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Development of a nested PCR
assay for specific detection of
Metschnikowia bicuspidata
infecting Eriocheir sinensis

Jie Bao1, Ye Chen1, Yuenan Xing1, Chengcheng Feng1,
Qingbiao Hu1, Xiaodong Li1 and Hongbo Jiang1,2*

1Aquaculture Department, College of Animal Science and Veterinary Medicine, Shenyang
Agricultural University, Shenyang, China, 2Key Laboratory of Livestock Infectious Diseases in
Northeast China, Ministry of Education, Shenyang Agricultural University, Shenyang, China
In recent years, the “milky disease” caused by Metschnikowia bicuspidata has

seriously affected the Eriocheir sinensis culture industry. Discovering and

blocking the transmission route has become the key to controlling this

disease. The existing polymerase chain reaction (PCR) detection technology

forM. bicuspidata uses the ribosomal DNA (rDNA) sequence, but low sensitivity

and specificity lead to frequent false detections. We developed a highly specific

and sensitive nested PCR method to detect M. bicuspidata, by targeting the

hyphally regulated cell wall protein (HYR) gene. This nested HYR-PCR

produced a single clear band, showed no cross-reaction with other

pathogens, and was superior to rDNA-PCR in specificity and sensitivity. The

sensitivity of nested HYR-PCR (6.10 × 101 copies/mL) was greater than those of

the large subunit ribosomal RNA gene (LSU rRNA; 6.03 × 104 copies/mL) and
internal transcribed spacer (ITS; 6.74 × 105 copies/mL) PCRs. The nested HYR-

PCR also showed a higher positivity rate (71.1%) than those obtained with

LSU rRNA (16.7%) and ITS rDNA (24.4%). In conclusion, we developed a new

nested HYR-PCR method for the specific and sensitive detection of M.

bicuspidata infection. This will help to elucidate the transmission route of M.

bicuspidata and to design effective management and control measures for

M. bicuspidata disease.

KEYWORDS

Metschnikowia bicuspidata, Eriocheir sinensis, hyphally regulated cell wall protein,
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1 Introduction

Metschnikowia bicuspidata (Ascomycota, Saccharomycetales) is

a pathogenic yeast fungus that infects several economically

important aquatic organisms, including shrimps: Macrobrachium

rosenbergii, Palaemonetes sinensis, and Exopalaemon carinicauda;

crabs: Portunus trituberculatus and Eriocheir sinensis; fish:

Oncorhyncus tshawytscha; and bait organisms such as Daphnia

and Artemia (Codreanu and Codreanu-Balcescu, 1981; Lu et al.,

1998; Moore and Strom, 2003; Wang et al., 2008; Jiang et al., 2021;

Cao et al., 2022; Ma et al., 2022; Zhao et al., 2022). M. bicuspidata

can cause high mortality in crustaceans. Chen et al. (2007) found

that the cumulative mortality of M. rosenbergii infected with

M. bicuspidata could be as high as 95%. Xu (2005) found that the

mortality rate of infected P. trituberculatus in Zhoushan City could

reach 100%. In recent years, numerous E. sinensis farms in northern

China have experienced severe M. bicuspidata infection, and adult

crabs from overwintering ponds have shown infection rates

exceeding 30% (Sun et al., 2022). The typical symptom of

diseased E. sinensis is milky white and non-coagulant

hemolymph, which crab farmers have aptly named “milky

disease”. Infected crabs exhibit weakened vitality, lose appendages

easily, and eventually die from organ failure (Bao et al., 2021; Zhang

et al., 2021). As E. sinensis is widely traded in the national market,

M. bicuspidata has infected cultured E. sinensis in numerous

provinces and cities (Xu et al., 2021; Sun et al., 2022), which has

caused great harm to the E. sinensis culture industry.

M. bicuspidata is a fungal organism with a thick spore wall

and a strong resistance to the environment and drugs. Currently,

there is no effective drug to treat M. bicuspidata infection.

Therefore, strengthening prevention has become the key to

controlling this disease. Although M. bicuspidata cannot

spread vertically, it can rapidly spread through water,

cannibalization, and co-habitation (Jiang et al., 2022) as well

as through the food chain (Moore and Strom, 2003), which

makes prevention difficult. Therefore, it is necessary to establish

an accurate and sensitive detection technology to ensure that

environmental organisms, water, sediment, stocking seedlings,

and feed do not carry pathogens. The traditional pathogen

detection method mainly uses the pathological symptoms of

the host and microscopic observation of pathogen morphology.

However, typical pathological symptoms only appear when the

infection is severe. In the initial stage of infection, there are no

apparent symptoms and detection under a microscope is

difficult. Even if a small population of yeast can be observed,

microscopy techniques cannot confirm whether it is

M. bicuspidata. Molecular biology detection methods, such as

polymerase chain reaction (PCR), have the advantages of simple

operation, strong specificity, and the ability to identify species by

sequencing (Nguyen et al., 2014; Fernández-Álvarez et al., 2019;
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Torres‐Corral and Santos, 2021). They are often used as

detection methods for M. bicuspidata for diagnosis and

epidemiological investigation (Ma et al., 2022; Sun et al., 2022).

Currently, all molecular tools for the detection of

M. bicuspidata target the ribosomal DNA (rDNA) sequence,

and primers are mainly designed using the large subunit

ribosomal RNA gene (LSU rRNA) and internal transcribed

spacer (ITS) rDNA sequences (Bao et al., 2021; Zhang et al.,

2021). These primers are universal for yeasts and play an

important role in pathogen identification (Mannarelli and

Kurtzman, 1998; Fujita et al., 2001). To our knowledge, no

other M. bicuspidata detection methods have been reported to

date. However, primers for the rDNA sequence are likely to

cross-amplify with other similar microorganisms, resulting in

false-positive results because of low specificity (Table 1). The

amplified product must be sequenced and compared to confirm

whether it is fromM. bicuspidata. In addition, conventional PCR

has low detection sensitivity and cannot accurately detect light

infections in the early stage of disease. Therefore, we have

developed a new method to detect M. bicuspidata using nested

PCR of the hyphally regulated cell wall protein gene (HYR).

Based on the conventional PCR method, nested PCR uses two

pairs of specific primers. The specificity and sensitivity of

detection is improved through two rounds of amplification,

which overcomes the problem of nonspecific amplification

with the first pair of primers. Nested PCR is a low-cost, highly

specific, and highly sensitive detection method that is often used

for pathogen identification and detection (Manjanaik et al.,

2005; Han et al., 2018; Cowley et al., 2019). The establishment

of nested HYR-PCR technology provides a useful tool to

accurately diagnose whether E. sinensis is infected with M.

bicuspidata, especially in the early stages of infection, which

will improve the prevention and treatment of this disease.

2 Materials and methods

2.1 Tested strains

M. bicuspidata was represented by the strain (LNES0119)

preserved in our laboratory. The cells were streak cultured in

Bengal red agar for activation. After culturing upside down in an

incubator at 28°C for 48 h, a single colony was streak cultured

again in Bengal red agar for 48 h at 28°C. Subsequently, the

cultured colonies were extracted using a DNA Extraction Kit

(Tiangen Biotech Co., Ltd., Beijing, China) and the products

were stored in a refrigerator at –20°C. DNA samples of

Staphylococcus aureus, Enterocytozoon hepatopenaei, Hepatospora

eriocheir, Microsporidia sp., white spot syndrome virus, and

Vishniacozyma victoriae (syn. Cryptococcus victoriae) were

preserved in our laboratory for primer specificity detection.
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2.2 Establishment of nested HYR-PCR
detection system for metschnikowia
bicuspidata

2.2.1 Primer design
According to the genome reference sequence of

M. bicuspidata published in NCBI, the specific hyphally

regulated cell wall protein gene (HYR, Sequence ID:

XM_018855835.1) was selected as the template. A pair of

specific primers, P1/P2, were designed as the external primers

for the first round of nested HYR-PCR amplification, and
Frontiers in Cellular and Infection Microbiology 03
primers PN1/PN2 were designed as the internal primers for

the second round of amplification (Table 2). The reaction

procedure for the two rounds of nested HYR-PCR is shown in

Table 3. Primers NL1/NL4 based on LSU rRNA (O'Donnell,

1993) and ITS1/ITS4 (White et al., 1990) based on ITS rDNA are

used as the conventional PCR primers for comparison (Table 2).

2.2.2 Optimization annealing temperature of
nested HYR-PCR

First, four temperature gradients (45, 50, 55, and 60°C) were

set to optimize the annealing temperature of the external
TABLE 2 Primer sequences and amplified product fragments.

Primer type Primer name Primer sequence 5′-3′ Fragment size (bp)

First round of nested HYR-PCR P1/P2 P1: AGCCTGGTCTTTGTAATG 493

P2: ACTCCCTTGTTGGTGATA

Second round of nested HYR-PCR PN1/PN2 PN1: TTAGAGGGACTTCTCATTTGT 226

PN2: CTTTAGCGTCAATATCGTAGA

LSU rRNA NL1/NL4 NL1: GCATATCAATAAGCGGAGGAAAAG 574

NL4: GGTCCGTGTTTCAAGACGG

ITS ITS1/ITS4 ITS1: TCCGTAGGTGAACCTGCGG 394

ITS4: TCCTCCGCTTATTGATATGC
HYR, hyphally regulated cell wall protein; PCR, polymerase chain reaction.
TABLE 1 Multiple sequence alignment analysis of target gene sequence for detection of Metschnikowia bicuspidata.

Gene sequence Yeast species % Identity Accession No.

ITS Metschnikowia bicuspidata – MT856369.1

Metschnikowia australis 94.46 MH447359.1

Saccharomycetales sp. 99.78 AB726734.1

Metschnikowia kamienskii 98.90 KY108479.1

Metschnikowia sp. 94.00 JQ857002.1

Metschnikowia zobellii 92.19 U44823.1

Metschnikowia reukaufii 90.28 MH047200.1

Metschnikowia sp. 90.18 OM802671.1

Metschnikowia sp. 94.15 KX773542.1

Metschnikowia sp. 93.39 KC580664.1

Metschnikowia sp. 93.55 KX773564.1

LSU rRNA Metschnikowia bicuspidata – MT845876.1

Metschnikowia australis 91.39 MK085106.1

Metschnikowia sp. 90.20 MZ798278.1

Metschnikowia cibodasensis 90.18 AB236924.1

Candida gelsemii 90.13 DQ988045.1

Metschnikowia reukaufii 89.92 MH047200.1

Metschnikowia gelsemii 89.14 NR_164510.1

Metschnikowia chrysomelidarum 88.86 KY102031.1

Metschnikowia maroccana 88.52 MG993180.1

Metschnikowia vanudenii 88.71 MN128580.1

Metschnikowia koreensis 94.02 MN861602.1
frontiersin.or
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primers (P1/P2) and internal primers (PN1/PN2). The PCR

conditions were as follows: pre-denaturation at 95°C for 10 min;

35 cycles of denaturation at 95°C for 1 min, annealing

temperature for 45 s, and extension at 72°C for 1 min; and

final extension at 72°C for 10 min. A 5 µL aliquot of the PCR

product was electrophoresed for 30 min (120 V) in a 1.5%

agarose gel, and the results were observed and photographed

using a gel imaging system (BG-gdsAUTO520, Baygene Biotech

Company Limited, Beijing, China).
2.2.3 Nested HYR-PCR specificity identification
M. bicuspidata was set as a positive control and ddH2O as a

negative control, and DNA samples from S. aureus, E.

hepatopenaei, H. eriocheir, Microsporidia sp., white spot

syndrome virus, and V. victoriae were used as specific

identification templates. The external primers with optimized

annealing temperature were used for the first round of PCR

amplification. The first round PCR products were diluted 1000

times with ddH2O, and 2 mL of this dilution was used as the

DNA template for the second round of PCR. The PCR procedure

was as described in section 2.2.2.
2.2.4 Nested HYR-PCR sensitivity identification
The template DNA of M. bicuspidata was used for PCR

amplification with the primers P1/P2, NL1/NL4, and ITS1/ITS4.

PCR products were recovered using a FastPure Gel DNA

Extraction Mini Kit (Tiangen Biotech Co., Ltd., Beijing, China).

The DNA fragments were then ligated to the pMD-19-T vector

(Takara, Shiga, Japan). The recombinant plasmid was transferred

into E. coli DH5a cells, and positive colonies were identified by
Frontiers in Cellular and Infection Microbiology 04
PCR (Sangon, Shanghai, China). The recombinant plasmid was

extracted using the FastPure Plasmid Mini Kit (Vazyme, Nanjing,

China) and the concentration was measured using an ultramicro

spectrophotometer (K5500, Beijing Kaiao Technology

Development Co., Ltd., Beijing, China). The plasmid copy

number was calculated and used as the plasmid standard. The

concentration and copy number of the plasmids for each pair of

primers are shown in Table 4. The plasmid standard was diluted

step by step 10 times, and a total of 8 concentration gradients were

set as amplification templates (Table 4). DNA from

M. bicuspidata was used as the positive control, and ddH2O was

used as the negative control. The reaction procedure was as

described in section 2.2.2.

PCR products of eight concentration gradients in the first

round were diluted 1000 times, and then 2 mL of this dilution

was used as the template for the second round of PCR. The

reaction system and reaction conditions remained unchanged.
2.3 Clinical samples testing

The crabs used for infection detection were purchased from

an infested farm in Panjin City. Ninety crabs were randomly

selected and dissected to obtain hepatopancreas tissue after ice

anesthesia for 5 min. DNA was extracted using the Marine

Animal Tissue DNA Extraction Kit (Tiangen Biotech Co., Ltd.,

Beijing, China) and stored in a refrigerator at –20°C after

qualification verification. The reaction system and conditions

used for HYR-PCR detection were as described in sections 2.2.1

and 2.2.2. The NL1/NL4 and ITS1/ITS4 reaction systems were

obtained from Zhang et al. (2021).
TABLE 4 Plasmid standard concentration and copy number of amplification products with different primers.

Primers P1/P2 NL1/NL4 ITS1/ITS4

Concentration (ng/mL) 21.3 21.6 22.8

Copy number (copies/mL) 6.10 × 109 6.03 × 109 6.74 × 109

Concentration gradient 6.10 × 108∼6.10 × 101 6.03×108∼6.03 × 101 6.74 × 108∼6.74 × 101
TABLE 3 Nested PCR system.

Composition First round reaction system Second round reaction system

2 × Taq Master Mix 12 mL 12 mL

Upstream primer 0.5 mL 0.5 mL

Downstream primer 0.5 mL 0.5 mL

DNA template 2 mL –

ddH2O 10 mL 10 mL

First round PCR products – 2 mL

Total system volume 25 mL 25 mL
frontiersin.org
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3 Results

3.1 Optimization annealing temperature
of nested HYR-PCR

The amplification results for the external primer pair P1/P2 are

shown in Figure 1A. The length of the amplified product fragment

(493 bp) and its sequence were consistent with the design

expectations and the target sequence. A single bright band was

obtained at annealing temperatures of 45, 50, and 55°C, and the

brightness increased with increasing temperature; however, the

band was faint and indistinct at 60°C annealing temperature.

Therefore, 55°C was selected as the optimal annealing temperature.

The amplification results of the internal primers PN1/PN2 are

shown in Figure 1B. The length of the amplified fragment (226 bp)

and its sequence were consistent with design expectations and the

target sequence. Bands were observed at 45, 50, 55, and 60°C, but

the band brightness was highest at 55°C. Therefore, the optimal

annealing temperature for primers PN1/PN2 was 55°C.
3.2 Specificity identification

The amplification results for the external primers P1/P2 are

shown in Figure 2A. The results showed that a single bright band

with a fragment length of 493 bp was amplified from M.

bicuspidata, whereas other pathogens had no specific amplification.

The amplification results for the internal primers PN1/PN2

are shown in Figure 2B. A single bright band with a fragment

length of 226 bp was amplified from M. bicuspidata, whereas

other pathogens had no specific amplification.

The amplification results of the conventional PCR primers

NL1/NL4 from LSU rRNA are shown in Figure 2C. The results

showed that primers NL1/NL4 not only amplified from

M. bicuspidata, but also from E. hepatopenaei, H. eriocheir,
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S. aureus, white spot syndrome virus, and V. victoriae. Moreover,

the band position for S. aureus was the same as that for

M. bicuspidata.

The amplification results of the conventional PCR primers

ITS1/ITS4 from ITS are shown in Figure 2D. Primers ITS1/ITS4

not only amplified the template of M. bicuspidata, but also

amplified E. hepatopenaei, S. aureus, and V. victoriae, and the

band positions for E. hepatopenaei and S. aureus were the same

as that for M. bicuspidata.

The results demonstrated that nested HYR-PCR was not

disturbed by other pathogens used in this study, and could

specifically amplify M. bicuspidata.
3.3 Nested PCR sensitivity determination

The sensitivity PCR results for the external primers (P1/P2) are

shown in Figure 3A. The minimum detection limit was 6.10 × 103

copies/mL.
The sensitivity results of the internal primers (PN1/PN2) for

the second round of amplification are shown in Figure 3B. The

minimum detection limit was 6.10 × 101 copies/mL.
The amplification results for the conventional primer pairs

(NL1/NL4, ITS1/ITS4) are shown in Figures 3C, D. The

minimum detection limits for NL1/NL4 and ITS1/ITS4 were

6.03 × 104 copies/mL and 6.74 × 105 copies/mL, respectively. The
results demonstrated that the sensitivity of the nested HYR-PCR

was higher than that of conventional rDNA-PCR.
3.4 Clinical samples testing

In 90 clinical samples, specific fragments were amplified

from 34 crab samples in the first round of nested HYR-PCR

amplification with primers P1/P2, and the infection detection

rate was 37.8%.
A B

FIGURE 1

(A) The optimum annealing temperature of primers P1/P2; (B) The optimum annealing temperature of primers PN1/PN2; M: Marker; 1: 45°C; 2:
50°C; 3: 55°C; 4: 60°C.
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Specific fragments were amplified from 64 crab samples in

the second round of nested PCR amplification with primers

PN1/PN2, and the infection detection rate was 71.1%.

Target fragments were amplified from only 15 crab samples

using the conventional PCR with primers NL1/NL4 and the
Frontiers in Cellular and Infection Microbiology 06
infection detection rate was 16.7%. Target fragments were

amplified from 22 crab samples using primers ITS1/ITS4, and

the infection detection rate was 24.4%. Multiple non-specific

amplification products were also observed with primers NL1/

NL4 and ITS1/ITS4.
A B

DC

FIGURE 3

(A) Sensitivity analysis of primers P1/P2. (B) Sensitivity analysis of primers PN1/PN2. M: Marker; 1: DNA of Metschnikowia bicuspidata; 2:
ddH2O; 3: 6.10×108 copies/mL; 4: 6.10×107 copies/mL; 5: 6.10×106 copies/mL; 6: 6.10×105 copies/mL; 7: 6.10×104 copies/mL; 8: 6.10×103

copies/mL; 9: 6.10×102 copies/mL; 10: 6.10×101 copies/mL. (C) Sensitivity analysis of primers NL1/NL4. M: Marker; 1: DNA of Metschnikowia
bicuspidata; 2: ddH2O; 3: 6.03×108 copies/mL; 4: 6.03×107 copies/mL; 5: 6.03×106 copies/mL; 6: 6.03×105 copies/mL; 7: 6.03×104 copies/mL;
8: 6.03×103 copies/mL; 9: 6.03×102 copies/mL; 10: 6.03×101 copies/mL. (D) Sensitivity analysis of primers ITS1/ITS4. M: Marker; 1: DNA of
Metschnikowia bicuspidata; 2: ddH2O; 3: 6.74×108 copies/mL; 4: 6.74×107 copies/mL; 5: 6.74×106 copies/mL; 6: 6.74×105 copies/mL; 7:
6.74×104 copies/mL; 8: 6.74×103 copies/mL; 9: 6.74×102 copies/mL; 10: 6.74×101 copies/mL.
A B

DC

FIGURE 2

(A) Specificity analysis of primers P1/P2; (B) Specificity analysis of primers PN1/PN2; (C) Specificity analysis of primers NL1/NL4; (D) Specificity
analysis of primers ITS1/ITS4. M, marker; 1: Metschnikowia bicuspidata; 2: ddH2O negative control; 3: Enterocytozoon hepatopenaei; 4:
Hepatospora eriocheir; 5: white spot syndrome virus; 6: Staphylococcus aureus; 7: Microsporidia sp.; 8: Vishniacozyma victoriae.
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4 Discussion

M. bicuspidata has caused serious damage to China’s E. sinensis

culture industry. In recent years, this disease has spread across the

country and has been infecting an increasing number of species.

Since the report of M. bicuspidata infection in E. sinensis in 2021

(Bao et al., 2021), infections have also been found in P. sinensis and

E. carinicauda (Cao et al., 2022; Zhao et al., 2022) with the same

symptoms as those seen in infected E. sinensis, which lead to non-

coagulation andmilky hemolymph. This indicates that the presence

ofM. bicuspidata in the environment poses a threat to an increasing

number of crustaceans. Moore and Strom (2003) found that

M. bicuspidata could also be transmitted to chinook salmon

through Artemia franciscana, indicating that the pathogen has a

variety of hosts and can spread through the food chain. Therefore,

accurate and early detection of pathogen carriers in the

environment is important to prevent transmission and outbreaks

of this pathogen. The development of rapid, specific, and sensitive

molecular biological diagnosis methods is of great significance for

eliminating infected E. sinensis and blocking the transmission route.

Existing pathogen detection methods, such as observations of

pathological symptoms, physiological and biochemical

characteristics of pathogens, microscopic observation, and

conventional PCR, have poor specificity and low sensitivity and

are not effective for the accurate detection of M. bicuspidata

infection (Bao et al., 2021; Zhang et al., 2021).
In this study, we developed a new and specific nested HYR-

PCR method for the detection of M. bicuspidata, which is based

on the hyphally regulated cell wall protein gene. The spore wall

of yeast provides environmental protection and participates in

host–pathogen interactions through the species-specific spore

wall protein, HYR (Bailey et al., 1996; Ebanks et al., 2006; Klis

et al., 2014). During the life cycle of M. bicuspidata, ascospores

attack the gut membrane when Daphnia is filter-feeding.

Subsequently, surviving spores escape the host hemocyte

response and develop into hyphae and sporocysts, and release
Frontiers in Cellular and Infection Microbiology 07
conidia to complete the infection process (Merrill and Cáceres,

2018). Therefore, the hyphal development stage plays an

important role in the infection and life cycle of M. bicuspidata

(Merrill et al., 2021a; Merrill et al., 2021b). HYR is the main

hyphal spore wall protein of yeast fungi, with a length of

approximately 349 amino acids. Owing to its important role in

the yeast life cycle, its key functional domains (motifs) are highly

conserved within M. bicuspidata under selective pressure, and

the amino acid sequence identity with other yeast species is less

than 40% (Table 5). Therefore, HYR is a candidate gene locus for

the molecular detection of pathogenic yeasts.

Nested HYR-PCR was superior to rDNA-PCR in terms of its

specificity and sensitivity. In this study, two primer pairs

targeting the HYR gene showed very strong specificity and

clear bands during sample analysis. In contrast, the primers

designed for the LSU rRNA and ITS regions also amplified

template DNA from other pathogens, and for S. aureus, the

target band appeared at the same position as that for

M. bicuspidata. This can lead to false detections if other

microorganisms are present in environmental samples or

individuals, and sequencing of the target bands is necessary to

confirm the species identity. The two pairs of nested HYR-PCR

primers showed no specific amplification with the other six

pathogens tested. Therefore, any specific amplification in this

study confirmed the presence of M. bicuspidata, and this was

verified in the detection of clinical samples. The sensitivity

experiment showed that the nested HYR-PCR had much

greater sensitivity (6.10 × 101 copies/mL) than that found with

the LSU rRNA (6.03 × 104 copies/mL) and ITS (6.74 × 105

copies/mL) primers.

The clinical samples experiment confirmed that the

positivity rate of the nested HYR-PCR was much higher than

that of the conventional PCR. Nested HYR-PCR detected 64

positive results in 90 clinical samples (71.1%), which sequence

alignment analysis confirmed to be fragments of the

M. bicuspidata HYR gene. In contrast, the positivity rates
TABLE 5 HYR amino acid sequence used for multiple sequence alignment analysis.

Yeast species % Identity Accession No.

Metschnikowia bicuspidata – XP_018712964.1

Metschnikowia aff. pulcherrima 37.31 QBM88048.1

Metschnikowia sp. 36.61 GEQ71150.1

Metschnikowia persimmonesis 37.24 KAF7998685.1

Candida intermedia 35.38 SGZ46884.1

Candida haemuloni var. vulneris 31.69 KAF3986160.1

Candida pseudohaemulonii 34.63 XP_024712318.1

Metschnikowia sp. 32.94 GEQ69400.1

Debaryomyces hansenii 32.74 XP_002770057.1

Candida haemuloni 32.83 XP_025342839.1

Candida auris 32.50 QRG37544.1
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obtained using the LSU rRNA and ITS primers were only 16.7%

and 24.4%, respectively. Moreover, even the first round of the

nested HYR-PCR (positivity rate 37.8%) showed higher

sensitivity than that of conventional PCR, and there was no

nonspecific amplification, which further demonstrated that the

screened primers had high specificity and good sensitivity.

Additionally, the nonspecific amplification of diagnostic

methods happens to small subunit ribosomal RNA genes (SSU

rRNA) (Lucchi et al., 2012; Hitakarun et al., 2014; Jaroenlak

et al., 2016). For example, in single-step PCR detection of

E. hepatopenaei, SSU rRNA primers can cross-amplify with

other microsporidia present in aquatic animals (Jaroenlak

et al., 2016). Similarly, the single-step PCR detection method

for Leishmania siamensis based on the SSU rRNA gene showed

cross-amplification with Trypanosoma brucei and T. Evans

(Hitakarun et al., 2014). Therefore, for environmental samples,

it is necessary to use the nested HYR-PCRmethod or sequencing

to confirm the identity of M. bicuspidata infecting suspected

carriers with rDNA-PCR positivity. The gene sequence we

referenced was produced from the M. bicuspidata strain in the

U.S. and the detection sample in this study was from the strain in

the Chinese mitten crab. Although the strains were obtained

from different sources, they still showed good specificity,

indicating that the detection method is largely practical.

However, how the HYR gene polymorphism of M. bicuspidata

is still unclear, and the verification of more strains is still needed

to avoid false negatives due to possible sequence changes.

In conclusion, we developed a new nested HYR-PCR method

for the detection of M. bicuspidata infections. Compared with

previous methods, the nested HYR-PCR method has higher

specificity and sensitivity, and is suitable for the detection of

M. bicuspidata in clinical crab samples. The nested HYR-PCR

method will be a useful tool for studying the transmission route of

M. bicuspidata and will facilitate the design of more effective

management and control measures for M. bicuspidata disease.
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