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1. Introduction 

An equity warrant allows warrant holders to buy stocks of listed companies at a certain price on 

a promissory day. It has many similarities with call options; therefore, many researchers [1,2] used 

the same model of option pricing to model the price of equity warrants. The classical option pricing 

model is the Black-Scholes model, which was proposed by Fischer Black and Myron Scholes 

in 1973 [3]. In the Black-Scholes model, the random driving source of the underlying asset is 

Brownian motion. However, Brownian motion cannot capture some characteristics of underlying 

assets, such as long-range correlations and heavy-tailed. Some researchers suggested using fractional 

Brownian motion to replace Brownian motion as the random driving source and have obtained some 

research results [4–8]. 
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However, as fractional Brownian motion is not a semi-martingale, researchers have found that 

arbitrage opportunities exist when choosing fractional Brownian motion as the random driving 

source [9,10]. Bojdecki et al. [11] proposed a new stochastic process called sub-fractional Brownian 

motion (sfBm). The sfBm not only captures the long-range correlations of changes in the underlying 

assets, but also has non-stationary increments that are more weakly correlated in non-overlapping 

intervals, and the covariance decays faster. Therefore, the sfBm is more reasonable for using in the 

option pricing model [12,13]. To make the market completely free of arbitrage, EI-Nouty and 

Zili [14] presented sub-mixed fractional Brownian motion (smfBm), which is a linear combination 

of Brownian motion and sub-fractional Brownian motion. Tudor [15,16] proposed that when 

parameter 3
,1

4
H

 
 
 

, smfBm is “equivalent in law” to a standard Brownian motion, which means that 

it is a semi-martingale in that domain. Consequently, the class of regular portfolios is arbitrage-free 

(i.e., suitable for option pricing). As shown in [17], neither is there arbitrage for any value of 

(0,1)H   if a suitable portfolio is adopted. Moreover, there are some studies on pricing models 

based on the smfBm. For example, Xu and Zhou [18] studied the pricing problem of perpetual 

American put options in sub-mixed fractional Brownian motion. They obtained the pricing formula 

by using partial differential equations. Araneda and Bertschinger [19] established the constant 

elasticity of variance model driven by sub-mixed fractional Brownian motion. They obtained the 

relevant Fokker-Planck equations and the prices of the European call options according to the 

M-Whittaker function and non-central chi square distribution function. Specifically, many scholars 

have incorporated the stochastic volatility model into the problems of option pricing for research and 

numerical analysis [20–25]. 

However, all the above studies assumed that the short interest rate is constant. This is not 

consistent with reality. Therefore, many scholars incorporated stochastic interest rates into the option 

pricing models. Merton [26] proposed a stochastic interest rate model based on the BS model. 

Guo [27] established the subdiffusive Merton short rate model and obtained the pricing formula and 

the call-put parity relationship for European options. Liu and Li [28] studied the Merton credit risk 

pricing model by using sub-fractional as a random driving source, which can describe the 

characteristic of correlations and modify the classical credit risk structure model. The numerical 

calculation results show that the stochastic interest rate for the probability of default, values of bonds 

and equity and credit spreads has a certain influence. Based on these, in this paper, we incorporate 

sub-mixed fractional Brownian motion and the stochastic short rate into the equity warrants pricing 

model. We will establish an equity warrant pricing model under the sub-mixed fractional Brownian 

motion regime with the interest rate following the Merton short rate model. 

The rest of the paper proceeds as follows. In Section 2, we briefly introduce the background of 

sub-mixed fractional Brownian motion. In Section 3, we give the formula for the pricing of a 

zero-coupon bond. In Section 4, the pricing formula for equity warrants is derived. In Section 5 and 

Section 6, we provide the numerical results and present an empirical analysis of this model. 

2. Preliminary knowledge 

Many models depict changes in the short rate, and the Merton short rate model is one of the 

most classical stochastic short rate models. An accurate grasp of changes in the short rate can 

effectively avoid financial risks. An increasing number of people bring long-range correlations into 

pricing models, and the sub-mixed fractional Brownian motion not only satisfies this property but is 



16614 

AIMS Mathematics  Volume 7, Issue 9, 16612–16631. 

also more suitable for the research of financial market modelling. First, we introduce the background 

of the smfBm, which involves [14,19]. 

Definition 2.1. { ( , ), 0} ( ) ( ), 0, 0H

t HM t B t t      = +    is a sub-mixed fractional Brownian 

motion, where ( )B t  is a Brownian motion, and ( )H t
 
is a sub-fractional Brownian motion. Then 

we have 

22 2 2 2 21
( ( , ) ( , )) min( , ) [( ) ] ,

2

HH H H H H

t sE M M s t s t s t t s     
 

 = + + − + + − 
 

 

while 0 =  and 1 = , ( , )H

tM    
is a sfBm; and while 1 =  and 0 =  or while 0 = , 

 
1 =  

and 1

2
H = , ( , )H

tM    is a Bm. 

Now, we list some properties of the smfBm 
H

tM
 
in the following remarks. 

Remark 2.1. For 0h  , 
1

2{ ( , )} { ( , )},H H H

ht tM M h h     

where means “to have the same law”. 

Remark 2.2. For 
1

1
2

H  , ( , )H

tM    has the property of long-range correlations. 

Remark 2.3. msfBm has non-stationary increments for any 0 s t   

2 2 2 2 1 2 2 2 2[( ( , ) ( , )) ] ( ) [ 2 ( ) ( ) ( ) ],H H H H H H H

t sE M M t s t s s t t s      −− = − + − + + + + −
 

then 

2 2 2 2 2 2 2( )+ ( ) [( ( , ) ( , )) ] ( )+ ( ) ,H H H H

t st s a t s E M M t s b t s       − −  −  − −  

where 

2 1

1
1, 0 ,

2

1
2 2 , 1.

2

H

H

a

H−


 

= 
 −  


 

2 1 1
2 2 , 0 ,

2

1
1, 1.

2

H H

b

H

−
−  

= 
  
  

Remark 2.4. For 0 u v s t    , the covariance over non-overlapping increments is given by 
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2
2 2 2 2 2 2 2 2

[( ( , ) ( , )) ( ( , ) ( , ))]

[( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ],
2

H H H H

v u t s

H H H H H H H H

E M M M M

t u t u s v s v t v t v s u s u

       



−  −

= + + − + + + − − + − − − + − −
 

where 

1
[( ( , ) ( , )) ( ( , ) ( , ))] 0, 1,

2

1
[( ( , ) ( , )) ( ( , ) ( , ))] 0, 0 .

2

H H H H

v u t s

H H H H

v u t s

E M M M M H

E M M M M H

       

       


−  −   


 −  −   


 

3. The valuation of zero-coupon bond 

In this section, we incorporate the long-range correlations of the short rate into our pricing 

model under the condition of 1 = =  and calculate the price of a zero-coupon bond when the 

stochastic interest rate follows the sub-mixed fractional Merton process. 

3.1. The assumptions 

The Merton process is a widely used stochastic interest rate model combined with sub-mixed 

fractional Brownian motion. In the following sections, we will state some basic assumptions that will 

be used in this paper. 

Assumption 3.1. Based on the risk neutral probability measure, we provide some ideal conditions 

for the market of corporate value and equity warrants: 

(i) There are no transaction costs, margins or taxes; 

(ii) Dividends are not paid during the time of the outstanding equity warrants; 

(iii) The value tV  of the firm consists of N shares of stock at price tS  and M  warrants 

outstanding at price tc ; thus, we have 

.t t tV NS Mc= +  

(iv) We assume that the short rate tr  is given by 

1 1 2 2

d d d ( ) d ( ),
rt r r r r Hr t B t t   = + +                       (3.1) 

and the value of firm tV , in which tV
 follows 

1 1 2 2

d d d ( ) d ( ),
Vt V t V t V V t HV V t V B t V t   = + +                   (3.2) 

where r , 
1r

 , 
2r

 , V , 
1V  

and 
2V  are constants, 

1
( )rB t , 

2

( )
rH t , 

1
( )VB t  and 

2

( )
VH t  are 

independent Brownian motions. 
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3.2. Pricing formula for zero-coupon bond 

In this section, ( , ; )P r t T  is the price of a zero-coupon bond with maturity T  at time  0,t T . 

Then, we obtain the pricing formula for a zero-coupon bond by the following theorem. 

Theorem 3.1. In the sub-mixed fractional Merton model, the price of a zero-coupon bond with 

maturity T  at time  0,t T  is given by 

2 1( ) ( )
( , ; ) .

rA A
P r t T e

 − +
=  

where 

1 2

2 2 2 1 2 2 1 2

1
0 0 0

2

1
( ) d (2 2 ) ( ) d d ,

2

 ( ) .

H H

r r rA s s H T s s s s s

A

  

   

 

− −
= + − − −


 =

    

Proof. Here, ( , ; ) 1P r T T = , that is, the zero-coupon bond ( , ; )P r t T  will pay for 1 dollar at 

expiration date T . Using Lemma 2.1 and Theorem 2.1 in [19], we can obtain 

1 2

2 2
2 2 1 2 1 2

2 2

1
+ (2 2 ) 0,

2

( , ; ) 1.

H H

r r r

P P P P
Ht rP

t r r r

P r T T

  − −   
+ + − − =

   
 =

            (3.3) 

Denoting =T t − , 1 2( ) ( )
( , ; )

A rA
P r t T e

 −
= , it is easy to calculate 

1 2

2

2
2

22

( ) ( )
,

( ),

( ( )) .

A AP
P r

t

P
PA

r

P
P A

r

 

 





    
= − + 

   


= −



=



                     (3.4) 

Substituting Eq (3.4) into Eq (3.3), we obtain 

1 2

2 2 2 1 2 1 2 21
2 2 2

2

( ) 1
( ) ( ( )) (2 2 ) ( ( )) ,

2

( )
1.

H H

r r r

A
A A Ht A

A


     







− −
= − + + − 


 =

 

      (3.5) 

From Eq (3.5), we can obtain 

1 2

2 2 2 1 2 2 1 2

1
0 0 0

2

1
( ) d (2 2 ) ( ) d d ,

2

( ) .

H H

r r rA s s H T s s s s s

A

  

   

 

− −
= + − − −


 =

         (3.6) 
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Then, the pricing formula for the zero-coupon bond can be given by 

1 ( )
( , ; ) .

r A
P r t T e

 − +
=                              (3.7) 

4. Corresponding BS equation and pricing formula for equity warrants 

In this section, let K  be the exercise price, T  be the expiration date of the equity warrants 

and ( , , )c c V r t=  be the price of equity warrants. 

Theorem 4.1. When tr  satisfies Eq (3.1) and tV
 satisfies Eq (3.2), ( , , )c V r t satisfies the following 

BS equation and the boundary condition 

2 2
2 2 2

2 2
( ) ( ) 0,

1
( ) ,

V r r

T T

c c c c c
t V t rV rc

t V r V r

c kV NX
N Mk

  

+

    
+ + + + − =     


 = −
 +

             (4.1) 

where 

1 2

1 2

2 2 2 1 2 1 2

2 2 2 1 2 1 2

1
( ) (2 2 ) ,

2

1
( ) (2 2 ) .

2

H H

V V V

H H

r r r

t Ht

t Ht

  

  

− −

− −


= + −


 = + −


 

Proof. Considering a portfolio consisting of ( , , )c V r t , 1t
 
units of stock and 2t units of 

zero-coupon bond, we obtain the price of the portfolio at time t . 

1 2 ,t t t t t tc V P = − −
 

1 2

1 2

1 2

2 2
2 2 2 1 2 1 2 2

2 2

2 2
2 2 1 2 1 2

2 2

1 2

d d d d

1
(2 2 ) d

2

1
(2 2 ) d

2

d d

t t t t t t

H H

V V

H H

r r

t t

c V P

c c c
V Ht V t

t V V

c c
Ht t

r r

c c P
V r

V r r

 

 

− −

− −

 = − −

   
= + + − 

   

  
+ + − 

  

     
+ − + −   

       

1 2

2 2
2 2 1 2 1 2

2 2 2

1
(2 2 ) d .

2

H H

t r r

P P P
Ht t

t r r
 − −   

− + + − 
   

                (4.2) 

Assuming 
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1 2

/
, ,

/
t t

c c r

V P r

  
 =  =

  
 

as 

1 2(d ) ( ) d (d d d ),t t t t t tE r t t r c V P =  = − −  

from Eq (4.2), we have 

1 2 1

2 2 2
2 2 2 1 2 1 2 2 2

2 2 2

1 1
(2 2 )

2 2

H H

V V r

c c c c
V Ht V

t V V r
  − −   

+ + − +
   

 

2

2
2 1 2 1 2

2
(2 2 ) 0.H H

r r

c c c
Ht rV rc

r V r
 − −   

+ − + + − =
  

                (4.3) 

Denoting 

1 2

1 2

2 2 2 1 2 1 2

2 2 2 1 2 1 2

1
( ) (2 2 ) ,

2

1
( ) (2 2 ) .

2

H H

V V V

H H

r r r

t Ht

t Ht

  

  

− −

− −


= + −


 = + −


 

Then 

2 2
2 2 2

2 2
( ) ( ) 0,V r r

c c c c c
t V t rV rc

t V r V r
  

    
+ + + + − =

    
 

with the boundary condition 

1
( ) .T Tc kV NX

N Mk

+= −
+

 

Proof is completed. 

Solving the partial differential Eq (4.1), we obtain: 

Theorem 4.2. When tr  satisfies Eq (3.1) and tV
 satisfies Eq (3.2), we have the pricing formula for 

equity warrants ( , , )c V r t  with expiration date T , strike price X , shares of stock N , exercise 

ratio k  and shares of warrants outstanding M , which are 

 1 2

1
( , , ; , , , , , , ) ( ) ( , ; ) ( )) ,t t tc V T t X r k N M H kV d NXP r t T d

N Mk
 =  − 

+
        (4.4) 

where 
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( ) ( )

( ) ( )( ) ( )

( )

1 2 1 2

1 2 1 2

1 2

2 1
2 2 2 2 2 2 1 2 1 2 2

1
2 2 1 2 2 2 2 2 1 2 1 2 2

2 2 1 2 2

2 1

1 (2 2 ) 1
ln ln ( , ; ) (2 2 ) ( ) d

2 2 2
,

(2 2 ) 2 (2 2 ) ( ) d

(2 2 )

H
T

H H H Ht
V V r r

t

T
H H H H H

V V r r
t

H H

V V

kV
P r t T T t T t Hs T s s

NX
d

T t T t Hs T s s

d d T t T

   

   

 

−
− −

− − −

−

 −  
− + − + − + + − −  

  =

− + − − + + − −

= − − + − −





( )( ) ( )
1 2

2 2 2 1 2 1 2 22 (2 2 ) ( ) d ,
T

H H H

r r
t

t Hs T s s − −+ + − −  

and ( )   denotes the cumulative probability function for a standard normal distribution. 

Proof. Let us make the following change of variables 

,
( , ; )

( , , )
ˆ( , ) .

( , ; )

V
y

P r t T

c V r t
c y t

P r t T


=



 =


                              (4.5) 

By calculating, we can obtain 

22 2 2 2
2

2 2 2 2

2 2

2 2

ˆ ˆ
ˆ ,

ˆ
ˆ ,

ˆ
,

ˆ ˆ 1
ˆ ,

ˆ1
.

c P c c P
c P y

t t t y t

c P c P
c y

r r y r

c c

S y

c P c P c P
c y y

r r y r y P r

c c

S P y

    
 = + −
    

   
 = −
   


 

=
 

       = − +  
       


  =

 

                 (4.6) 

Substituting Eq (4.6) into Eq (4.1), we have 

22
2 2 2 2

2 2 2

2
2

2

2
2

2

ˆ ˆ 1 1
( ) ( )

ˆ1
( )

1
ˆ ( ) 0.

V r

r r

r r

c c P
t V t y

t y P P r

c P P P V
y t r

P y t r r y

P P P
c t rP

P t r r

 

 

 

    
+ +       

    
− + + − 

    

   
+ + + − = 

   
                  (4.7)

 

By the price of zero-coupon bond ( , ; )P r t T  satisfying Eq (3.3), we have ˆ( , )c y t  that satisfies 

2
2 2 2 2

2

ˆ ˆ
( ( ) ( ) ) 0.V r

c c
t t y

t y
  

 
+ + =

 
                      (4.8) 

Letting lnx y= , Eq (3.5) can be converted to 
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2 2
2 2 2 2 2 2

2 2

ˆ ˆ ˆ ˆ ˆ
( ) ( ) ( ) ( ) 0.V V r r

c c c c c
t t t t

t x x x x
     

    
+ − + − =

    
              (4.9) 

Letting 

ˆ( , ) ( , ),   ( ),   ( )    ( ) ( ) 0,c y t u x t t T T       = = + = = =,  

then, we obtain 

2 2

2 2

ˆ
( ) ( ),

ˆ
,

ˆ
.

c u u
t t

t

c u

x

c u

x

 
 





  
 = +

  
 

=
 

 
=

 

                       (4.10) 

Substituting Eq (4.10) into Eq (4.9), we have 

2
2 2 2 2 2 2

2
( ) ( ) ( ) ( ) ( ) ( ) 0,V r V r

u u u
t t t t t t       

  

  
    + − − + + =     

        (4.11) 

where 

2 2 2

2 2 2

( ) ( ) ( ) ,

( ) ( ) ( ) .

V r

V r

t t t

t t t

   

   

 = − −


 = +

 

By calculating, we obtain 

( )

( )

2 2 2

2 2 2

( ) ( ) ( )( ) d ,

( ) ( ) ( )( ) d .

T

V r
t

T

V r
t

t t t T s s

t t t T s s

  

  

 = − + −


 = + −





 

Finally, Eq (4.11) can be written as 

2

2
= ,

u u

 

 

 
                              (4.12) 

with final condition 

1
( ,0) ( ) .u ke NX

N Mk

 += −
+

 

By Poisson's formula, the solution of the Cauchy problem of the heat equation is expressed as 
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2( )

4
1 1

( , ) ( ) d .
2

u ke NX e
N Mk

 
   



−
−+

+

−
= −

+  

Thus, 

2

2 2

( )

4

ln

( ) ( )

4 4

ln ln

1 2

1 1
ˆ ( , ) ( ) d

2

d d
2 2

.

NX

k

NX NX

k k

c u ke NX e
N Mk

k e e NX e

N Mk N Mk

I I

 
 

   
  

  


 
 

−
−+

+

− −
− −

+ +

= = −
+

= −
+ +

= −



   

2I
 
is relatively easy to compute. We can let 

2 2, 2 d d
2

z z
 

 


−
= − = ; then, 

2

2
2

2
2

( )

4

2
ln

2
2

ln

2

ln

22
2

2

d
2

1
( 2 )d

2

1
d

2

( ),

NX

k

z

NX

k

NX

zk

NX e
I

N Mk

NX
e z

N Mk

NX
e z

N Mk

NX
d

N Mk

 



















−
−

+

− −

−

−

−

−

=
+

=  −
+

= 
+

= 
+







 

where 

( ) ( )

( ) ( )( ) ( )

1 2 1 2

1 2 1 2

2

2 1
2 2 2 2 2 2 1 2 1 2 2

2 2 1 2 2 2 2 2 1 2 1 2 2

ln ln ( , ; ) ( )

2 ( )

1 (2 2 ) 1
ln ln ( , ; ) (2 2 ) ( ) d

2 2 2
.

(2 2 ) 2 (2 2 ) ( ) d

t

H
T

H H H Ht
V V r r

t

T
H H H H H

V V r r
t

kV
P r t T t

NXd
t

kV
P r t T T t T t Hs T s s

NX

T t T t Hs T s s





   

   

−
− −

− − −

− +

=

 −  
− − − + − − + − −  

  =

− + − − + + − −



  

We calculate 1I . Letting 
1 1

2
,    2 d d

2
z z

  
 



− +
= − = , in the same way, we have 
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2

2
1

2
1

( )

4
1

ln

2
1

ln 2

2

ln 2

22
1

1

1
d

2

1
( 2 )d

2

1
2 d

2

1
( ),

( , ; )

NX

k

z

NX

k

NX

zk

t

ke
I e

N Mk

ke
e z

N Mk

ke
e z

N Mk

kV
d

N Mk P r t T

 



 

 



 
 












−
−+

+
− −

− + +

− + +
+

−

−

=
+

=  −
+

= 
+

= 
+







 

where 

( ) ( )

( ) ( )( ) ( )

1 2 1 2

1 2 1 2

1

2 1
2 2 2 2 2 2 1 2 1 2 2

2 2 1 2 2 2 2 2 1 2 1 2 2

ln ln ( , ; ) ( )

2 ( )

1 (2 2 ) 1
ln ln ( , ; ) (2 2 ) ( ) d

2 2 2
.

(2 2 ) 2 (2 2 ) ( ) d

t

H
T

H H H Ht
V V r r

t

T
H H H H H

V V r r
t

kV
P r t T t

NXd
t

kV
P r t T T t T t Hs T s s

NX

T t T t Hs T s s





   

   

−
− −

− − −

− +

=

 −  
− + − + − + + − −  

  =

− + − − + + − −





 

And our model satisfies the following nonlinear equations [29]: 

 

1

1

2

2

1 2

1

1

( ) ( , ; ) ( )) ,

( )
,

( )

( )
.

( )

t t t

t V

S

t

t V

S

t

M
NS V kV d NXP r t T d

N Mk

V N Mk Mk d

S N N Mk

V N Mk Mk d

S N N Mk








= −  − 

+
 + − 

=
+

 + − 
 =

+

 

Proof is completed. 

5. Numerical simulation 

In this section, we present some numerical results of our model. 

Corollary 5.1 When 0t = , the price of equity warrants is given by 

 0 0 0 1 0 2

1
( , ; , , , , , , ) ( ) ( ) ,c V T X r k N M H kV d NXP d

N Mk
 =  − 

+
 

where 
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2 1

2 1
2 2 2 2 3 2

0 0

2 2 1 1
exp ,

(2 1)(2 2) 6 2
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Corollary 5.2 In particular, when the interest rate is constant and 0t = , the price of equity 

warrants is given by 

0
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this is consistent with the result in [15]. 

We give relevant numerical calculations by setting different parameter values. From Figure 1 to 

Figure 5, we can see that the prices of equity warrants decrease when the strike price X  is larger. 

From Figure 2, when the strike price is fixed, the value of equity warrants decreases with the 

increase in the Hurst index. From Figure 3, we find that when the value of 
0S  is smaller, the 

declining trend of equity warrant prices is gentler; when the value of 
0S  is larger, the declining 

speed of the equity warrant prices is faster. From Figure 4, when the expected return rate is smaller, 

the prices of equity warrant also gradually decrease. From Figure 5, when the risk-free interest rate 

takes different values, the decline range of equity warrant prices is relatively consistent. They show 

that the Hurst parameter, initial prices of underlying assets, expected return rate and risk-free interest 

rate have different effects on the prices of equity warrants. 
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Figure 1. The equity warrant price 1c  under the sub-mixed fractional Merton short rate 

model, according to the exercise date T  and strike price X . Here, 
0 30S = , 1k = , 

0.6H = , 100000000M = , 200000000N = , 0.4r = , 
0 0.06r = , 

1
0.35r = , 

2
0.36r = , 

1
0.37S = , 

2
0.38S = , and [35,50]X  . 

 

Figure 2. The equity warrant price under the sub-mixed fractional Merton short rate 

model, according to the Hurst index H  and strike price X . Here, 0 30S = , 1k = , 

100000000M = , 200000000N = , 0.4r = , 
0 0.06r = , 

1
0.35r = , 

2
0.36r = , 

1
0.37S = , and 

2
0.38S = . 
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Figure 3. The equity warrant price under the sub-mixed fractional Merton short rate 

model, according to the stock price 
0S  and strike price X . Here, 1k = , 

100000000M = , 200000000N = , 0.4r = , 
0 0.06r = , 

1
0.35r = , 

2
0.36r = , 

1
0.37S = , and 

2
0.38S = . 

 

Figure 4. The equity warrant price under the sub-mixed fractional Merton short rate 

model, according to the expected return rate 
r  and strike price X . Here, 0 30S = , 

1k = , 100000000M = , 200000000N = , 0 0.06r = , 
1

0.35r = , 
2

0.36r = , 

1
0.37S = , and 

2
0.38S = . 
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Figure 5. The equity warrant price under the sub-mixed fractional Merton short rate 

model, according to the risk-free short rate 0r  and strike price X . Here, 0 30S = , 1k = , 

100000000M = , 200000000N = , 0.4r = , 
1

0.35r = , 
2

0.36r = , 
1

0.37S = , and 

2
0.38S = . 

6. Empirical analysis 

In this section, we verify the equity warrant prices under the sub-mixed fractional Merton short 

rate model. We derive the prices of equity warrants in the classical Merton stochastic interest rate 

model, the sub-fractional Merton short rate model, the BS model and the Ukhov model. Then, we 

compare prices of equity warrants between these models and our model. 

The Ukhov model [29] is a pricing model for equity warrants based on a new algorithm 

developed. It is given by 

(i) Solve (numerically) the following system of nonlinear equations for 
* *( , )V  , 

( )

1 2

1

( ( ) ( )),

( )
.

( )

r T t

S

M
NS V kV d NXe d

N Mk

N kM kM dV

S N N kM




− −
= −  −  +


+ − 

 =
+

 

where 

2

1

1
ln ( )

2
,

kV
r T t

NX
d

T t





   
+ + −   

   =
−

 

2 1 .d d T t= − −  
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(ii) The warrant price is obtained as 

*

.
V NS

c
M

−
=  

The pricing formula is based on observable variables and is used to calculate the value of equity 

warrants. 

From Table 1, when 1T  , the difference in price between the BS model, the Ukhov model 

and our model is smaller. We find that the difference in price between the Merton model, the 

sub-fractional Merton model and our model is relatively small. When the expiration date is smaller, 

the difference in value between the BS model and our model is larger. 

Table 1. Equity warrant prices with respect to different values of 
0 25S = , 1k = , 

100000000M = , 200000000N = , 0.4r = , 
1

0.35r = , 
2

0.36r = , 
1

0.37S = , 

2
0.38S = , and 20X = . 

T  0.6 0.7 0.8 0.9 1 

Our price 5.2492 5.6374 6.0306 6.4265 6.8231 

OP BSc c−  -1.0813 -0.9166 -0.7392 -0.5518 -0.3571 

OP Mertonc c−  0.3059 0.3170 0.3160 0.3035 0.2804 

OP sfBm Mertonc c −−
 0.3989 0.4023 0.3900 0.3638 0.3252 

OP Ukhovc c−  -0.7896 -0.5581 -0.3490 -0.1337 0.0859 

We take three types of equity warrants as research objects for an empirical study. As of 

May 22, 2008, the selected data are from the GTA Research Service Centre of China. 

Table 2. Basic information of three types of equity warrants. 

Names of 

equity warrants 

Stock 

prices 
Issued stocks Issued warrants 

Exercise 

price 

Exercise 

ratio 

Duration 

(year) 

Yunhua 22.62 536400000 540000000 18.23 1 2 

Shouchuang 4.75 2200000000 60000000 4.55 1 1 

Magang 3.48 6455300000 1265000000 3.40 1 2 

We set the value of the one-year risk-free rate 1 0.02r =  and the two-year risk-free rate 

2 0.04r = . To obtain the historical volatility of equity warrants, we calculate it from the closing price 

of each day. The logarithmic return rate i  is computed by using data of the closing price of day 
iS  

and yesterday's closing price 
1iS −
, s  is a standard deviation of the logarithmic return rate, and   

is given by 
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,s n =  
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= −
−
  

1
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S
i n

S


−

= =  

1

.
n

i

i

 
=

=  

Then, we use the R/S method to estimate the value of the Hurst parameter. The logarithmic 

return series is equally divided into A  subsets, with the length /n N A=  of each subset. The mean 

of each subset is equal to ( 1, 2, , )ae a A= , and 
,k aX  is the cumulative deviation of the first K  

points relative to the mean value ae  of this subset. According to the fluctuation range aR  and 

standard deviation aS  of the logarithmic return series in each subset A , we have the rescaled range 

n

R

S

 
 
 

. Thus, the formula of parameter H  is given 

lg lg lg ,
n

R
H n C

S

 
= + 

 
 

where 

1

1
,

A
a

an a

RR

S A S=

 
= 

 
  

, ,max( ) min( ),1 ,a k a k aR X X k n= −    

, ,

1

( ), 1, 2, , .
k

k a i a a

i

X N e k n
=

= − =  

Finally, we obtain the values of volatility of underlying assets of three equity warrants 

as 0.44, 0.31 and 0.36, respectively, and the values of the Hurst index as 0.64, 0.66 and 0.61, 

respectively. 

From Table 3, we can see that the MSE (mean square error) of the BS model is the largest, 

indicating that the simulated value is quite different from the real price. This is because the 

long-range correlations of underlying assets, the stochastic interest rate and other factors are not 

considered in the BS model. Although the price of the Merton model is closer to the market price 
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than that of the Ukhov model, it is still not fully considered. The result of the sub-fractional Merton 

model is the best among the four models compared (i.e., the lowest MSE), and the price of this 

model is the closest to that of our model. This indicates that the long-range correlations of underlying 

assets have a certain impact on the option price, which is relatively consistent with the characteristic 

of the actual financial market. Moreover, it is also found by comparing the sfBm-Merton price and 

Merton price. Therefore, through comprehensive comparison, we find that the price of our model is 

closest to the market price. 

Table 3. Our model is compared with the BS model, Merton model, sfBm-Merton model 

and Ukhov model. 

Market 

price 
Our price BS price 

Merton 

price 

sfBm-Merton 

price 

Ukhov 

price 

9.3430 9.1082 11.9713 8.0543 9.2732 7.2779 

1.0130 1.3280 1.2566 1.2651 1.2703 1.2232 

1.1330 1.3306 0.8490 1.1717 1.5881 0.7099 

MSE 0.0645 2.3493 0.5753 0.0927 1.4959 

7. Conclusions 

Option pricing models typically choose geometric Brownian motion or fractional Brownian 

motion as random driving sources. In this paper, sub-mixed fractional Brownian motion is selected 

as the random driving source, and the Merton random interest rate is incorporated into the pricing 

problem of equity warrants. We derive the explicit pricing formula for equity warrants. In the 

numerical calculation, we discuss the influence of multiple factors on the model results and compare 

our model with other classical models. The disadvantage is that the Merton model may result in a 

negative interest rate. In subsequent studies, the CIR model, Hull-White model and other more 

complex stochastic interest rate models can be considered, or stochastic volatility can be added to 

expand to a more general process. 
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