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The Human T-cell Leukemia virus type 1 (HTLV-1) causes an array of

pathologies, the most aggressive of which is adult T-cell leukemia (ATL), a

fatal blood malignancy with dismal prognosis. The progression of these

diseases is partly ascribed to the failure of the immune system in controlling

the spread of virally infected cells. HTLV-1 infected subjects, whether

asymptomatic carriers or symptomatic patients are prone to opportunistic

infections. An increasing body of literature emphasizes the interplay between

HTLV-1, its associated pathologies, and the pivotal role of the host innate and

adoptive immune system, in shaping the progression of HTLV-1 associated

diseases and their response to therapy. In this review, we will describe the

modalities adopted by the malignant ATL cells to subvert the host innate

immune response with emphasis on the role of the two viral oncoproteins

Tax and HBZ in this process. We will also provide a comprehensive overview on

the function of innate immunity in the therapeutic response to chemotherapy,

anti-viral or targeted therapies in the pre-clinical and clinical settings.
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1 Human T-cell lymphotropic virus
type I-associated diseases: A brief
overview with emphasis on adult T
cell leukemia

The Human T-cell leukemia virus type 1 (HTLV-1) is the

first oncogenic retrovirus associated with a human disease

(1). HTLV-1 endemicity spans several continents, including

Central and Latin America, the Caribbean islands, Southern

Japan, Intertropical Africa, Romania, North-East Iran in the

Middle East, Melanesia and Central Australia (2–6). Around

20 million people are infected worldwide, with only 5–10%

who develop diseases, depending on their ethnic origin.

HTLV-1-induced diseases range between inflammatory,

neurodegenerative and malignant disorders. These include

uveitis, dermatitis, arthritis, bronchiectasis (Reviewed in (3),

and the HTLV-1 associated myelopathy/tropical spastic

paraparesis (HAM/TSP), leading to a chronic neurological

disease of the central nervous system (7, 8). Yet, the most

aggressive form of HTLV-1-associated disorders is adult T

cell leukemia (ATL) (9). ATL, discovered in Japan (9), is a

hematological neoplasm with dismal prognosis. ATL

develops after a very long latency period exceeding 50

years in some patients (reviewed in (10, 11). It is

characterized by the clonal expansion of mature activated

T cells (CD3+ CD4+ CD5+ CD7- CD8- CD25+) (12), and is

subdivided into four clinical subtypes (acute, lymphoma,

chronic, and smoldering) (13). “Indolent ATL” regroups the

smoldering and chronic subtypes, while “aggressive ATL”

describes the acute and lymphoma subtypes. Among all

peripheral T cell lymphomas, ATL associates with the

worst prognosis (14), with a 5-year OS predicted at 55, 31,

10 and 8% in the smoldering, chronic, lymphoma and acute

subtypes respectively (15).

Undeniably, HTLV-1 also predisposes patients to

profound immunosuppression and severe opportunistic

microbial infections such as Pneumocystis j iroveci ,

Cryptosporidium parvum, fungal infections, activation of

the Cytomegalovirus (16–18), Strongyloides stercoralis (19),

Staphylococcus aureus (20), Mycobacterium tuberculosis (18),

Sarcoptes scabiei (21). Moreover, higher bloodstream

infections correlate with higher HTLV-1 proviral loads in

patients (22).

It is intriguing how the same virus causes vastly distant

diseases, and this process is highly modulated by the host/virus

interplay. In that sense, host factors ostensibly play a key role in

the different pathogenic outcomes of HTLV-1 infections. Not

only HAM/TSP and ATL develop in different populations of

HTLV-1 carriers but a flagrant immunological difference

between the two categories of patients is well established.

HTLV-1 carriers and HAM/TSP patients exhibit a Th-1
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immune profile, while ATL patients display a Th-2/Treg

response [reviewed in (23)]. It is also acknowledged that

HTLV-1-specific cytotoxic T lymphocytes (CTLs) are highly

activated in HAM/TSP patients, but are weaker in ATL patients,

and these reduced CTLs predict a risk factor for the development

of ATL (24–29). In addition, type-I interferon (IFN) plays a role

in the differential suppression of HTLV-1 transcript levels

between both types of patients (30), emphasizing a key role of

the innate immune response, as another host determinant, in the

modulation of HTLV-1 associated diseases (30). Moreover, the

cytokine profile in the serum varies between HAM/TSP and

ATL. Indeed, IL-10 levels are elevated in the serum of ATL

patients (31), while IFN-g, TNFa, CXCL9, and CXCL10 pro-

inflammatory cytokines and chemokines are elevated in HAM/

TSP patients (32).

At the viral level, the status of expression of viral proteins is

critical in eliciting host immune responses, hence modulating

HTLV-1 pathogenesis. Two main viral regulatory proteins, Tax

and HBZ, play an essential role in this process. Recently, a dose-

dependent increase in interferon (IFN)-g and interleukin (IL)-8

was demonstrated in response to increasing doses of Tax+ HBZ+

small extracellular vesicles, and the expression of these two viral

proteins in the small extracellular vesicles correlated with the

proviral load and inflammatory markers in HTLV-1

carriers (33).

In this review, we will focus on ATL and on the interplay

between these two viral proteins (Tax and HBZ) with the host

innate immunity in modulating ATL leukemogenesis and its

therapeutic responses.
2 HTLV-1 encoded proteins with
emphasis on Tax and HBZ

The HTLV-1 provirus is flanked by the 5’ and 3’ “Long

Terminal Repeat” sequences. HTLV-1 genome encodes for

the characteristic structural retroviral genes (gag, pol, and

env), in addition to numerous accessory and regulatory

proteins. Indeed, the pX region of the provirus has six open

reading frames, five on the plus-strand and one on the minus-

strand. After alternative splicing, the encoded proteins

include Tax, Rex, the HTLV-1 basic leucine zipper protein

(HBZ), p8/p12 (where p8 is derived from proteolytic cleavage

of p12), p13, p21 and p30 (reviewed in (34, 35). It is well

documented that during the long latency period, Rex

regulates the post-transcriptional viral gene expression and

the stability of the viral transcripts, while p12, p13 and p30

contribute to viral persistence through degradation of Major

Histocompatibility Class-1 (MHC-I), alteration of T-cell

receptor signaling, and suppression of Tax expression (36).

More recently, the effect of monocytes and NK cells, was

investigated in primary HTLV-1 infection of macaques.
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Exposure of animals to an HTLV-1 p12 knock-out mutant

demonstrated an impaired infectivity, which was fully

restored only when NK cells were depleted. Moreover, the

chief role of NK cells in primary infection and the role of p8/

p12 in inducing viral persistence in monocytes and in

offsetting the cytotoxic effect of NK and CD8+ T cells was

demonstrated (37).

Among all described regulatory proteins, Tax and HBZ

proteins were lengthily studied and are tightly allied to HTLV-

1 pathogenesis (38–41). While Tax is encoded by a sense mRNA,

and upregulates various host genes promoting cell activation and

proliferation [reviewed in (42–45)], HBZ is encoded by the

minus strand of the pX region, and plays several roles, mostly

counteracting Tax-induced cellular phenomena (Table 1) (see

sections below) (35, 47, 53, 64).
2.1 Tax oncoprotein: A major factor in
ATL leukemogenesis

2.1.1 ATL-derived cells are dependent on Tax
expression for their survival

Tax is a 40 kDa protein exhibiting a key role in

transformation and oligoclonal expansion of virally infected

cells, hence ATL initiation and progression (12, 65). Tax

protein is not detectable in most ATL cells (66–68), possibly

due to multiple DNA methylations identified at its 5’LTR

promoter or deletions of this 5’LTR [For a review (43)]. Some

studies suggested that the undetectable Tax protein levels are

also due to its strong immunogenic properties, ultimately

leading to the rapid elimination of Tax expressing cells by the

host immune system (69–71). Despite these undetectable

levels, silencing of Tax in HTLV-1-infected and ATL

derived cells results in cel l death, pinpointing the

dependence of these cells on Tax continuous expression

(58, 72). Moreover, Tax sporadic bursts occur in a very
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small percentage (1-3%) of ATL-derived cells at a time, to

maintain and ensure the survival of the whole malignant

population (73).

2.1.2 Tax is oncogenic and interferes with key
cellular pathways inducing leukemogenesis

Tax transactivates the plus-strand transcription by recruiting

cAMP response element binding protein (CREB) and CBP/p300

and P/CAF transcriptional coactivators to Tax response

elements (TREs) (74). Tax alters key cellular pathways

controlling cell migration, virological synapses, and protein

intracellular distribution (41–43, 74). In addition, Tax

interferes with the cellular epigenetic machinery (75), down-

regulates the expression of various microRNAs (76–79) and

increases angiogenesis, invasion and extravasation of ATL cells,

hence affecting the cellular microenvironment (80, 81).

Tax-mediated cellular consequences are partly due to its

post-translational modifications (82–85), which allow its

shuttling between different cellular compartments, enabling it

to interfere with/activate a plethora of essential cellular

regulators (41). Tax is primarily nuclear (Semmes and

Jeang,1996; Bex et al.,1997), and colocalizes with various

components of the NF-kB pathway (Bex et al.,1997), SUMO-1,

2, and 3 (Lamsoul et al., 2005; Nasr et al., 2006) and the SUMO-

E2 ligase, Ubc-9 (Kfoury et al., 2011). Despite its abundant

nuclear localization, Tax cytoplasmic expression was also

described (Burton et al., 2000; Cheng et al., 2001). Indeed, Tax

localizes with the microtubule organizing center, and with

virological synapses (Igakura et al., 2003; Alefantis et al., 2005;

Kfoury et al., 2008; Nejmeddine et al., 2009). More importantly,

Tax cytoplasmic localization targets IkB-a/b for proteasomal-

mediated degradation, to activate the NF-kB pathway (Nicot

et al., 1998), paramount for the proliferation and survival of

infected T cells (43, 84, 86–95). The activation of this pathway

has pleotropic functions on top of which is the modulation of the

host immune response (see section 2.1.3 below). Indeed, Tax-
TABLE 1 Summary of some antagonistic cellular effects of Tax and HBZ.

Tax HBZ

Tax activates NF-kB, CREB, AP-1, and NF-AT (reviewed in (42, 43, 46). HBZ suppresses CREB, AP-1, NF-AT and classical NF-kB pathways
(47).

HTLV-1 Tax protein is undetectable in freshly isolated peripheral blood mononuclear cells
from HTLV-1-infected individuals, but is rapidly induced in ex-vivo cultures (48).

HBZ mRNA is continuously detectable by RT-PCR (49, 50), and small
amounts of HBZ protein were detected in primary ATL cells
(51).
The cytoplasmic/nuclear localization of HBZ may play a role in HTLV-
1 oncogenesis (52).

High Tax levels induce senescence (39, 53–55). HBZ expression counteracts Tax-induced senescence (39, 53).

Tax is a major target antigen for HTLV-1-specific CTLs (24, 56, 57). Lower HBZ-specific CTLs (56).

Tax promotes IL-10 production (58, 59). HBZ promotes IL-10 production (47, 60).

Tax promotes TGF-b production but suppresses TGF-b/Smad signaling in HTLV-1-infected
cells (61, 62).

HBZ enhances TGF-b/Smad signaling, inducing FOXP3, which is
frequently expressed in ATL cells (63).
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mediated-constitutive NF-kB activation occurs at the very early

stages of HTLV-1 infection, and this pathway (canonical and

non-canonical) remains constitutively activated in Tax

expressing cells, ATL derived cell lines, and freshly isolated

ATL cells. However, persistent Tax-induced NF-kB activation

results in cellular senescence (53, 54, 96, 97), potentially offering

a further explanation of the undetectable levels of Tax protein in

vivo. Yet, recent studies suggested that the evasion from

replicative senescence in HTLV-1 infected cells is achieved

through reactivation of human telomerase (hTERT), and

highlighted a role of Tax in the transcriptional activation of

the hTERT promoter, but also in hTERT enzymatic activity,

through Tax-mediated NF-kB activation (98, 99).

Tax also induces genomic instability through inhibition of

cell cycle checkpoints (100–102), DNA repair mechanisms (103,

104), induction of chromosome instability (105) and aneuploidy

(35, 106). Besides, Tax functionally inactivates p53 (107), and

inhibits p53-induced apoptosis via cytoplasmic sequestration of

CBP/p300 (108). Altogether, these Tax-mediated cellular

phenomena result in increased proliferation and accumulation

of somatic mutations due to profound genomic instability.

Finally, Tax oncogenic capacity is well recognized, as its sole

expression transforms T cells in vitro, induces leukemia in

transgenic mice (109–115) and transformation in Drosophila

transgenic flies (116). Nevertheless, primary ATL cells display

most properties of Tax expressing cells (117), and carry somatic

mutations mimicking Tax cellular effects, in particular

mutations targeting the T-cell receptor and the NF-kB
pathways (106, 118).

2.1.3 Immunological consequences of HTLV-1
infection and Tax expression

The interplay between HTLV-1 and the innate immune

system was well studied (For a review (119). In the cytoplasm

of infected cells, HTLV-1 viral RNA carrying 5-triphosphate is

detected by the pattern recognition receptor-1 (RIG-I),

culminating in the transcription of the interferon response

factor-3 (IRF3) (119). This triggers the activation of the

interferon anti-viral response. HTLV-1 can also infect

dendritic cells (DCs), which are the foremost producers of

type I interferon (120, 121). Cell–cell HTLV-1 infection

induces type-I IFN production in plasmacytoid DCs (122).

Furthermore, in de novo infection with cell-free HTLV-1,

pDCs or monocytes produce type I IFN through TLR7 or

STING signaling pathways, seemingly recognizing HTLV-1

RNA or its reverse transcribed intermediate DNA (123, 124).

To counteract this response, HTLV-1 induces the expression of

the suppressor of cytokine signaling gene SOCS1. Indeed, Tax

interacts with and stabilizes SOCS1, an inhibitor of interferon

signaling to inhibit RIG-I-dependent antiviral signaling and

hijacking anti-viral IFN signaling (125). Another effect of Tax

counterpoising type I IFN responses was also described. Indeed,
Frontiers in Immunology 04
Tax suppresses the TBK1 kinase which phosphorylates IRF3

impairing the production of type I IFN (126).

As previously mentioned, Tax protein levels are undetectable

in vivo (49, 66, 68, 127). Several mechanisms were proposed to

explain this finding. Tax expression triggers a strong CTL

response (128, 129) and HTLV-1 infected cells and ATL cells

frequently reduce the expression of Tax, to evade this CTL-

mediated lysis and maintain the in vivo viral persistence (64,

130–134). In addition to Tax specific CTLs, anti-Tax antibodies

are reported in ATL patients, pointing to the expression of the

protein in vivo, even if at undetectable levels (135). Moreover,

donor derived anti-Tax CTL were described following allogeneic

hematopoietic cell transplantation for ATL (136). Prominently,

the efficacy of a Tax peptide-pulsed dendritic cell vaccine in

treating Tax-positive ATL patients was highlighted, further

capitalizing on in vivo expression of Tax (137).

More recently, the role of Tax in modulating three members

of the Pim serine/threonine kinases to enhance survival and

inhibit apoptosis, was elucidated. Indeed, Tax increased Pim-1

and Pim-3 expression and decreased Pim-2 expression, while the

three members of Pim family bind Tax, to lessen its expression

in response to increased CTL responses. This feedback

regulatory loop between the viral and cellular proteins suggests

a potential modulation by Pim kinases of the immune escape of

HTLV-1-infected cells, through partial suppression of the host

immunogenic responses favoring the persistence of the virally-

infected cells (138).

Finally, targeted therapies against Tax led to selective growth

arrest and apoptosis in vitro and in vivo. In that sense, treatment

with arsenic trioxide (AS) and interferon-alpha (IFN), which

induces Tax proteasomal degradation, resulted in selective cell

death of ATL cells, eradicated murine ATL through abrogating

the activity of ATL leukemia initiating cells (LIC), and ensured

long-lasting responses in ATL patients (See section below) (31,

58, 109, 139–142).

Finally, Tax-mediated constitutive activation of the NF-kB
pathway results in a significant expression in cytokines and their

receptors (43, 90, 117, 143, 144), notably Interleukin IL-6/IL6R,

IL-2/IL2R, IL-9, IL-15, IL-13, interferon-g (IFN-g), tumor

necrosis factor-beta (TNF-b), and the chemokine (C-C motif)

ligand 2 (CCL2), which contribute to inhibition of apoptosis and

enhanced survival of HTLV-1 infected cells (145, 146).
2.2 HTLV-1 basic leucine zipper (HBZ)

2.2.1 HBZ attenuates Tax-mediated cellular
processes

HBZ, a bZIP nuclear factor, is encoded by the minus-

strand of the HTLV-1 provirus (39, 64, 147). HBZ

transcription occurs at the 3’LTR promoter, generating two

transcripts, the spliced sHBZ and the unspliced usHBZ
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transcripts (64). The expression of sHBZ is four times higher

than that of unHBZ in both HTLV-1 infected and ATL cells

(148). Unlike Tax, HBZ is persistently expressed in vivo, but

at a low level (50). This might be due to the absence of DNA

methylation, the intact 3’ LTR promoter, and the lack of

abortive mutations in hbz gene. In spite of the low expression

levels and the low T cell immunogenicity (149), an effective

CTL response to HBZ correlates with a low proviral load in

vivo (56, 149, 150). Furthermore, the localization of HBZ

differs according to different HTLV-1 associated diseases.

While HBZ is exclusively localized in the cytoplasm of

HTLV-1 asymptomatic carriers and HAM/TSP patients, it

exhibits a nuclear localization in ATL cell lines. In ATL

patients, HBZ localizes to the cytoplasm and the nucleus of

cells irrespective of the clinical status, but with a pronounced

preference for the cytoplasmic localization, suggesting a role

of HBZ cytoplasmic/nuclear translocation in HTLV-1

oncogenesis (52).

HBZ belongs to the basic leucine zipper protein class. As

such, it controls the DNA binding or transcriptional activities of

CREB-2, JunB, and c-Jun (AP-1) (134). By binding CREB-2,

HBZ bZIP interacts with CREB/CREB-2, preventing it from

binding to Tax-responsive element (TRE) and CRE, hence

inhibiting Tax-mediated HTLV-1 transcription from the

5’LTR (64, 151). HBZ also induces T-cell proliferation through

interaction with the activator protein 1 (AP1) superfamily

proteins, mostly JunD (152). HBZ/JunD heterodimer enhances

the transcription of the human telomerase reverse transcriptase

(hTERT), which may promote cell proliferation (152). HBZ also

inhibits the canonical Wnt pathway, which is deleterious for

ATL development, and upregulates the transcription of Wnt5a,

promoting the proliferation of ATL cells (153). Importantly,

HBZ knock-down (50) or knock-out (154) impede cell

proliferation (155).

At the functional level, HBZ is almost as pleiotropic as Tax

(156), and many HBZ functions oppose Tax-induced cellular

effects (Table 1). Precisely, HBZ inhibits Tax-mediated

transcriptional activation of CREB, AP-1, NF-kB, and Wnt

(157, 158). In addition, HBZ inhibits the canonical NF-kB
pathway (157), alleviating Tax-induced cellular senescence

(97). In an in vivo Drosophila melanogaster fly model, HBZ

expression failed to activate NF-kB or to induce transformation

or senescence, yet HBZ successfully activated epigenetic core

components leading to consequent epigenetic changes (53).

Strikingly, HBZ expression in tax transgenic flies prohibited

Tax-induced NF-kB activation, preventing both malignant

proliferation and senescence (53).

2.2.2 HBZ induces inflammation and offsets
anti-Tax immune response

HBZ induces the expression of CCR4 to promote cell

migration and proliferation of HTLV-1-infected cells (159). As

previously mentioned, Tax-expressing cells constitute a major
Frontiers in Immunology 05
target of CTL in vivo (160, 161), due to the elevated

immunogenic properties of Tax. In contrast, HBZ is less

immunogenic than Tax and anti-HBZ antibodies are rarely

detected in infected patients (156). As such, through the

continuous expression of HBZ, which offsets Tax expression

(162), HTLV-1 infected cells lessen Tax expression to evade the

host immune response (24, 57).

Despite its low immunogenicity, HBZ can induce

inflammation. Indeed, the vast majority of hbz-transgenic mice

develop a spontaneous systemic inflammatory disease (163).

Interestingly, HBZ also stimulates the TGF-b/Smad pathway,

upregulates Foxp3 expression, hence converting the T cell

population into Tregs (164), to reduce the immune response

(165). Likewise, HBZ promotes the secretion of IFN-ɣ in hbz

transgenic mice, highlighting the role of HBZ in the induction of

inflammation (166). Moreover, HBZ impairs cell-mediated

immunity in hbz transgenic mice which fail to mount an

optimal Th1 immune response upon challenge with Listeria

monocytogenes or herpes simplex virus (150). In hbz transgenic

flies, HBZ expression failed to activate NF-kB, a key pathway in
the activation of the immune response (53). Indeed, HBZ

attenuates the canonical NF-kB pathway, decreasing the

expression of genes associated with innate immunity and

inflammatory responses (157). Remarkably, HBZ totally

abrogates Tax-activated canonical NF-kB, enabling cells to

escape senescence and to proliferate incessantly (53, 167).

HBZ also affects the transcription of several NF-kB target

genes such as IL-8, IL-2RA, VEGF, CCND1, VCAM-1, and

IRF4 (39, 168).
3 Interleukin-10 in ATL: Interplay
with Tax and HBZ and role in
immunosuppression

Interleukin-10 is an immunosuppressive cytokine exhibiting

high levels in ATL patients and leading to an immunosuppressive

profile (31, 169). IL-10 plays a role in the proliferative capacity of

ATL cells through its downstream activation of STAT3 signaling

(59). Recently, IL-10 was shown to be chiefly produced by the

CD25+ cells (58), and a critical role of Tax in its production was

depicted. Indeed, silencing Tax in HTLV-1 transformed or ATL

derived cell lines abrogated IL-10 levels in these cells (58). Other

cells and/or factors may also contribute to elevated IL-10 levels.

Indeed, T helper cells, Tregs, monocytes, macrophages, and

dendritic cells may produce IL-10. Moreover, the microbiome in

HTLV-1 infected patients may contribute to these elevated IL-10

levels. In that sense, the predominant association of Strongyloides

stercoralis with ATL may induce IL-10 and TGF-b (170). HBZ

also modulates IL-10, through induction of expression and

induced-promoter acetylation levels of TIGIT, Foxp3 and CCR4

(171). Moreover, the prolonged IFN activation by persistent viral
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infection can lead to an IL-10-predominant cytokine imbalance

(172, 173).
4 Immunotherapies in the clinical
management of ATL

ATL management remains intricate, after more than four

decades of research. Attempts to tackle ATL by targeting

leukemic cells with chemotherapy and monoclonal antibodies,

without targeting HTLV-1, have failed [reviewed in (45)].

Despite slight improved outcomes with chemotherapy in

newly diagnosed aggressive ATL, particularly the lymphoma

subtype (174, 175), chemotherapy alone exhibits only a minimal

effect on long-term survival, specifically in the acute subtype (11,

176). Allogeneic hematopoietic cell transplantation (HCT) is

used in ATL (Iqbal et al., 2019), and improves the long-term

survival in around one third of transplanted patients (177, 178).

Yet, less that 10% of ATL patients can make it to transplant and

hence the cure options using this approach do not exceed 5% of

ATL patients (Hishizawa et al., 2010; Bazarbachi et al., 2014).

Since ATL is secondary to HTLV-1 infection, the

combination of two antiviral agents, AZT and IFN was

investigated in ATL. High response rates using this

combination were achieved in newly diagnosed and

relapsed ATL patients (10, 175, 176, 179–188). The

smoldering and chronic subtypes benefited most from AZT/

IFN which became the standard treatment of indolent ATL in

most parts of the world (10, 175, 176, 180, 185, 189, 190). At

the molecular level , AZT/IFN inhibits the reverse

transcriptase activity and modifies the clonality pattern in

responding ATL patients (191–193). Despite this clinical

improvement, AZT/IFN was not curative and patients with

acute and lymphoma ATL remained a population with unmet

medical need.

Due to the importance of the host immune responses and

the host microenvironment, in the progression of ATL,

immunotherapy using monoclonal antibodies (mAb) and

immune-modulatory drugs was investigated (10, 11, 194,

195). Tested mAbs mostly targeted CCR4, CD25, CD30,

CD52 and the surface transferrin receptor (196–198). The

humanized antibody mogamulizumab, targeting CCR4

expressed on ATL cells (197), was tested and phase I/II

clinical trials proved its efficacy in patients with relapsed/

refractory CCR4+ ATL (199). In newly diagnosed ATL

patients, mogamulizumab combined with dose-intensified

chemotherapy improved response rates in the peripheral

blood, but failed to improve progression free survival or

overall survival (200).

The efficacy of an anti-CD25 antibody, targeting CD25

highly expressed on ATL cells yielded some clinical response

in indolent ATL (198). A24 mAb directed against the surface
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transferrin receptor induced apoptosis of ATL cell lines or

primary ATL cells in vitro (201, 202) Alemtuzumab

(Campath-1H), a chimeric humanized antibody that binds

to the CD52 glycoprotein, led to promising, but short overall

response rates in acute, chronic and lymphoma ATL (203).

The anti-PD-1 antibody, nivolumab, was also investigated

in several phase I/II clinical trials but unfortunately

led to a rapid progression of ATL (204). Finally, the

immunomodulatory drug, lenalidomide exhibited a

significant anti-leukemic activity, in relapsed/recurrent ATL

(205). Recently, low dose lenalidomide was proposed as a

maintenance therapy of ATL, and resulted in continuous

complete remission in a patient with acute ATL lasting

more than 24 months (195). Finally, the anti-CD30

monoclonal antibody brentuximab vedotin (BV), used in

several clinical trials including patients with relapsed/

refractory CD30+ ATL patients, yielded promising results

(196, 206).
5 Dual targeting of the innate
immune response and viral
oncoproteins: An innovative
therapeutic approach for the
treatment of ATL

The key role of Tax and HBZ in ATL development and

maintenance of the leukemic phenotype highlights the potential

importance of ATL therapeutic approaches directly targeting these

viral proteins or indirectly targeting their downstream cellular

targets or inducing antiviral immunity. In that sense, the

combination of arsenic trioxide (AS) and interferon-a (IFN)

selectively induced cell cycle arrest and apoptosis of ATL cells in

vitro (139). This was associated with a reversal of the constitutive

activation of NF-kB and delayed shut down of cell cycle-regulated

genes secondary to proteoasomal-mediated Tax degradation (207–

209). In vivo, AS/IFN cured Tax-driven murine ATL through

leukemia initiating cell (LIC) eradication (109). AS/IFN-induced

abolition of ATL LIC activity required IL-10 expression shutoff.

Indeed, loss of IL-10 secretion by ATL cells, triggered the

production of inflammatory cytokines by the innate immune

microenvironment, namely NK cells and macrophages, hence

mediating the clearance of ATL cells. Strikingly, anti-IL-10

monoclonal antibodies significantly increased the efficiency of AS/

IFN therapy (58), and treatment of murine ATL with the triple

combination of AS/IFN/anti-IL-10 monoclonal antibody cured

80% of mice and significantly decreased LIC activity in serial

transplantation assays (58). Overall, these results highlight the

potential dual targeting of malignant ATL cells and their immune

microenvironment and provide a strong rational to test the

therapeutic effect of this triple combination in ATL patients.
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The importance of such a dual targeting of viral

oncoproteins and the immune microenvironment, was further

strengthened by vaccination approaches against Tax, HBZ or

both. A Tax peptide-pulsed dendritic cell (DC) vaccine, designed

to augment Tax-specific CTL response, led to favorable clinical

outcomes in a pilot clinical trial (137), and two patients survived

for more than 4 years after vaccination (136). A recombinant

vaccinia virus (rVV) that induced an HBZ-specific T-cell

response, improved the survival of HBZ-induced lymphoma-

challenged mice (210). And finally, THV02, comprising two

lentiviral vectors encoding for a peptide deriving from the viral

proteins Tax, HBZ, p12I and p30II, and to be used in a prime/

boost regimen, induced a promising cellular response in animal

models (Hermine et al. personal communication).
6 Conclusions

ATL is a virally-driven malignancy that associates with

dismal prognosis. The clinical management of ATL remains
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difficult, partially due to the incomplete understanding of the

intimate relationship between HTLV-1 and its induced

forefront immune response. Indeed, the intricacy of disease

mechanisms following HTLV-1 infection is a consequence of

the interplay between the host immune responses in concert

with HTLV-1 proteins including Tax and HBZ. Despite the

intensive literature on the plethora of functions of these viral

oncoproteins, Tax and HBZ fail to induce and sustain

proliferation of malignant ATL cells without IL-10

(Figure 1). Both Tax and HBZ upregulate IL-10 production,

inducing proliferation of HTLV-1-infected cells. This effect,

along with the anti-inflammatory and immunosuppressive

properties of IL-10 may play a key role in switching HTLV-1

induced inflammation towards ATL. The tremendously low

but not silent levels of Tax protein expression in ATL patients

and the efficacy of Tax-targeted therapeutic vaccine in ATL

patients highlight the impact of Tax-specific CTLs on

immune surveillance of HTLV-1 infected and ATL cells.

Moreover, targeted therapies leading to Tax degradation

proved selective and potent efficacy against ATL cells in

vitro and in vivo. Murine preclinical models of ATL
FIGURE 1

ATL cells survival: a cross-talk between genetics, viral proteins and immune-microenvironment. Survival of ATL cells requires Tax expression, yet
Tax is highly immunogenic, and its expression at high levels drives senescence, a cellular fate counterbalanced by HBZ. Tax induced genetic
instability results in the accumulation of somatic mutations. Both Tax and HBZ promote IL-10 expression, a key cytokine contributing to ATL cell
survival and host immunosuppression. Newly infected T cells produce cytokines that contribute to the survival of ATL cells. The role of Tax/HBZ
and IL-10 in ATL leukemogenesis highlights the importance of dual targeted therapies including anti-viral therapies and targeted therapies
against viral oncoproteins and IL-10, as a promising curative avenue for ATL. AZT/IFN, Zidovudine and Interferon-alpha; As/IFN, Arsenic trioxide
and Interferon-alpha; SCT, Stem Cell Transplantation; IL-10, Interleukin-10; RT, Reverse transcriptase.
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highpoint the importance of the dual targeting of the innate

immune microenvironment and the viral oncoproteins.

Adding pieces to the intriguing puzzle of host immunity/

HTLV-1 infection is required, and future studies should

include therapies that target the main driver of ATL, the

HTLV-1 virus (Figure 1). These therapeutic options may

target the viral proteins, their downstream cellular targets,

along with the host immune microenvironment including

HTLV-1 infected non-malignant cells.
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