V}_{3}\left(\eta_{t}\right)=\varpi_{3}^{T}(t)\left(Q_{1}+Q_{2}\right) \varpi_{3}(t)+\varpi_{3}^{T}\left(t-\gamma_{1}\right)\left(-Q_{1}+Q_{3}\right) \varpi_{3}\left(t-\gamma_{1}\right) \\
& +(1-\dot{\gamma}(t)) \varpi_{3}^{T}(t-\gamma(t))\left(-Q_{3}+Q_{4}\right) \varpi_{3}(t-\gamma(t))+\varpi_{3}^{T}\left(t-\gamma_{2}\right)\left(-Q_{2}-Q_{4}\right) \varpi_{3}\left(t-\gamma_{2}\right) \\
& =\xi^{T}(t)\left[\Delta_{5}^{T}\left(Q_{1}+Q_{2}\right) \Delta_{5}+\Delta_{6}^{T}\left(-Q_{1}+Q_{3}\right) \Delta_{6}\right. \\
& \left.+(1-\dot{\gamma}(t)) \Delta_{7}^{T}\left(-Q_{3}+Q_{4}\right) \Delta_{7}+\Delta_{8}^{T}\left(-Q_{2}-Q_{4}\right) \Delta_{8}\right] \xi(t), \tag{3.11}\\
& \dot{V}_{4}\left(\eta_{t}\right)=\dot{\eta}^{T}(t)\left(\gamma_{1}^{2} \mathcal{R}_{1}+\gamma_{12}^{2} \mathcal{R}_{2}\right) \dot{\eta}(t)-\gamma_{1} \int_{t-\gamma_{1}}^{t} \dot{\eta}^{T}(s) \mathcal{R}_{1} \dot{\eta}(s) d s-\gamma_{12} \int_{t-\gamma_{2}}^{t-\gamma_{1}} \dot{\eta}^{T}(s) \mathcal{R}_{2} \dot{\eta}(s) d s, \tag{3.12}
\end{align*}
$$

where $\Delta_{l}(l=2,4,5 \ldots, 8), \Delta_{1 a}, \Delta_{1 b}, \Delta_{1 c}, \Delta_{3 a}, \Delta_{3 b}$, and $\Delta_{3 c}$ can be found after (3.5).

The first integral term in the right hand side (RHS) of (3.12) contains only constant limits of integration, Lemma 1 yields

$$
\begin{equation*}
-\gamma_{1} \int_{t-\gamma_{1}}^{t} \dot{\eta}^{T}(s) \mathcal{R}_{1} \dot{\eta}(s) d s \leq-\xi^{T}(t)\left[\Delta_{9}^{T} \mathcal{R}_{1} \Delta_{9}+3 \Delta_{10}^{T} \mathcal{R}_{1} \Delta_{10}+5 \Delta_{11}^{T} \mathcal{R}_{1} \Delta_{11}+7 \Delta_{12}^{T} \mathcal{R}_{1} \Delta_{12}\right] \xi(t) \tag{3.13}
\end{equation*}
$$

Next, treating second integral term in the RHS of (3.13) containing uncertain limit of integration. According to Lemma 2, we choose $\epsilon_{1}=\alpha$ and $\epsilon_{2}=(1-\alpha)(\alpha \in[0,1])$.

If the LMIs $\left[\begin{array}{cc}\widehat{\mathcal{R}}_{2}-\mathcal{M}_{1} & \mathcal{Y}_{1} \\ * & \widehat{\mathcal{R}}_{2}-(1-\alpha) \mathcal{M}_{2}\end{array}\right]$ and $\left[\begin{array}{cc}\widehat{\mathcal{R}}_{2}-\alpha \mathcal{M}_{1} & \boldsymbol{y}_{2} \\ * & \widehat{\mathcal{R}}_{2}-\mathcal{M}_{2}\end{array}\right]$ is satisfied for all $\alpha \in[0,1]$, then approximate the second integral terms in the RHS of (3.13) Lemma 2 is applied, yields

$$
\begin{align*}
-\gamma_{12} \int_{t-\gamma_{2}}^{t-\gamma_{1}} \dot{\eta}^{T}(s) \mathcal{R}_{2} \dot{\eta}(s) d s \leq & -\xi^{T}(t)\left[\Psi_{1}^{T}\left(\widehat{\mathcal{R}}_{2}+(1-\alpha) \mathcal{M}_{1}+(1-\alpha)^{2} \mathcal{M}_{2}\right) \Psi_{1}\right. \\
& \left.+\operatorname{Sym}\left\{\Psi_{1}^{T}\left(\alpha \mathcal{Y}_{1}+(1-\alpha) \boldsymbol{Y}_{2}\right) \Psi_{2}\right\}+\Psi_{2}^{T}\left(\widehat{\mathcal{R}}_{2}+\alpha \mathcal{M}_{2}+\alpha^{2} \mathcal{M}_{1}\right) \Psi_{2}\right] \xi(t) \\
= & -\xi^{T}(t)\left[\Psi_{1}^{T}\left(\widehat{\mathcal{R}}_{2}+\mathcal{M}_{1}+\mathcal{M}_{2}\right) \Psi_{1}+\Psi_{2}^{T} \widehat{\mathcal{R}}_{2} \Psi_{2}+\operatorname{Sym}\left\{\Psi_{1}^{T} \boldsymbol{Y}_{2} \Psi_{2}\right\}\right. \\
& +\alpha\left\{\Psi_{1}^{T}\left(-\mathcal{M}_{1}-2 \mathcal{M}_{2}\right) \Psi_{1}+\Psi_{2}^{T} \mathcal{M}_{2} \Psi_{2}+\operatorname{Sym}\left\{\Psi_{1}^{T} \mathcal{Y}_{1} \Psi_{2}\right\}\right. \\
& \left.\left.-\operatorname{Sym}\left\{\Psi_{1}^{T} \mathcal{Y}_{2} \Psi_{2}\right\}\right\}+\alpha^{2}\left(\Psi_{1}^{T} \mathcal{M}_{2} \Psi_{1}+\Psi_{2}^{T} \mathcal{M}_{1} \Psi_{2}\right)\right] \xi(t), \tag{3.14}
\end{align*}
$$

where $\Delta_{l}(l=9,10, \ldots, 20), \Psi_{1}, \Psi_{2}$ and $\widehat{\mathcal{R}}_{2}$ are defined after (3.5).
For any free weighting matrices $\mathcal{N}_{p}(p=1.2 .3)$ with suitable dimension, the following zero equation holds

$$
\begin{align*}
0 & =2 \sum_{i=1}^{r} w_{i}\left[\eta^{T}(t) \mathcal{N}_{1}+\eta^{T}(t-\gamma(t)) \mathcal{N}_{2}+\dot{\eta}^{T}(t) \mathcal{N}_{3}\right] \times\left[\mathcal{A}_{i} \eta(t)+\mathcal{A}_{\gamma_{i}} \eta(t-\gamma(t))-\dot{\eta}(t)\right] \\
& =\sum_{i=1}^{r} w_{i} \xi^{T}(t)\left[\operatorname{Sym}\left\{\Delta_{21} \Theta_{i}\right\}\right] \xi(t), \tag{3.15}
\end{align*}
$$

where

$$
\Delta_{21}=\left[e_{1}^{T} \mathcal{N}_{1}+e_{3}^{T} \mathcal{N}_{2}+e_{5}^{T} \mathcal{N}_{3}\right], \Theta_{i}=\left[\mathcal{A}_{i} e_{1}+\mathcal{A}_{\gamma_{i}} e_{3}-e_{5}\right] .
$$

Then, by substituting (3.9)-(3.15) in (3.8), we obtain

$$
\begin{aligned}
& \dot{V}\left(\eta_{t}\right) \\
& \leq \sum_{i=1}^{r} w_{i} \xi^{T}(t)\left[\operatorname{Sym}\left\{\left(\Delta_{1 a}^{T}+\Delta_{1 c}^{T}\right) \mathcal{P}_{1} \Delta_{2}\right\}+\gamma_{1} \operatorname{Sym}\left\{\left(\Delta_{3 a}^{T}+\Delta_{3 c}^{T}\right) \mathcal{P}_{2} \Delta_{4}\right\}+\dot{\gamma}(t)\left(\Delta_{3 a}^{T}+\Delta_{3 c}^{T}\right) \mathcal{P}_{2}\left(\Delta_{3 a}+\Delta_{3 c}\right)\right. \\
& \quad+e_{5}^{T}\left(\gamma_{1}^{2} \mathcal{R}_{1}+\gamma_{12}^{2} \mathcal{R}_{2}\right) e_{5}+\Delta_{5}^{T}\left(Q_{1}+Q_{2}\right) \Delta_{5}+\Delta_{6}^{T}\left(-Q_{1}+Q_{3}\right) \Delta_{6}+(1-\dot{\gamma}(t)) \Delta_{7}^{T}\left(-Q_{3}+Q_{4}\right) \Delta_{7} \\
& \quad+\Delta_{8}^{T}\left(-Q_{2}-Q_{4}\right) \Delta_{8}-\Delta_{9}^{T} \mathcal{R}_{1} \Delta_{9}-3 \Delta_{10}^{T} \mathcal{R}_{1} \Delta_{10}-5 \Delta_{11}^{T} \mathcal{R}_{1} \Delta_{11}-7 \Delta_{12}^{T} \mathcal{R}_{1} \Delta_{12}+\operatorname{Sym}\left\{\Delta_{21} \Theta_{i}\right\} \\
& \quad-\Psi_{1}^{T}\left(\widehat{\mathcal{R}}_{2}+\mathcal{M}_{1}+\mathcal{M}_{2}\right) \Psi_{1}-\Psi_{2}^{T} \widehat{\mathcal{R}}_{2} \Psi_{2}-\operatorname{Sym}\left\{\Psi_{1}^{T} \mathcal{Y}_{2} \Psi_{2}\right\}+\alpha\left\{\operatorname{Sym}\left\{\left(\Delta_{1 b}^{T}-\Delta_{1 c}^{T}\right) \mathcal{P}_{1} \Delta_{2}\right\}\right. \\
& \quad+\gamma_{1} \operatorname{Sym}\left\{\left(\Delta_{3 b}^{T}-\Delta_{3 c}^{T}\right) \mathcal{P}_{2} \Delta_{4}\right\}+\dot{\gamma}(t) \operatorname{Sym}\left\{\left(\Delta_{3 a}^{T}+\Delta_{3 c}^{T}\right) \mathcal{P}_{2}\left(\Delta_{3 b}-\Delta_{3 c}\right)\right\}+\gamma_{12} \operatorname{Sym}\left\{\left(\Delta_{3 a}^{T}+\Delta_{3 c}^{T}\right) \mathcal{P}_{2} \Delta_{4}\right\}
\end{aligned}
$$

$$
\begin{align*}
& \left.-\Psi_{1}^{T}\left(-\mathcal{M}_{1}-2 \mathcal{M}_{2}\right) \Psi_{1}-\Psi_{2}^{T} \mathcal{M}_{2} \Psi_{2}-\operatorname{Sym}\left\{\Psi_{1}^{T} \mathcal{Y}_{1} \Psi_{2}\right\}+\operatorname{Sym}\left\{\Psi_{1}^{T} \mathcal{Y}_{2} \Psi_{2}\right\}\right\} \\
& \left.+\alpha^{2}\left\{\dot{\gamma}(t)\left(\Delta_{3 b}^{T}-\Delta_{3 c}^{T}\right) \mathcal{P}_{2}\left(\Delta_{3 b}-\Delta_{3 c}\right)+\gamma_{12} \operatorname{Sym}\left\{\left(\Delta_{3 b}^{T}-\Delta_{3 c}^{T}\right) \mathcal{P}_{2} \Delta_{4}\right\}-\Psi_{1}^{T} \mathcal{M}_{2} \Psi_{1}-\Psi_{2}^{T} \mathcal{M}_{1} \Psi_{2}\right\}\right] \xi(t) \\
= & \sum_{i=1}^{r} w_{i} \xi^{T}(t)[\underbrace{\alpha^{2} \Xi_{2}+\alpha \Xi_{1}+\left(\Xi_{0}+\operatorname{Sym}\left\{\Delta_{21} \Theta_{i}\right)\right\}}_{f(\alpha, \dot{\gamma}(t))}] \xi(t), \tag{3.16}
\end{align*}
$$

where $f(\alpha, \dot{\gamma}(t))$ is defined after (3.5).
Note that, the RHS of (3.16) depends on the two parameters $\alpha \in[0,1]$ and $\dot{\gamma}(t) \in\left[v_{1}, v_{2}\right]$. Since $\sum_{i=1}^{r} w_{i}=1$ and the RHS of (3.16) is quadratic with respect to α, so by Lemma 3 we can easily obtain the LMIs in (3.4) and (3.5). Thus, if the LMIs (3.4) and (3.5) along with constraint (3.1)-(3.3) are holds, then it implies that $\dot{V}\left(\eta_{t}\right)<-\epsilon\left\|\eta_{t}\right\|^{2}$, for $\epsilon>0$, which in turn guaranteed the asymptotic stability of the fuzzy system (2.5) as per Lyapunov-Krasovskii Theorem. This completes the proof of Theorem 1.

Remark 2. If $\gamma_{1}=0$, then $\gamma_{12}=\gamma_{2}$, then Theorem 1 is no more applicable to find the maximum delay upper bound γ_{2} for stability of the T-S fuzzy TDS (2.5). The following Corollary is formulated to deal with this circumstance.

Corollary 1. Given scalars γ_{2}, ν_{1} and ν_{2}, the $T-S$ fuzzy TDS (2.5) with $0 \leq \gamma(t) \leq \gamma_{2}, v_{1} \leq \dot{\gamma}(t) \leq$ v_{2} is asymptotically stable if there exist symmetric positive definite matrices $\overline{\mathcal{P}}_{1}, \overline{\mathcal{P}}_{2} \in \mathbb{R}^{3 n \times 3 n}$, $\bar{Q}_{l} \in$ $\mathbb{R}^{2 n \times 2 n},(l=1,2,3), \quad \mathcal{R} \in \mathbb{R}^{n \times n}$, symmetric matrices $\overline{\mathcal{M}}_{k} \in \mathbb{R}^{4 n \times 4 n}$, and any matrices $\overline{\boldsymbol{y}}_{k} \in \mathbb{R}^{4 n \times 4 n}(k=$ $1,2)$ and $\overline{\mathcal{N}}_{p}(p=1,2,3)$ with suitable dimension such that the following LMIs are satisfied for all $\dot{\gamma}(t) \in\left[v_{1}, v_{2}\right], i=1,2, \ldots, r:$

$$
\begin{align*}
& \overline{\mathcal{P}}_{1}+\gamma_{2} \bar{\gamma}^{T} \overline{\mathcal{P}}_{2} \bar{\gamma}>0, \tag{3.17}\\
& {\left[\begin{array}{cc}
\widehat{\mathcal{R}}-\overline{\mathcal{M}}_{1} & \overline{\mathcal{Y}}_{1} \\
* & \widehat{\mathcal{R}}-\overline{\mathcal{M}}_{1}
\end{array}\right] \geq 0,\left[\begin{array}{cc}
\widehat{\mathcal{R}} & \overline{\mathcal{Y}}_{2} \\
* & \widehat{\mathcal{R}}-\overline{\mathcal{M}}_{2}
\end{array}\right] \geq 0,} \tag{3.18}\\
& {\left[\begin{array}{cc}
\widehat{\mathcal{R}}-\overline{\mathcal{M}}_{1} & \overline{\mathcal{y}}_{1} \\
* & \widehat{\mathcal{R}}
\end{array}\right] \geq 0,\left[\begin{array}{cc}
\widehat{\mathcal{R}}-\overline{\mathcal{M}}_{2} & \overline{\mathcal{Y}}_{2} \\
* & \widehat{\mathcal{R}}-\overline{\mathcal{M}}_{2}
\end{array}\right] \geq 0,} \tag{3.19}
\end{align*}
$$

and

$$
\begin{array}{r}
\bar{f}(0, \dot{\gamma}(t))<0, \quad \bar{f}(1, \dot{\gamma}(t))<0, \\
-\bar{\Xi}_{2}+\bar{f}(0, \dot{\gamma}(t))<0, \tag{3.21}
\end{array}
$$

where

$$
\begin{aligned}
& \bar{f}(0, \dot{\gamma}(t))=\left.\bar{f}(\bar{\alpha}, \dot{\gamma}(t))\right|_{\bar{\alpha}=0}, \bar{f}(1, \dot{\gamma}(t))=\left.\bar{f}(\bar{\alpha}, \dot{\gamma}(t))\right|_{\bar{\alpha}=1}, \\
& \bar{f}(\bar{\alpha}, \dot{\gamma}(t))=\bar{\alpha}^{2} \bar{\Xi}_{2}+\bar{\alpha} \bar{\Xi}_{1}+\left(\bar{\Xi}_{0}+\operatorname{Sym}\left\{\bar{\Delta}_{14} \bar{\Theta}_{i}\right)\right\}, \\
& \bar{\Xi}_{0}= \\
& S y m\left\{\left(\bar{\Lambda}_{1 a}^{T}+\bar{\Delta}_{1 c}^{T}\right) \overline{\mathcal{P}}_{1} \bar{\Delta}_{2}\right\}+\dot{\gamma}(t)\left(\bar{\Delta}_{1 a}^{T}+\bar{\Delta}_{1 c}^{T}\right) \overline{\mathcal{P}}_{2}\left(\bar{\Delta}_{1 a}+\bar{\Delta}_{1 c}\right)+\bar{e}_{4}^{T}\left(\gamma_{2}^{2} \mathcal{R}\right) \bar{e}_{4}+\bar{\Delta}_{3}^{T}\left(\bar{Q}_{1}+\bar{Q}_{2}\right) \bar{\Delta}_{3} \\
& \quad+(1-\dot{\gamma}(t)) \bar{\Lambda}_{4}^{T}\left(-\bar{Q}_{2}+Q_{3}\right) \bar{\Delta}_{4}+\bar{\Delta}_{5}^{T}\left(-\bar{Q}_{1}-\bar{Q}_{3}\right) \bar{\Delta}_{5} \\
& \quad-\bar{\Psi}_{1}^{T}\left(\widehat{\mathcal{R}}+\overline{\mathcal{M}}_{1}+\overline{\mathcal{M}}_{2}\right) \bar{\Psi}_{1}-\bar{\Psi}_{2}^{T} \widehat{\mathcal{R}}_{2}-\operatorname{Sym}\left\{\bar{\Psi}_{1}^{T} \overline{\mathcal{Y}}_{2} \bar{\Psi}_{2}\right\},
\end{aligned}
$$

$$
\begin{aligned}
\bar{\Xi}_{1}= & S y m\left\{\left(\bar{\Delta}_{1 b}^{T}-\bar{\Delta}_{1 c}^{T}\right) \overline{\mathcal{P}}_{1} \bar{\Delta}_{2}\right\}+\dot{\gamma}(t) \operatorname{Sym}\left\{\left(\bar{\Delta}_{1 a}^{T}+\bar{\Delta}_{1 c}^{T}\right) \overline{\mathcal{P}}_{2}\left(\bar{\Delta}_{1 b}-\bar{\Delta}_{1 c}\right)\right\}-\bar{\Psi}_{2}^{T} \overline{\mathcal{M}}_{2} \bar{\Psi}_{2} \\
& +\gamma_{2} \operatorname{Sym}\left\{\left(\bar{\Delta}_{1 a}^{T}+\bar{\Delta}_{1 c}^{T}\right) \overline{\mathcal{P}}_{2} \bar{\Delta}_{2}\right\}-\bar{\Psi}_{1}^{T}\left(-\overline{\mathcal{M}}_{1}-2 \overline{\mathcal{M}}_{2}\right) \bar{\Psi}_{1}-\operatorname{Sym}\left\{\bar{\Psi}_{1}^{T}\left(\overline{\mathcal{Y}}_{1}-\overline{\mathcal{Y}}_{2}\right) \bar{\Psi}_{2}\right\}, \\
\bar{\Xi}_{2}= & \dot{\gamma}(t)\left(\bar{\Delta}_{1 b}^{T}-\bar{\Delta}_{1 c}^{T}\right) \overline{\mathcal{P}}_{2}\left(\bar{\Delta}_{1 b}-\bar{\Delta}_{1 c}\right)+\gamma_{2} \operatorname{Sym}\left\{\left(\bar{\Delta}_{1 b}^{T}-\bar{\Delta}_{1 c}^{T} \overline{\mathcal{P}}_{2} \bar{\Delta}_{2}\right\}-\bar{\Psi}_{1}^{T} \overline{\mathcal{M}}_{2} \bar{\Psi}_{1}-\bar{\Psi}_{2}^{T} \overline{\mathcal{M}}_{1} \bar{\Psi}_{2},\right. \\
\bar{\Upsilon}= & {\left[\bar{e}_{1}^{T}, \bar{e}_{2}^{T},,_{3}^{T}\right]^{T}, \widehat{\mathcal{R}}=\operatorname{diag}\{\mathcal{R}, 3 \mathcal{R}, 5 \mathcal{R}, 7 \mathcal{R}\}, } \\
\bar{\Delta}_{1 a}= & {\left[\bar{e}_{1}^{T}, 0,0\right]^{T}, \bar{\Delta}_{1 b}=\left[0, \gamma_{2} \bar{e}_{7}^{T}, 0\right]^{T}, \bar{\Delta}_{1 c}=\left[0,0, \gamma_{2} \bar{e}_{8}^{T}\right]^{T}, } \\
\bar{\Delta}_{2}= & {\left[\bar{e}_{4}^{T},\left(\bar{e}_{1}-(1-\dot{\gamma}(t)) \bar{e}_{2}\right)^{T},\left((1-\dot{\gamma}(t)) \bar{e}_{2}-\bar{e}_{3}\right)^{T}\right]^{T}, \bar{\Delta}_{3}=\left[\bar{e}_{1}^{T}, \bar{e}_{4}^{T}\right]^{T}, \bar{\Delta}_{4}=\left[\bar{e}_{2}^{T}, \bar{e}_{5}^{T}\right]^{T}, } \\
\bar{\Delta}_{5}= & {\left[\bar{e}_{3}^{T}, \bar{e}_{6}^{T}\right]^{T}, \bar{\Psi}_{1}=\left[\bar{\Delta}_{6}^{T}, \bar{\Delta}_{7}^{T}, \bar{\Delta}_{8}^{T}, \bar{\Delta}_{9}^{T}\right]^{T}, \bar{\Psi}_{2}=\left[\bar{\Delta}_{10}^{T}, \bar{\Delta}_{11}^{T}, \bar{\Delta}_{12}^{T}, \bar{\Delta}_{13}^{T}\right]^{T}, \bar{\Delta}_{6}=\left(\bar{e}_{1}-\bar{e}_{2}\right), } \\
\bar{\Delta}_{7}= & \left(\bar{e}_{1}+\bar{e}_{2}-2 \bar{e}_{7}\right), \bar{\Delta}_{8}=\left(\bar{e}_{1}-\bar{e}_{2}+6 \bar{e}_{7}-6 \bar{e}_{9}\right), \bar{\Delta}_{9}=\left(\bar{e}_{1}+\bar{e}_{2}-12 \bar{e}_{7}+30 \bar{e}_{9}-20 \bar{e}_{11}\right), \\
\bar{\Delta}_{10}= & \left(\bar{e}_{2}-\bar{e}_{3}\right), \bar{\Delta}_{11}=\left(\bar{e}_{2}+\bar{e}_{3}-2 \bar{e}_{8}\right), \bar{\Delta}_{13}=\left(\bar{e}_{2}+\bar{e}_{3}-12 \bar{e}_{8}+30 \bar{e}_{10}-20 \bar{e}_{12}\right), \\
\bar{\Delta}_{12}= & \left(\bar{e}_{2}-\bar{e}_{3}+6 \bar{e}_{8}-6 \bar{e}_{10}\right), \bar{\Delta}_{14}=\left[\bar{e}_{1}^{T} \mathcal{N}_{1}+\bar{e}_{2}^{T} \mathcal{N}_{2}+\bar{e}_{4}^{T} \mathcal{N}_{3}\right], \bar{\Theta}_{i}=\left[\mathcal{A}_{i} \bar{e}_{1}+\mathcal{A}_{\gamma_{i}} \bar{e}_{2}-\bar{e}_{4}\right] .
\end{aligned}
$$

Proof. Let us consider the LKF as follows:

$$
\begin{equation*}
\bar{V}\left(\eta_{t}\right)=\sum_{q=1}^{4} \bar{V}_{q}\left(\eta_{t}\right) \tag{3.22}
\end{equation*}
$$

where

$$
\begin{aligned}
& \bar{V}_{1}\left(\eta_{t}\right)=\bar{w}_{1}^{T}(t) \overline{\mathcal{P}}_{1} \bar{\varpi}_{1}(t), \bar{V}_{2}\left(\eta_{t}\right)=\gamma(t) \bar{\varpi}_{1}^{T}(t) \overline{\mathcal{P}}_{2} \bar{\varpi}_{1}(t), \\
& \bar{V}_{3}\left(\eta_{t}\right)=\int_{t-\gamma_{2}}^{t} \bar{\varpi}_{2}^{T}(s) \bar{Q}_{1} \bar{\varpi}_{2}(s) d s+\int_{t-\gamma(t)}^{t} \bar{\varpi}_{2}^{T}(s) \bar{Q}_{2} \bar{\varpi}_{2}(s) d s+\int_{t-\gamma_{2}}^{t-\gamma(t)} \bar{\varpi}_{2}^{T}(s) \bar{Q}_{3} \bar{\varpi}_{2}(s) d s, \\
& \bar{V}_{4}\left(\eta_{t}\right)=\gamma_{2} \int_{-\gamma_{2}}^{0} \int_{t+\lambda}^{t} \dot{\eta}^{T}(s) \mathcal{R} \dot{\eta}(s) d s d \lambda,
\end{aligned}
$$

with

$$
\bar{\varpi}_{1}(t)=\left[\eta^{T}(t), \quad \int_{t-\gamma(t)}^{t} \eta^{T}(s) d s, \quad \int_{t-\gamma_{2}}^{t-\gamma(t)} \eta^{T}(s) d s\right]^{T}, \bar{\varpi}_{2}(t)=\left[\eta^{T}(t), \dot{\eta}^{T}(t)\right]^{T} .
$$

Now, take the similar steps as in Theorem 1 yields the LMIs in (3.17)-(3.21). The analysis is skipped here because it is straightforward.

4. Numerical examples

Three numerical examples are given in this section to demonstrate the reduction of conservativeness of our proposed method numerically.
Example 1. Consider the following T-S fuzzy TDS [31]:

$$
\begin{equation*}
\dot{\eta}(t)=\sum_{i=1}^{2} w_{i}\left\{\mathcal{A}_{i} \eta(t)+\mathcal{A}_{\gamma_{i}} \eta(t-\gamma(t))\right\}, \tag{4.1}
\end{equation*}
$$

where

$$
\mathcal{A}_{1}=\left[\begin{array}{cc}
-2 & 0 \\
0 & -0.9
\end{array}\right], \mathcal{A}_{2}=\left[\begin{array}{cc}
-1 & 0.5 \\
0 & -1
\end{array}\right], \mathcal{A}_{y_{1}}=\left[\begin{array}{cc}
-1 & 0 \\
-1 & -1
\end{array}\right], \mathcal{A}_{\gamma_{2}}=\left[\begin{array}{cc}
-1 & 0 \\
0.1 & -1
\end{array}\right],
$$

and the membership functions are defined as $w_{1}=\frac{1}{1+e^{-2 \eta_{1}(1)}}, w_{2}=1-w_{1}$.
For given $v_{1}=0, \nu_{2}=0.1$, delay upper bound γ_{2} is calculated by using Theorem 1 with different values γ_{1}. The obtained delay bound results are presented in Table 1 along with the results of some recent stability conditions. Further, numerical simulation for the system (4.1) is carried out and it is consider that $\gamma(t)=0.5768 \sin (\omega t)+1.3768$ is a very slow varying sine signal $(\omega=3.141 \mathrm{rad} / \mathrm{sec}$ or $f=0.5 \mathrm{~Hz})$. Figure 1 validates the fact that, the system states are asymptotically stable for the initial condition $\eta(0)=[-2,2]^{T}$.

Table 1. Admissible upper bound γ_{2} for various γ_{1} and $v=0.1$ for Example 1.

$\gamma_{1} /$ Method	$[5]$	$[6]$	$[20]$	$[30]$	$[31]$	Theorem 1
0.8	1.6539	1.7633	1.7828	1.857	NA	$\mathbf{1 . 9 5 3 6}$
1.0	1.8069	1.7718	1.8106	1.868	1.9405	$\mathbf{1 . 9 9 5 6}$

Figure 1. State responses of the system given in Example 1 with $\gamma_{1}=0.8, \gamma_{2}=1.9536$.

Example 2. Consider the T-S fuzzy TDS (2.5) with a two plant rule and the parameters are as follows:

$$
\mathcal{A}_{1}=\left[\begin{array}{cc}
-3.2 & 0.6 \\
0 & -2.1
\end{array}\right], \mathcal{A}_{2}=\left[\begin{array}{cc}
-1 & 0 \\
1 & -3
\end{array}\right], \mathcal{A}_{\gamma_{1}}=\left[\begin{array}{cc}
-1 & 0.9 \\
0 & 2
\end{array}\right], \mathcal{A}_{\gamma_{2}}=\left[\begin{array}{cc}
0.9 & 0 \\
1 & 1.6
\end{array}\right]
$$

The membership functions are chosen as $w_{1}=\frac{1}{1+e^{-2 \eta_{1(1)}}}, w_{2}=1-w_{1}$. Let $\gamma_{1}=0$ and $v=v_{2}=-v_{1}$. For given various v, the maximum allowable upper bounds of γ_{2} for Corollary 1 are obtained according to Remark 2. The results of Corollary 1 are given in Table 2 along with several recent results from the literatures in [32-36]. By choosing $\gamma_{1}=0, \gamma_{2}=1.6519$ and $\eta(0)=[-6,4]^{T}$, Figure 2 shows the state trajectory $\eta(t)$. The state responses clearly indicate that T-S fuzzy system considered in Example 2 is asymptotically stable.

Figure 2. State responses of the system given in Example 2.

Table 2. Maximum delay bound γ_{2} for various v and $\gamma_{1}=0$ for Example 2.

Method	$v=0.03$	$v=0.1$	$v=0.5$
$[32]$	0.8771	0.7687	0.7584
$[33]$	0.9281	0.8092	0.7671
$[34]\left(R_{1}=R_{2}=0\right)$	1.8328	1.3857	1.2186
$[34]$	1.9137	1.4354	1.3123
[35]	2.4291	1.7493	1.6355
[36] (Theorem 1 with (I))	2.9931	1.8916	1.4594
[36] (Theorem 2 with (I))	2.6160	1.6084	1.3409
Corollary 1	$\mathbf{3 . 0 1 3 0}$	$\mathbf{1 . 6 5 1 9}$	$\mathbf{0 . 9 9 2 5}$

Remark 3. Based on the results presented in Table 1 and Table 2, it can be seen that the proposed Theorem 1 and Corollary 1 of this paper are less conservative than the existing results [5,6,20,30-36], which shows the effectiveness and superiority of the method.
Example 3. Consider the T-S fuzzy TDS given in [27] as

$$
\begin{equation*}
\dot{\eta}(t)=\sum_{i=1}^{2} w_{i}\left\{\mathcal{A}_{i} \eta(t)+\mathcal{A}_{y_{i}} \eta(t-\gamma(t))\right\}, \tag{4.2}
\end{equation*}
$$

where

$$
\mathcal{A}_{1}=\left[\begin{array}{cc}
-2.1 & 0.1 \\
-0.2 & -0.9
\end{array}\right], \mathcal{A}_{2}=\left[\begin{array}{cc}
-1.9 & 0.0 \\
-0.2 & -1.1
\end{array}\right], \quad \mathcal{A}_{\gamma_{1}}=\left[\begin{array}{cc}
-1.1 & 0.1 \\
-0.8 & -0.9
\end{array}\right], \mathcal{A}_{\gamma_{2}}=\left[\begin{array}{cc}
-0.9 & 0.0 \\
-1.1 & -1.2
\end{array}\right],
$$

and the membership functions are $w_{1}=\frac{1}{1+e^{-2 \eta_{1}(t)}}, w_{2}=1-w_{1}$.
By solving the LMIs in Corollary 1, delay upper bounds $\left(\gamma_{2}\right)$ obtained for given different values of v with $\gamma_{1}=0$ and the results are given in Table 3. From Table 3, it is found that the results presented in this paper is less conservative than previous researches [27,34, 37-39]. Figure 3 show the state responses of the fuzzy system given in Example 3 with $\gamma_{1}=0, \gamma_{2}=2.5198$ and $\eta(0)=[-2,1]^{T}$.

Table 3. Delay bound γ_{2} with various $v=v_{2}=-v_{1}$ and $\gamma_{1}=0$ for Example 3.

Method	$v=0.1$	$v=0.5$
$[34]$	3.42	2.02
$[27]$	3.5518	2.3204
$[37]$	4.2044	2.0685
$[38]$	4.324	2.226
$[39]$	5.2300	3.3454
Corollary 1	$\mathbf{5 . 4 9 8 5}$	$\mathbf{2 . 5 1 9 8}$

Figure 3. State responses of the system given in Example 3.

Remark 4. The Lyapunov conditions for finite-time stability of impulsive systems is proposed in [41], where the settling-time is well estimated via impulsive signals. In [42], the authors addressed a class of nonlinear systems with delayed impulses, where the double effects (i.e., negative and positive effects) of time delays in impulses are fully and systematically considered. In the framework of Lyapunov conditions, in [43], the authors proposed a novel Zeno-free event-triggered impulsive control strategy for uniform stability and asymptotic stability, where a class of forced impulse sequences was introduced freely. Also, singular systems have found widespread use in circuits, power systems, economic models, interconnected systems, and neural network models in recent years [44-47]. Further research topics would be considered to extend the main results of this paper to design an event-triggered control scheme and filter design for the T-S fuzzy TDS or singular network systems with induced network delays.

5. Conclusions

An improved DRD stability criteria in a LMI framework has been proposed in this paper for T-S fuzzy TDS. A new stability condition that successfully reduces conservativeness is obtained by constructing a suitable DPT LKF and estimating the derivative of LKF using the Bessel-Legendre polynomial-based relaxed integral inequality. Moreover, three numerical examples are given that compare maximum acceptable delay bounds to highlight the advantages and usefulness of the proposed criteria.

Acknowledgments

This work was supported by Grant-in-Aid for Research Activity Start-up No. 20K23328, funded by Japan Society for the Promotion of Science (JSPS) and in part by the Hiroshima University KIBANKEIHI grant No. OBNK14, Japan.

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

References

1. H. K. Khalil, J. W. Grizzle, Nonlinear systems, Prentice Hall, New Jersey, 1996.
2. V. Djordjevic, L. Dubonjic, M. M. Morato, D. Prsic, V. Stojanovic, Sensor fault estimation for hydraulic servo actuator based on sliding mode observer, Math. Modell. Control, 2 (2022), 34-43. https://doi.org/10.3934/mmc. 2022005
3. T. Takagi, M. Sugeno, Fuzzy identification of systems and its applications to modeling and control, IEEE Trans. Syst. Man Cybern., 15 (1985), 116-132. https://doi.org/10.1109/TSMC.1985.6313399
4. C. Ge, Y. Shi, J. H. Park, C. Hua, Robust H_{∞} stabilization for T-S fuzzy systems with timevarying delays and memory sampled-data control, Appl. Math. Comput., 346 (2019), 500-512. https://doi.org/10.1016/j.amc.2018.10.076
5. C. Peng, Q. L. Han, Delay-range-dependent robust stabilization for uncertain T-S fuzzy control systems with interval time-varying delays, Inf. Sci., 181 (2011), 4287-4299. https://doi.org/10.1016/j.ins.2011.05.025
6. F. O. Souza, V. C. S. Campos, R. M. Palhares, On delay-dependent stability conditions for Takagi-Sugeno fuzzy systems, J. Frankl. Inst., 351 (2014), 3707-3718. https://doi.org/10.1016/j.jfranklin.2013.03.017
7. S. P. Boyd, L. El Ghaoui, E. Feron, V. Balakrishnan, Linear matrix inequalities in system and control theory, SIAM, Philadelphia, PA, 1994. https://doi.org/10.1137/1.9781611970777
8. K. Gu, V. L. Kharitonov, J. Chen, Stability of time-delay systems, MA: Birkhäuser, 2003. https://doi.org/10.1007/978-1-4612-0039-0
9. B. Jiang, Y. Lou, J. Lu, Input-to-state stability of delayed systems with bounded-delay impulses, Math. Modell. Control, 2, (2022), 44-54. https://doi.org/10.3934/mmc. 2022006
10. E. Fridman, U. Shaked, An improved stabilization method for linear time-delay systems, IEEE Trans. Autom. Control, 47 (2002), 1931-1937. https://doi.org/10.1109/TAC.2002.804462
11. Y. He, Q. G. Wang, L. Xie, C. Lin, Further improvement of free-weighting matrices technique for systems with time-varying delay, IEEE Trans. Autom. Control, 52 (2007), 293-299. https://doi.org/10.1109/TAC.2006.887907
12. P. Park, J. W. Ko, C. Jeong, Reciprocally convex approach to stability of systems with time-varying delays, Automatica, 47 (2011), 235-238. https://doi.org/10.1016/j.automatica.2010.10.014
13. A. Seuret, F. Gouaisbaut, Wirtinger-based integral inequality: Application to time-delay systems, Automatica, 49 (2013), 2860-2866. https://doi.org/10.1016/j.automatica.2013.05.030
14. P. Park, W. I. Lee, S. Y. Lee, Auxiliary function-based integral inequalities for quadratic functions and their applications to time-delay systems, J. Frankl. Inst., 352 (2015), 1378-1396. https://doi.org/10.1016/j.jfranklin.2015.01.004
15. J. Chen, D. Xu, B. Shafai, On sufficient conditions for stability independent of delay, IEEE Trans. Autom. Control, $\mathbf{4 0}$ (1995), 1675-1680. https://doi.org/10.1109/9.412644
16. C. K. Zhang, F. Long, Y. He, W. Yao, L. Jiang, M. Wu, A relaxed quadratic function negativedetermination lemma and its application to time-delay systems, Automatica, 113 (2020), 108764. https://doi.org/10.1016/j.automatica.2019.108764
17. J. H. Kim, Further improvement of Jensen inequality and application to stability of time-delayed systems, Automatica, 64 (2016), 121-125. https://doi.org/10.1016/j.automatica.2015.08.025
18. F. S. de Oliveira, F. O. Souza, Further refinements in stability conditions for time-varying delay systems, Appl. Math. Comput., 369 (2020), 124866. https://doi.org/10.1016/j.amc.2019.124866
19. H. B. Zeng, H. C. Lin, Y. He, K. L. Teo, W. Wang, Hierarchical stability conditions for timevarying delay systems via an extended reciprocally convex quadratic inequality, J. Frankl. Inst., 357 (2020), 9930-9941. https://doi.org/10.1016/j.jfranklin.2020.07.034
20. Z. Feng, W. X. Zheng, Improved stability condition for Takagi-Sugeno fuzzy systems with time-varying delay, IEEE Trans. Cybern., 47 (2017), 661-670. https://doi.org/10.1109/TCYB.2016.2523544
21. J. An, T. Li, G. Wen, R. Li, New stability conditions for uncertain T-S fuzzy systems with interval time-varying delay, Int. J. Control, Autom. Syst., 10 (2012), 490-497. https://doi.org/10.1007/s12555-012-0305-9
22. H. B. Zeng, J. H. Park, J. W. Xia, S. P. Xiao, Improved delay-dependent stability criteria for T-S fuzzy systems with time-varying delay, Appl. Math. Comput., 235 (2014), 492-501. https://doi.org/10.1016/j.amc.2014.03.005
23. Z. Zhang, C. Lin, B. Chen, New stability and stabilization conditions for T-S fuzzy systems with time delay, Fuzzy Sets Syst., 263 (2015), 82-91. https://doi.org/10.1016/j.fss.2014.09.012
24. R. Márquez, T. M. Guerra, A. Kruszewski, M. Bernal, Improvements on non-quadratic stabilization of Takagi-Sugeno models via line-integral Lyapunov functions, IFAC Proc. Vol., 46 (2013), 473478. https://doi.org/10.3182/20130902-3-CN-3020.00165
25. C. Peng, L. Y. Wen, J. Q. Yang, On delay-dependent robust stability criteria for uncertain T-S fuzzy systems with interval time-varying delay, Int. J. Fuzzy Syst., 13 (2011), 35-44.
26. E. Tian, D. Yue, Y. Zhang, Delay-dependent robust H_{∞} control for T-S fuzzy system with interval time-varying delay, Fuzzy Sets Syst., 160 (2009), 1708-1719. https://doi.org/10.1016/j.fss.2008.10.014
27. Z. Lian, Y. He, C. K. Zhang, M. Wu, Stability analysis for T-S fuzzy systems with time-varying delay via free-matrix-based integral inequality, Int. J. Control Autom. Syst., 14 (2016), 21-28. https://doi.org/10.1007/s12555-015-2001-z
28. F. Liu, M. Wu, Y. He, R. Yokoyama, New delay-dependent stability criteria for TS fuzzy systems with time-varying delay, Fuzzy Sets Syst., 161 (2010), 2033-2042. https://doi.org/10.1016/j.fss.2009.12.014
29. S. H. Tsai, Y. A. Chen, J. C. Lo, A novel stabilization condition for a class of T-S fuzzy time-delay systems, Neurocomputing, 175 (2016), 223-232. https://doi.org/10.1016/j.neucom.2015.10.054
30. R. Datta, R. Dey, B. Bhattacharya, A. Chakraborti, Improved stability condition for fuzzy systems with interval time varying delay, 2017 Joint 17th World Congress of International Fuzzy Systems Association and 9th International Conference on Soft Computing and Intelligent Systems (IFSASCIS), 2017, 1-6. https://doi.org/10.1109/IFSA-SCIS.2017.8023230
31. Z. Lian, Y. He, C. K. Zhang, M. Wu, Stability and stabilization of T-S fuzzy systems with timevarying delays via delay-product-type functional method, IEEE Trans. Cybern., 50 (2020), 25802589. https://doi.org/10.1109/TCYB.2018.2890425
32. H. B. Zeng, J. H. Park, J. W. Xia, S. P. Xiao, Improved delay-dependent stability criteria for T-S fuzzy systems with time-varying delay, Appl. Math. Comput., 235 (2014), 492-501. https://doi.org/10.1016/j.amc.2014.03.005
33. L. Huang, X. Xie, C. Tan, Improved stability criteria for T-S fuzzy systems with timevarying delay via convex analysis approach, IET Control Theory Appl., 10 (2016), 1888-1895. https://doi.org/10.1049/iet-cta.2015.1109
34. Z. Lian, Y. He, C. K. Zhang, M. Wu, Further robust stability analysis for uncertain Takagi-Sugeno fuzzy systems with time-varying delay via relaxed integral inequality, Inf. Sci., 409 (2017), 139150. https://doi.org/10.1016/j.ins.2017.05.017
35. Z. Li, H. Yan, H. Zhang, J. Sun, H. K. Lam, Stability and stabilization with additive freedom for delayed Takagi-Sugeno fuzzy systems by intermediary polynomial-based functions, IEEE Trans. Fuzzy Syst., 28 (2019), 692-705. https://doi.org/10.1109/TFUZZ.2019.2914615
36. X. J. Pan, B. Yang, J. J. Cao, X. D. Zhao, Improved stability analysis of Takagi-Sugeno fuzzy systems with time-varying delays via an extended delay-dependent reciprocally convex inequality, Inf. Sci., 571 (2021), 24-37. https://doi.org/10.1016/j.ins.2021.04.043
37. O. M. Kwon, M. J. Park, J. H. Park, S. M. Lee, Stability and stabilization of T-S fuzzy systems with time-varying delays via augmented Lyapunov-Krasovskii functionals, Inf. Sci., 372 (2016), 1-15. https://doi.org/10.1016/j.ins.2016.08.026
38. J. Tan, S. Dian, T. Zhao, Further studies on stability and stabilization of T-S fuzzy systems with time-varying delays via fuzzy Lyapunov-Krasovskii functional method, Asian J. Control, 20 (2018), 1-16. https://doi.org/10.1002/asjc. 1697
39. R. Datta, R. Dey, B. Bhattacharya, R. Saravanakumar, O. M. Kwon, Stability and stabilization of T-S fuzzy systems with variable delays via new Bessel-Legendre polynomial based relaxed integral inequality, Inf. Sci., 522 (2020), 99-123. https://doi.org/10.1016/j.ins.2020.02.060
40. R. Datta, R. Saravanakumar, R. Dey, B. Bhattacharya, C. K. Ahn, Improved stabilization criteria for Takagi-Sugeno fuzzy systems with variable delays, Inf. Sci., 579 (2021), 591-606. https://doi.org/10.1016/j.ins.2021.07.089
41. X. Li, D. W. Ho, J. Cao, Finite-time stability and settling-time estimation of nonlinear impulsive systems, Automatica, 99 (2019), 361-368. https://doi.org/10.1016/j.automatica.2018.10.024
42. X. Li, S. Song, J. Wu, Exponential stability of nonlinear systems with delayed impulses and applications, IEEE Trans. Autom. Control, 64 (2019), 4024-4034. https://doi.org/10.1109/TAC.2019.2905271
43. X. Li, D. Peng, J. Cao, Lyapunov stability for impulsive systems via eventtriggered impulsive control, IEEE Trans. Autom. Control, 65 (2020), 4908-4913. https://doi.org/10.1109/TAC.2020.2964558
44. Y. Zhang, X. Mu, Event-triggered output quantized control of discrete Markovian singular systems, Automatica, 135 (2022), 109992. https://doi.org/10.1016/j.automatica.2021.109992
45. Y. Zhang, P. Shi, R. K. Agarwal, Y. Shi, Event-based mixed \mathcal{H}_{∞} and passive filtering for discrete singular stochastic systems, Int. J. Control, 93 (2020), 2407-2415. https://doi.org/10.1080/00207179.2018.1559360
46. Y. Zhang, P. Shi, R. K. Agarwal, Y. Shi, Event-based dissipative analysis for discrete timedelay singular jump neural networks, IEEE Trans. Neur. Net. Lear. Syst., 31 (2020), 1232-1241. https://doi.org/10.1109/TNNLS.2019.2919585
47. Y. Zhang, P. Shi, M. V. Basin, Event-based finite-time H_{∞} filtering of discrete-time singular jump network systems, Int. J. Robust Nonlinear Control, 32 (2022), 4038-4054. https://doi.org/10.1002/rnc. 6009
© 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
