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1. Introduction and preliminaries

The distinguished Banach fixed point theorem [3] deals with the existence and uniqueness of fixed
point of self-mappings defined on a complete metric space and has numerous applications in
mathematics and related disciplines, for instance in inverse problems (compare [19, 36]). Due to its
vast range of applications, Banach fixed point theorem has attracted several researchers to extend the
scope of metric fixed point theory (compare [2, 18, 25, 27]). On the other hand, if C and D are
nonempty subsets of a metric space (X, d), then in the case of a nonself-mapping T : C → D, there
might not exist a point x in C such that x = T x. In such situations, it is better to find an element x in C
such that the distance between x and T x is minimum, and if such an x in C exists, then it is the best
proximity point (shortly BPP) of T.
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One of the earlier results regarding the existence of a BPP is attributed to Fan [8], which assures the
existence of BPP of a continuous mapping of a nonempty compact convex subset of a Hausdorff locally
convex topological vector space. Many extensions of Fan’s theorems are available in the literature
including Prolla [26], Reich [29], Sehgal and Singh [32]. Eldred and Veeramani [7] discussed the
existence and convergence of best proximity points (shortly BPPs) in uniformly convex Banach spaces.
Basha [4] presented BPP theorems for proximal contractions of the first and second kinds. Some other
types of contractions were introduced by several authors like Bari et al. [6] who coined the idea of
cyclic Meir-Keeler contractions and proved the existence and uniqueness of the BPP for cyclic Meir-
Keeler contractions. Agarwal and Karpagam [17] discussed BPP results for p-cyclic Meir-Keeler
contractions.

Menger [23] introduced probabilistic metric spaces. Zadeh [35] introduced fuzzy sets to deal with
uncertainty. Kramosil and Michalek [15] introduced the idea of probabilistic metric spaces to fuzzy
metric spaces (shortly FMSs) and it was further modified by George and Veeramani (see [10, 11]),
which enabled them to assign to each fuzzy metric space (FMS) a Hausdorff topology. The fuzzy
metric fixed point theory was initiated with the paper of Grabiec [12]. Fuzzy contractive mappings
were triggered by Gregori and Sapena in [13] and generalized the Banach contraction principle by
considering new types of fuzzy contractive mappings in FMSs. Mihet [20] generalized the Banach
contraction principle by considering the fuzzy ψ-contractive mappings in non-Archimedean fuzzy
metric spaces (shortly N-AFMSs) in [21].

In the context of metric spaces, quasi-contractions were initiated by Ćirić [5]. On the other hand,
the generalization of the fuzzy contractive condition of Sapena and Gregori in the form of fuzzy H-
contractive mappings was presented by Wardowski in [34]. Amini and Mihet [1] introduced fuzzy
H-quasi-contractive mappings using the idea of quasi-contractions by Ćirić and fuzzy H-contractive
mappings by Wardowski.

Moreover, results in the context of FMSs have applications in various areas of mathematics and
other related disciplines, for instance in computer sciences, particularly in the context of the domain of
words (compare [22, 28, 30]).

On the other hand, by using different contractive conditions in an N-AFMS, Vetro and
Saleemi [33] discussed the existence and uniqueness of fuzzy best proximity points. In this paper, first
we prove the existence and uniqueness of fuzzy best proximity points of more general different
proximal contractions on N-AFMSs and then we apply best proximity point results in an N-AFMS to
solve a recurrence relation in connection with the domain of words.

We will highlight some basic notions that will be used in the sequel to obtain the main results.
Throughout this article, I represent the interval [0, 1] . We start with the following definition.

Definition 1.1. [31] A continuous t-norm is a binary operation � : I × I → I such that

T1− � is commutative and associative;

T2− � is continuous;

T3− 1 � η = η for every η in I;

T4− η � ξ ≤ ζ � υ whenever η ≤ ζ and ξ ≤ υ, for all η, ζ, ξ, υ in I.
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The three prototypical t-norms are product, minimum, and Lukasiewicz t-norms defined as

η �prod ζ = ηζ,

η �min ζ = min {η, ζ} ,
η �L ζ = max {η + ζ − 1, 0} ,

respectively. George and Veeramani defined the the FMS as follows.

Definition 1.2. [10] Let Z be a nonempty set. Then a FMS is a triplet (Z,F , �) with a continuous t-
norm �, and a fuzzy set F defined on Z×Z×(0,∞) satisfying the following conditions for all λ, µ, ν ∈ Z
and υ,w ∈ (0,∞).

G1− F (µ, λ, υ) > 0;

G2− F (µ, λ, υ) = 1 if and only if µ = λ;

G3− F (µ, λ, υ) = F (λ, µ, υ);

G4− F (µ, λ, υ) � F (λ, ν,w) ≤ F (µ, ν, υ + w);

G5− F (µ, λ, ·) : (0,∞)→ (0, 1] is continuous.

Moreover, the triplet (Z,F , �) is called an N-AFMS, if G4 is replaced by

G6− F (µ, λ, υ) � F (λ, ν,w) ≤ F (µ, ν,max{υ,w}), or equivalently,

F (µ, λ, υ) � F (λ, ν, υ) ≤ F (µ, ν, υ) ( [14]).

Note that each N-AFMS is a FMS.
Let (Z,F , �) be a FMS and C, D be nonempty subsets of (Z,F , �). Define

C0 (υ) = {µ ∈ C : F (µ, λ, υ) = F (C,D, υ) for some λ ∈ D} ,

D0 (υ) = {λ ∈ D : F (µ, λ, υ) = F (C,D, υ) for some µ ∈ C} ,

where
F (C,D, υ) = sup

µ∈C,λ∈D
F (µ, λ, υ) .

Definition 1.3. [31] Let (Z,F , �) be a FMS. Then

(i) A sequence {yn} in Z converges to y in Z, if and only if

lim
n→∞
F (yn, y, υ) = 1

for all υ > 0. We denote it as yn → y as n→ ∞.

(ii) [10] A sequence {yn} in Z is M-Cauchy if and only if for all ε ∈ (0, 1) and υ > 0, there is an n0 ∈ N

such that
F (yn, ym, υ) > 1 − ε

for all m, n ≥ n0.
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(iii) [13] A sequence {yn} is G-Cauchy if and only if, for all ε ∈ (0, 1), and for all υ > 0, there is an
n0 ∈ N such that

lim
n→∞
F

(
yn, yn+p, υ

)
> 1 − ε

for all n ≥ n0 and any integer p > 0.

(iv) The FMS (Z,F , ∗) is called M-complete (G-complete) if every M-Cauchy (G-Cauchy) sequence is
convergent.

Note that every M-Cauchy sequence is G-Cauchy and hence every G-complete FMS is
M-complete (compare [24]).

Definition 1.4. Suppose Φ denotes the class of all functions, ϕ : I → I such that ϕ is continuous,
decreasing and ϕ(w) = 0 if and only if w = 1.

2. Main results

In this section, we start with the following theorem.

Theorem 2.1. Let C and D be nonempty closed subsets of a complete N-AFMS (Z,F , �). Suppose that
C0(υ) is nonempty for every υ > 0 and T : C → D a nonself-mapping that satisfies:

(i) T (C0(υ)) ⊆ D0(υ) for all υ > 0,

(ii) There is a function ϕ in Φ for which

F (α,Tµ, υ) = F (C,D, υ)
F (β,Tλ, υ) = F (C,D, υ)

}
implies ϕ(F (α, β, υ)) ≤ ω(υ)Aϕ(µ, λ, υ) (2.1)

holds for all α, β, λ, µ ∈ C, and υ > 0, where ω : (0,∞)→ (0, 1) is a function and

Aϕ(µ, λ, υ) = max
{
ϕ(F (µ, λ, υ)), ϕ(F (µ, α, υ)),
ϕ(F (λ, α, υ)), ϕ(F (λ, β, υ))

}
,

(iii) For any sequence {λn} in D0(υ) and µ ∈ C satisfying F (µ, λn, υ)→ F (C,D, υ) as n→ ∞, one has
µ ∈ C0(υ).

Then there exists a unique µ∗ ∈ C such that

F (µ∗,Tµ∗, υ) = F (C,D, υ)

for every υ > 0.

Proof. Pick an arbitrary point µ0 ∈ C0(υ). As T (C0(υ)) ⊆ D0(υ), so there is a µ1 ∈ C0(υ) such that

F (µ1,Tµ0, υ) = F (C,D, υ) .

Recursively, we obtain a sequence {µn} in C0(υ) satisfying{
F (µn,Tµn−1, υ) = F (C,D, υ) ,
F (µn+1,Tµn, υ) = F (C,D, υ)

(2.2)
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for all n ∈ N, and υ > 0. Clearly, if for some n0 ∈ N, µn0+1 = µn0 , then from (2.2), µn0 becomes a BPP
of T. Hence, we assume µn+1 , µn for all n ∈ N. Define κn(υ) = F (µn, µn+1, υ) for all n ∈ N ∪ {0} and
all υ > 0. From (2.1), we get

ϕ(κn (υ)) = ϕ (F (µn, µn+1, υ)) ≤ ω(υ)Aϕ(µn−1, µn, υ), (2.3)

where

Aϕ(µn−1, µn, υ) = max
{
ϕ(F (µn−1, µn, υ)), ϕ(F (µn−1, µn, υ)),
ϕ(F (µn, µn, υ)), ϕ(F (µn, µn+1, υ))

}
= max {ϕ(F (µn−1, µn, υ)), ϕ(1), ϕ(F (µn, µn+1, υ))}
= max {ϕ(F (µn−1, µn, υ)), ϕ(F (µn, µn+1, υ))} .

If
max {ϕ(F (µn−1, µn, υ)), ϕ(F (µn, µn+1, υ))} = ϕ(F (µn, µn+1, υ)),

then
ϕ(κn (υ)) ≤ ω(υ)ϕ(κn (υ)) < ϕ(κn (υ)),

a contradiction as 0 < ω (υ) < 1. Hence,

ϕ(κn (υ)) ≤ ω(υ)ϕ(κn−1) < ϕ(κn−1 (υ)).

This implies that κn (υ) is an increasing sequence that is bounded above by 1. Let limn→∞ κn (υ) = κ (υ) .
Now, we claim that κ (υ) = 1 for all υ > 0. On the contrary, if 0 < κ (υ0) < 1 for some υ0 > 0, then

ϕ (κ (υ0)) = lim
n→∞

ϕ (κn (υ0)) ≤ ω (υ0) lim
n→∞

ϕ (κn−1 (υ0))

≤ ω (υ0)ϕ (κ (υ0)) < ϕ (κ (υ0))

a contradiction. Hence,
lim
n→∞
κn (υ) = 1 (2.4)

for all υ > 0. If {µn} is not a Cauchy sequence, then there is an ε ∈ (0, 1) and υ0 > 0 such that for every
k ∈ N, there are nk,mk ∈ N with mk > nk ≥ k and

F
(
µmk , µnk , υ0

)
≤ 1 − ε. (2.5)

Let mk be the least integer greater than nk satisfying (2.5), that is,

F
(
µmk−1, µnk , υ0

)
> 1 − ε,

which implies

1 − ε ≥ F
(
µmk , µnk , υ0

)
≥ F

(
µmk−1, µmk , υ0

)
� F

(
µmk−1, µnk , υ0

)
> κmk−1 (υ0) � (1 − ε) .

Consequently, we get
lim
k→∞
F

(
µmk , µnk , υ0

)
= 1 − ε. (2.6)
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Further
F

(
µmk+1, µnk+1, υ0

)
≥ F

(
µmk+1, µmk , υ0

)
� F

(
µmk , µnk , υ0

)
� F

(
µnk , µnk+1, υ0

)
.

On taking limit as k → ∞, we get

lim
k→∞
F

(
µmk+1, µnk+1, υ0

)
≥ 1 − ε. (2.7)

Now, from (2.4) and (2.6) we get

F
(
µmk , µnk , υ0

)
≥ F

(
µmk , µmk+1, υ0

)
� F

(
µmk+1, µnk+1, υ0

)
� F

(
µnk+1, µnk , υ0

)
,

which implies
lim
k→∞
F

(
µmk+1, µnk+1, υ0

)
= 1 − ε.

Further
F

(
µmk , µnk+1, υ0

)
≥ F

(
µmk , µmk+1, υ0

)
� F

(
µmk+1, µnk+1, υ0

)
implies

lim
k→∞
F

(
µmk , µnk+1, υ0

)
≥ 1 − ε.

Similarly,
lim
k→∞
F

(
µnk , µmk+1, υ0

)
≥ 1 − ε.

Now, {
F

(
µmk+1,Tµmk , , υ0

)
= F (C,D, υ0) ,

F
(
µnk+1,Tµnk , υ0

)
= F (C,D, υ0)

implies
ϕ
(
F

(
µmk+1, µnk+1, υ0

))
≤ ω(υ0)Aϕ(µmk , µnk , υ0)

≤ ω(υ0) max
{
ϕ(F

(
µmk , µnk , υ0

)
), ϕ(F

(
µmk , µmk+1, υ0

)
),

ϕ(F
(
µnk , µmk+1, υ0

)
), ϕ(F

(
µnk , µnk+1 , υ0

)
)

}
.

As k tends to∞ in above, we get

ϕ (1 − ε) ≤ ω(υ0) max {ϕ (1 − ε) , ϕ(1), ϕ (1 − ε) , ϕ(1)}
= ω(υ0)ϕ (1 − ε) .

If ϕ (1 − ε) = 0, then ε = 0, a contradiction. If ϕ (1 − ε) > 0, then

ϕ (1 − ε) ≤ ω(υ0)ϕ (1 − ε) < ϕ (1 − ε) ,

a contradiction, as 0 < ω(υ0) < 1. Hence, {µn} is a Cauchy sequence. The completeness of (Z,F , �)
implies {µn} converges to some µ∗ ∈ Z, that is,

lim
n→∞
F (µn, µ

∗, υ) = 1 for all υ > 0. (2.8)

Moreover

F (C,D, υ) = F (µn+1,Tµn, υ)
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≥ F (µn+1, µ
∗, υ) � F (µ∗,Tµn, υ)

≥ F (µn+1, µ
∗, υ) � F (µ∗, µn+1, υ) � F (µn+1,Tµn, υ)

= F (µn+1, µ
∗, υ) � F (µ∗, µn+1, υ) � F (C,D, υ) .

By taking the limit as n tends to∞, we get

F (C,D, υ) = lim
n→∞
F (µ∗,Tµn, υ)

≥ lim
n→∞
F (µn+1, µ

∗, υ) � lim
n→∞
F (µ∗, µn+1, υ) � F (C,D, υ)

= F (C,D, υ)

implies
lim
n→∞
F (µ∗,Tµn, υ) = F (C,D, υ) . (2.9)

Now, we show that T has a BPP. Note that (iii) and (2.8) implies µ∗ ∈ C0 (υ) and hence Tµ∗ ∈ T (C0 (υ)).
As T (C0 (υ)) ⊆ D0 (υ) ensures that there is a ξ ∈ C0 (υ) for which

F (ξ,Tµ∗, υ) = F (C,D, υ) . (2.10)

We claim that ξ = µ∗. On the contrary, assume that ξ , µ∗. By (2.1), (2.2) and (2.10), we obtain

ϕ (F (ξ, µn+1, υ)) ≤ ω(υ)Aϕ (µn, µ
∗, υ)

≤ ω(υ) max
{
ϕ(F (µn, µ

∗, υ)), ϕ(F (µ∗, ξ, υ)),
ϕ(F (µn, ξ, υ)), ϕ(F (µn, µn+1, υ))

}
.

Upon taking limit as n tends to∞ in above, we get

ϕ (F (ξ, µ∗, υ)) ≤ ω(υ) max {ϕ(F (µ∗, µ∗, υ)), ϕ(F (µ∗, ξ, υ)), ϕ(1)}
= ω(υ)ϕ(F (µ∗, ξ, υ)) < ϕ(F (µ∗, ξ, υ)),

a contradiction, as 0 < ω(υ) < 1. Hence, ξ = µ∗ and consequently

F (µ∗,Tµ∗, υ) = F (C,D, υ) ,

that is, µ∗ is the BPP of T. If r is another BPP of T such that r , µ∗, then 0 < F (µ∗, r, υ) < 1 for all
υ > 0 and

F (µ∗,Tµ∗, υ) = F (C,D, υ) and F (r,Tr, υ) = F (C,D, υ) .

Then we have

ϕ (F (µ∗, r, υ)) ≤ ω(υ)Aϕ (µ∗, r, υ)

≤ ω(υ) max
{
ϕ (F (µ∗, r, υ)) , ϕ (F (µ∗, µ∗, υ)) ,
ϕ (F (r, µ∗, υ)) , ϕ (F (r, r, υ))

}
= ω(υ)ϕ (F (µ∗, r, υ)) < ϕ (F (µ∗, r, υ))

a contradiction. Hence, the BPP of T is unique.
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If we consider C0(υ) a nonempty and closed set, then we can relax some conditions in Theorem 2.1
as follows.

Theorem 2.2. Let C and D be nonempty subsets of a complete N-AFMS (Z,F , �). Suppose that C0(υ) is
a closed subset of (Z,F , �) for every υ > 0 and T : C → D a nonself-mapping satisfying the following:

(i) T (C0(υ)) ⊆ D0(υ) for all υ > 0,

(ii) There exists ϕ ∈ Φ for which

F (α,Tµ, υ) = F (C,D, υ)
F (β,Tλ, υ) = F (C,D, υ)

}
implies ϕ(F (α, β, υ)) ≤ ω(υ)Aϕ(µ, λ, υ), (2.11)

holds for all α, β, λ, µ ∈ C and υ > 0, where ω : (0,∞)→ (0, 1) a function and

Aϕ(µ, λ, υ) = max
{
ϕ(F (µ, λ, υ)), ϕ(F (µ, α, υ)),
ϕ(F (λ, α, υ)), ϕ(F (λ, β, υ))

}
.

Then there is a unique µ∗ ∈ C for which F (µ∗,Tµ∗, υ) = F (C,D, υ) for all υ > 0.

Proof. Construct a Cauchy sequence {µn} in C0 (υ) same as in the proof of Theorem 2.1. As C0 (υ) is
a closed so the completeness of (Z,F , �) ensures that the sequence {µn} is convergent to some µ∗ in
C0 (υ). The remaining part of the proof is same as the proof of Theorem 2.1.

In the next theorem, we use the different contraction condition in comparison with the above results.

Theorem 2.3. Let C and D be nonempty closed subsets of a complete N-AFMS (Z,F , �). Suppose that
C0(υ) is nonempty for every υ > 0 and T : C → D a nonself-mapping satisfying the following:

(i) T (C0(υ)) ⊆ D0(υ) for all υ > 0,

(ii) There is a continuous function ρ : I → I, with ρ (s) > 0 for every s ∈ (0, 1], for which

F (α,Tµ, υ) = F (C,D, υ)
F (β,Tλ, υ) = F (C,D, υ)

}
implies F (α, β, υ) ≥ B(µ, λ, υ) +Aρ(µ, λ, υ), (2.12)

holds for all α, β, λ, µ ∈ C and υ > 0, where

Aρ(µ, λ, υ) = min
{
ρ(F (µ, λ, υ)), ρ(F (µ, α, υ))
ρ(F (λ, α, υ)), ρ(F (λ, β, υ))

}
,

B(µ, λ, υ) = min {F (µ, λ, υ),F (λ, α, υ)} .

(iii) For any sequence {λn} in D0(υ) and µ ∈ C satisfying F (µ, λn, υ)→ F (C,D, υ) as n→ ∞, one has
µ ∈ C0(υ).

Then there is a unique µ∗ ∈ C for which F (µ∗,Tµ∗, υ) = F (C,D, υ) for all υ > 0.
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Proof. As C0(υ) is nonempty for every υ > 0, so we pick a µ0 in C0(υ). Since Tµ0 ∈ T (C0(υ)) ⊆ D0(υ),
we can find µ1 ∈ C0(υ) such that

F (µ1,Tµ0, υ) = F (C,D, υ) .

Recursively, we obtain a sequence {µn} in C0(υ) satisfying

F (µn,Tµn−1, υ) = F (C,D, υ) and
F (µn+1,Tµn, υ) = F (C,D, υ)

(2.13)

for all n ∈ N, υ > 0. From (2.12) and (2.13), we obtain

F (µn, µn+1, υ) ≥ B(µn−1, µn, υ) +Aρ(µn−1, µn, υ)
≥ min {F (µn−1, µn, υ),F (µn, µn, υ)}+

min
{
ρ(F (µn−1, µn, υ)), ρ(F (µn−1, µn, υ)),
ρ(F (µn, µn, υ)), ρ(F (µn, µn+1, υ))

}
= F (µn−1, µn, υ) + min {ρ(F (µn−1, µn, υ)), ρ(F (µn, µn+1, υ))}

(2.14)

which implies
F (µn, µn+1, υ) ≥ F (µn−1, µn, υ)

that is, {F (µn+1,Tµn, υ)} is an increasing sequence in (0, 1] which is bounded above by 1. So, there is
j (υ) ∈ (0, 1] for which

lim
n→∞
F (µn, µn+1, υ) = j (υ)

for all υ > 0. We claim that j (υ) = 1 for all υ > 0. On contrary, assume that there is υ0 > 0 for which
0 < j(υ0) < 1. Taking the limit as n tends to∞ in (2.14) implies

j (υ0) ≥ j (υ0) + min {ρ ( j (υ0)) , ρ(1)} .

If min {ρ ( j (υ0)) , ρ(1)} = ρ ( j (υ0)) , then we get j (υ0) ≥ j (υ0)+ρ ( j (υ0)) implies that ρ ( j (υ0)) = 0,
which is a contradiction. If min {ρ ( j (υ0)) , ρ(1)} = ρ (1) , then we get j (υ0) ≥ j (υ0) +ρ (1) implies that
ρ (1) = 0, which is a contradiction. This shows that j (υ) = 1 for all υ > 0. Next we show that {µn}

is a Cauchy sequence. If we suppose on contrary that {µn} is not a Cauchy sequence, then there is an
ε ∈ (0, 1) and υ0 > 0, so that for all k ∈ N, there are nk,mk ∈ N with mk > nk ≥ k and

F
(
µmk , µnk , υ0

)
≤ 1 − ε. (2.15)

Let mk be the least integer greater than nk satisfying (2.15), that is,

F
(
µmk−1, µnk , υ0

)
> 1 − ε.

On similar lines as in the proof of Theorem 2.1, we get

lim
k→∞
F

(
µmk , µnk , υ0

)
= 1 − ε, lim

k→∞
F

(
µmk+1, µnk+1, υ0

)
= 1 − ε,

lim
k→∞
F

(
µmk , µnk+1, υ0

)
≥ 1 − ε and lim

k→∞
F

(
µnk , µmk+1, υ0

)
≥ 1 − ε.
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From (2.13) we get

F (µmk+1,Tµmk , υ0) = F (C,D, υ0) and F (µnk+1,Tµnk , υ0) = F (C,D, υ0) .

Hence, (2.12) implies

F (µmk+1, µnk+1, υ0) ≥ B(µmk , µnk , υ0) +Aρ(µmk , µnk , υ0)
≥ min

{
F (µmk , µnk , υ0),F (µnk , µmk+1 , υ0)

}
+

min
{
ρ(F (µmk , µnk , υ0)), ρ(F (µmk , µmk+1, υ0)),
ρ(F (µnk , µmk+1 , υ0)), ρ(F (µnk , µnk+1, υ0))

}
.

As k tends to∞ in above, we get

1 − ε ≥ (1 − ε) + min {ρ (1 − ε) , ρ(1)} .

That is
1 − ε ≥ 1 − ε + min {ρ (1 − ε) , ρ(1)} .

Consequently,
0 ≥ min {ρ (1 − ε) , ρ(1)} .

Hence, either ρ (1 − ε) = 0 or ρ(1) = 0, a contradiction in both cases. This implies that {µn} is a Cauchy
sequence. The completeness of (Z,F , �) implies {µn} converges to some µ∗ in Z. That is,

lim
n→∞
F (µn, µ

∗, υ) = 1 for all υ > 0. (2.16)

Now, we show that T has a BPP. On the similar lines as in Theorem 2.1, we get µ∗ ∈ C0 (υ). As
T (C0 (υ)) ⊆ D0 (υ) for all υ > 0 ensures that there is ξ ∈ C0 (υ) such that

F (ξ,Tµ∗, υ) = F (C,D, υ) . (2.17)

We claim that ξ = µ∗. On the contrary, assume that ξ , µ∗. So from (2.13) and (2.17) we get

F (µn+1, ξ, υ) ≥ B (µn, µ
∗, υ) +Aρ (µn, µ

∗, υ)

which implies

F (µn+1, ξ, υ) ≥ min {F (µn, µ
∗, υ) ,F (µ∗, µn+1, υ)} +

min
{
ρ (F (µn, µ

∗, υ)) , ρ (F (µn, µn+1, υ)) ,
ρ (F (µ∗, µn+1, υ)) , ρ (F (µ∗, ξ, υ))

}
.

Passing to the limit as n→ ∞ in the above inequality, we get

F (µ∗, ξ, υ) ≥ 1 + min {ρ (1) , ρ (F (µ∗, ξ, υ))} ,

so 1 ≥ F (µ∗, ξ, υ) ≥ 1, which implies F (µ∗, ξ, υ) = 1, for all υ > 0, that is µ∗ = ξ and F (µ∗,Tµ∗, υ) =

F (C,D, υ) . To show the uniqueness of µ∗ which is the BPP of T, let r be another BPP of T such that
r , µ∗, that is, 0 < F (µ∗, r, υ) < 1 for all υ > 0. As

F (µ∗,Tµ∗, υ) = F (C,D, υ) and F (r,Tr, υ) = F (C,D, υ) ,
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so from (2.12), we have

F (µ∗, r, υ) ≥ B (µ∗, r, υ) +Aρ (µ∗, r, υ)
≥ min {F (µ∗, r, υ) ,F (r, µ∗, υ)}

+ min
{
ρ (F (µ∗, r, υ)) , ρ (F (µ∗, µ∗, υ)) ,
ρ (F (r, µ∗, υ)) , ρ (F (r, r, υ))

}
= F (µ∗, r, υ) + ρ (1) .

Hence,
F (µ∗, r, υ) ≥ F (µ∗, r, υ) + min {ρ (F (µ∗, r, υ)) , ρ (1)} ,

which implies ρ (F (µ∗, r, υ)) = 0 or ρ (1) = 0, which is a contradiction in both cases as ρ (s) > 0 for all
s ∈ (0, 1]. Therefore, F (µ∗, r, υ) = 1 for every υ > 0 and so µ∗ = r.

In the next Theorem, we use another contraction condition involving a function ζ : I → [1,∞).

Theorem 2.4. Let C and D be nonempty closed subsets of a complete N-AFMS (Z,F , �) . Suppose that
C0 (υ) is nonempty for all υ > 0 and T : C → D a nonself-mapping satisfying the following:

(i) T (C0(υ)) ⊆ D0(υ) for all υ > 0,

(ii) There is a function ζ : I → [1,∞) such that for any sequence {sn} ⊆ I of positive real numbers,
ζ (sn)→ 1 as n→ +∞ implies sn → 1 as n→ +∞ and

F (α,Tµ, υ) = F (C,D, υ)
F (β,Tλ, υ) = F (C,D, υ)

}
implies F (α, β, υ) ≥ ζ(F (µ, λ, υ))B(µ, λ, υ), (2.18)

holds for all α, β, λ, µ ∈ C and υ > 0, where

B(µ, λ, υ) = min {F (µ, λ, υ),F (λ, α, υ)} ,

(iii) For any sequence {λn} in D0 (υ) and µ ∈ C satisfying F (µ, λn, υ) → F (C,D, υ) as n → ∞, one
has µ ∈ C0 (υ) .

Then there is a unique µ∗ ∈ C such that

F (µ∗,Tµ∗, υ) = F (C,D, υ)

for every υ > 0.

Proof. As C0(υ) is nonempty for every υ > 0, so we pick a µ0 in C0(υ). Since Tµ0 ∈ T (C0(υ)) ⊆ D0(υ),
we can find µ1 ∈ C0(υ) such that

F (µ1,Tµ0, υ) = F (C,D, υ) .

Recursively, we obtain a sequence {µn} in C0(υ) satisfying

F (µn,Tµn−1, υ) = F (C,D, υ) ,
F (µn+1,Tµn, υ) = F (C,D, υ) .

(2.19)
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Using (2.18) and (2.19) we get

F (µn, µn+1, υ) ≥ ζ(F (µn−1, µn, υ))B (µn−1, µn, υ)
= ζ(F (µn−1, µn, υ)) min {F (µn−1, µn, υ) ,F (µn, µn, υ)}
= ζ(F (µn−1, µn, υ))F (µn−1, µn, υ) ,

(2.20)

which implies
F (µn, µn+1, υ) ≥ F (µn−1, µn, υ).

Hence, {F (µn+1,Tµn, υ)} is an increasing sequence in (0, 1],which is bounded above by 1. This implies
that there is j (υ) ∈ (0, 1] such that

lim
n→∞
F (µn, µn+1, υ) = j (υ)

for all υ > 0. We claim that j (υ) = 1 for all υ > 0. On the contrary, assume that there is υ0 > 0 such
that 0 < j(υ0) < 1. Taking the limit as n→ ∞, in (2.20) we get

lim
n→∞
F (µn, µn+1, υ0) ≥ lim

n→∞
ζ(F (µn−1, µn, υ0)) lim

n→∞
F (µn−1, µn, υ0) ,

which implies

1 =

lim
n→∞
F (µn, µn+1, υ0)

lim
n→∞
F (µn−1, µn, υ0)

≥ lim
n→∞

ζ(F (µn−1, µn, υ0) ≥ 1.

That is,
lim
n→∞

ζ(F (µn−1, µn, υ0) = 1 implies lim
n→∞
F (µn−1, µn, υ0) = 1.

Hence, j (υ) = 1. Now, we prove that {µn} is a Cauchy sequence. Suppose on contrary {µn} is not a
Cauchy sequence, that is, there is an ε ∈ (0, 1) and υ0 > 0 such that for every k ∈ N, there are nk,mk ∈ N

with mk > nk ≥ k and
F

(
µmk , µnk , υ0

)
≤ 1 − ε. (2.21)

Let mk be the least integer greater than nk satisfying (2.21), that is,

F
(
µmk−1, µnk , υ0

)
> 1 − ε.

On similar lines as in the proof of Theorem 2.1, we get

lim
k→∞
F

(
µmk , µnk , υ0

)
= 1 − ε, lim

k→∞
F

(
µmk+1, µnk+1, υ0

)
= 1 − ε,

lim
k→∞
F

(
µmk , µnk+1, υ0

)
≥ 1 − ε and lim

k→∞
F

(
µnk , µmk+1, υ0

)
≥ 1 − ε.

From (2.19), we get

F (µmk+1,Tµmk , υ0) = F (C,D, υ0) and F (µnk+1,Tµnk , υ0) = F (C,D, υ0) .

So, by applying (2.18), we get

F
(
µmk+1, µnk+1, υ0

)
≥ ζ(F (µmk , µnk , υ0))B(µmk , µnk , υ0)

= ζ(F (µmk , µnk , υ0)) min
{
F

(
µmk , µnk , υ0

)
,F

(
µnk , µmk+1 , υ0

)}
.

(2.22)
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If
min

{
F

(
µmk , µnk , υ0

)
,F

(
µnk , µmk+1 , υ0

)}
= F

(
µmk , µnk , υ0

)
,

then from (2.22),
F

(
µmk+1, µnk+1, υ0

)
≥ ζ(F (µmk , µnk , υ0))F

(
µmk , µnk , υ0

)
,

which implies
F

(
µmk+1, µnk+1, υ0

)
F

(
µmk , µnk , υ0

) ≥ ζ(F (µmk , µnk , υ0)) ≥ 1

and taking limit as k → ∞, above inequality gives

lim
k→∞

ζ(F (µmk , µnk , υ0)) = 1,

which implies
lim
k→∞
F (µmk , µnk , υ0) = 1.

So, ε = 0, a contradiction. If

min
{
F

(
µmk , µnk , υ0

)
,F

(
µnk , µmk+1 , υ0

)}
= F

(
µnk , µmk+1 , υ0

)
,

then from (2.22),
F

(
µmk+1, µnk+1, υ0

)
≥ ζ(F (µmk , µnk , υ0))F

(
µnk , µmk+1 , υ0

)
,

which implies

1 =
1 − ε
1 − ε

≥
F

(
µmk+1, µnk+1, υ0

)
F

(
µnk , µmk+1 , υ0

) ≥ ζ(F (µmk , µnk , υ0)) ≥ 1, (2.23)

which implies
lim
k→∞

ζ(F (µmk , µnk , υ0)) = 1 and

lim
k→∞
F (µmk , µnk , υ0)) = 1.

So, ε = 0, a contradiction again. Thus, {µn} is a Cauchy sequence. As (Z,F , �) is a complete
N-AFMS, therefore the sequence {µn} converges to some µ∗ ∈ Z, that is, lim

n→∞
F (µn, µ

∗, υ) = 1 for all
υ > 0. Since T (C0 (υ)) ⊆ D0 (υ) for all υ > 0, so there is ξ ∈ C0 (υ) such that

F (ξ,Tµ∗, υ) = F (C,D, υ) .

So, by (2.18) it is evident that

F (µn+1, ξ, υ) ≥ ζ (F (µn, µ
∗, υ))B (µn, µ

∗, υ)
= ζ (F (µn, µ

∗, υ)) min {F (µn, µ
∗, υ) ,F (µ∗, µn+1, υ)} .

(2.24)

If
min {F (µn, µ

∗, υ) ,F (µ∗, µn+1, υ)} = F (µn, µ
∗, υ) ,

then from (2.24),

F (µn+1, ξ, υ) ≥ ζ (F (µn, µ
∗, υ))F (µn, µ

∗, υ) ≥ F (µn, µ
∗, υ)
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and applying the limit to the above inequality as n→ ∞, we have F (µ∗, ξ, υ) = 1 for all υ > 0, that is,
µ∗ = ξ and F (µ∗,Tµ∗, υ) = F (C,D, υ). If

min {F (µn, µ
∗, υ) ,F (µ∗, µn+1, υ)} = F (µ∗, µn+1, υ) ,

then from (2.24),

F (µn+1, ξ, υ) ≥ ζ (F (µn, µ
∗, υ))F (µ∗, µn+1, υ) ≥ F (µ∗, µn+1, υ)

and applying the limit to the above inequality as n → ∞ we have F (µ∗, ξ, υ) = 1 for all υ > 0, that is,
µ∗ = ξ and F (µ∗,Tµ∗, υ) = F (C,D, υ) . Now, we show that µ∗ is the only BPP of T. If r is the another
BPP of T, then

F (µ∗,Tµ∗, υ) = F (C,D, υ) and F (r,Tr, υ) = F (C,D, υ) .

From (2.18) we get

1 =
F (µ∗, r, υ0)
F (µ∗, r, υ0)

≥ ζ (F (µ∗, r, υ0)) ≥ 1,

which implies that F (µ∗, r, υ0) = 1. Hence, µ∗ = r.

Now, we present an example to illustrate Theorem 2.1.

Example 2.5. Let Z = {1, 2, 3, · · ·, 10} , C = {1, 3, 5, 7}, D = {2, 4, 6, 8} and F : Z ×Z × (0,∞)→ (0, 1]
be a N-AFMS which is defined by

F (µ, λ, υ) =


µ

λ
, if µ ≤ λ

λ

µ
, if λ < µ

for all υ > 0. Note that (Z,F , �) is complete with µ � λ = µλ, F (C,D, υ) =
7
8

and C and D are
nonempty closed subsets of Z. Define T : C → D as

T (x) =

{
8, if x = 7
x + 7 otherwise.

Since
F (α,Tµ, υ) = F (C,D, υ) =

7
8

implies (α, µ) = (7, 7) or (α, µ) = (7, 1), therefore

F (7,T7, υ) = F (7, 8, υ) =
7
8

= F (C,D, υ) and

F (7,T1, υ) = F (7, 8, υ) =
7
8

= F (C,D, υ)

for all υ > 0. Also, note that
C0 (υ) = {7} , D0 (υ) = {8} and
T (C0 (υ)) = {7} ⊆ D0 (υ) = {8} .
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Now, consider the function ϕ ∈ Φ defined by

ϕ (r) = 1 − r for all r ∈ [0, 1] .

From (2.1), we have

F (α, β, υ) = F (7, 7, υ) = 1 which implies ϕ (F (α, β, υ)) = 1 − 1 = 0

which shows that
ϕ (F (α, β, υ)) ≤ ω (υ)Aϕ(µ, λ, υ)

holds for all α, β, λ, µ ∈ C and for every υ > 0 and ω (υ) ∈ (0, 1) . For any sequence {λn} in D0 (υ)
and µ in C, F (µ, λn, υ) → F (A, B, υ) as n → +∞, we have λn = 8 for all n and µ = 7 ∈ C0 (υ) .
Thus, all the conditions of Theorem 2.1 are satisfied, and so there exists a unique µ∗ ∈ C such that
F (µ∗,Tµ∗, t) = F (C,D, υ) for all υ > 0. Here, µ∗ = 7.

Remark 2.6. Theorems 2.1, 2.2 and 2.4 are generalizations of [33, Theorems 1, 2 and 4]. Theorem 2.3
is a partial generalization of [33, Theorem 3] as we considered ρ (s) > 0 for every s ∈ (0, 1] instead of
for every s ∈ (0, 1) in order to use more general contraction condition.

Now, we give some important corollaries of the main results.

Corollary 2.7. [33, Theorem 1] Let C and D be nonempty closed subsets of a complete N-AFMS
(Z,F , �). Suppose that C0(υ) is nonempty for every υ > 0 and T : C → D a nonself-mapping that
satisfies:

(i) T (C0(υ)) ⊆ D0(υ) for all υ > 0,
(ii) There is a function ϕ in Φ for which

F (α,Tµ, υ) = F (C,D, υ)
F (β,Tλ, υ) = F (C,D, υ)

}
implies ϕ(F (α, β, υ)) ≤ ω(υ)ϕ(F (µ, λ, υ))

holds for all α, β, λ, µ ∈ C, and υ > 0, where ω : (0,∞)→ (0, 1) is a function and
(iii) For any sequence {λn} in D0(υ) and µ ∈ C satisfying F (µ, λn, υ) → F (C,D, υ) as n → ∞, one

has µ ∈ C0(υ).

Then there exists a unique µ∗ ∈ C such that

F (µ∗,Tµ∗, υ) = F (C,D, υ)

for every υ > 0.

Proof. ConsiderAϕ(µ, λ, υ) = ϕ(F (µ, λ, υ)) in Theorem 2.1.

Corollary 2.8. [33, Theorem 2] Let C and D be nonempty subsets of a complete N-AFMS (Z,F , �).
Suppose that C0(υ) is a closed subset of (Z,F , �) for every υ > 0 and T : C → D a nonself-mapping
satisfying the following:

(i) T (C0(υ)) ⊆ D0(υ) for all υ > 0,
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(ii) There exists ϕ ∈ Φ for which

F (α,Tµ, υ) = F (C,D, υ)
F (β,Tλ, υ) = F (C,D, υ)

}
implies ϕ(F (α, β, υ)) ≤ ω(υ)ϕ(F (µ, λ, υ))

holds for all α, β, λ, µ ∈ C and υ > 0, where ω : (0,∞)→ (0, 1) a function.

Then there is a unique µ∗ ∈ C for which F (µ∗,Tµ∗, υ) = F (C,D, υ) for all υ > 0.

Proof. ConsiderAϕ(µ, λ, υ) = ϕ(F (µ, λ, υ)) in Theorem 2.2.

Corollary 2.9. [33, Theorem 3] Let C and D be nonempty closed subsets of a complete N-AFMS
(Z,F , �). Suppose that C0(υ) is a nonempty for every υ > 0 and T : C → D a nonself-mapping
satisfying the following:

(i) T (C0(υ)) ⊆ D0(υ) for all υ > 0,
(ii) There is a continuous function ρ : I → I, with ρ (s) > 0 for every s ∈ (0, 1], for which

F (α,Tµ, υ) = F (C,D, υ)
F (β,Tλ, υ) = F (C,D, υ)

}
implies F (α, β, υ) ≥ F (µ, λ, υ) + ρ(F (µ, λ, υ))

holds for all α, β, λ, µ ∈ C and υ > 0,
(iii) For any sequence {λn} in D0(υ) and µ ∈ C satisfying F (µ, λn, υ) → F (C,D, υ) as n → ∞, one

has µ ∈ C0(υ).

Then there is a unique µ∗ ∈ C for which F (µ∗,Tµ∗, υ) = F (C,D, υ) for all υ > 0.

Proof. ConsiderAρ(µ, λ, υ) = ρ(F (µ, λ, υ)) and B(µ, λ, υ) = F (µ, λ, υ) in Theorem 2.3.

Corollary 2.10. [33, Theorem 4] Let C and D be nonempty closed subsets of a complete N-AFMS
(Z,F , �) . Suppose that C0 (υ) is a nonempty for all υ > 0 and T : C → D a nonself-mapping satisfying
the following:

(i) T (C0(υ)) ⊆ D0(υ) for all υ > 0,
(ii) There is a function ζ : I → [1,∞) such that for any sequence {sn} ⊆ I of positive real numbers,

ζ (sn)→ 1 as n→ +∞ implies sn → 1 as n→ +∞ and

F (α,Tµ, υ) = F (C,D, υ)
F (β,Tλ, υ) = F (C,D, υ)

}
implies F (α, β, υ) ≥ ζ(F (µ, λ, υ))F (µ, λ, υ)

holds for all α, β, λ, µ ∈ C and υ > 0,
(iii) For any sequence {λn} in D0 (υ) and µ ∈ C satisfying F (µ, λn, υ) → F (C,D, υ) as n → ∞, one

has µ ∈ C0 (υ) .

Then there is a unique µ∗ ∈ C such that

F (µ∗,Tµ∗, υ) = F (C,D, υ)

for every υ > 0.
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Proof. Consider B(µ, λ, υ) = F (µ, λ, υ) in Theorem 2.4.

The following corollaries are the fixed point version of Theorem 2.4 and will be used in the sequel.

Corollary 2.11. Let (Z,F , �) be a complete N-AFMS and T : Z → Z a self-mapping satisfying

F (Tµ,Tλ, υ) ≥ ζ(F (µ, λ, υ))B(µ, λ, υ)

for all µ, λ ∈ Z and all υ > 0, where

B(µ, λ, υ) = min {F (µ, λ, υ),F (λ,Tµ, υ)}

and ζ : I → [1,∞) a function such that for any sequence {sn} ⊆ I of positive real numbers, ζ (sn) → 1
as n→ +∞ implies sn → 1 as n→ +∞. Then there is a unique λ∗ ∈ C such that λ∗ = Tλ∗.

Proof. Put C = D = Z in Theorem 2.4.

If B(µ, λ, υ) = F (µ, λ, υ) in the corollary 2.11, then we get the following result.

Corollary 2.12. Let (Z,F , �) be a complete N-AFMS and T : Z → Z a self-mapping satisfying

F (Tµ,Tλ, υ) ≥ ζ(F (µ, λ, υ))F (µ, λ, υ)

for all µ, λ ∈ Z and all υ > 0, where ζ : I → [1,∞) is a function such that for any sequence {sn} ⊆ I
of positive real numbers, ζ (sn) → 1 as n → +∞ implies sn → 1 as n → +∞. Then there is a unique
λ∗ ∈ C such that λ∗ = Tλ∗.

3. Application in the domain of words

Let a nonempty set of alphabets be denoted by Σ and the set of all finite and infinite words over Σ

denoted by Σ∞. Note that Σ∞ contains the empty sequence (word) which is denoted by φ. Let the prefix
order on Σ∞ be denoted by } and defined as

a } b if and only if a is prefix of b.

For every nonempty (word) a ∈ Σ∞, the length of a is Ω(a) ∈ [1,∞] and Ω(φ) = 0. Further, if a ∈ Σ∞
is finite, then n < ∞ and we write

a = a1a2, ..., an,

otherwise we write
a = a1a2, ....

Now, for a, b ∈ Σ∞, then the common prefix of a and b is represented by a ∗ b. It is to be noted that
a = b if and only if a } b and b } a and Ω(a) = Ω(b). Define S} : Σ∞ × Σ∞ → [0,∞) by

S} (a, b) =


0, iff a = b
2−Ω(a), iff a } b
2−Ω(b), iff b } a
2−Ω(a∗b), otherwise.
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If a } b, then a ∗ b = a and if b } a, then b ∗ a = b. Therefore, for all a, b ∈ Σ∞, we can write

S} (a, b) =

{
0, iff a = b
2−Ω(a∗b), otherwise.

Then S} is a Baire metric [30] which is a complete metric on Σ∞. Assign a fuzzy metric on Σ∞ by

FS}(a, b, υ) = e−
S}(a,b)

υ .

Then (Σ∞,F , �) represents a complete N-AFMS, where the t-norm is a � b = ab. The Quicksort
algorithm gives the recurrence relation

a1 = 0, for m = 1,

am =
2(m − 1)

m
+

m + 1
m

am−1, for m ≥ 2.

For more on Quicksort algorithm and its applications, we refer the reader to [9,16]. For Σ = [0,∞),
in correspondence to the above sequence, we define the functional η : Σ∞ → Σ∞ that assigns

η(a) := η((a))1η((a))2, ...

to a := a1a2, ... and is defined by
η((a))1 = 0, for m = 1,

η((a))m =
2(m − 1)

m
+

m + 1
m

am−1, for m ≥ 2.

Note that
Ω (η((a))) = Ω (a) + 1

for all a ∈ Σ∞ and in particular
Ω (η((a))) = ∞,

whenever Ω (a) = ∞. By definition of η, we have

a } b⇔ η (a) } η (b)

and this implies that
η (a ∗ b) } η (a) ∗ η (b)

for all a, b ∈ Σ∞. Hence,
Ω (η (a ∗ b)) ≤ Ω (η (a) ∗ η (b))

for all a, b ∈ Σ∞. We apply Corollary 2.12 and prove that the functional η has a fixed point. Let
ζ : I → [1,∞) be defined as ζ (t) = 1 for all t ∈ I. Then there are two cases:

Case 1: If a = b, then
FS} (η (a) , η (a) , υ) = 1 = F (a, a, υ) .
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Case 2: If a , b, then for all υ > 0, we have

Ω (η (a) ∗ η (b)) ≥ Ω (η (a ∗ b)) ,

that is,
−2−Ω(η(a)∗η(b))

υ
≥
−2−Ω(η(a∗b))

υ
,

which further implies

e
−2−Ω(η(a)∗η(b))

υ ≥ e
−2−Ω(η(a∗b))

υ .

Now,

FS} (η (a) , η (b) , υ) = e
−2−Ω(η(a)∗η(b))

υ

≥ e
−2−Ω(η(a∗b))

υ = e
−2−Ω(a∗b)−1

υ

= e
−2−Ω(a∗b).2−1

υ =

e
−2−Ω(a∗b)

υ


2−1

=

√
e
−2−Ω(a∗b)

υ ≥ e
−2−Ω(a∗b)

υ

≥ e
−2−Ω(a∗b)

υ = ζ (F (a, b, υ))F (a, b, υ).

Hence,
FS} (η (a) , η (b) , υ) ≥ ζ (F (µ, λ, υ))F (µ, λ, υ)

for all µ, λ ∈ Z and all υ > 0. Thus, all conditions of Corollary 2.12 are satisfied and η has a fixed
point ξ = ξ1ξ2..., which is the solution of the recurring relation for T. Hence, we obtain

ξ1 = 0,

ξn =
2(n − 1)

n
+

n + 1
n

an−1, for n ≥ 2.

Remark 3.1. The prefix order } on Σ∞ defined as above is a partial order on Σ∞ (domain of words)
which is associated with the graph via the relation

a } b if and only if (a, b) ∈ E(G),

where E(G) is the set of edges of G and the graph G = (V(G), E(G)) with V(G) = Σ∞.Domain of words
problem can be considered in connection with the graphs as well to solve some problems related to
networks.
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4. Conclusions

In this paper, we proved the existence of best proximity points for various different proximal
quasi-contractive nonself-mappings of non-Archimedean fuzzy metric spaces. Moreover, we were
able to present an example to illustrate the main result and an application in computer science,
particularly in the domain of words as well. As fuzzy quasi metric spaces are linked in a very natural
way with applications in computer sciences (see [30]), so the results in this paper can be investigated
in connection with fuzzy quasi metric spaces with some applications.
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21. D. Miheţ, Fuzzy ψ-contractive mappings in non-Archimedean fuzzy metric spaces, Fuzzy Set. Syst.,
159 (2008), 739–744. https://doi.org/10.1016/j.fss.2007.07.006
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Fuzzy Set. Syst., 161 (2010), 1078–1096. https://doi.org/10.1016/j.fss.2009.09.019

29. S. Reich, Approximate selections, best approximations, fixed points, and invariant sets, J. Math.
Anal. Appl., 62 (1978), 104–113. https://doi.org/10.1016/0022-247X(78)90222-6

30. S. Romaguera, A. Sapena, P. Tirado, The Banach fixed point theorem in fuzzy quasi-metric
spaces with application to the domain of words, Topol. Appl., 154 (2007), 2196–2203.
https://doi.org/10.1016/j.topol.2006.09.018

31. B. Schweizer, A. Sklar, Statistical metric spaces, Pacific J. Math., 10 (1960), 313–334.

AIMS Mathematics Volume 7, Issue 9, 16590–16611.

http://dx.doi.org/https://doi.org/10.1016/S0165-0114(00)00088-9
http://dx.doi.org/https://doi.org/10.1155/2009/197308
http://dx.doi.org/http://doi.org/10.22436/jnsa.008.04.09
http://dx.doi.org/https://doi.org/10.1016/j.cam.2018.02.008
http://dx.doi.org/https://doi.org/10.1016/S0165-0114(03)00305-1
http://dx.doi.org/https://doi.org/10.1016/j.fss.2007.07.006
http://dx.doi.org/https://doi.org/10.22111/IJFS.2010.161
http://dx.doi.org/https://doi.org/10.1073/pnas.28.12.535
http://dx.doi.org/https://doi.org/10.3390/sym11070839
http://dx.doi.org/https://doi.org/10.1186/1029-242X-2014-46
http://dx.doi.org/https://doi.org/10.1080/01630568308816149
http://dx.doi.org/https://doi.org/10.1016/S0252-9602(16)30080-7
http://dx.doi.org/https://doi.org/10.1016/j.fss.2009.09.019
http://dx.doi.org/https://doi.org/10.1016/0022-247X(78)90222-6
http://dx.doi.org/https://doi.org/10.1016/j.topol.2006.09.018


16611

32. V. M. Sehgal, S. P. Singh, A generalization to multifunctions of Fan’s best approximation theorem,
Proc. Am. Math. Soc., 102 (1988), 534–537. https://doi.org/10.2307/2047217

33. C. Vetro, P. Salimi, Best proximity point results in non-Archimedean fuzzy metric spaces, Fuzzy
Inf. Eng., 5 (2013), 417–429. https://doi.org/10.1007/s12543-013-0155-z

34. D. Wardowski, Fuzzy contractive mappings and fixed points in fuzzy metric spaces, Fuzzy Set.
Syst., 222 (2013), 108–114. https://doi.org/10.1016/j.fss.2013.01.012

35. L. A. Zadeh, Fuzzy sets, Inf. Control, 8 (1965), 338–353. https://doi.org/10.1016/S0019-
9958(65)90241-X

36. Y. Zhang, B. Hofmann, Two new non-negativity preserving iterative regularization
methods for ill-posed inverse problems, Inverse Probl. Imag., 15 (2021), 229–256.
https://doi.org/10.3934/ipi.2020062

c© 2022 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 7, Issue 9, 16590–16611.

http://dx.doi.org/https://doi.org/10.2307/2047217
http://dx.doi.org/https://doi.org/10.1007/s12543-013-0155-z
http://dx.doi.org/https://doi.org/10.1016/j.fss.2013.01.012
http://dx.doi.org/https://doi.org/10.1016/S0019-9958(65)90241-X
http://dx.doi.org/https://doi.org/10.1016/S0019-9958(65)90241-X
http://dx.doi.org/https://doi.org/10.3934/ipi.2020062
http://creativecommons.org/licenses/by/4.0

	Introduction and preliminaries
	Main results
	Application in the domain of words
	Conclusions

