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Atmospheric aerosol particles are complex mixtures having various

physicochemical properties. To predict the role and characteristics of such

complex aerosol particles in air pollution and related atmospheric chemistry,

our knowledge of the number and types of phases in complex aerosol particles

should be improved. However, most studies on the phase behavior of aerosol

particles have been conducted in the laboratory and have not used real-world

aerosol particles. In this study, using a combination of optical microscopy and

poke-and-flow technique, we investigated the number and types of phases of

actual aerosol particles of particulate matter < 2.5 µm (PM2.5) collected on

heavily polluted days in Seosan, South Korea in winter 2020–2021. From the

microscopic observations at 293 K, it showed that the PM2.5 particles exist in a

single liquid phase at relative humidity (RH) >~85%, a liquid-liquid phase at

~70% < RH <~85%, a liquid-liquid-(semi)solid phase at ~30% < RH <~70%, and a

(semi)solid phase at RH <~30% upon dehydration. This reveals that three phases

of atmospheric aerosol particles coexisting as liquid-liquid and liquid-liquid-

(semi)solid would be the most common phases in the atmosphere considering

ambient RH ranges. These observations provide fundamental properties

necessary for improved predictions of air quality and aerosol chemistry such

as reactive uptake of N2O5, size distributions, and mass concentrations of

aerosol particles.
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Introduction

Particulate matter (PM) is a ubiquitous component of the atmosphere. PM is emitted

from primary sources and can also be generated by secondary formation owing to

chemical reactions in the atmosphere (Seinfeld and Pandis, 2016). PM, especially PM2.5,

can significantly affect ecosystems, climate, and human health (Peng et al., 2016; Wang

et al., 2016; Bhattarai et al., 2020). In Asia, PM2.5 pollution has become a serious
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environmental issue over the past few decades (Pörtner et al.,

2019; Ting et al., 2022). Numerous field measurements have

shown that PM2.5 mainly comprises organic materials and

inorganic salts (Jimenez et al., 2009; Zhang et al., 2017) and

are often internally mixed in PM2.5 in various environments

(Vester et al., 2007; Ye et al., 2018).

To understand the impacts of PM2.5 on atmospheric

chemistry and air quality, information on the physical

properties of the phase types (i.e., liquid, semisolid, or solid)

and number of phases (i.e., one, two, or three phases) of

atmospheric aerosol particles is essential. The phase states of

particles are a crucial part of aerosol growth and evaporation,

mass concentration of aerosol particles (Shiraiwa and Seinfeld,

2012; Yli-Juuti et al., 2017), ice nucleation efficiency (Ladino

et al., 2014; Knopf et al., 2018), crystallinity of salts (Ji et al., 2017;

Wang et al., 2017), and heterogeneous reactivity (Li et al., 2020;

Xu et al., 2020). Many laboratory experiments and modelling

studies have been performed to explore the phases of

atmospheric aerosol particles (Virtanen et al., 2010; Koop

et al., 2011; Renbaum-Wolff et al., 2013; Song et al., 2015;

Reid et al., 2018; Riemer et al., 2019; Lilek and Zuend, 2022).

Most laboratory studies on phase states have focused on pure

secondary organic aerosols (SOA) as a function of relative

humidity (RH) (Koop et al., 2011; Song et al., 2015;

Athanasiadis et al., 2016; Song et al., 2016; Schmedding et al.,

2020). These studies have reported that SOA particles range from

liquid to semisolid or solid depending on the RH. Moreover, a

recent study investigated SOA mixed with inorganic salts, and

showed a sudden change in their phase state at a certain RH close

to efflorescence RH as the inorganic fraction increased (Song

et al., 2021; Jeong et al., 2022).

Mixtures of SOA and inorganic salts have also been

investigated to determine the number of phases and their

corresponding morphologies (Krieger et al., 2012; Song et al.,

2012a; You et al., 2014; Freedman, 2017). In internally mixed

organic/inorganic salt aerosol particles, two liquid phases by

liquid-liquid phase separation are always observed over a wide

range of RHwhen the oxygen-to-carbon ratio (O:C) is lower than

0.56 (Bertram et al., 2011; Song et al., 2012a; Song et al., 2012b;

Song et al., 2013). Interestingly, recent studies have reported

three liquid phases in organic/inorganic aerosol particles

(Kucinski et al., 2019; Huang et al., 2021). Moreover, liquid-

liquid phase separation has also been observed in some types of

SOA particles free of inorganic salts (Renbaum-Wolff et al., 2016;

Song et al., 2017; Ham et al., 2019). To date, most of the types and

number of phases have been investigated based on laboratory

studies as it is challenging to directly monitor the types and

number of phases of real atmospheric aerosol particles using

online instruments, and very few instruments are available to

analyze such properties.

Several studies have been conducted on the types and

number of phases using ambient PM with complex chemical

compositions. Pöhlker et al. (2012) and You et al. (2012) analyzed

liquid–liquid phase separation in total suspended particulates

collected from clean areas in the Amazonian rainforest and

central Atlanta, respectively. Virtanen et al. (2010) observed

an amorphous solid phase of atmospheric PM in a boreal

forest environment under low RH conditions in Hyytiälä,

Finland. In contrast, Pajunoja et al. (2016) observed mostly

organic ambient particles in a liquid phase over the

southeastern United States. Bateman et al. (2017) showed that

submicron PM was in a liquid phase at RH >80%, while non-

liquid behavior was observed at RH <60% in central Amazonia.

Liu et al. (2017) showed a more liquid-like behavior with an

increase in the inorganic fraction in submicron PM during a haze

episode in Beijing. Although the physical properties of aerosol

particles are key parameters for predicting heterogeneous

reactions and particle size distributions (Shiraiwa et al., 2013;

Su et al., 2020), our understanding of the phase behavior of real

aerosol particles is far from complete.

To obtain further insights on the phase behavior of real-

world aerosol particles, we collected seven PM2.5 samples at

Seosan, South Korea, during December 26 – 29, 2020, and

January 11–13, 2021. The atmosphere in and around Seosan

is heavily influenced by agricultural and anthropogenic emissions

(Ju et al., 2020; Hwang et al., 2021). Inorganic salts and water-

soluble organic material were extracted in pure water from the

PM2.5 filters. Using the PM2.5 droplets at 293 ± 1 K, we

determined the types and number of phases upon dehydration

by microscopic observations combined with the poke-and-flow

technique.

Experimental

Site description

Measurements were carried out at the Chungcheong Air

Environment Research Center, Seosan, Chungcheongnam-do,

Republic of Korea (126.494°E, 36.777°N), during December

26–29, 2020, and January 11–13, 2021 (Figure 1). Seosan is a

rural area, where the air quality is heavily influenced by both

agricultural and anthropogenic emissions (Ju et al., 2020; Hwang

et al., 2021). It is surrounded by an agricultural cluster, a

petrochemical complex is located 26 km to the northwest, and

thermal power plants (10 units) are located ~27 km to the

northwest (Lee et al., 2017; Ju et al., 2020). The total land

area of Seosan city is 743.9 km2 and it has a population of

176,379 with a population density of 237.1 people/km2 of land

area (Ju et al., 2020).

Collection and production of PM2.5

PM2.5 was collected on quartz filters for 23 h (10:00 a.m. –

09:00 a.m.) using a high-volume air sampler (SIBATA, HV-
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1000R, Japan) on the rooftop of the monitoring site, ~10 m

above the ground level. After collection, the filter samples

were stored in a freezer (−18°C) until further analysis. We

analyzed PM2.5 particles from the filter samples to explore

the phase behavior of PM2.5. The inorganic salts and water-

soluble organic material on the PM2.5 filters were extracted in

purified water (18.2 MΩ cm, Merck Milli-Q®, Millipore,

Burlington, MA, United States) within 1 month of

collection. The extracts were then nebulized using a

nebulizer (MEINHARD®, United States) onto a

hydrophobic substrate to produce micrometer-sized

particles, which were used for optical observations at

293 ± 1 K.

Optical microscopy of PM2.5 single
droplets

The PM2.5 extracts on a hydrophobic glass slide were

placed in a temperature- and RH-controlled flow-cell (Song

et al., 2012a; Ham et al., 2019). At the beginning of the

experiment, the PM2.5 droplets in the cell were equilibrated

at ~100% RH for ~20 min. RH was then decreased at a rate of

~0.5% RH/min. During the experiment, the morphological

changes in the droplets were monitored using an optical

microscope (Olympus BX43, 40× objective, Japan) and

recorded every 5 s using a charge-coupled device camera

(DigiRetina 16, Tucsen, China). The RH in the cell was

controlled by the N2 and H2O ratio, with a total flow rate

of 500 sccm. The RH was calibrated by measuring the

deliquescence RH of K2CO3 (44% RH) and NaCl (76% RH)

at 293 ± 1 K, leading to an RH uncertainty of ± 1.5% (Winston

and Bates, 1960).

Poke-and-flow technique for single
droplets

The poke-and-flow experiment (Murray et al., 2012;

Renbaum-Wolff et al., 2013) was performed to determine

the semisolid or solid [herein, we refer to semisolid or solid as

“(semi)solid”] phase state of PM2.5, based on a previously

reported procedure (Renbaum-Wolff et al., 2013; Grayson

et al., 2016; Song et al., 2019; Jeong et al., 2022). In this study,

the experimental flow time, which is the recovery time of the

inner hole of a particle after poking, could not be determined

because the PM2.5 droplets were supersaturated with

inorganic salts upon dehydration. Therefore, we attempted

to determine the RH at which the particles cracked using a

sharp sterile needle (Jung Rim Medical Industrial, South

Korea) upon dehydration. The droplets on the

hydrophobic substrate were conditioned at a target RH for

~2 h into an RH-controlled flow-cell after conditioning at an

RH of ~100%. The droplets were then poked, and the

particles were observed for ~3 h to check whether inflow

or outflow occurred. If no flow was observed, we defined the

particle as (semi)solid based on previous studies (Renbaum-

Wolff et al., 2013; Grayson et al., 2016; Song et al., 2019;

FIGURE 1
Location of a sampling site at rural area, Seosan.
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Jeong et al., 2022). During the poke-and-flow experiments,

the particles were observed before, during, and after they

were poked with a needle using an optical microscope

(Olympus CKX53 with a 40× objective, Japan) and

recorded using a charge-coupled device camera

(Hamamatsu, C11440-42U30, Japan).

TABLE 1 Summary of the chemical compositions, oxygen-to-carbon elemental ratio (O:C), and relative humidity (RH) in liquid-liquid, liquid-liquid-
(semi)solid, and (semi)solid phase states of PM2.5 with decreasing RH based on the interval of filter sampling.

Date PM2.5

(µg/m3)
NO3

−

(µg/m3)
NH4

+

(µg/m3)
SO4

2−

(µg/m3)
OC
(µg/m3)

EC
(µg/m3)

O:C RH liquid-
liquid (%)

RH liquid-liquid-
(semi)solid (%)

RH (semi)
solid (%)

20.12.26 47.7 ± 12.9 11.1 ± 5.2 4.8 ± 1.8 2.8 ± 0.8 7.6 ± 3.4 1.9 ± 1.1 0.41 ± 0.1 83 ± 2.1 68.0 ± 2.3 22.0 ± 2.0

20.12.27 32.4 ± 7.2 5.8 ± 1.1 2.9 ± 0.6 2.4 ± 0.4 5.1 ± 2.4 1.4 ± 0.6 0.38 ± 0.2 84 ± 2.3 57.4 ± 2.0 30.0 ± 2.0

20.12.28 54.2 ± 9.9 13.0 ± 5.4 5.9 ± 2.2 4.5 ± 1.6 6.3 ± 1.8 1.9 ± 0.3 0.41 ± 0.1 81 ± 1.8 63.8 ± 2.5 20.0 ± 2.5

20.12.29 40.5 ± 13.0 7.7 ± 3.8 3.6 ± 1.9 3.9 ± 1.4 4.7 ± 1.1 1.1 ± 0.1 0.40 ± 0.1 82 ± 1.5 71.2 ± 2.6 20.0 ± 2.0

21.01.11 46.6 ± 11.0 8.7 ± 2.1 4.4 ± 0.8 3.5 ± 0.4 7.4 ± 3.5 2.1 ± 0.7 0.41 ± 0.1 80 ± 1.7 69.3 ± 2.2 22.0 ± 2.2

21.01.12 45.8 ± 9.4 9.0 ± 3.6 4.6 ± 1.9 4.0 ± 1.3 6.2 ± 4.1 1.9 ± 0.7 0.40 ± 0.1 81 ± 2.2 67.5 ± 2.6 23.0 ± 2.0

21.01.13 44.0 ± 7.9 6.1 ± 1.7 2.7 ± 0.6 2.4 ± 0.3 4.8 ± 1.6 1.5 ± 0.7 0.41 ± 0.1 81 ± 2.1 74.3 ± 2.5 13.0 ± 2.3

FIGURE 2
Optical images of PM2.5 filter samples collected in winter at Seosan, South Korea, and its cartoon with decreasing RH at ~293 K. The Second,
third, and fourth columns represent the single liquid, liquid-liquid, and liquid-liquid-(semi)solid phase states of PM2.5, respectively. The fifth columns
represent a (semi)solid phase state showing efflorescence over the particles. The scale bar is 20 µm. In the illustration, cyan color: liquid organic/
inorganic phase, green color: liquid organic-rich phase, blue color: liquid inorganic-rich phase, dark blue color: semi(solid) inorganic-rich
phase, and purple color: (semi)solid organic/inorganic.
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Chemical composition of PM2.5

Raman spectroscopy (XploRA PLUS, HORIBA, France)

coupled with an optical microscope was used to identify the

main chemical compositions of liquid-liquid phase-separated

PM2.5 droplets. An Nd:YAG laser (532 nm wavelength) was

used as the excitation source. A grating with 1,800 grooves

mm−1 and an acquisition time of 5 s with an accumulation of

20 grooves was used. The Raman spectra at different positions of

the inner and outer phases of PM2.5 droplets were recorded in the

range of 150–4,000 cm−1.

The oxygen-to-carbon elemental ratio (O:C) of WSOC

fraction in PM2.5 sample was estimated from molecular

formulas identified by Fourier transform ion cyclotron

resonance mass spectrometer, as previously demonstrated

(Choi et al., 2017). The chemical compositions and

meteorological parameter were reported in Kim et al. (2022)

and, in this study, we analyzed the data based on the interval of

the filter sampling.

Results and discussion

To determine the phase behavior of real aerosol particles, we

collected seven different PM2.5 samples during winter in a rural

area, Seosan, in South Korea. It has been reported that severe

PM2.5 pollution occurs frequently in this area (Ju et al., 2020;

Hwang et al., 2021; Park et al., 2022). During the sampling

period, all seven samples indicated PM2.5 pollution based on the

guideline value of 15 μg/m3 for 24-h mean PM2.5, according to

the World Health Organization (2021). Information on the

chemical compositions and meteorological parameters of

PM2.5 samples is summarized in Table 1.

Figure 2 shows the optical images and corresponding

illustrations of each polluted PM2.5 sample as the RH

decreased at 293 K. The phase changes in the optical images

of each PM2.5 droplets are also shown in Supplementary Movies

S1–S7. Initially, PM2.5 was maintained at ~100% RH for 20 min

and the droplets exhibited a single liquid phase. With decreasing

RH, the size of the droplets decreased because of the evaporation

of water. The second column in Figure 2 represents the single

liquid phase of each PM2.5 sample collected on different dates for

the RH at which the droplets did not undergo any phase

transitions during the decrease in RH. At ~85% RH upon

dehydration, all PM2.5 droplets underwent liquid-liquid phase

separation and formed a core-shell morphology with some

inclusions in the inner phase. Laboratory studies have

established that liquid-liquid phase separation always occurs

for O:C < 0.56 in organic/inorganic aerosol particles (Bertram

et al., 2011; Song et al., 2012b). In the current study, the O:C of

the PM2.5 ranged from 0.38 to 0.41 (Table 1). These values are

within the range of occurrence of liquid-liquid phase separation.

You et al. (2012) and Pöhlker et al. (2012) also observed liquid-

liquid phase separation in total suspended particles within these

O:C ratios, which were established from laboratory studies in

clean environments in Atlanta and near Amazon, respectively.

In the phase-separated PM2.5 droplets, small satellite

inclusions were observed in the inner phase as shown in third

columns of Figure 2. Such small satellite inclusions were also

observed in outer phase when phase separation occurred in

organic/inorganic/H2O particles, and then they were

disappeared as RH decreased (Ciobanu et al., 2009; Song

et al., 2012a). Although we could not access to determine the

chemical compositions using the tiny satellite inclusions of the

PM2.5 in this study, we observed during decreasing RH that the

tiny satellite inclusions appeared when the phase separation

occurred and then disappeared as RH decreased further. This

behavior of the satellite inclusions is very similar to the behavior

observed in the organic/inorganic/H2O particles. Thus, we expect

that the satellite inclusions observed in the inner phase of the

PM2.5 droplet are most likely organic compounds.

We analyzed the chemical compositions of the inner and

outer phases of a phase-separated PM2.5 droplet at ~80% RH

collected in 28 December 2020. Raman spectra from the inner

phase of the droplet showed two sharp peaks at ~971 cm−1 and

~1,030 cm−1 belonging to SO4
2− and NO3

−, respectively (Cheng

et al., 2021) (blue line in Figure 3). Two distinct peaks were also

observed from the outer phase of the droplet at 1,096 cm−1,

relevant to the vibrational mode of organic functional group

ν(C−O) (Bondy et al., 2018), and at 576 cm−1 due to the carboxyl

vibration (Eshelman et al., 2014) (red line in Figure 3). This result

reveals that the core consists mainly of inorganic salts

surrounded by organic materials in the liquid-liquid phase-

FIGURE 3
Raman spectra of liquid-liquid phase-separated PM2.5

particle collected in 28 December 2020 at relative humidity of
80%. Blue dash lines represent the inorganic peaks while the red
dash lines represent the organic peaks.
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separated particles. This is consistent with previous work (Song

et al., 2012b).

Interestingly, as RH decreased, a crystal suddenly appeared in

the liquid inner phase of each PM2.5 sample, leading to three

coexisting phases at RH between ~70% and ~30%, as shown in

forth columns of Figure 2 (also Supplementary Movies S1–S7).

This result is the first such observation of the phase behavior of

real aerosol particles of PM2.5, with three phases coexisting a

liquid-liquid-(semi)solid. Based on the shape and morphology of

the crystal in the inner liquid phase, these were assumed to be

(semi)solid inorganic salts such as ammonium nitrate,

ammonium sulfate, or sodium chloride (Ebert and

Weinbruch, 2001; Zelenyuk et al., 2006; Furstenberg et al.,

2010). A recent study by Huang et al. (2021) observed the

existence of three phases with liquid-liquid-liquid for ~40% –

~90% RH in a mixture of SOA, primary organic aerosols, and

secondary inorganic aerosols. This is a contrast with our

observation that three phases with a liquid-liquid-(semi)solid

in the PM2.5 were coexisted for RH of ~30% – ~70%. These three

phases of the droplets coexisted until the droplets effloresced over

the particle (i.e., ~30% RH, Figure 2).

A further decrease in RH led to efflorescence of the droplets

(last columns of Figure 2). However, at this stage, it was not clear

based on the optical image whether the droplets fully or partially

effloresced so that the phase state became (semi)solid or still

liquid-like over the total particle. Thus, we applied another

technique using the poke-and-flow to define the phase with

the same procedure of a recent study of Jeong et al. (2022)

that determined the phase of particles of organic/inorganic

mixtures. Figure 4 shows the poke-and-flow result for the

seven different PM2.5 particles. On pre-poking, effloresced

particles were present, and the particles started to crack at

RH <~30% after being poked with the needle. Subsequently,

no restorative flow was detected for approximately 3 h. This

produces viscosities of greater than ~108 Pa s corresponding to a

semisolid or a solid phase state (Renbaum-Wolff et al., 2013;

FIGURE 4
Optical images of pre-poking, poking, and post-poking for polluted PM2.5 filter samples during the poke-and-flow experiment. The scale bar
is 10 µm.
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Grayson et al., 2016; Song et al., 2019; Jeong et al., 2022).

Additionally, we tried to poke the particles at an RH ~10%

higher than the RH at which they cracked, but the particles were

stuck to the needle. Based on the procedure, the point at which all

PM2.5 particles cracked was determined as (semi)solid phase

(Table 1). The RH values of efflorescence (fourth column of

Figure 2) and particle cracked (Figure 4) are similar within

experimental errors. The overall results showed that the PM2.5

exhibited a single liquid phase at RH >~85%, liquid-liquid phase

at ~70% < RH < ~85%, liquid-liquid-(semi)solid phase at ~30% <
RH < ~70%, and a (semi)solid phase at RH < ~30%. This result

indicates that phases coexisting a liquid-liquid or a liquid-liquid-

(semi)solid of aerosol particles would be the most common

phases in the atmosphere considering ambient RH

distributions (Song et al., 2019).

This study provides observational evidence for the phase

behavior of real aerosol particles. The existence of three phases

consisting of a liquid-liquid-(semi)solid (outer phase is mainly

liquid organic-rich) has implications for the uptake rate of

reactive gases into particles. Studies have shown that N2O5

reacts with inorganic-rich droplets, which leads to increased

concentrations of particulate nitrate (Dentener and Crutzen,

1993; Riemer et al., 2009; Huang et al., 2021). However,

recent studies have shown that organic coating in a droplet

can lead to reactions on the surface area resulting in the

reduction of the reactive uptake of N2O5 (Folkers et al., 2003).

The uptake rate of a particle can be varied based on the polarity of

the organic phase (Huang et al., 2021). Furthermore, studies have

shown that other trace reactive gases such as amines exhibited a

lower tendency towards heterogeneous uptake by organic-coated

particles (Chu and Chan, 2017; Sauerwein and Chan, 2017).

Further studies are thus required to confirm our results with

different conditions (i.e., various environments and temperature)

and to extend the phase effects on heterogeneous reactions.
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