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neuPrint: An open access tool
for EM connectomics

Stephen M. Plaza, Jody Clements, Tom Dolafi,

Lowell Umayam, Nicole N. Neubarth, Louis K. Sche�er* and

Stuart Berg

Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, United States

Due to advances in electron microscopy and deep learning, it is now practical

to reconstruct a connectome, a description of neurons and the chemical

synapses between them, for significant volumes of neural tissue. Smaller past

reconstructions were primarily used by domain experts, could be handled by

downloading data, and performance was not a serious problem. But new and

much larger reconstructions upend these assumptions. These networks now

contain tens of thousands of neurons and tens of millions of connections, with

yet larger reconstructions pending, and are of interest to a large community

of non-specialists. Allowing other scientists to make use of this data needs

more than publication—it requires new tools that are publicly available, easy

to use, and e�ciently handle large data. We introduce neuPrint to address

these data analysis challenges. Neuprint contains two major components—a

web interface and programmer APIs. The web interface is designed to allow

any scientist worldwide, using only a browser, to quickly ask and answer

typical biological queries about a connectome. The neuPrint APIs allow more

computer-savvy scientists to make more complex or higher volume queries.

NeuPrint also provides features for assessing reconstruction quality. Internally,

neuPrint organizes connectome data as a graph stored in a neo4j database.

This gives high performance for typical queries, provides access though a

public and well documented query language Cypher, and will extend well to

future larger connectomics databases. Our experience is also an experiment in

open science.We find a significant fraction of the readers of the article proceed

to examine the data directly. In our case preprints worked exactly as intended,

with data inquiries and PDF downloads starting immediately after pre-print

publication, and little a�ected by formal publication later. From this we deduce

that many readers are more interested in our data than in our analysis of our

data, suggesting that data-only papers can be well appreciated and that public

data release can speed up the propagation of scientific results bymanymonths.

We also find that providing, and keeping, the data available for online access

imposes substantial additional costs to connectomics research.
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1. Introduction and motivation

Drosophila melanogaster is a well-known model system for

studying the structure, function, and operation of the nervous

system. One advantage of this system is the large library of

genetic lines, each with expression restricted to a subset of

cells within the nervous system, and often a single type. This

allows individual cell types to be measured, activated, and

de-activated, all of which help determine the structure and

operation of circuits.

However, genetic access to the cell types alone is not enough

to understand circuit operation. Also required is the connections

between cells. This was typically obtained by techniques such

as GRASP (Feinberg et al., 2008) or trans-Tango (Talay et al.,

2017), but these techniques were slow, painstaking, only gave

pairwise results, and their accuracy was hard to evaluate.

Circuit reconstruction from electron microscope images had the

potential to revolutionize the study of circuits by finding all the

cell types, and all the chemical synapses between them, for a

particular volume of the brain. This potential was demonstrated

by early connectomes of columns of the medulla and the

alpha lobe of the mushroom body. In these cases, experimental

groups such as the Reiser (Strother et al., 2014), Borst (Ammer

et al., 2015), and Rubin (Li et al., 2020) labs worked closely

with the EM connectome generation groups to get answers to

their specific questions about connectivity. These were used

to generate hypotheses about circuit operation that were then

further investigated using genetic methods.

However, extending connectomes to the bulk of the fly

brain introduced new problems of dissemination. Instead of a

few groups, the results could now be of interest to thousands

of researchers worldwide. This made personal interaction an

impractical solution to asking questions about connectivity.

Furthermore, the data sets are much larger, painful to download,

and the majority of the data is irrelevant to most specific queries.

In many ways this is similar to genetic data, where the solution

was to keep the data in an on-line database, and queried via

a website using algorithms such as BLAST (Altschul et al.,

1990) and its successors. However, much more than genetic data

(which is one dimensional), connectivity questions take many

forms. Since we hoped the typical user would be a biologist,

we wanted a web application with the good features of BLAST

(no computer science knowledge required, no downloads of

programs or data, answers available in a few seconds) but the

ability to ask a much wider variety of questions.

Since these requirements could not bemet by previous open-

access solutions, one of the tasks of the FlyEM project was to

build a web interface, where anyDrosophila biologist world-wide

could log on and, with minimal or no training, find answers

to common questions about connectivity. NeuPrint, described

here, was the result of this effort. Of course, sometimes simple

queries do not suffice, and many labs have significant computer

science expertise. Therefore, we also built application program

interfaces (APIs) to allow automated or bulk downloads of

queries and data.

In this paper, we first discuss our overall framework and

the main data model. Then, we describe the programmer APIs

and web application. Next, we discuss the practical details of

deploying neuPrint, and present empirical justification for our

design decisions, as well as explore several example queries on

a large dataset. Finally, we look at the results of 2 years of

experience with this model of open science.

2. Methods

High-resolution EM data reveals the morphology of

individual neurons and the synapses between them. By

representing the neurons as nodes and synapses as edges, the

resulting connectivity graph provides scientists one tool to help

understand neural mechanisms in brains. Technical hurdles

in generating and reconstructing connectomes from EM data

limited prior studies to either small brains like C. elegans (White

et al., 1986) or smaller portions of larger brains (Takemura et al.,

2015, 2017; Motta et al., 2019). Despite the relatively small size of

individual circuits, typically 1,000 or fewer neurons, compared

to the 100, 000 neurons in Drosophila or millions of neurons in

a mouse brain, deciphering the circuits formed by these neurons

is challenging. The need for effective representation of complex

connectomes is continually increasing with much larger EM

datasets available (Cepelewicz, 2016; Zheng et al., 2018) and

the introduction of new methods of speeding up connectomic

reconstruction, using techniques such as automatic EM image

segmentation using deep learning (Januszewski et al., 2018).

At its simplest, a connectome is a list of each neuron, and

its inputs and outputs. In theory, using this connectivity in

conjunction with strong genetic tools (such as are available

in Drosophila), one can selectively silence or monitor specific

neurons to potentially infer neural mechanisms for certain

behaviors (Serbe et al., 2016). However, even this simple

application poses many analysis challenges, especially for larger

datasets. If the neuron type being looked up is not well-

established and annotated explicitly in the database, how does

one find it? Once found, many neurons have hundreds of

inputs and outputs spanning large portions of the brain. Which

ones are important? The inputs and outputs of even well-

known neurons will likely involve brain regions and neurons

unknown to the experimenter, or often science as a whole. Very

quickly, what seemed like a simple lookup task may require

a more complicated analysis, inferring the role of neurons in

this population based on their connectivity and projections.

The challenges of interpreting large data further intensify if one

wishes to infer mechanisms directly from the connectome, such

as by trying to find underlying patterns in the connectivity graph
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or examining low-level motifs such as the location distribution

of synapses on a given neuron.

We introduce neuPrint as a connectome analysis framework

to address the challenges of interpreting large connectome

data. At its core, neuPrint is a data model for representing

connectome data that provides the following advantages:

• It represents data at different levels of detail based

on natural anatomical features (brain region, neuron,

connection, and synapse level) to maximize the efficiency

of queries based on the needs of the users and to enable an

intuitive interface consistent with the goals of the user.

• It exploits a graph database, neo4j (Miller, 2013), a natural

fit for connectivity.

• It exploits brain regions (regions of interest, or ROIs) to

allow users to take a top-down strategy for understanding

complex data. It does this by decomposing connectome

data by ROI when relevant.

• It facilitates common and straightforward queries via

forms and tables, with no programming experience needed.

More complex queries are made easier by leveraging the

expressive Cypher graph query language.

• It enables metadata properties to be flexibly added to

neurons and synapses, and new cellular structures (such as

mitochondria) to be added later.

The connectomics data is represented within the graph database

neo4j. Over this, we implement an interface expressed in

the language of connectomics, allowing users to access the

data either programmatically or interactively through a web

interface. The neuprint ecosystem optionally links to other

storage solutions, e.g., Katz and Plaza (2019), for non-graph

connectome-relevant data, such as morphological skeletons,

useful in tasks such as delay modeling. The web interface

combines 3D visualization and a flexible plugin system to enable

the rapid creation of new analysis tools to meet the demands of

new usage patterns for this emerging field.

2.1. Previous work

There are two relevent areas of prior research. The most

similar in terms of user experience is the software used to query

genetic information. The most similar in terms of the type of

data handled is existing connectome manipulation software.

The previous work that is closest in spirit to the Neuprint

web interface are the genetic databases and the query software

BLAST and its successors. Genetic queries face many of the

same problems as connectomic queries. Both involve very large

datasets and queries that typically want to inspect in detail only a

small fraction of this data. The solution developed by the genetic

community mirrors many of the design decisions here. This

includes four key aspects: (a) The data is kept on a server and not

downloaded by the individual user. (b) Interaction is through

a web interface designed for common queries, all phrased in

the language of the subject (in the case of BLAST, sequences).

(c) The answer is computed on the server, using methods and

data structures optimized for the task. No software needs to be

installed, or downloaded on the user’s machine. (d) Only the

answer is returned to the user.

From the user point of view, this architecture makes the

barrier to entry very low. Users can submit queries fromminimal

systems, or even cell phones, whereas answers can be computed

on powerful servers. No downloads or installation of any kind is

required. This allows usage on school and corporate computers

where software installation is prohibited, and expands the range

of potential consumers. The only work required of the user is

knowledge of the subject matter.

Other prior works are programs for querying connecomes,

which are often tightly bound with programs for creating

connectomes (Saalfeld et al., 2009; Beyer et al., 2013; Boergens

et al., 2017; Zhao et al., 2018). Between them they provide an

impressive collection of analysis tools, an inspiration for many

of the functions in Neuprint web and API. This is a difficult

area to summarize, as the available programs are complex and

rapidly changing, and formal publication tends to lag behind

development. However, some of the available software that can

be used for querying connectomes is summarized in Table 1.

A wide variety of mechanisms for querying connectomes

have been proposed, each with advantages and disadvantages.

A natural language interface requires no programming or

computer science expertise, but in practice may return

unanticipated results or fail to include desired answers. More

formal query languages require time to learn, but offer more

explicit control of queries. Even among query languages there

are differences—path queries in a conventional database query

language such as SQL are an advanced topic, but in a graph-

specific query language these queries are simpler and more

intuitive. Finally, a custom language for a particular purpose

(such as searching for motifs as in DotMotif, or selecting cells

from multiple sources of information as in NLP++) makes these

particular queries simple, at the cost of making different queries

more difficult or impossible.

Both the web and API components of neuPrint differ

from previous work by using an off-the-shelf database solution,

neo4j. Both components also support the most common queries

directly, but if the user has a more complex question, they

support an open source, well-documented, and reasonably

intuitive query language, Cypher.

The web interface to NeuPrint is most similar to

“VirtualFlyBrain,” which also needs minimum system

requirements, with no download or installation required,

and the query internal computation occuring on the server.

Compared to “VirtualFlyBrain,” NeuPrint offers many more

forms of circuit queries, faster and more general path tracing,

and Cypher as a backup for complex queries. “VirtualFlyBrain”
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TABLE 1 Di�erent querying options for connectomes.

Package Download Database Query language Reports

CatMaid (Saalfeld et al., 2009) Yesa PostgrSQL API calls, forms, SQL Tables, Graphs, Images, Java data structures

natverse (Bates et al., 2020) Yes none API calls R data structures

NeuPrint (web) No neo4j Forms, Cypher Tables, Graphs, Images

NeuPrint (API) Yes neo4j API calls, Cypher Python data structures

VirtualFlyBrain (Milyaev et al., 2012) No PostGres Forms Tables, Graphs, Images

Fly Brain Observatory (Lazar et al., 2021) Yesb OrientDB Custom (NLP++), SQL-like, Gremlin Tables, Graphs, Images, Simulations

DotMotif (Matelsky et al., 2021) Yes NetworkX, neo4j Custom Language Python data structures

This is an extremely limited summary of a very large field that is constantly changing.

Notes: aInstances of CatMaid are available on VirtualFlyBrain without downloading at https://catmaid.virtualflybrain.org/.
bA subset of queries is available without download at https://www.fruitflybrain.org/#/brainmapsviz.

supports more complex queries differently, by hosting

instances of CatMaid that users can access without download

or installation.

The neuPrint API is most similar to “natverse,” though

returning results in a different language (Python instead of R),

and like the web interface, it offers Cypher as a language for

complex queries. Also similar is the NeuroArch python API,

which supports SQL-like queries and the graph query language

“Gremlin” (Givon et al., 2015).

2.2. Storing and representing analysis
data

Figure 1 shows an overview of the neuPrint ecosystem.

In this section, we emphasize the representation and storage

of connectome data. The next section will discuss the higher

level interfaces.

We consider the storage of the connectomic graph and

associated metadata within a graph database neo4j (Miller,

2013). Presumably, other graph databases that support the graph

query language Cypher could be compatible with neuPrint,

though this has not been tested. In a graph database, nodes can

access related nodes through linked lists. This is in contrast to

more traditional table-based relational (SQL) databases, where

finding whether a node is related to another node requires first

joining those two tables together. Therefore, queries that require

relationship lookups, such as path searches, are potentially much

faster in a graph database.

Graph databases are often advantageous when a data set,

and its queries, can be naturally formulated as a graph. A

connectome fits this model, with neurons as nodes and synapses

as edges. Conversely, in a relational database, a simple graph

model showing neuron nodes connected by synapse edges would

require several different tables. For instance, one could have a

neuron table, a synapse (or edge) table, a neuron property table,

and an edge property table. Graph databases and other so-called

NoSQL databases tend to not require an exact schema, meaning

that it is easy to add new relationship types on pre-existing data

models. This is advantageous in connectomics as we anticipate

the need to adapt quickly to new analysis requirements, as was

demonstrated when we added mitochondria to our data set

without disrupting existing access methods.

The EM connectomic dataset involves other data useful

for analysis that are not ideally suited for a graph database.

For larger storage objects, like a neuronal skeleton (which

is a simplified ball and stick representation of a neuron’s

morphology) and for surface meshes of ROIs, we use simpler

key/value stores where one retrieves a value by using a specific

key or address. While one can reasonably store a series of

skeleton nodes in a graph database, we found that most analyses

involving skeletons required the whole skeleton meaning that a

simple fetch of the whole data structure was sufficient, and more

time and space efficient.

2.3. Data model

We illustrate how the data is organized in the graph

database in Figure 2. There are five major node types or

labels denoted by the syntax “:.” In neo4j these labels help

partition the nodes into different groups. :Neuron and

:Synapse nodes are two obvious aspects of a connectome.

Neurons contain several properties (with more details in the

Supplementary Material). The bodyId is a mandatory field and

is a unique numerical identifier for a given neuron. Other

fields are required as indicated in the figure. neo4j allows

indexing of different properties for a node label, reducing

querying time at the cost of more disk storage. For example,

synapses contain their x, y, and z location, which are indexed

properties that can be accessed using neo4j’s spatial querying

capabilities. The synapses for a given neuron are grouped under

different nodes called :SynapseSet. A synapse set groups

all the synapses for each connection for each neuron. The
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FIGURE 1

neuPrint ecosystem. The ecosystem is broadly divided into a lower-level data representation and storage above the dashed line and a

higher-level interface below the dashed line.

FIGURE 2

neuPrint graph data model. This shows the various node types and properties used for storing data relevant for connectome analysis.

:Meta node type provides top-level information about the

database.

State of the art techniques (as of 2022) for creating a

connectome use automatic image segmentation. This typically

does not return complete neurons, instead returning fragments

with a variety of sizes, with the small fragments vastly

outnumbering the large ones. Each of these fragments is called

a:Segment. During the proofreading process (oversimplifying

greatly, see Plaza, 2016) smaller segments are merged with larger

segments until the largest segments visually resemble neurons.

This creates a bi-modal distribution of segment sizes, with a few

large one corresponding to neurons, and a much larger number
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of very small segments with only a few synapses. In theory this

could be continued until no small fragments remain, but at the

current state of the art this is cost and time prohibitive, and is

scientifically unnecessary for the questions most users ask.

Therefore, for several reasons, we explicitly designate larger

:Segments as :Neurons. First, the concept of a neuron

is critical to the reconstruction process. Only neurons, for

example, are given a cell type, an instance name, and a status.

Next, the idea of neurons is a critical component of quality

metrics. During reconstruction we continually ask ourselves

what percentage of all synapses connect two neurons (as

opposed to connecting a neuron and a fragment, or two

fragments), what percentage of neurons have assigned cell types,

and so on. Furthermore, users are almost always concerned with

neurons. They typically do not want a query to return a long

list of tiny un-named fragments, even if (for example) they are

connected to a given neuron. Finally, as neurons are much less

numerous than segments, performance is greatly improved on

typical searches when they are restricted to neurons.

Between the different node types (segments, neurons,

synapses, and synapseSets), we define several relationship types.

Prominently, the segments, neurons, and synapse sets are

connected via a : ConnectsTo property. Individual synapses

are linked together through a : SynapsesTo property. We

use the : Contains relationship to define the synapse sets

that each segment contains and the synapses that each synapse

set contains.

Region information is encoded in the data model at multiple

levels. Each synapse has a boolean value for each ROI it resides

in. Since ROIs are hierarchically defined, several such values may

be set. The synaptic ROI information is also aggregated over

segments and connections and is stored in the roiInfo field.

This enables users to easily extract the number of synapses per

region for a segment or connection.

For each node label, we also partition the node using a

dataset-specific prefix. For instance, a neuron for the dataset

named “x,” would be “:x_Neuron.” In this manner, we can

support multiple datasets in the same database. Queries can be

made across datasets or targeted to a specific dataset.

Each synapse contains a confidence field, typically computed

by automatic synapse prediction, that can be used to model

confidence for certain neuron connections.

2.4. Design considerations

This section explains the motivation for some of the data

model design decisions.

The primary goal of the data model design was to encourage

top-down use of the data model and to allow users to

exploit region information extensively. The most common

queries will only involve neuron connections, which exists

as a redundant higher-level representation in our model. An

alternative data model design could require the user to extract

neuronal connectivity by traversing every synapse between two

neurons—a slower, and more complicated query. The ROI

information is similarly encoded at multiple levels to facilitate

query performance and ease of use. Even though it is possible

to compute region statistics from the synapse points, it is faster

and easier to find neurons in certain regions and get basic region

statistics by simply querying information available at the neuron

and neuron connection level.

The current strategy for embedding roiInfo at the

connection level and segment level is convenient but clumsy.

Because neo4j does not support map datatypes (where a list of

keys can have an associated value), the data is encoded as a JSON

string. This data cannot be indexed in a meaningful way and

requires decoding the JSON when used as a filter within a query.

It would also be possible to encode the region breakdown per

ROI with the introduction of explicit :Region nodes. While

this might be more idiomatic, it leads to more complex user

queries, hence our current design decision. Finally, the current

data model treats each ROI or brain region separately. If the

ROIs available form a hierarchy, one could presumably simplify

roiInfo by providing stats only for the ROIs at the lowest level

of the hierarchy.

2.5. Future considerations

The proposed data model can be extended in many different

ways. By allowing multiple datasets in the same neo4j (by using

the dataset prefix for each node label), one could add specific

relationships between related neurons across datasets. Also, if

there are many more property types required for a segment, it

might make sense to create a separate :SegmentProperty

node. Finally, a relationship type like :Merge could indicate

segments that could be grouped together.

Thanks to the schema-less structure of neo4j, we can also

extend our model to accommodate other cell ultra-structure

without disrupting existing queries and scripts. For example,

starting with version 1.2 of the hemibrain data, we have included

:Mitochondrion nodes in the connectome, along with links

to their nearest other elements.

2.6. Interfacing with neuPrint

To enable unified access to the underlying data model

and other connectomic data, such as neuron skeletons, we

provide a software layer, neuPrintHTTP. neuPrintHTTP is

primarily of interest to programmers, not the end users. It

provides a mostly read-only connectomic-specific interface

that allows users to make HTTP requests that then call the

underlying neo4j database or other storage engines. This also

simplifies querying within a given dataset. As previously noted,
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each node label actually encodes the dataset name, such as

<dataset>_<node label>. With neuPrintHTTP, the

user can direct queries to a given dataset without having to

provide dataset-specific labels.

neuPrintHTTP is designed in the language Go to exploit

convenient concurrency semantics, so it can handle parallel

requests efficiently. Furthermore, the backend of the software

layer abstracts the storage into different technology-specific

plugins. For the non-graph data, plugins exist to access DVID

(Katz and Plaza, 2019) and a generic key-value database.

Other databases that can satisfy the interface requirements

can be easily added, such as Google storage or Amazon S3.

neuPrintHTTP also supports authentication withGoogle OAuth

and provides options to make the data read only for anyone,

or to restrict access to a set of authorized users. neuPrintHTTP

also has a mode to enable database writes for given admin-level

authorized users.

As mentioned above, a typical user will not interact with

NeuPrintHTTP. Instead they will interact with the web service,

or one of the two current APIs that support database access.

One is the neuPrint API, written in Python and providing access

routines in that language. The other was written by collaborators

in Cambridge to provide access to those programming in R

(Bates et al., 2022).

2.7. neuPrint web explorer

In many cases, users prefer an interactive web-based

interface over the use of APIs. To this end, we introduce

neuPrintExplorer. neuPrintExplorer is a web application that

interacts with neuPrintHTTP, written using the modular web

framework called REACT. It provides a series of different

common analysis queries within different plugins. Each plugin

is a gateway into accessing the data. Internally, most queries

involve displaying some table of information based on a simple

database request to neuPrintHTTP. In addition, many of these

plugins create visuals such as charts that breakdown neuron or

connections (see Figure 3) to separate brain regions or provide

links to access other parts of the dataset.

As shown in Figure 3, the web application supports 3D

visualization of neurons by embedding the skeleton viewing

tool called SharkViewer (https://github.com/JaneliaSciComp/

SharkViewer). This allows users to see the morphology (shape)

of given neurons (fetching the data from the neuprintHTTP’s

skeleton endpoint) and also the arrangement of synapses on

these neurons. We have also implemented a REACT wrapper

around the powerful web application neuroglancer (https://

github.com/google/neuroglancer), designed for browsing EM

datasets. This means that we can embed neuroglancer

within our application and enable users to find neurons

in neuroglancer based on interactions in neuPrintExplorer.

While neuPrint is designed for analysis only, part of the

connectome reconstruction process sometimes requires users to

add annotations or comments on the underlying dataset. By

supporting neuroglancer, neuPrintExplorer provides a gateway

for lower-level exploration and annotation if needed.

Architecturally, neuprintExplorer itself is a small application

written using REACT/Redux which allows us to leverage other

open source components such as d3 for graphics or material-ui

for the UI. We also designed the system to be modular by

providing a plugin system that allows new queries and views to

be added without modifying the core code. There are example

plugins and instructions on how to create a new plugin at https://

github.com/connectome-neuprint/neuPrintExplorerPlugins.

Example plugins

Some of the plugins we have created for the most common

tasks are:

• Simple connections: find inputs or outputs for a neuron

ordered by connection strength. The data is displayed in

table form.

• Find neurons: find neurons in the dataset by name or cell

type, optionally restricting queries to specific regions.

• Shortest paths: find all shortest directed paths from one

neuron to another and display the local connectivity graph.

This query is generally very efficient except for very deep

(or non-existent) paths. A timeout is set for a few seconds.

• Find Similar Neurons: find neurons whose inputs and

outputs intersect ROIs similar to the provided neuron.

• Cell type: show all neurons of the same cell type to evaluate

the connection similarity between neuron of the same type

(this is an example of a more complicated query compared

to a simple Cypher request).

• Brain region connectivity: show how the brain regions

connect to each other by considering the neurons that go

from one region to another.

• Common connectivity: view inputs and outputs common

to a set of neurons.

• Custom: allow users to execute custom Cypher queries

• Partner completeness (reconstruction QC tools): examine

how fragmented the inputs or outputs are for a neuron.

• Completeness (reconstruction QC tools): show the

percentage of segments for each brain region that are

traced neurons.

To facilitate learning Cypher, relevant plugins display the

specific Cypher query made in response to the user query.

2.8. Programmer APIs

As mentioned, neuPrint provides an HTTP, or REST,

interface to enable programmatic access to the underlying data.

Given the diversity of analysis requirements, many of which
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FIGURE 3

neuPrintExplorer web application. Queries generate tables of results. Visualizations exist to see 3D neurons and to help break down the

complexity of the data.

are currently unknown, we have aimed for a lean HTTP API

from which more specific capabilities can be written, such as in

our python library or the R packages in natverse (Bates et al.,

2020).

The most basic API endpoint provides direct query access to

the neo4j interface through the Cypher query language. Cypher

shares semantic similarities with SQL and is intended to provide

a mostly intuitive language to query a graph database. Below is

an example of a query that returns all downstream partners, m,

from a given neuron, n with body id 123, with more than 10

connections.

MATCH (n :Neuron)-[x:ConnectsTo]->(m)

WHERE n.bodyId=123 AND x.weight > 10

RETURNm.bodyId, n.instance, n.type, x.weight

Most Cypher queries have these three components. A

MATCH statement identifies the pattern to be found. In this

case, that is a neuron n with a connection to m (the direction of

the connection is indicated by the arrow). AWHERE statement

applies filters to the above MATCH statement. Here we restrict

the match to a neuron n with unique body id 123 and with

connection weight or strength greater than 10. Finally, the

RETURN statement provides the results back to the user, which

in this case is the ID of the downstream neuron, its name

and type, and the weight of the connection. There are several

online resources for learning Cypher. We will show a few other

examples later in the results section.

In addition to this Cypher interface, neuprintHTTP

subdivides its HTTP API into different categories. For example,

there is a sub-category called “dbmeta” for database meta

information and one called “npexplorer” to provide convenient

wrappers for common connectome queries used in the web

interface defined below, such as finding neurons that intersect

certain regions. This connectomics interface is a work in

progress. We plan to extend the interface to provide a simplified

wrapper around the most common types of Cypher queries,

as access patterns are better understood. More information on

this interface can be found at https://github.com/connectome-

neuprint/neuPrintHTTP. More information on the python

API can be found at https://github.com/connectome-neuprint/

neuprint-python.

2.9. Quality assessment

Another function of neuPrint is to assess the quality of

reconstruction. Here we concentrate on metrics that require

the connection graph, as these are hard to do in any other

way. First among these are completeness metrics. At the current

state of the art, it is too costly and time consuming to connect

every synapse to a neuron. So we have added commands that
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look at a single neuron, or a brain area, and measure what

percentage of inputs (or outputs) have synaptic partners that are

assigned to labeled neurons (as opposed to those contained in

unlabelled fragments). There are also commands that measure

what percentage of all synapses in an area belong to traced

neurons, and curves of how many segments must be considered

to get to a specified percentage of all synapses (pre or post).

These commands are useful to both the reconstruction team

(to help them decide what most needs improvement) and the

end user (who wants to know the completeness of the particular

neurons they are studying). These queries are accessible as

“Reconstruction Related” under “Change Query Type.”

NeuPrint’s reconstruction assessments look only at graph-

level completeness metrics. Many other tests are possible and

could be useful, such as checking that all synaptic partners

are close together, and all synapses on a neuron are close

that neuron’s skeleton. In our flow, these tests are performed

elsewhere and we do not duplicate them here. It would be

reasonable to perform these tests on import, to catch any errors

that might have slipped through, but as this has not been

essential for us we have not yet implemented it.

2.10. Initializing, updating, deploying
neuPrint

Creating a full neuPrint instance for a new connectomic data

set involves ingesting several different types of data. The steps

are:

• Create a neo4j database that describes the connectome,

organized according to Figure 2.

• Import a skeleton for each neuron, in SWC format

(Carnevale and Hines, 2006).

• Import a mesh for each named brain region, in.obj format

(LibraryOfCongress, 2020), for rendering in 3D.

Only the neo4j portion is absolutely required.

The primary task involves creating a neo4j database from

whatever internal format is used for reconstruction. Importing

data into neo4j can be done in many ways as described

in documents (neo4j, 2022a,b), tutorials (neo4j, 2022d), and

classes (neo4j, 2022c). We ourselves initialize neo4j from a

series of CSV files, as documented at https://github.com/

connectome-neuprint/neuPrint. The files are formatted to

minimize computation in neo4j to speedup ingestion, moving

the computational burden to creating these CSV files. We did

this because we typically deploy neo4j on a single server, while

these CSV files can be generated outside this environment

with a compute cluster. We currently only support having one

connectome per neo4j database, even though our data model

and interfaces allowmultiple datasets to share the same database.

The SWC skeleton for each neuron is provided as a file in

SWC format. The mesh representation for each brain region is

provided as an .obj file. These are POSTed into a DVID instance

for use by neuPrint.

The initial ingestion process is streamlined to enable

fast, one-time creation of a neo4j instance. As previously

mentioned, the neuPrint ecosystem is designed to be compatible

with modern connectome reconstruction workflows that allow

almost continuous editing. To this end, neuPrint is mostly

decoupled from reconstruction workflows except for an

incremental interface for updating the underlying data model.

Figure 4 shows the architecture for incrementally updating

neuPrint. The key feature is that we require access to only the

changes to the dataset, such as segment merge and split events.

This can be published by any connectome editor to a centralized

log manager, which in our case is Apache Kafka. A monitoring

service can listen for changes recorded to this log and modify

the neuPrint data model using targeted Cypher statements. For

example, a user can modify segmentation data using a tool like

neuTu (Zhao et al., 2018), which modifies data managed by

DVID (Katz and Plaza, 2019). DVID then emits log messages

to Kafka, which our Python services then consumes and updates

neuPrint graph data through neuPrintHTTP.

Real-time updates have the advantage of always offering the

most up-to-date information, but also mean the same query

can yield different results when repeated. This can be bad for

both debugging and scientific reproducibility, and has only been

used internally. For external release we avoid these problems by

taking snapshots, which are static and archived as new versions

are released. For example, the hemibrain data is now available in

versions 1.0.1, 1.1, and 1.2.1. Each is stored in a separate neo4j

instance but the user does not see this as it is handled at the

neuPrintHTTP level.

3. Results (software engineering)

In this section, we provide some insights on the performance

characteristics of our system. Comparing neo4j with other

relational databases is beyond the scope of this paper. Rather, we

try to first demonstrate the effectiveness of our data model and

then show that common queries achieve interactive performance

(i.e. queries are under a few seconds). The example queries

explored also serve as documentation for different use cases.

We make available several neuPrint datasets. At https://

neuprint-examples.janelia.org we host the fly medulla seven-

column dataset (Takemura et al., 2015) and fly mushroom body

dataset (Takemura et al., 2017). At https://neuprint.janelia.org

we host the hemibrain dataset, about 2/3 of the central brain of

a Drosophila female with about 20M synapses between traced

neurons (Xu et al., 2020). Storage and ingestion performance

characteristics are provided in Table 2 for those datasets. The
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FIGURE 4

Initializing and updating the neuPrint graph data. The database is initialized by ingesting data via a series of CSV files. To update the data

incrementally, a service monitors dataset changes recorded in Apache Kafka and makes incremental updates through neuPrintHTTP.

ingestion was performed on a machine with 256GB of memory

and 20 processors.

The smaller two datasets, which were some of the largest

connectomes produced when they were published, load in only

a few seconds. Notably, the much larger hemibrain dataset’s load

time shows that performance scales well with increased size. As

mentioned earlier, we format CSV files to streamline ingestion

into neo4j. Notably, the CSV files are about the same size as the

neo4j database on disk. The relatively small database sizes for

the hemibrain dataset suggest that a even a considerably larger

dataset could reside completely withinmemory on a large server.

We expect no problems handling the full fly nervous system

(currently in process), as it is less than an order of magnitude

larger than the hemibrain and will still sit comfortably within

the memory of a single server.

A natural question is whether the advantages of a graph

representation will scale to still larger connectomes. The answer

is almost surely yes. Even the most speculative connectomes

pale in size to existing graph applications in fields such as social

media. Consider, for example, a hypothetical mouse connectome

(Abbott et al., 2020), a project at least a decade out. The

mouse brain is about 508 mm3 (Badea et al., 2007), and the

synapse density in the cortex is roughly 7.2 × 108 synapses

per mm3 (Schüz and Palm, 1989). Assuming this density holds

throughout the brain, this gives a total of about 400 billion

synapses, which will determine the overall size of the graph.

Social media companies have been handling graphs of similar

size for years. Facebook, for example, was processing trillion

(1012) edge graphs as early as 2015 (Ching et al., 2015). General

purpose graph packages have recently scaled to this size as well -

in particular, neo4j has already been used on graphs with billions

of elements (Fernando et al., 2020), and demoed with 1.2 trillion

objects using 240 TB of data, spread across 100 processors

TABLE 2 neuPrint graph representation performance.

Dataset Ingest (s) Nodes Links Size (GB)

medulla 8 802K 1,625K 0.15

mushroom body 8 486K 962K 0.09

hemibrain 632 190,746K 369,538K 36

The ingestion and storage requirements for three example datasets.

(Hunger, 2021). Finally, there is a strong research community

extending graph algorithms to ever larger data sets—see efforts

such as Reza et al. (2017) and Zhang et al. (2021), among many

others. Overall, there is very little doubt that graph handling will

be ready when needed by larger connectomic efforts.

For the next two subsections, we evaluate runtime

performance of various queries on the hemibrain dataset. The

graph data was stored in a cloud VMwithmemory capacity large

enough to hold the entire dataset. Given the remote location of

the server, each query includes several milliseconds of latency to

access it. All runtime numbers reported are a result of averaging

runtimes of over 50 independent queries.

3.1. Performance decisions

As discussed in Section 2.4, the graph data model include

features that are not strictly needed, but enhance ease of use and

runtime efficiency. Three of these decisions were the distinction

between segments and neurons, the inclusion of ROIs on

connections, and the grouping of synapses into synapseSets.

The impact of these decisions was tested through the three

different scenarios shown in Table 3. For each scenario, we

query the database in two ways: optimized queries that leverage
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TABLE 3 Optimized vs. non-optimized query performance.

Query type neuPrint time

(ms)

No optimization

(ms)

region query (:Neuron vs.

:Segment)

480 31,883

ROI info query 27 58

Synapse fetch 42 238

Examples of different types of queries and the performance in milliseconds of querying

using our full data model vs. a simplified subset of the data model.

the full data model and less-optimized queries that ignore the

redundant information, giving the results we would get with a

more simplistic data model. In all cases, the optimized queries

are at least 2x faster. While the absolute runtime is relatively

fast for two of these scenarios, we find that when the server is

exposed to the public, we typically get between 1 and 10 queries

per second (see Supplementary Material). Hence a 2x runtime

improvement is important inmanaging the compute load on our

servers, and hence the cost of providing this service.

Test 1: Segment vs. neuron. This test evaluates the decision to

partition a subset of :Segment nodes into :Neuron nodes.

The motivation was to focus queries on the more important,

but less numerous :Neuron nodes. The below queries count

the number of neurons or segments over a certain size in

each region.

Counting neurons for an ROI.

MATCH (n :Neuron) WHERE n.ROI AND n.size >

100000000 RETURN count(n)

Counting segments for an ROI.

MATCH (n :Segment)WHERE n.ROIANDn.size> 100000000

RETURN count(n)

In this example, the large performance disparity is also

due to ROI names being indexed to :Neuron. But even if

we force a linear scan through all :Neuron nodes (which

involves 1/100 the number of total segments), we still observe

queries under 1 s. We could in principle create indices for

every property for a segment, but each index comes with a

storage cost which is magnified because there are many more

segments than actual neurons. Therefore, having a special

:Neuron designation potentially reduces the database size and

can improve performance.

Test 2: roiInfo. This test checks the performance of using the

:ConnectsTo property, roiInfo, vs. examining the ROI

information by inspecting individual synapses. We constructed

two queries examine a given connection to see if the connection

is in a given ROI. The first uses the roiInfo property on the

connection edge. The second one inspects region information

by looking at all the synapses within a synapse set. The detailed

queries are specified in the Supplemental Material. We find that

TABLE 4 Performance of example queries.

Query type Runtime (ms)

Connections to traced neurons 27

Path search 4,840

ROI projection 487

Reciprocal connection 27

Partner completeness 29

Name search 46

Runtime in milliseconds is averaged over several different queries of the same type.

using the roiInfo property results in a 2x faster query, and

more importantly, the query is much more compact and easier

to understand.

Test 3: Accessing synapses through synapse sets. This test

examines our decision to use :SynapseSets as a mechanism

of grouping synapses together. In general, by grouping synapses

together, we can minimize the number of edges on a given

:Segment in the graph model, presumably accelerating queries

involving segments. In our model, :SynapseSet nodes are

specific to each connection between two segments. We compare

queries that download all synapses for a given connection

either using synapse sets or by determining the relationships by

exploring the lowest level :SynapsesTo relationship.

Both Cypher queries are relatively complex to express.

However, the synapse sets enable much faster performance.

3.2. Example queries

In this section, we survey different analysis use cases and

provide a sense of runtime performance averaged over several

runs, as shown in Table 4. Notably, most queries require only

a fraction of a second. For the two queries that involve a

single neuron (“connections to traced neurons” and “partner

completeness”), running the same command on the largest

neuron (“APL,” more than 100K synapses) resulted in a time

only twice the average. A wider distribution was seen for the

most complex query, involving looking for all 3-hop paths

between several random pairs of neurons. The average runtime

for this query is under 5 s but we noted a wide variance

with many queries finishing under a second and some taking

around 30 s. Again, the specific Cypher queries are given in the

Supplementary Material.

Example 1: sum the connection weight of a specified neuron to

all partners with status “traced.”

Example 2: find all paths up to length 3 between two neurons,

where all connections have weight >=5.

Example 3: Count the neurons projecting from one region to

another.

Example 4: Find if a reciprocal connections exist between a pair

of neurons.
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Example 5: Find reconstruction incompleteness for a neuron’s

outputs (returns the distribution of reconstruction statuses).

Example 6: Count the neurons whose types match a

regular expressions.

4. Results (open access)

Now that NeuPrint has been available for almost 2 years,

we can look back and see how open access to the connectome

is working. For this project, we published the data alone in

January 2020, without any significant analysis. This involved a

bioRχ iv paper (Xu et al., 2020) and making the web site and

APIs available to the public for queries. About 8 months later,

we published a more polished paper in eLife (Scheffer et al.,

2020) and an updated dataset on the web. The delay was for

several reasons. The first was the time required by peer review

and the resulting responses and corrections. The second was to

include some analysis, as it was thought that no biology journal

would accept a paper with only data and no analysis of that data.

The final reason was self-imposed (and the longest in terms of

time). By the time of the pre-print, we had assigned names and

types to all neurons in the commonly researched areas of the

brain, where knowledge and experts are plentiful. Thus, the pre-

print, and the initial data, covered almost all of the questions

asked by existing researchers. But for the formal release, we

wanted consistent naming and typing of all the neurons in the

hemibrain, so when these were studied in the future, we could

avoid name conflicts and inconsistent notation. This was a very

worthwhile exercise, but its benefits were in the future, not the

present. There was no benefit to immediate, practical questions,

since the changes were limited to the largely unstudied region of

the brain, and the existing researchers did not need our analysis.

We suspect this is common in scientific research, where the data

is useful well before it is perfect and fully analyzed. In such cases

releasing the data well before publication can speed up progress

in the field as a whole.

Since the initial release, we have tracked several metrics to

see how well the open access to both the data and publications

has worked. For this analysis, we used readership and download

data from both bioRχ iv and eLife , citation data from Google

FIGURE 5

Relative rates of readership, database access, and cites. The readership and download rates are the sum of the figures from the bioRχ iv and

eLife sites. The database access rates are from our logs. The citation rates are from Google scholar, but are only shown yearly and have been

converted to monthly rates for this graph. The vertical lines are the initial BioRxiv publication (Xu et al., 2020) and the formal, peer-reviewed

eLife article (Sche�er et al., 2020).
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FIGURE 6

Cumulative unique visitors. The solid line is a hypothetical rate of three new users per day. We assumed this rate during our data gap, as this is

consistent with the rest of our data. The solid line to the left is the date of publication of the first bioRχ iv paper. The arrow shows the later formal

publication in eLife that contained better cell typing, analysis, and discussion.

scholar, and on-line access statistics from our internal web server

logs. These web access logs have significant limitations. They

were designed to support our software engineering, and not

intended to support open-accessmonitoring. The logs are from a

single machine, while several were supporting queries. This does

probably not affect the count of users much, as the typical user

submits many queries during a session and most likely at least

one query would appear on each machine running at the time. It

does mean the query counts are low, likely by a factor of at least

two. Some queries (such as those containing improperly escaped

characters) are not handled correctly by our logging software,

and were ignored here. There is a gap in early 2021 where the

some logs were accidentally deleted. Despite these problems, the

data is believed to fairly represent the actual usage.

These data are summarized by month in Figure 5. It would

appear there are two different audiences for our papers and data.

One group, likely people already working in the field, started

downloading the PDF of the article, and logging onto the web

site, as soon as the bioRχ iv paper was released. These user’s

behavior seems largely unaffected by the release of the formal

article, a conclusion supported by the more detailed log statistics

in Figure 6. On the other hand, formal publication increased

the number of readers who read the article on line, but not

the number of downloads or logins. We suspect this group of

scientists who are interested, but not doing research in the area.

Figure 6 shows the number of unique visitors over the 700

days the data has been available.

As mentioned above, it is “tribal knowledge” that data alone

is insufficient for a prestige journal publication. One implication

is that scientists who work full time to generate excellent data

(as opposed to analyzing it) do not get full credit for their

contributions. Our results show that data alone can indeed make

a significant contribution, and that data generation, as well as

data analysis, perhaps deserves consideration by major journals.

Overall, it would appear that in this case, the scientific

usage of our results was advanced by about 8 months by

publishing the data as soon as the most commonly used subset

was solid, and not waiting for full completion, analysis, and

journal publication. Similar conclusions has been reached about

the effect of preprints and rapid data release on the progress of
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research into COVID-19 (Watson, 2022). Some scientists have

worried that publishing the raw data early would enable others

to examine the raw data, cherry-pick the easiest and most sexy

results, and then rush them into publication and hence steal

credit from those that did the hard work. This did not happen

in our case.

Some interesting statistics from our experience (see

Supplementary Material): On an average day, 30 people will

read the article on-line, 10 will download the PDF, and 60 will

log onto the web site. Of the 60 who logged on, 57 are repeat

customers and 3 are new. All these reads and queries will result

in about 0.5 cites.

The time constant to steady state after the

initial bioRχ iv release was about 13 days (see

Supplementary Material). Roughly 30% of Drosophila scientists

work on weekends. The rate of queries to the database is often

more than one per second, and sometimes more than 10 per

second, so efficiency optimizations were well worthwhile.

A non-scientific issue is the cost of maintaining open

access. There is no public repository for connectomic data, so

researchers in the field, and some journals, have been pressing

for a pledge to keep the on-line resources available for at least 10

years. Currently, the neuPrint server is a $50,000 machine sitting

outside our institutional firewall. If we needed to purchase an

equivalent service from a cloud provider, we estimate the cost at

about $5,000 per year, for a similar total cost. Another expense

is the storage needed for the data, particularly the gray-scale

data which is about 7TB. For now, Google is bearing this cost

as a part of our cooperation in connectomics. If we needed to

pay for this, it would be another $2,000 per year. In addition

to these costs, there is the cost of software maintenance. Even

though we are not changing the published data at this point,

things can and do still go wrong as compute infrastructures

evolve. This cost is hard to estimate, particularly for future

potential changes, but is likely comparable to the other expenses

mentioned. Overall, therefore, we estimate the cost of providing

open-access to the data over a 10 year span to be roughly

$100–200K. This is a non-negligible sum for all except the

largest projects.

Based on our results, we now believe the time is right for

a centralized connectome data bank, as the genetic community

has in GenBank (Benson et al., 2018). This would likely be

funded through the BRAIN initiative (Mott et al., 2018) or

perhaps its global extension (Yuste and Bargmann, 2017).

This would address two major problems facing the field.

First, there is currently no common format, or common

access method, for accessing the connectomes of different

groups. A centralized repository would by necessity make this

effort a priority. This takes on even more significance as

comparing connectomes will become its own field as soon as

enough connectomes are available. Second, this would solve the

problem of connectomic data becoming inaccessible as people

and institutions move on. Right now, keeping connectomics

data online depends on the good will, and funding, of

the scientists who did the original research. This is not a

sustainable model.

5. Conclusions

We introduce the neuPrint ecosystem in this paper as a

mechanism to aid in large-scale analysis of EM connectomes.

The central component of neuPrint is the graph data model that

stores the data in an efficient manner, accessible to a variety of

users and use cases. To this end, we highlight both a custom

interactive web interface and programmer interfaces. Our results

show that our database enables a diverse set of queries with a

dataset containing millions of synaptic connections.

Creating platforms and resources for large EM connectomic

datasets pose different challenges than other neuroscience

resources, such as VirtualFlyBrain (Milyaev et al., 2012), the

Allen BrainMap (Sunkin et al., 2012), or theMouse Light project

(Winnubst et al., 2019). These resources typically involve the

collection of several (often smaller) datasets that are combined

to form canonical atlases. In the case of connectomes, a single

dataset is expensive to acquire and often very large. The notion

of a canonical connectome atlas is less meaningful currently. As

such, neuPrint emphasizes access to specific datasets rather than

a general compilation of many datasets.

An EM image volume often contains much more

information than simply neurons and synapses. Future

work will involve incorporating information about the location

and arrangement of various sub-cellular organelles into

the data model, as we have already done for mitochondria.

We believe that tools like neuPrint will be critical for

managing the complexity of such rich datasets, especially

as the means for extracting this information automatically

become more reliable.

In terms of open science, we find that a bioRχ iv release and

internet access to the data reaches a subset of practitioners in

our field several months earlier than formal publication, and for

this subset formal publication has little additional effect. Formal

publication, however, does reaches more readers in general. We

find a significant fraction of the readers of the article proceed

to examine the data directly. We also find that providing, and

keeping, the data on line impose a substantial additional cost to

connectomics research.
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