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1. Introduction

Fractional calculus (FC) is widely applied to investigate many physical phenomena, including
viscoelasticity, electromagnetism, damping, traffic structures, robotics, telecommunications, diffusion,
wave propagation, signal processing, chaos, heat transfer, device recognition, electronics,
identification, modeling, percolation and genetic algorithms, control systems, as well as
irreversibility [1, 2]. In FC, the integer order differential and integral operators are extended to
fractional order, because the classical order operators do not work to study many complex
systems [3]. Further, the fractional operators give realistic and more accurate results when compared
with classical ones [4, 5].

Many fractional operators have been defined with different types of kernels, like Riemann–Liouville
(R-L), Hilfer, Caputo-Fabrizio (CF), Caputo and Atangana Baleanu in Caputo sense (ABC) [6,7]. The
R-L and Caputo operators are the power-law convolutions having the first derivative, while the CF
operator is the convolution of exponential decay laws having the first-order derivative together with
the Delta–Dirac property. Furthermore, the prior exponential decay type kernel has been extended
to the Mittage-Leffler type, which gives better results for studying a variety of physical systems [8].
Similarly, a new type of fractional operator has been introduced to combine the ideas of Caputo and
proportional derivatives [9].

There are many advantages and drawbacks to fractional operators. For example, results of time
dependent FDEs with Caputo’s operator usually reveal weak singularities at time (t = 0). Similarly,
every Riemann Liouville (R-L) and Caputo derivatives of real order α > 0 is a left-inverse operator for
the RL fractional integral which represented as Volterra-like convolution integro-differential operators
with kernel k(t) = tm−1−α/Γ(m − α), α ≤ m]. If α is not an integer, then the kernel is inadequately
singular at t = 0. Hence, locally absolutely integrable on the positive real axis. Besides the advantages,
the disadvantages include the fact that, with the use of the Riemann-Liouville definition, the fractional
order (FO) derivative of a constant is not zero. Further, the Riemann-Liouville and Caputo definitions
have singular kernels. In most of the mathematical models, stability analysis is very important for the
model. Using fractional orders of the operators used in the model, the stability analysis becomes more
difficult [8, 9].

Besides the fractional-order operators, another novel idea has been proposed to extend the concept
of classical differentiation to fractal ones, so that, if the fractal order becomes one, one can recover the
classical operator [10, 11]. Similarly, when the system under consideration is differentiable, then the
fractal order derivative is equal to βtβ−1. The basic idea which combines fractional and fractal
differentiations and integrations is known as fractal-fractional (FF) differentiation and
integration [12, 13]. The fractal differentiation and integration got a lot of interest because many
physical and engineering applications such as an aquifer, turbulence, and porous media preserve
fractal properties [10, 11]. In fractal derivative, the parameter is ascended in agreement with tα. This
new type of derivative has developed to model certain real-world problems when classical physical
formulations, particularly, Darcy’s law, Fick’s law, and Fourier laws, are not applicable. It should be
noted that these formulations cannot be applied to non-integral fractal dimensional media and are
supposed to be dependent on Euclidean geometry [14].

In recent years, fractal-fractional differential equations (FFDE’s) have been widely studied in
electrical networks, chaotic processes, biological processes, and fluid mechanics [15–17]. To study
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fractal-fractional models, typically numerical methods for-instance Riccati, Chebyshev cardinal
functions and Jacobi polynomials are applied that are time and memory-consuming. There are also a
variety of analytical approaches that can be used, like discretization and Homotopy techniques. The
discretization is considered complicated to obtain an accurate approximation, while the Homotopy
analysis requires predefined parameters, where the solution of the problem is dependent on these
parameters. It has been noted that the Laplace transform method (LTM) is the most consistent
technique, as it does not require predefined parameters or any kind of discretization [18].

The considered systems originate from the coupled KdV equations

φt −
1
2

(φxxx + 6φφx) = 2 bψψx, (1.1)

ψt + ψxxx + 3φφx = 0, (1.2)

where ψ(x, t), φ(x, t) play an important part to illustrate the interface of typical long waves with a variety
of dispersion relationships. It has been proved that Eq (1.2) represents a particular example of the
four-reduced Kadomtsev-Petviashvili (KP) grading [19, 20] together with affine Lie algebras [21, 22].
The derivation has converted to the most fascinating model named Drinfeld–Sokolov–Wilson (DSW)
system ψt + σφφx = 0,

φt − γφxxx + ηψφx + ζψxφ = 0.
(1.3)

The parameters σ, γ, η, ζ can be chosen accordingly. It should be noted that the spital and
temporal variables x ∈ ξ = [a, b] ⊆ R and t ∈ [0, T ]. One can see in the literature that, Eq (1.3) has
extensively studied for shallow water-waves, water dispersion, fluid mechanics, traveling waves and
doubly periodic wave solutions and the dispersion of nonlinear surface gravity waves through a
straight/level seabed [23, 24]. The considered equation has also investigated to study a variety of
natural occurrence by applying several methods [25, 26]. We will particularly study the proposed
system with fractional derivative and fractal dimensions with particular the subsidiary conditions

ψ(x, 0) = p(x), φ(x, 0) = q(x). (1.4)

Recently, a lot of efforts have been made to develop effective techniques to investigate and
examine the solutions of complex NLPDE’s and systems of NLPDE’s. In this connection, several
direct and computational techniques have been presented, including the Lie groups [27], the Hirota
method [28], the Exp-function method [29], the tanh-coth method [30] and the advanced tanh-coth
method [31]. Nevertheless, it is found that, LADM is one of the most implicit and compatible
computational technique to investigate the approximate solution to NLPDE’s. The extended Laplace
transform method (ELTM) [32, 33] is a technique for treating nonlinear differential equations that is
different from the Laplace Adomian decomposition method (LADM). The nonlinear terms are
handled via a theorem called the transformation of series in the ELTM, which avoids the integrations
associated with the Adomian decomposition approach. Another recent publication [34] on the
combined applications of Laplace transformation and the Adomian decomposition method is “A
method for inverting the Laplace transforms of two classes of rational transfer functions in control
engineering”, which deals with Laplace inversion of ratios with polynomials having non-integer
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orders of the transform variable “s”. The ADM was established by George Adomian is an implicit
method for both numerical and analytical solution of differential equations that occur in the
simulating physical problems [35–37]. The most significant of the techniques is the Adomian
polynomial that offers the convergence of series solutions of the non-linear terms in the system. Since
the method does not necessitate unnecessary linearization, perturbation, or other constrictive
procedures and assumptions that may, occasionally significantly, alter the problem being addressed, it
is particularly well suited to solving physical problems.

The Laplace transform decomposition method is a very effective analytical technique and has been
successfully used to solve different problems in integer-order as well as fractional calculus to study
numerous systems [38]. Motivated by its efficiency and fast convergence, we use the Laplace transform
for Caputo fractal-fractional derivative. The Laplace transform with fractal-fractional dimensions and
a power-law kernel is calculated in a systematic manner in this manuscript. It should be emphasized
that when the fractal order equals one, the suggested technique recovers the transform. However, when
both orders are equal to one, the proposed method recovers the conventional considered transform. As
an application of the proposed technique, the method is applied to the governing system considered
with fractal fractional dimensions under Caputo fractional derivative.

The rest of the article is organized as follows: Section 2 contains basic definitions associated with
the fractal-fractional calculus. Section 3 presents the general solution of the considered coupled
equations with the FF operator with the power-law kernel by using the LADM. Section 4 presents a
numerical example of the considered model with suitable initial conditions to validate the proposed
method. Section 5 concludes the article with a summary.

2. Preliminaries

Here, we define some basic definitions related to fractal-fractional calculus.

Definition 1. [14, 39] Let u ∈ C[a, c], then the Caputo fractional operators for α ∈ (0, 1] is defined
by

C
a Du(t) =

 1
Γ(m−α)

∫ t

a
(t − s)m−a−1ú(s)ds ∀α ∈ (m − 1,m],

um(t) α = m.
(2.1)

It should be noted that for α = 1, the above derivative converges to classical derivative. Let ψ(t)
is differentiable in interval (b, c). Let ψ(t) is FF differentiable in (b, c) with fractal order β, then FF
operator with power law kernel is given by

FFP
a Dα, β

t ψ(t) =
1

Γ(m − α)

∫ t

a
(t − s)m−α−1 d

dtβ
ψ(s)ds, 0 < m − 1 < α, β ≤ m,

where

dψ(t)
dtβ

= lim
t→s

ψ(t) − ψ(s)
tβ − sβ

.

In more general form the above operator can be expressed as

FFP
a Dα, β, γ

t ψ(t) =
1

Γ(m − α)

∫ t

a
(t − s)m−α−1 dγ

dtβ
ψ(s)ds, 0 < m − 1 < α, β, γ ≤ m,
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where

dγψ(t)
dtβ

= lim
t→s

ψγ(t) − ψγ(s)
tβ − sβ

.

Definition 2. [14] The FF integral with power law kernel is

F
0I

α
t =

β

Γ(α)

∫ t

0
sα−1ψ(s)(t − s)α−1ds.

Definition 3. [40] The Laplace transform L of a function ψ(t) for t > 0 is defined by the integral

L[ψ(t)] = F(s) =

∫ ∞

0
e−stψ(t)dt. (2.2)

Definition 4. [40] The inverse Laplace transform of the function F(s) is denoted byL−1 and is defined
by

ψ(t) = L−1 (F(s)) (t) =
1

2 πi
lim
t→∞

∫ r+it

r−it
estF(s)ds,

where the integration is done along the vertical line Re(s) = r in the complex plane such that r is
greater than the real part of all singularities of F(s) and F(s) is bounded on the line.

Definition 5. [40] The Laplace transform of Caputo fractional operator is defined as

LC
a Dα

t ψ(x, t) = sαLψ(x, t) −
n−1∑
k=0

sα−k−1ψkt(x, 0), n = [α] + 1.

Remark 1. There are some cases in the transformable functions where poles of some particular orders
occur. These functions cannot be invertible analytically. For example, consider a transformed function
in the form

¯f (s) =
4Ω

[π − 2 tan−1( 2 Ω
s )][s2 + 4Ω2]

,

using the Bromwich contour, we can find that a pole of first order ats = 0. The double branch points
s = ±2iΩ, two poles also at ±2iΩ. Using inverse Laplace transform this function is not invertible.

3. The proposed method

Here, we calculate the Laplace transform and the governing model in FF sense with power law
kernel. We also calculate the series solution by using the proposed method (LADM).
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3.1. Fractal-fractional Laplace transform with power law

Let a continuous function ψ(t) ∈ H1 for 0 ≤ t ≤ T . Further, consider

FFPDα, β
t ψ(t) = B, (3.1)

where B is an exterior function to chosen accordingly and 0 < α, β ≤ 1. We can simplify Eq (3.1) in
the form [17]

CDα
t ψ(t) = βtβ−1B. (3.2)

Applying Laplace transform to Eq (3.2), we obtain

sαL(ψ(t)) − sα−1ψ(0) = L(βtβ−1B), L(ψ(t)) =
ψ(0)

s
+

1
sα
L(βtβ−1B).

Similarly, applying inverse L−1, we obtain

ψ(t) = L−1
[
ψ(0)

s
+

1
sα
L(βtβ−1B)

]
.

When B is a function of x, then L(βtβ−1B) = L(βtβ−1B(x)) = Γ(β + 1)B(x)/sβ, where L(tβ) =

Γ(β)/sβ and βΓ(β) = Γ(β + 1).

ψ(t) = ψ(0) +L−1
[
Γ(β + 1)

sα+β

]
B(x), φ(t) = φ(0) +

Γ(β + 1)tα+β−1

Γ(α + β)
B(x). (3.3)

The above relation is Laplace transform of fractal fractional operator with power law kernel.

3.2. The governing model in fractal-fractional sense with power law kernel

Let us suppose model (1.3) in fractal fractional sense with power law kernel asFFPDα, β
t ψ + σφφx = 0,

FFPDα, β
t φ + γφxxx + ηψφx + ζψxφ = 0,

(3.4)

with 0 < α, β ≤ 1 and subsidiary conditions (SCs)

ψ(x, 0) = p(x) and φ(x, 0) = q(x), (3.5)

Regrouping Eq (3.4) gives

CDα
t ψ = βtβ−1{−σφφx},

CDα
t φ = βtβ−1{−γφxxx − ηψφx − ζψxφ}. (3.6)

Using Laplace transform to both sides

L[CDα
t ]ψ = L[βtβ−1{−σφφx}],

L[CDα
t ]φ = L[βtβ−1{−γφxxx − ηψφx − ζψxφ}].
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Applying the definition discussed in the subsection 3.1 for power law kernel gives

L[ψt] =
p(x)

s
+

1
sα
L

[
βtβ−1(−σφφx)

]
,

L[φt] =
q(x)

s
+

1
sα
L

[
βtβ−1(−γφxxx − ηψφx − ζψxφ)

]
. (3.7)

Consider ψ and φ in the series form

ψ =

∞∑
n=0

ψn, φ =

∞∑
n=0

φn, (3.8)

the non-linear terms are decomposed as

φφx =

∞∑
n=0

An, ψφx =

∞∑
n=0

Bn and ψxφ =

∞∑
n=0

Cn, (3.9)

where An, Bn and Cn represents the Adomian polynomials [41] described for the above terms as

An =
1
n!

dn

dλn

 n∑
k=0

λkφk

  n∑
k=0

λkφkx


λ=0

, Bn =
1
n!

dn

dλn

 n∑
k=0

λkψk

  n∑
k=0

λkφkx


λ=0

,

Cn =
1
n!

dn

dλn

 n∑
k=0

λkψkx

  n∑
k=0

λkφk


λ=0

.

Applying L−1 to Eq (3.7), together with Eqs (3.8) and (3.9) and Eq (3.5), we obtain

∞∑
n=0

ψn(x, t) = p(x) +L−1

 1
sα
L

σβtβ−1

− ∞∑
n=0

An



 ,

∞∑
n=0

φn(x, t) = q(x)) +L−1

 1
sα
L

βtβ−1

−γ ∞∑
n=0

φnxxx − η

∞∑
n=0

Bn − ζ

∞∑
n=0

Cn



 . (3.10)

Comparing terms on both sides in Eq (3.10), we obtain the series solution

ψ0 = p(x), φ0 = q(x),

ψ1 = L−1
[

1
sαL

{
βtβ−1(−σA0)

}]
, φ1 = L−1

[
1
sα
L

{
βtβ−1(−γφ0xxx − ηB0 − ζC0)

}]
,

ψ2 = L−1
[

1
sαL

{
βtβ−1(−σA1)

}]
, φ2 = L−1

[
1
sα
L

{
βtβ−1(−γφ1xxx − ηB1 − ζC1)

}]
,

ψ3 = L−1
[

1
sαL

{
βtβ−1(−σA2)

}]
, φ3 = L−1

[
1
sα
L

{
βtβ−1(−γφ2xxx − ηB2 − ζC2)

}]
.

The general series solution can be obtained in the form

ψ(x, t) =

∞∑
n=0

ψn, φ(x, t) =

∞∑
n=0

φn. (3.11)
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4. Applications of the method

4.1. Example

For validation of the proposed technique, consider the following numerical exampleFFPDα, β
t ψ + 3φφx = 0,

FFPDα, β
t φ + 2φxxx + 2ψφx + ψxφ = 0,

(4.1)

with

ψ(x, 0) = 3 sech2(x), φ(x, 0) = 2 sech(x). (4.2)

The exact solution of Eq (4.1) can obtained in the form [42]

ψ =
3γ
2

sech2
(√

γ

2
(x − γt)

)
, φ = ±γsech

(√
γ

2
(x − γt)

)
. (4.3)

Following the procedure presented in Section 3 together with IC’s Eq (4.2), we get the approximate
series solution to Eq (4.1):

ψ0 = 3sech2(x),
φ0 = 2sech(x),

ψ1 =
12 Γ(β + 1)tα+β−1

Γ(α + β)
sech2(x) tanh(x),

φ1 =
4 Γ(β + 1)tα+β−1

Γ(α + β)
sech(x),

ψ2 = 24
βΓ(β + 1)
Γ(α + β)

Γ(α + 2β − 1)t2α+2β−2

Γ(2α + 2β − 1)

[
tanh3(x) − sech4(x) − 6 sech(x) tanh2(x)

]
sech2(x),

φ2 = −4
βΓ(β + 1)
Γ(α + β)

Γ(α + 2β − 1)t2α+2β−2

Γ(2α + 2β − 1)
[
1 + 48 sech4(x) + 6 sech5(x) − 38 sech2(x) − 6 sech3(x)

+6 sech2(x) tanh(x)
]
sech(x).

The final approximate solutions can be expressed as:

ψ =

∞∑
n=0

ψn, φ =

∞∑
n=0

φn. (4.4)

4.2. Absolute error estimate

The absolute error analysis between Eqs (4.3) and (4.4) is shown in the following table (Table 1).
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Table 1. α = β = 1, γ = 2 are considered for error estimate.

(x,t) Exact ψ | Exact−ψ| Exact φ | Exact−φ|

(-4,0.1) 0.0027 0.0026 1.2192×10−4 0.0370 0.5790 2.09×10−2

(-2,0.1) 0.1438 0.1375 6.3×10−3 0.4790 0.4395 3.9500×10−2

(0,0.1) 2.8831 2.8 3.1×10−3 2 1.78 2.2×10−1

(2,0.1) 0.3107 0.3010 9.1×10−3 0.4790 0.6402 1.6120×10−1

(4,0.1) 0.0060 0.0058 2.0801×10−4 0.0370 0.0872 5.02×10−2

(-4,0.05) 0.0033 0.0033 3.5091×10−5 0.0370 0.0657 2.87×10−2

(-2,0.05) 0.1747 0.1729 1.8×10−3 0.4790 0.4830 4×10−3

(0,0.05) 2.9702 2.9700 1.9887×10−4 2 1.9450 5.55×10−2

(2,0.05) 0.2568 0.2546 2.2×10−3 0.4790 0.5844 1.0540×10−1

(4,0.05) 0.0049 0.0049 4.5790×10−5 0.0370 0.0804 4.34×10−2
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Figure 1. Comparison of exact and approximate solutions of (ψ, φ) given in Eqs (4.3) and
(4.4) for different values of α and β respectively.

4.3. Discussion

For the numerical demonstration, the parameters σ = 3, γ = η = 2 and ζ = 1 are used. The effect
of fractal order variable β and stable fractional order α with time (t = 0.1) for approximate solution ψ
are displayed in Figure 1 (a), while, Figure 1 (b) displays the effect of fractional order variable α with
stable fractal order β of the approximate solution ψ. One can see that a good agreement is obtained.
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The bottom panel of Figure 1 depicts the behaviour of φ with a variety values of β by keeping fixed
α fixed and then changing α with fix value of β. As a conclusion, it is observed that the amplitude
increases by decreasing the fractal dimension β. Similarly, decreasing α, to some extent decreases the
amplitude as well as alters the shape of the solitonic solution.

The absolute error between Eqs (4.3) and (4.4) for α = β = 1, γ = 2 is calculated in Table 1 and
plotted in Figure 2. It is observed that the error in the system decreases when x increases for small value
of time (t). It is noted that, aggregating in iterations diminishes the absolute error. It is interesting to
note that the higher order correction for dispersion may be added using the new mathematical parameter
(time fractional order α) in the modulation of such systems for different waves phenomenons.

The physical conduct of the obtained approximate solutions ψ versus φ is depicted in Figure 3 (a)
and (b). The behaviour of ψwith differing β and α respectively with particular values of spatial variable
x versus time (t) is illustrated in the top panel of Figure 4. Similarly, the behaviour of φ with different
values of β and α spatial variables x = 0.6 versus time (t) is illustrated in Figure 5 (a) and (b). It is
observed that, when time (t) is small enough, the solitary waves are in very good agreement. It is also
observed that intensifying time (t) rapidly enhances the wave propagation when one of the fractal or
fractional variables ( α and β ) is not equal to one.

Figure 2. The surface plots of the absolute error estimate obtained for ψ(x, t) [ Eq (4.3)] and
φ(x, t) [ Eq (4.4) ] presented in Table 1.

Figure 3. The surface plots of approximate solutions depicted in Figure 1 (a) and (c).
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Figure 4. The behaviour of ψ for different values of α and β versus time (t).
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Figure 5. The behaviour of ψ for different values of α and β versus time (t).

5. Conclusions

We have studied coupled nonlinear system with fractal-fractional sense together with a power law
kernel using LADM. It is observed that the proposed technique is very effective for studying such
types of nonlinear coupled systems. The main advantage of the suggested method is that it can
analyse systematic solutions of the considered coupled system without any perturbation, estimate the
long-lasting and complex polynomials, or any discretization. It is worth mentioning that, the
suggested approach gives us greater freedom to take into account different kinds of initial
presumptions and equation type complexity as well as nonlinearity. Hence, as a result, the complex
NDEs (NPDE’s/NODE’s) can be addressed immediately. The innovative aspect of the proposed
method is that it uses a simple algorithm to evaluate the solution and is homotopy and axiomatically
natured, allowing for a quick convergence of the obtained solution for the nonlinear section of the
provided issue. The results from numerous algorithms, including q-HAM, HPM, ADM, and some
other conventional procedures, are conceivably contained in it, giving it a tremendous degree of
generality. When compared to existing methods, the proposed method may maintain high accuracy
while requiring less effort and computing time. From the numerical analysis, it is observed that fractal
dimensions play a very effective role as they enhance the system amplitude. It is also discovered that,
for sufficiently small time (t) the error is minimised between the exact and approximate solutions. It
will be fascinating to investigate such nonlinear systems in a time fractal-fractional context in the
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future, as time has a significant impact on the results.
As a future work, it will also be interesting to investigate the solutions of Boussinesq-type

equations using MDLDM. Further, the sine-Gordon expansion method and the hyperbolic function
method studied reported in [43] can be applied to the DWS equation with fractal fractional
dimensions to study the novel type of solitary wave solutions.
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