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The issue of non-fragile observer-based adaptive integral sliding mode control for a class

of Takagi–Sugeno (T-S) fuzzy descriptor systems with uncertainties and unmeasurable

premise variables is investigated. General nonlinear systems are represented by nonlinear

T-S fuzzy descriptor models, because premise variables depend on unmeasurable

system states and fuzzy models have different derivative matrices. By introducing the

system state derivative as an auxiliary state vector, original fuzzy descriptor systems are

transformed into augmented systems for which system properties remain the same.

First, a novel integral sliding surface, which includes estimated states of the sliding

mode observer and controller gain matrices, is designed to obtain estimation error

dynamics and sliding mode dynamics. Then, some sufficient linear matrix inequality

(LMI) conditions for designing the observer and the controller gains are derived using

the appropriate fuzzy Lyapunov functions and Lyapunov theory. This approach yields

asymptotically stable sliding mode dynamics. Corresponding auxiliary variables are

introduced, and the Finsler’s lemma is employed to eliminate coupling of controller gain

matrices, observer gain matrices, Lyapunov function matrices, and/or observer gain

perturbations. An observer-based integral sliding mode control strategy is obtained to

assure that reachability conditions are satisfied. Moreover, a non-fragile observer and

a non-fragile adaptive controller are developed to compensate for system uncertainties

and perturbations in both the observer and the controller. Finally, example results are

presented to illustrate the effectiveness and merits of the proposed method.

Keywords: T-S fuzzy descriptor systems, non-fragile control, observer design, integral sliding mode control,

nonparallel distributed compensation control, unmeasurable premise variables

INTRODUCTION

In recent decades, control synthesis, stability analysis, and observer design for nonlinear systems
have received important consideration because of their wide application in practice, and demands
for reliability and performance have been increasingly enhanced. Nevertheless, it has become
challenging to systematically design and analyze such systems. The Takagi–Sugeno (T-S) fuzzy
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system, also known as the type III fuzzy model, proposed by
Japanese scholars in 1985 (Takagi and Sugeno, 1985) provides a
general approach to approximate any smooth nonlinear system
with an arbitrary degree of accuracy but without complex
mathematical equations. Through the use of the T-S fuzzy
model approach, systematic analysis and synthesis of nonlinear
systems can be performed based on classical control theory (Lv
et al., 2019), modern control theory (Zhang Z. et al., 2019),
and intelligent control theory (Sun et al., 2007; Cervantes et al.,
2016). Due to their strong approximation capabilities and good
tolerance to uncertainty and imprecision, T-S fuzzy control
techniques have been widely used in the area of intelligent
control of robotics, i.e., for robot manipulators (Fan et al., 2020),
nonlinear flexible link robots (Shams and Seyedtabaii, 2020), and
planar parallel robots (Vermeiren et al., 2012) among others.
Therefore, the T-S fuzzy model is an effective intelligent method
for modeling and analyzing robotic systems.

In practical systems, all state variables cannot always be
measured by sensors, and in other cases, the sensors used to
measure system states are expensive; however, the state variables
are indispensable to the design of system controllers and analyses
of system stability. Thus, observer design plays an important role
in stability analysis and control synthesis for nonlinear systems.
A fuzzy observer was first proposed by Tanaka and Sano in
1994 (Tanaka and Sano, 1994), and observers have since received
extensive research attention. Various problems involving fuzzy
observers have been studied in the literature. The researchers
in (Tong and Li, 2002; Asemani and Majd, 2013) studied an
observer-based controller design, and the observer and controller
were built simultaneously. The sliding mode fuzzy observers in
(Shen et al., 2011) were designed to address the problem of fault-
tolerant control for T-S fuzzy systems with actuator faults. Based
on the Lyapunov method, sufficient conditions for an unknown
input T-S observer (Chadli and Karimi, 2012) were given in
a linear matrix inequality (LMI) formulation. The novel fuzzy
learning observer in (You et al., 2019) was constructed to achieve
simultaneous reconstruction of system states and actuator faults
for T-S fuzzy systems with time-varying delays. However, the
above methods for T-S fuzzy systems are difficult to implement
in practice because of their high complexity. Compared with T-S
fuzzy systems, T-S fuzzy descriptor systems have the following
advantages: they effectively reduce the number of fuzzy rules
in a nonlinear system, and they can describe a wider variety
of nonlinear systems. Hence, the observer design problem for
the traditional nonlinear T-S descriptor system is considered in
this study.

In Li and Zhang (2018), Zhang et al. (2018), Zhang J. et al.
(2019), the authors designed a reduced-order robust observer,
a robust adaptive sliding mode observer, and a robust H∞

sliding mode observer; additionally, an observer-based sliding
mode controller was proposed for T-S fuzzy descriptor systems
with time-varying delay. Observer-based integral sliding mode
control strategies were developed in (Li et al., 2018). An adaptive
fuzzy observer in (Kharrat et al., 2018), a novel fuzzy descriptor
learning observer in (Jia et al., 2015), a robust fuzzy descriptor
observer in (Brahim et al., 2017), and some T-S descriptor
observers in (López-Estrada et al., 2017; Haj Brahim et al.,

2019) were constructed to achieve simultaneous reconstruction
of system states and actuator/sensor faults. A fault-tolerant
control scheme was derived based on Lyapunov asymptotic
stability. Robust observer-based output feedback control and
the robustness issue were addressed in (Liu et al., 2013) to
avoid control performance deterioration or instability due to
disturbances or approximation errors in the system. The design
process of a T-S fuzzy observer was extended to a class of T-
S descriptor systems with unmeasurable premise variables in
(Soulami et al., 2015). When designing a fuzzy observer, it is
important to have a clear understanding of the relationship
between premise variables and estimated system states. From the
literature (Liu et al., 2013; Jia et al., 2015; Soulami et al., 2015;
Brahim et al., 2017; López-Estrada et al., 2017; Kharrat et al.,
2018; Li and Zhang, 2018; Li et al., 2018; Zhang et al., 2018;
Haj Brahim et al., 2019; Zhang J. et al., 2019), we can conclude
that two cases exist to describe this relationship. Case A: premise
variables are not dependent on system states estimated by the
fuzzy observer, and case B: premise variables depend on system
states estimated by the fuzzy observer. The design process of
the controller and the observer is relatively simple in case A
compared to the approach in case B; therefore, more studies
have focused on case A such as (Liu et al., 2013; Jia et al., 2015;
Kharrat et al., 2018; Li and Zhang, 2018; Li et al., 2018; Zhang
et al., 2018; Zhang J. et al., 2019). However, it should be noted
that premise variables usually depend on unmeasurable system
states in practical systems. Therefore, case A has more restrictive
conditions that limit its application to various systems. Some
researchers in (Soulami et al., 2015; Brahim et al., 2017; López-
Estrada et al., 2017; Haj Brahim et al., 2019) studied the observer
design for T-S fuzzy descriptor systems with unmeasurable
premise variables.

Sliding mode control (SMC), as a type of variable
structure control method, can effectively control systems
with nonlinearities and uncertainties because of its beneficial
characteristics such as fast response, good transience, and strong
robustness. In recent decades, many significant results (Vu et al.,
2012; Van et al., 2013; Li and Zhang, 2018; Zhang et al., 2018; Wu
et al., 2019; Zhang J. et al., 2019) based on fuzzy systems have
been reported in studies on sliding mode observer design and
observer-based SMC. A novel fuzzy second-order sliding mode
observer was designed to estimate robot velocity, and a new
fuzzy second-order sliding mode strategy based on T-S fuzzy
models was proposed to track the expected motion in (Van et al.,
2013). A T-S fuzzy-model-based sliding mode controller was
developed for surface-mounted permanent-magnet synchronous
motors in Vu et al. (2012) considering motor parameter
uncertainties and unknown external noise. In (Wu et al., 2019),
the disturbance in T-S fuzzy discrete time systems was monitored
by a disturbance observer. The core objective of a sliding mode
observer is to design an SMC strategy for an observer system
or a dynamic estimation error system. Hence, a sliding mode
observer designed with the SMC method has high robustness
to nonlinearities and uncertainties. From the above literature,
it is clear that the traditional SMC theory requires a reaching
phase to drive state trajectories to the desired sliding surface. The
integral sliding mode technique can eliminate this process by
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implementing sliding mode motion from the initial time of the
control action. Consequently, the matched uncertainties can be
compensated for throughout the integral sliding mode control
(ISMC) process. Therefore, the issue of applying an integral
sliding mode technique to design observers and controllers
for fuzzy systems has received significant attention, such as in
(Jiang et al., 2018; Li et al., 2018; Kuppusamy and Joo, 2019).
In (Jiang et al., 2018), a novel integral sliding surface function
was proposed for the observer space of T-S fuzzy systems with
semi-Markov switching and immeasurable premise variables. An
integral-type fuzzy switching surface function was defined that
simultaneously involved a state-dependent input matrix and a
memory parameter in Kuppusamy and Joo (2019).

The above methods of controller and/or observer design for
T-S descriptor systems are based on an implicit assumption that
a desired controller and/or observer can be realized exactly.
However, in practical applications, it is impossible to implement
an ideal designed controller or observer because of round-off
errors in numerical computations, digital-to-analog conversion
errors, the finite word length used in digital computer systems,
and other factors. Therefore, a significant issue is determining
how to design a controller and an observer that are able to
tolerate some uncertainties in various processes, and is called
non-fragile control. The problem of non-fragile controller design
has been addressed, and a non-fragile guaranteed cost controller
(Chen and Li, 2013), a non-fragile fuzzy dissipative static output
feedback control (Guan and Liu, 2016), and a non-fragile robust
H∞ control (Zhang et al., 2007) have been investigated. The
researchers in (Li X. et al., 2017; Duan et al., 2019) focused on
the issue of non-fragile observer design.

Although a considerable effort has been devoted to fuzzy
observer analysis, ISMC design, and non-fragile control for fuzzy
systems and some effective solutions have been developed, there
are still some limitations in the existing research. First, the above
studies (Jia et al., 2015; Soulami et al., 2015; Brahim et al., 2017;
López-Estrada et al., 2017; Kharrat et al., 2018; Li and Zhang,
2018; Zhang et al., 2018; Haj Brahim et al., 2019; Zhang J. et al.,
2019) mainly discussed T-S fuzzy descriptor systems with the
same derivative matrix E. Other studies (Taniguchi et al., 2000;
Chen et al., 2009) showed that T-S fuzzy descriptor systems with
different derivative matrices are more useful for modeling and
analyzing the complexity of nonlinear systems than T-S fuzzy
descriptor systems with the same derivative matrices. To the
best of the authors’ knowledge, to date, the problem of observer
design for T-S fuzzy descriptor systems with unmeasurable
premise variables and a different derivative matrix E has not
been previously studied. Second, from what we can ascertain, the
existing integral sliding mode observer and controller in (Jiang
et al., 2018; Li et al., 2018; Kuppusamy and Joo, 2019) were
designed only for T-S fuzzy systems or T-S descriptor systems
with measurable premise variables. The problem of observer-
based adaptive ISMC for T-S fuzzy descriptor systems with
unmeasurable premise variables and uncertainties has not been
previously studied. Finally, fruitful results have been obtained for
non-fragile controllers and/or observers for T-S fuzzy systems
such as those in (Zhang et al., 2007; Chen and Li, 2013; Guan
and Liu, 2016; Li X. et al., 2017; Duan et al., 2019), but these

results generally lack corresponding techniques for T-S fuzzy
descriptor systems.

Motivated by the abovementioned discussion, in this article,
we study non-fragile observer-based ISMC problems for T-S
fuzzy descriptor systems with unmeasurable premise variables
and uncertainties. The main contributions of the proposed
control method are as follows.

1) In accordance with the nonparallel distributed compensation
control (non-PDC)method and the ISMC theory, an observer-
based integral sliding mode controller is developed for T-S
fuzzy descriptor systems with unmeasurable premise variables.

2) A non-fragile integral sliding mode observer and a non-
fragile observer-based slidingmode controller are constructed.
In addition, system uncertainties and perturbations in both
the observer structure and the controller structure are
compensated for by an adaptive controller.

3) Auxiliary variables are introduced into the system with an
augmented method to eliminate the coupling of Lyapunov
function matrices, observer gain matrices, and/or observer
gain perturbations. Moreover, a fuzzy Lyapunov function
containing information for system state estimation and
system state estimation error is designed to guarantee
the asymptotic stability of the closed-loop system. The
auxiliary variables and the fuzzy Lyapunov function produce
unconservative results.

This article is organized as follows. Section Problem
Formulation and Preliminary Analysis describes the system,
clarifies the problem formulation, and gives relevant
preliminary information. Then, in Section Non-Fragile
Observer-Based ISMC for T-S Fuzzy Descriptor Systems,
a non-fragile observer and a non-fragile controller are
constructed. A simulation example is presented to validate
the accuracy and effectiveness of the proposed method
in Section Examples. Finally, conclusions are drawn in
Section Conclusions.

Notation: in this study, Rm and Rn×m denote the n-
dimensional real Euclidean space and the set of n × m matrices
with real elements, respectively. I is the identity matrix with
appropriate dimensions. For clarity, the following definitions are

given: γh =
∑r

i=1 hi(�)γi, γ−1
h

= (
∑r

i=1 hi(�)γi)
−1

, γh,h =
∑r

i=1

∑r
j=1 hi(�)hj(�)γi,j, γ⌢

h
=

∑r
i=1 hi(

⌢

ξ (t))γi, A+∗ = A+AT ,

He(A) =A+ AT , and

[

A ∗

B C

]

=

[

A BT

B C

]

.

PROBLEM FORMULATION AND
PRELIMINARY ANALYSIS

In this study, T-S fuzzy descriptor systems are used to
approximate various complex nonlinear robotics, i.e., robot
manipulators (Fan et al., 2020), planar parallel robots (Vermeiren
et al., 2012), an overhead crane system (Chen et al., 2009), a
ball and beam system (Li H. et al., 2017), and a nonlinear active
vehicle suspension system (Li et al., 2012). Therefore, consider a

Frontiers in Neurorobotics | www.frontiersin.org 3 July 2022 | Volume 16 | Article 820389

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Huang et al. Non-Fragile Observer-Based Sliding Mode Controller

class of uncertain robotic systems that can be represented by the
following T-S fuzzy descriptor systems with uncertainties:

∑re

k=1
vk(ξ (t))(Ek + 1E)ẋ(t)

=
∑r

i=1
hi(z(t))

{

(Ai + 1A)x(t)+ Bu(t)
}

, (1)

y(t) =
∑r

i=1
hi(z(t))(Cix(t)),

where x(t) =
[

x1(t) · · · xn(t)
]

∈ Rnis the system state vector,
u(t) ∈ Rm is the control input, y(t) ∈ Rpis the system
output vector, and ξ (t) =

[

ξ1(t) · · · ξl(t)
]

∈ Rl andz(t) =
[

z1(t) · · · zq(t)
]

∈ Rqare the unmeasurable premise vectors.
vk(ξ (t)), k = 1, 2, · · · , re and hi(z(t)), i = 1, 2, · · · , r are
fuzzy membership functions on the left and right-hand sides,
respectively.Ai ∈ Rn×n, Ek ∈ Rn×n, B ∈ Rn×m, andCi ∈ Rp×n are
the system matrices. 1E ∈ Rn×n and 1A ∈ Rn×n are the system
uncertainties. In many practical cases, there are twomain sources
of system uncertainties. On the one hand, mechanical devices
may carry various tools or goods for various operations; thus,
the system’s mass, center of mass, and other coefficients tend to
change with load. On the other hand, dynamic model and system
parameters are challenging to accurately obtain either through
theoretical methods or by experimental measurements. In many
practical cases, hi(z(t)) and vk(ξ (t)) are different, i.e., an inverted
pendulum on a cart (Li et al., 2018), an overhead crane system (Li
H. et al., 2017), a ball and beam system (Li X. et al., 2017), or a
nonlinear active vehicle suspension system (Li et al., 2012).

Without loss of generality, some assumptions are introduced
as follows:

Assumption 1.
∑re

k=1
vk(ξ (t))(Ek + 1E)is nonsingular.

Assumption 2. 1Eand1Aare uncertainties satisfying 1E =

MEFE(t)NE and1A = MAFA(t)NA, where ME, NE, MA, and
NAare known real constant matrices and FE(t)andFA(t) are
unknown time-varying matrices that satisfy FTE (t)FE(t) ≤ I and
FTA(t)FA(t) ≤ I, respectively.

By defining X∗(t) =
[

xT(t) ẋT(t)
]T
, the T-S fuzzy descriptor

system (1) can be transformed into an augmented form
as follows:

E∗Ẋ∗(t) =
∑re

k=1

∑r

i=1
vk(ξ (t))hi(z(t))

{

(A∗
ki + 1A∗)X∗(t)+ B∗u(t)

}

, (2)

y(t) =
∑r

i=1
hi(z(t))C

∗
i X

∗(t),

where E∗ =

[

I 0
0 0

]

,A∗
ki
=

[

0 I
Ai −Ek

]

,M =

[

0 0
MA −ME

]

,1A∗ =
[

0 I
1A −1E

]

= MF(t)N, F(t) =

[

FA(t) 0
0 FE(t)

]

, N =

[

NA 0
0 NE

]

,

B* =

[

0
B

]

, and C∗
i =

[

Ci 0
]

.

Assumption 3. The output matrices Ci of the ith rule of the T-S
fuzzy descriptor system are full row rank for all i = 1, · · · , r, and

therefore nonsingular matrices Ti exist such that

CiTi =
[

I 0
]

.

Remark 1. For any given Ci, the corresponding Ti is not unique
in general. One solution for Ti, as discussed in Du and Yang
(2009), is:

Ti =
[

CT
i (CiC

T
i )

−1
C⊥
i

]

,

where C⊥
i is called an orthogonal basis for the null space of

Ci andCiC
⊥
i = 0.

Some essential lemmas are introduced to facilitate
stability analysis.

Lemma 1 (Boyd et al., 1994). (Schur Complement) The
appropriate dimensional matrices S1,1, S1,2, S2,1, andS2,2 satisfy
S1,1 = ST1,1, S1,2 = ST2,1, and S2,2 = ST2,2such that the following
conditions are equivalent:

S =

[

S1,1 S1,2
S2,1 S2,2

]

1) S < 0,
2) S1,1 < 0 andS2,2 − ST1,2S

−1
1,1S1,2 < 0, and

3)S2,2 < 0 and S1,1 − S1,2S
−1
2,2S

T
1,2 < 0.

Lemma 2 (Petersen, 1987). Let P = PT ,M, andN be real matrices
of appropriate dimensions. Then, P+MF(t)N+NTFT(t)MT < 0
for all variable matrix functions F(t) satisfying FT(t)F(t) ≤ I
if and only if there is a scalar ε > 0such that the following
inequality holds:

P + εMMT + ε−1NTN < 0.

Lemma 3 (Gahinet and Apkarian, 1994). (Finsler’s lemma) The
following conditions are equivalent:

1) xT�x < 0, ∀Wx = 0, and x 6= 0, where x is an augmented
state vector;

2) W⊥T
�W⊥ < 0, where W⊥is any null space basis matrix

forW;
3) there is a scalar µ that satisfies � − µWTW < 0; and
4) there is a matrix X that satisfies � + XW +WTXT < 0.

Remark 2.
∑re

k=1
vk(ξ (t))Ekis required to be nonsingular to

ensure that the augmented systems (2) maintain the impulse-free
and regularization properties of the original system.

Remark 3. In this study, a nonlinear mechanical system is
represented as a T-S fuzzy descriptor system instead of a T-S fuzzy
system to effectively avoid the artificial introduction of different
input matrices. By setting the system matrix Ek = I, a T-S fuzzy
descriptor system can be transformed into a normal T-S fuzzy
system. Therefore, the proposed controller is also feasible for a
normal T-S fuzzy system.
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NON-FRAGILE OBSERVER-BASED ISMC
FOR T-S FUZZY DESCRIPTOR SYSTEMS

When uncertainties of robotic system are considered such
that 1A∗ 6= 0, a robust observer is constructed to
estimate the system states. In contrast, a non-fragile observer-
based adaptive integral sliding mode controller for T-S fuzzy
descriptor systems, as shown in Figure 1, is designed to
address robotic system uncertainties and perturbations for
both observer and controller structures. The control system
includes two parts: a non-fragile observer and a non-fragile
adaptive integral sliding mode controller. Moreover, the non-
fragile adaptive integral sliding mode controller has three parts,
namely, the equivalent control strategy, the switching control
strategy, and the adaptive control strategy. The equivalent
control strategy guarantees system convergence to the designed
sliding surface, and the switching control strategy makes
the closed-loop control system asymptotically stable. System
uncertainties and perturbations associated with controller
and observer gains are compensated for by the adaptive
control strategy.

Structure of the Non-Fragile Sliding Mode
Observer
To estimate the states of system (2), the following non-fragile
observer for estimating system states is considered:

E∗ ˙̂X
∗

(t) =
∑re

k=1

∑r

i
vk(ξ̂ (t))hi(ẑ(t))

{

A∗
k,iX̂

∗(t)+ B∗u(t)+ (L∗k,i + 1L∗k,i)(y(t)− ŷ(t))
}

, (3)

ŷ(t) =
∑r

i=1
hi(ẑ(t))C

∗
i X̂

∗(t),

where X̂∗(t) is the state estimate of X∗(t), ŷ(t) is
the estimated value of the system output vector y(t),
and ξ̂ (t)andẑ(t)denote the estimated values of the
premise variablesξ (t) and z(t), respectively. Using the
notation presented in Introduction, Equation (3) can be
represented as:

E∗ ˙̂X
∗
(t) = A∗

ĥ,v̂
X̂∗(t)+ B∗u(t)+ (L∗

ĥ,v̂
+ 1L∗

ĥ,v̂
)(y(t)− ŷ(t)), (4)

ŷ(t) = C∗

ĥ
X̂∗(t),

where L∗
ĥ,v̂

=
[

0 LT
ĥ,v̂

]T
and 1L∗

ĥ,v̂
=

[

0 1LT
ĥ,v̂

]T
. L

ĥ,v̂
denotes

the observer gain, which will be determined later. 1L
ĥ,v̂

=

MLSLNLLĥ,v̂ is the observer gain perturbation, whereML and NL

are known real constant matrices.SL is an unknown time-varying

matrix that satisfies STL SL ≤ I.1L∗
ĥ,v̂

satisfies the following

norm-bounded multiplicative relation:

1L∗
ĥ,v̂

= M∗
LSLN

∗
LL

∗

ĥ,v̂
, (5)

whereM∗
L =

[

0 MT
L

]T
and N∗

L =
[

0 NL

]

.
The system state estimation error is defined as e(t) = X∗(t)−

X̂∗(t); by considering the T-S fuzzy descriptor system (2) and the
non-fragile observer system (4), the estimation error dynamic is
obtained as:

E∗ė(t) = (A∗
h,v − (L∗

ĥ,v̂
+ 1L∗

ĥ,v̂
)C∗

h)e(t)

+(A∗
h,v − A∗

ĥ,v̂
)X̂∗(t)

−(L∗
ĥ,v̂

+ 1L∗
ĥ,v̂
)(C∗

h − C∗

ĥ
)X̂∗(t)

+1A∗X∗(t). (6)

Remark 4. Since we consider unmeasurable premise variables
for T-S fuzzy descriptor systems, the membership functions of
the T-S fuzzy descriptor system (vk(ξ (t)) and hi(z(t))) should be
allowed to depend on the estimated system state x̂i(t) rather than
the original system state xi(t). Furthermore, the system output
matrix Ci(t) is allowed to be a function of the system state xi(t)
instead of a constant matrix.

Construction of the Integral Sliding Surface
Based on the non-fragile observer (4) and ISMC theory, the
integral sliding surface function is designed as

sX̂∗ (t) = S∗E∗X̂∗(t)− S∗E∗X̂∗(0) (7)

− S∗
t

∫

0

(A∗

ĥ,v̂
+ B∗(F∗

ĥ,v̂
+ 1F∗

ĥ,v̂
)K−1

ĥ,v̂
)X̂∗(τ )dτ ,

where F∗
ĥ,v̂

=
[

F
ĥ,v̂

0
]

,K
ĥ,v̂

=

[

K1,v̂ K2,v̂

K
3,ĥ

K
4,ĥ

]

,F
ĥ,v̂

∈ Rm×n, K1,v̂ ∈

Rn×n, K2,v̂ ∈ Rn×n, K
3,ĥ

∈ Rn×n, and K
4,ĥ

∈ Rn×n are the

system controller gains, which will be determined later. S∗ is a

constant matrix that satisfies det(S∗B∗) 6= 0. 1F∗
ĥ,v̂

=
[

1F
ĥ,v̂

0
]

is the controller gain perturbation and satisfies the following
norm-bounded multiplicative relation:

1F∗
ĥ,v̂

= MFSFNFF
∗

ĥ,v̂
, (8)

where MF and NF are known matrices with appropriate
dimensions, and SF is an unknown time-varying matrix that
satisfies STF SF ≤ I.
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FIGURE 1 | Non-fragile observer-based ISMC for T-S fuzzy descriptor systems.

Combining (4) with (7), the derivative of the integral sliding
mode surface (7) can be obtained as:

ṡX̂∗ (t) =

S∗(A∗

ĥ,v̂
X̂∗(t)+ B∗u(t)+ (L∗

ĥ,v̂
+ 1L∗

ĥ,v̂
)(y(t)− C∗

ĥ
X̂∗(t)))

−S∗(A∗

ĥ,v̂
+ B∗(F∗

ĥ,v̂
+ 1F∗

ĥ,v̂
)K−1

ĥ,v̂
)X̂∗(t). (9)

When system trajectories reach the ideal sliding surface, the
following conditions must be satisfied: sX̂∗ (t) = 0 and ṡX̂∗ (t) = 0.
Therefore, the equivalent control can be designed as follows:

Case 1:Ch = C
ĥ
= C∗

ueq(t) = (F∗
ĥ,v̂

+ 1F∗
ĥ,v̂
)K−1

ĥ,v̂
X̂∗(t)

−(S∗B∗)−1S∗(L∗
ĥ,v̂

+ 1L∗
ĥ,v̂
)C∗e(t). (10)

Case 2:Ch 6= C
ĥ

ueq(t) = (F∗
ĥ,v̂

+ 1F∗
ĥ,v̂
)K−1

ĥ,v̂
X̂∗(t)

−(S∗B∗)−1S∗(L∗
ĥ,v̂

+ 1L∗
ĥ,v̂
)C∗

he(t)

−(S∗B∗)−1S∗(L∗
ĥ,v̂

+ 1L∗
ĥ,v̂
)(C∗

h − C∗

ĥ
)X̂∗(t). (11)

By substituting the equivalent controller (10-11) into
the sliding mode observer system (4), the sliding mode
dynamics are established as (12) and (14). Meanwhile, the
dynamic estimation error Equation (6) is redescribed as (13)
and (15).

Case 1:Ch = C
ĥ
= C∗

E∗ ˙̂X
∗
(t) = (A∗

ĥ,v̂
+ B∗(F∗

ĥ,v̂
+ 1F∗

ĥ,v̂
)K−1

ĥ,v̂
)X̂∗(t)

+BB(L∗
ĥ,v̂

+ 1L∗
ĥ,v̂
)C∗e(t), (12)
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FIGURE 2 | Feasible area for theorem 3 (*) compared with the other methods. (A) Feasible area for Theorem 3 (*) and Theorem 2(+) [Ichalal et al., 2011]. (B) Feasible

area for Theorem 3 (*) and Theorem 1(o) [Asemani and Majd, 2013].

FIGURE 3 | Time responses of the system. (A) State x1(t) and the estimated x̂1(t). (B) State x2(t) and the estimated x̂2(t). (C) Control input. (D) Sliding surface.
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FIGURE 4 | Time responses of the control input and the sliding surface. (A) Control input. (B) Sliding surface.

FIGURE 5 | Nonlinear state x1(t) and the estimatedx̂1 (t). (A) Initial simulation case 1. (B) Initial simulation case 2. (C) Initial simulation case 3. (D) Initial simulation case

4.
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E∗ė(t) = (A∗
h,v − (L∗

ĥ,v̂
+ 1L∗

ĥ,v̂
)C∗ + 1A∗)e(t)+ (A∗

h,v − A∗

ĥ,v̂
+ 1A∗)X̂∗(t). (13)

Case 2:Ch 6= C
ĥ

E∗ ˙̂X
∗
(t) = (A∗

ĥ,v̂
+ B∗(F∗

ĥ,v̂
+ 1F∗

ĥ,v̂
)K−1

ĥ,v̂
+ BB(L∗

ĥ,v̂
+ 1L∗

ĥ,v̂
)(C∗

h − C∗

ĥ
))X̂∗(t)+ BB(L∗

ĥ,v̂
+ 1L∗

ĥ,v̂
)C∗

he(t), (14)

E∗ė(t) = (A∗
h,v − (L∗

ĥ,v̂
+ 1L∗

ĥ,v̂
)C∗

h + 1A∗)e(t)+ (A∗
h,v − A∗

ĥ,v̂
− (L∗

ĥ,v̂
+ 1L∗

ĥ,v̂
)(C∗

h − C∗

ĥ
)+ 1A∗)X̂∗(t), (15)

where BB = I − B∗(S∗B∗)−1S∗. In this study, the control goal is to obtain the observer gains and controller gains such that X̂∗(t) → 0
and e(t) → 0 for t → ∞.

Equations (12) and (14) can be rearranged as follows:
Case 1:Ch = C

ĥ
= C∗

[

A∗

ĥ,v̂
+ B∗(F∗

ĥ,v̂
+ 1F∗

ĥ,v̂
)K−1

ĥ,v̂
−I BB(L∗

ĥ,v̂
+ 1L∗

ĥ,v̂
)C∗

]







X̂∗(t)

E∗ ˙̂X
∗
V(t)

e(t)






= 0. (16)

Case 2:Ch 6= C
ĥ

[

A∗

ĥ,v̂
+ B∗(F∗

ĥ,v̂
+ 1F∗

ĥ,v̂
)K−1

ĥ,v̂
+ BB(L∗

ĥ,v̂
+ 1L∗

ĥ,v̂
)(C∗

h
− C∗

ĥ
) −I BB(L∗

ĥ,v̂
+ 1L∗

ĥ,v̂
)C∗

h

]







X̂∗(t)

E∗ ˙̂X
∗
(t)

e(t)






= 0. (17)

Admissibility Analysis of the Dynamic Sliding Mode System
Based on the LMI theory and the Lyapunov stability theory, the controller gains and observer gains are determined in this section such
that sliding mode dynamics are asymptotically stable.

Theorem 1: Suppose that the T-S fuzzy descriptor systemmatrices in (2) satisfy1A* 6= 0 and Ch = C
ĥ
= C∗. Given constants ε > 0

and ε1 > 0, the closed-loop systems (12,13) are asymptotically stable if positive definite matrices P1 and Q1, scalars ε2,i,k, ε
E
3,i,k

, εA
3,i,k

,

and ε4,i,k, and a set of matrices P3,i,k, P4,i,k, Fi,k,K1,k,K2,k,K3,i,K4,i, Li,k, R1, R
11
1,i,k

, R12
1,i,k

, R2
1,i,k

, R3
1,i,k

, and R4
1,i,k

exist, where k ∈ {1, · · · , re}

and i ∈ {1, · · · , r}, such that the following LMIs hold:

[

�1 ∗

�2 �3

]

< 0, (18)

�1 =































11,1 ∗ ∗ ∗ ∗ ∗ ∗ ∗

12,1 12,2 ∗ ∗ ∗ ∗ ∗ ∗

13,1 13,2 −εHe(P1) ∗ ∗ ∗ ∗ ∗

14,1 14,2 −εP
3,ĥ,v̂

14,4 ∗ ∗ ∗ ∗

0 (BY
ĥ,v̂
)
T

0 ε(BY
ĥ,v̂
)
T

He(Q
3,ĥ
) ∗ ∗ ∗

16,1 16,2 0 −εMLε4,ĥ,v̂M
T
L B

T
16,5 16,6 ∗ ∗

0 ε1(BYĥ,v̂
)
T

0 ε1ε(BYĥ,v̂
)
T

Q1 − TR1
1,ĥ,v̂

17,6 17,7 ∗

0 0 0 0 Q
3,ĥ

− R3
1,ĥ,v̂

18,6 18,7 −ε1He(R4
1,ĥ,v̂

)































,

�2 =









NFFĥ,v̂ 0 0 0 0 0 0 0

NAK1,v̂ NAK2,v̂ 0 0 NAQ1 0 0 0
NEK3,ĥ

NEK4,ĥ
0 0 NEQ3,ĥ

NEQ4,ĥ
0 0

0 0 0 0 NLYĥ,v̂
0 ε1NLYĥ,v̂

0









,
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�3 =











−ε
2,ĥ,v̂

I ∗ ∗ ∗

0 −εA
3,ĥ,v̂

I ∗ ∗

0 0 −εE
3,ĥ,v̂

I ∗

0 0 0 −ε
4,ĥ,v̂

I











,

where 11,1 = He(K
3,ĥ
), 12,1 = A

ĥ
K1,v̂−Ev̂K3,ĥ

+BF
ĥ,v̂

+KT

4,ĥ
, 12,2 = He(A

ĥ
K2,v̂)+BMFε2,ĥ,v̂M

T
F B

T−He(Ev̂K4,ĥ
)+BMLε4,ĥ,v̂M

T
L B

T
,

13,1 = K1,v̂ + εK
3,ĥ

− P1, 13,2 = K2,v̂ + εK
4,ĥ
, 14,1 = K

3,ĥ
− P

3,ĥ,v̂
+ε(A

ĥ
K1,v̂ − Ev̂K3,ĥ

+ BF
ĥ,v̂
), 14,2 = εBMFε2,ĥ,v̂M

T
F B

T +

εBMLε4,ĥ,v̂M
T
L B

T
+ K

4,ĥ
+ εA

ĥ
K2,v̂ − P

4,ĥ,v̂
−εEv̂K4,ĥ

, 14,4 = ε2BMFε2,ĥ,v̂M
T
F B

T + ε2BMLε4,ĥ,v̂M
T
L B

T
− εHe(P

4,ĥ,v̂
), 16,1 = (Ah −

A
ĥ
)K1,v̂−EvK3,ĥ

+ Ev̂K3,ĥ
, 16,2 = (Ah − A

ĥ
)K2,v̂ − (Ev − Ev̂)K4,ĥ

− MLε4,ĥ,v̂M
T
L B

T
, 16,5 = QT

4,ĥ
− Y

ĥ,v̂
+ AhQ1−EvQ3,ĥ

, 16,6 =

−He(EvQ4,ĥ
)+MLε4,ĥ,v̂M

T
L +MAε

A

3,ĥ,v̂
MT

A +MEε
E

3,ĥ,v̂
MT

E , 17,6 = −ε1(Yĥ,v̂
)T − TR2

1,ĥ,v̂
, 17,7 = −ε1He(TR1

1,ĥ,v̂
), 18,6 = Q

4,ĥ
− R4

1,ĥ,v̂
,

18,7 = −ε1R
3

1,ĥ,v̂
− ε1(TR

2

1,ĥ,v̂
)
T
, B = B(S∗2B)

−1S∗2 , Yĥ,v̂
=

[

(L
ĥ,v̂
R1)

n×p
0n×(n−p)

]

, R1
1,ĥ,v̂

=

[

R1 0p×(n−p)

R11
1,ĥ,v̂

R12
1,ĥ,v̂

]

, and R2
1,ĥ,v̂

=

[

0p×n

R21
1,ĥ,v̂

]

.

Proof: The Lyapunov function candidate is constructed as:

V(x̂(t),e1(t)) = x̂T(t)P−1
1 x̂(t)+ eT1 (t)Q

−1
1 e1(t) = X̂∗T(t)E∗TP−1

ĥ,v̂
X̂∗(t)+ eT(t)E∗TQ−1

ĥ,v̂
e(t), (19)

where P
ĥ,v̂

=

[

P1 0
P
3,ĥ,v̂

P
4,ĥ,v̂

]

, P−1

ĥ,v̂
=

[

P−1
1 0

−P−1

4,ĥ,v̂
P
3,ĥ,v̂

P−1
1 P−1

4,ĥ,v̂

]

, P1 = PT1 , Qĥ,v̂
=

[

Q1 0
Q
3,ĥ,v̂

Q
4,ĥ,v̂

]

, Q1 = QT
1 , P1 ∈ Rn×n,

P
3,ĥ,v̂

∈ Rn×n, P
4,ĥ,v̂

∈ Rn×n, Q1 ∈ Rn×n, Q
3,ĥ,v̂

∈ Rn×n, Q
4,ĥ,v̂

∈ Rn×n, and e1(t) = x(t) − x̂(t).The matrix and its derivative

satisfy E∗TP−1

ĥ,v̂
= P−T

ĥ,v̂
E∗ =

[

P1 0
0 0

]

, E∗TQ−1

ĥ,v̂
= Q−T

ĥ,v̂
E∗ =

[

Q1 0
0 0

]

, d
dt
(E∗TP−1

ĥ,v̂
) = 0, and d

dt
(E∗TQ−1

ĥ,v̂
) = 0. Therefore, the derivative

of the Lyapunov function (19) is calculated as:

V̇(x̂(t), e1(t)) =
˙̂X
∗T
(t)E∗TP−1

ĥ,v̂
X̂∗(t)+ X̂∗T(t)P−T

ĥ,v̂
E∗ ˙̂X

∗
(t)+ ėT(t)E∗TQ−1

ĥ,v̂
e(t)+ eT(t)Q−T

ĥ,v̂
E∗ė(t) (20)

=







X̂∗(t)

E∗ ˙̂X
∗
(t)

e(t)







T 





0 ∗ ∗

P−1

ĥ,v̂
0 ∗

Q−T

ĥ,v̂
(A∗

h,v
− A∗

ĥ,v̂
+ 1A∗) 0 He((A∗

h,v
− (L∗

ĥ,v̂
+ 1L∗

ĥ,v̂
)C∗ + 1A∗)TQ−1

ĥ,v̂
)













X̂∗(t)

E∗ ˙̂X
∗
(t)

e(t)






< 0,

If (20) holds, then the following inequality can be obtained by Finsler’s lemma (lemma 3) under the constraint in the sliding mode
dynamics Equation (16):







0 ∗ ∗

P−1

ĥ,v̂
0 ∗

Q−T

ĥ,v̂
(A∗

h,v
− A∗

ĥ,v̂
+ 1A∗) 0 He((A∗

h,v
− (L∗

ĥ,v̂
+ 1L∗

ĥ,v̂
)C∗ + 1A∗)TQ−1

ĥ,v̂
)






+ 41 < 0,

(21)

41= He(







U
ĥ,v̂

V
ĥ,v̂

W
ĥ,v̂







[

A∗

ĥ,v̂
+ B∗(F∗

ĥ,v̂
+ 1F∗

ĥ,v̂
)K−1

ĥ,v̂
−I BB(L∗

ĥ,v̂
+ 1L∗

ĥ,v̂
)C∗

]

),

where U
ĥ,v̂
, V

ĥ,v̂
, and W

ĥ,v̂
are matrix variables with appropriate dimensions. By pre- and post-multiplying (21) by







KT

ĥ,v̂
0 0

0 P
ĥ,v̂

0

0 0 QT

ĥ,v̂






and







K
ĥ,v̂

0 0

0 PT
ĥ,v̂

0

0 0 Q
ĥ,v̂






, respectively, the following inequality is obtained:







0 ∗ ∗

K
ĥ,v̂

0 ∗

(A∗
h,v

− A∗

ĥ,v̂
+ 1A∗)K

ĥ,v̂
0 He(QT

ĥ,v̂
(A∗

h,v
− (L∗

ĥ,v̂
+ 1L∗

ĥ,v̂
)C∗ + 1A∗)T)






+ 42 < 0, (22)
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42=He(







KT

ĥ,v̂
U
ĥ,v̂

P
ĥ,v̂
V
ĥ,v̂

QT

ĥ,v̂
W

ĥ,v̂







[

A∗

ĥ,v̂
K
ĥ,v̂

+ B∗(F∗
ĥ,v̂

+ 1F∗
ĥ,v̂
) −PT

ĥ,v̂
BB(L∗

ĥ,v̂
+ 1L∗

ĥ,v̂
)C∗Q

ĥ,v̂

]

)

where U
ĥ,v̂

= K−T

ĥ,v̂
, V

ĥ,v̂
= εP−1

ĥ,v̂
, andW

ĥ,v̂
= 0 are defined for ε > 0. Then, inequality (22) can be represented as:

43 +He(







0 0 0
0 0 0

(BB(L∗
ĥ,v̂

+ 1L∗
ĥ,v̂
)C∗Q

ĥ,v̂
)
T

ε(BB(L∗
ĥ,v̂

+ 1L∗
ĥ,v̂
)C∗Q

ĥ,v̂
)
T
−((L∗

ĥ,v̂
+ 1L∗

ĥ,v̂
)C∗Q

ĥ,v̂
)T






) < 0, (23)

43 =







He(A∗

ĥ,v̂
K
ĥ,v̂

+ B∗(F∗
ĥ,v̂

+ 1F∗
ĥ,v̂
)) ∗ ∗

K
ĥ,v̂

− P
ĥ,v̂

+ ε(A∗

ĥ,v̂
K
ĥ,v̂

+ B∗(F∗
ĥ,v̂

+ 1F∗
ĥ,v̂
)) −εHe(PT

ĥ,v̂
) ∗

(A∗
h,v

− A∗

ĥ,v̂
)K

ĥ,v̂
+ 1A∗K

ĥ,v̂
0 He(1A∗Q

ĥ,v̂
+ A∗

h,v
Q
ĥ,v̂
)






,

The corresponding auxiliary variables are introduced into the system, and the dimension of the system is increased with the augmented
method to eliminate the coupling of the Lyapunov function matrix Q

ĥ,v̂
, the observer gain matrix L∗

ĥ,v̂
, and the observer gain

perturbation 1L∗
ĥ,v̂

in inequality (23). The following equations are defined:

x4(t) = (BB(L∗
ĥ,v̂

+ 1L∗
ĥ,v̂
)C∗)

T
x1(t)+ ε(BB(L∗

ĥ,v̂
+ 1L∗

ĥ,v̂
)C∗)

T
x2(t)− ((L∗

ĥ,v̂
+ 1L∗

ĥ,v̂
)C∗)Tx3(t). (24)

Thus, inequality (23) can be expressed as:









x1(t)
x2(t)
x3(t)
x4(t)









T

44









x1(t)
x2(t)
x3(t)
x4(t)









< 0, (25)

44 =













He(A∗

ĥ,v̂
K
ĥ,v̂

+ B∗(F∗
ĥ,v̂

+ 1F∗
ĥ,v̂
)) ∗ ∗ ∗

41
4 −εHe(PT

ĥ,v̂
) ∗ ∗

(A∗
h,v

− A∗

ĥ,v̂
)K

ĥ,v̂
+ 1A∗K

ĥ,v̂
0 He(1A∗Q

ĥ,v̂
+ A∗

h,v
Q
ĥ,v̂
) ∗

0 0 Q
ĥ,v̂

0













where41
4 = K

ĥ,v̂
+ ε(A∗

ĥ,v̂
K
ĥ,v̂

+ B∗(F∗
ĥ,v̂

+ 1F∗
ĥ,v̂
))− P

ĥ,v̂
.

If (25) holds, then the following inequality can be obtained by Finsler’s lemma (lemma 3) under the constraint in Equation (24).

44 +45 < 0, (26)

45 = He(











0
0

(T∗R
1,ĥ,v̂

)T

ε1(T
∗R

1,ĥ,v̂
)T











[

(BB(L∗
ĥ,v̂

+ 1L∗
ĥ,v̂
)C∗)

T
ε(BB(L∗

ĥ,v̂
+ 1L∗

ĥ,v̂
)C∗)

T
−((L∗

ĥ,v̂
+ 1L∗

ĥ,v̂
)C∗)T −I

]

)

whereR
1,ĥ,v̂

=

[

R1
1,ĥ,v̂

R2
1,ĥ,v̂

R3
1,ĥ,v̂

R4
1,ĥ,v̂

]

, R1
1,ĥ,v̂

=

[

R1 0p×(n−p)

R11
1,ĥ,v̂

R12
1,ĥ,v̂

]

, R2
1,ĥ,v̂

=

[

0p×n

R21
1,ĥ,v̂

]

, T∗ =

[

T 0
0 I

]

,R1 ∈ Rp×p, R11
1,ĥ,v̂

∈ R(n−p)×p,

R12
1,ĥ,v̂

∈ R(n−p)×(n−p), R21
1,ĥ,v̂

∈ R(n−p)×n, R3
1,ĥ,v̂

∈ Rn×n, R4
1,ĥ,v̂

∈ Rn×n, and T satisfies assumption 3.
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Inequality (26) can be rewritten as follows:

47 +48 < 0, (27)

47 =













He(A∗

ĥ,v̂
K
ĥ,v̂

+ B∗F∗
ĥ,v̂
) ∗ ∗ ∗

41
7 −εHe(PT

ĥ,v̂
) ∗ ∗

42
7 ε(BB̟1)

T
He(A∗

h,v
Q
ĥ,v̂

− ̟1) ∗

ε1(BB̟1)
T

ε1ε(BB̟1)
T
Q
ĥ,v̂

− ε1̟
T
1 − T∗R

1,ĥ,v̂
−ε1He(T∗R

1,ĥ,v̂
)T













,

48 = He(













B∗1F∗
ĥ,v̂

0 0 0

εB∗1F∗
ĥ,v̂

0 0 0

1A∗K
ĥ,v̂

+ (BB̟2)
T

ε(BB̟2)
T

1A∗Q
ĥ,v̂

− ̟T
2 0

ε1
(

BB̟2

)T
ε1ε

(

BB̟2

)T
−ε1̟

T
2 0













),

where41
7 = K

ĥ,v̂
+ ε(A∗

ĥ,v̂
K
ĥ,v̂

+ B∗F∗
ĥ,v̂
)− P

ĥ,v̂
, 42

7 = (A∗
h,v

− A∗

ĥ,v̂
)K

ĥ,v̂
+ (BB̟1)

T , ̟1 = L∗
ĥ,v̂
C∗T∗R

1,ĥ,v̂
, and̟2 = 1L∗

ĥ,v̂
C∗T∗R

1,ĥ,v̂
.

Because 1L∗
ĥ,v̂

= M∗
LSLN

∗
LL

∗

ĥ,v̂
, 1F∗

ĥ,v̂
= MFSFNFF

∗

ĥ,v̂
, and 1A∗ = MF(t)N, inequality (27) can be rewritten as:

47 +He(M1SFN1+M2F(t)N2+M3SLN3) < 0, (28)

where M1 =
[

B∗MF εB∗MF 0 0
]T
, N1 =

[

NFF
∗

ĥ,v̂
0 0 0

]

, M2 =
[

0 0 M 0
]T
, N2 =

[

NK
ĥ,v̂

0 NQ
ĥ,v̂

0
]

, N3 =
[

0 0 N∗
LL

∗

ĥ,v̂
C∗T∗R

1,ĥ,v̂
ε1N∗

LL
∗

ĥ,v̂
C∗T∗R

1,ĥ,v̂

]

, andM3 =
[

BBM∗
L εBBM∗

L −M∗
L 0

]T
.

Based on lemma 2, (28) holds if there are positive real scalars ε
2,ĥ,v̂

, εA
3,ĥ,v̂

, εE
3,ĥ,v̂

, and ε
4,ĥ,v̂

that satisfy the following relation:

47 +M1ε2,ĥ,v̂M
T
1 + NT

1 ε−1

2,ĥ,v̂
N1 +M2ε3,ĥ,v̂M

T
2 + NT

2 ε−1

3,ĥ,v̂
N2 +M3ε4,ĥ,v̂M

T
3 + NT

3 ε−1

4,ĥ,v̂
N3 < 0, (29)

where ε
3,ĥ,v̂

=

[

εA
3,ĥ,v̂

I 0

0 εE
3,ĥ,v̂

I

]

. Using the Schur complement in lemma 1, (29) holds if and only if the following relation set is satisfied:

























41
9 ∗ ∗ ∗ ∗ ∗ ∗

42
9 43

9 ∗ ∗ ∗ ∗ ∗

44
9 45

9 46
9 ∗ ∗ ∗ ∗

ε1
(

BB̟1

)T
ε1ε

(

BB̟1

)T
47

9 −ε1He(T∗R
1,ĥ,v̂

) ∗ ∗ ∗

NFF
∗

ĥ,v̂
0 0 0 −ε

2,ĥ,v̂
I ∗ ∗

NK∗

ĥ,v̂
0 NQ

ĥ,v̂
0 0 −ε

3,ĥ,v̂
I ∗

0 0 N∗
L̟1 ε̟1 0 0 −ε

4,ĥ,v̂
I

























< 0, (30)

where 41
9 = He(A∗

ĥ,v̂
K
ĥ,v̂

+ B∗F∗
ĥ,v̂
) + B∗MFε2,ĥ,v̂M

T
F B

∗T + BBM∗
Lε4,ĥ,v̂M

∗T
L BB

T
, 42

9 = εA∗

ĥ,v̂
K
ĥ,v̂

− P
ĥ,v̂
+K

ĥ,v̂
+ εB∗F∗

ĥ,v̂
+

εB∗MFε2,ĥ,v̂M
T
F B

∗T + εBBM∗
Lε4,ĥ,v̂M

∗T
L BB

T
, 43

9 = ε2B∗MFε2,ĥ,v̂M
T
F B

∗T − εHe
(

PT
ĥ,v̂

)

+ε2BBM∗
Lε4,ĥ,v̂M

∗T
L BB

T
, 44

9 =
(

BB̟1

)T
−

M∗
Lε4,ĥ,v̂M

∗T
L BB

T
+ A∗

h,v
K
ĥ,v̂

− A∗

ĥ,v̂
K
ĥ,v̂
,45

9 = ε
(

BB̟1

)T
−εM∗

Lε4,ĥ,v̂M
∗T
L BB

T
,46

9 = He
(

A∗
h,v
Q
ĥ,v̂

− ̟1

)

+Mε
3,ĥ,v̂

MT +M∗
Lε4,ĥ,v̂M

∗T
L ,

47
9 = Q

ĥ,v̂
− ε1̟

T
1 −T∗R

1,ĥ,v̂
, and ̟1 = L∗

ĥ,v̂
C∗T∗R

1,ĥ,v̂
.

It is assumed that S∗ =
[

S∗1 S∗2
]

; thus, the matrix BBcan be obtained as:

BB =

[

I 0

−B(S∗2B)
−1S∗1 I − B(S∗2B)

−1S∗2

]

.
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Then, the matrices in inequality (31) can be formulated as follows:

L∗
ĥ,v̂

=
[

0 LT
ĥ,v̂

]T
,T∗ =

[

T 0
0 I

]

, T∗R
1,ĥ,v̂

=

[

TR1
1,ĥ,v̂

TR2
1,ĥ,v̂

R3
1,ĥ,v̂

R4
1,ĥ,v̂

]

,

L∗
ĥ,v̂
C∗T∗R

1,ĥ,v̂
=

[

0 0

L
ĥ,v̂
CTR1

1,ĥ,v̂
0

]

=

[

0n×n 0n×n
[

(L
ĥ,v̂
R1)

n×p
0n×(n−p)

]

0n×n

]

,

BBL∗
ĥ,v̂
C∗T∗R

1,ĥ,v̂
=

[

0n×n 0n×n
[

((I − B(S∗2B)
−1S∗2)Lĥ,v̂R1)n×p

0n×(n−p)

]

0n×n

]

.

Therefore, inequality (18) is easily obtained from the above
equalities and inequality (30).

Remark 5. To avoid introducing the derivative of the
membership function in the derivative of the Lyapunov function,
P1 is chosen as a constant matrix. The P

3,ĥ,v̂
and P

4,ĥ,v̂
in

P
ĥ,v̂

are related to the membership functions vk(ξ̂ (t)) and

hi(ẑ(t)). Consequently, the conservativeness of this approach is
significantly reduced. Moreover, the Lyapunov matrices and the
observer gain matrices are decoupled by Finsler’s lemma.

T-S fuzzy descriptor systems may occasionally have different
output matrices, so the following theorem gives the relaxed

sufficient LMI conditions for T-S fuzzy descriptor systems with
different output matrices to expand the application scope of the
design theory given in this study.

Theorem 2: Suppose that the T-S fuzzy descriptor system
matrices in (2) satisfy 1A* 6= 0 and Ch 6= C

ĥ
. Given constants

ε > 0, ε1 > 0and ε2 > 0, the closed-loop systems (14, 15)
are asymptotically stable if positive definite matrices P1 and Q1,
scalars ε3,i,k, ε

E
4,i,k

, εA
4,i,k

, and ε5,i,k, and a set of matrices P3,i,k, P4,i,k,

Fi,k, K1,k, K2,k, K3,i, K4,i, Li,k, R1, R
11
1,i,k

, R12
1,i,k

, R11
2,i,k

, R12
2,i,k

,R2
1,i,k

,

R3
1,i,k

, R4
1,i,k

, R2
2,i,k

, R3
2,i,k

, and R4
2,i,k

exist, where k ∈ {1, · · · , re} and
i ∈ {1, · · · , r}, such that the following LMIs hold:

[

�1 ∗

�2 �3

]

< 0, (31)

�1 =



































11,1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

12,1 12,2 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

13,1 13,2 13,3 ∗ ∗ ∗ ∗ ∗ ∗ ∗

14,1 14,2 14,3 14,4 ∗ ∗ ∗ ∗ ∗ ∗

0 15,2 0 15,4 15,5 ∗ ∗ ∗ ∗ ∗

16,1 16,2 −Y
ĥ,v̂

16,4 16,5 16,6 ∗ ∗ ∗ ∗

K1,v̂ 17,2 0 17,4 17,5 17,6 17,7 ∗ ∗ ∗

K
3,ĥ

K
4,ĥ

0 0 18,5 18,6 18,7 18,8 ∗ ∗

−K1,v̂ 192 −T
ĥ
R1
2,ĥ,v̂

19,4 0 19,6 0 0 19,9 ∗

−K
3,ĥ

K
4,ĥ

−R3
2,ĥ,v̂

−R4
2,ĥ,v̂

0 0 0 0 110,9 −ε2He(T
ĥ
R4
2,ĥ,v̂

)



































,

�2 =









NFFĥ,v̂ 0 0 0 0 0 0 0 0 0

NAK1,v̂ NAK2,v̂ 0 0 NA 0 0 0 0 0
NEK3,ĥ

NEK4,ĥ
0 0 NEQ3,ĥ

NEQ4,ĥ
0 0 0 0

0 0 NLYĥ,v̂
0 NLYĥ,v̂

0 ε1NLYĥ,v̂
0 ε2NLYĥ,v̂

0









,

�3 =











−ε
3,ĥ,v̂

I ∗ ∗ ∗

0 −εA
4,ĥ,v̂

I ∗ ∗

0 0 −εE
4,ĥ,v̂

I ∗

0 0 0 −ε
5,ĥ,v̂

I











,
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where 11,1 = He(K
3,ĥ
), 12,1 = A

ĥ
K1,v̂−Ev̂K3,ĥ

+BF
ĥ,v̂

+KT

4,ĥ
, 12,2 = BMFε3,ĥ,v̂M

T
F B

T +He(A
ĥ
K2,v̂)−He(Ev̂K4,ĥ

)+BMLε5,ĥ,v̂M
T
L B

T
,

13,1 = K1,v̂ + εK
3,ĥ

− P1, 13,2 = K2,v̂ + εK
4,ĥ
, 13,3 = −εHe(P1), 14,1 = K

3,ĥ
+ ε(A

ĥ
K1,v̂ − Ev̂K3,ĥ

+ BF
ĥ,v̂
) − P

3,ĥ,v̂
,14,2 =

K
4,ĥ

+ ε(A
ĥ
K2,v̂ − Ev̂K4,ĥ

) + εBMFε3,ĥ,v̂M
T
F B

T−P
4,ĥ,v̂

+ εBMLε5,ĥ,v̂M
T
L B

T
, 14,3 = −εP

3,ĥ,v̂
+ εBY

ĥ,v̂
, 14,4 = ε2BMFε3,ĥ,v̂M

T
F B

T +

ε2BMLε5,ĥ,v̂M
T
L B

T
− εHe(P

4,ĥ,v̂
), 15,2 = (BY

ĥ,v̂
)
T
, 15,4 = ε(BY

ĥ,v̂
)
T
, 15,5 = He(Q

3,ĥ
), 16,1 = AhK1,v̂ − A

ĥ
K1,v̂−(Ev − Ev̂)K3,ĥ

,

16,2 = −(Ev − Ev̂)K4,ĥ
− MLε5,ĥ,v̂M

T
L B

T
+ (Ah − A

ĥ
)K2,v̂, 16,4 = −εMLε5,ĥ,v̂M

T
L B

T
, 16,5 = AhQ1 − EvQ3,ĥ

+ QT

4,ĥ
− Y

ĥ,v̂
,

16,6 = −He(EvQ4,ĥ
)+MLε5,ĥ,v̂M

T
L +MAε

A

4,ĥ,v̂
MT

A +MEε
E

4,ĥ,v̂
MT

E ,17,2 = K2,v̂ + ε1(BYĥ,v̂
)
T
, 17,4 = ε1ε(BYĥ,v̂

)
T
, 17,5 = Q1 − TR1

1,ĥ,v̂
,

17,6 = −ε1(Yĥ,v̂
)T − TR2

1,ĥ,v̂
, 17,7 =−ε1He(TR1

1,ĥ,v̂
), 18,5 = Q

3,ĥ
− R3

1,ĥ,v̂
, 18,6 = Q

4,ĥ
− R4

1,ĥ,v̂
, 18,7 = −ε1R

3

1,ĥ,v̂
− ε1(TR

2

1,ĥ,v̂
)
T
,

18,8 =−ε1He(R4
1,ĥ,v̂

), 19,2 = −K2,v̂ + ε2(BYĥ,v̂
)
T
, 19,4 = −T

ĥ
R2
2,ĥ,v̂

+ ε2ε(BYĥ,v̂
)
T
, 19,6 = −ε2(Yĥ,v̂

)T , 19,9 =−ε2He(T
ĥ
R1
2,ĥ,v̂

),

110,9 = −ε2R
3

2,ĥ,v̂
− ε2(Tĥ

R2
2,ĥ,v̂

)
T
, Y

ĥ,v̂
=

[

(L
ĥ,v̂
R1)

n×p
0n×(n−p)

]

,B = −B(S∗2B)
−1S∗2+I, R1

1,ĥ,v̂
=

[

R1 0p×(n−p)

R11
1,ĥ,v̂

R12
1,ĥ,v̂

]

, R1
2,ĥ,v̂

=

[

R1 0p×(n−p)

R11
2,ĥ,v̂

R12
2,ĥ,v̂

]

, R2
1,ĥ,v̂

=

[

0p×n

R21
1,ĥ,v̂

]

, and R2
2,ĥ,v̂

=

[

0p×n

R21
2,ĥ,v̂

]

.

Proof: Under the conditions of Ch 6= C
ĥ
, the constructed Lyapunov function candidate is the same as in Equation (19). However,

the sliding mode dynamics (Equations 14 and 15) under the condition of Ch 6= C
ĥ
are different from the sliding mode dynamics

(Equations 12 and 13) under the conditions of Ch = C
ĥ
= C∗. The derivative of the Lyapunov function is calculated based on the

sliding mode dynamics. Therefore, the derivative of the Lyapunov function candidate (19) under the condition of Ch 6= C
ĥ
can be

obtained as follows:

V̇(x̂(t), e1(t)) =
˙̂X
∗T
(t)E∗TP−1

ĥ,v̂
X̂∗(t)+ X̂∗T(t)P−T

ĥ,v̂
E∗ ˙̂X

∗
(t)+ ėT(t)E∗TQ−1

ĥ,v̂
e(t)+ eT(t)Q−T

ĥ,v̂
E∗ė(t) (32)

=







X̂∗(t)

E∗ ˙̂X
∗
(t)

e(t)







T

91







X̂∗(t)

E∗ ˙̂X
∗
(t)

e(t)






< 0.

91 =







0 ∗ ∗

P−1

ĥv̂
0 ∗

Q−T

ĥ,v̂
(A∗

h,v
− A∗

ĥ,v̂
+ 1A∗ − (L∗

ĥ,v̂
+ 1L∗

ĥ,v̂
)(C∗

h
− C∗

ĥ
)) 0 He(Q−T

ĥ,v̂
(A∗

h,v
− (L∗

ĥ,v̂
+ 1L∗

ĥ,v̂
)C∗

h
))







If (32) holds, then the following inequality can be obtained by Finsler’s lemma (lemma 3) under the constraint in Equation (17).

91 +He(







U
ĥ,v̂

V
ĥ,v̂

W
ĥ,v̂







[

A∗

ĥ,v̂
+ B∗(F∗

ĥ,v̂
+ 1F∗

ĥ,v̂
)K−1

ĥ,v̂
+ BB(L∗

ĥ,v̂
+ 1L∗

ĥ,v̂
)(C∗

h
− C∗

ĥ
) −I BB(L∗

ĥ,v̂
+ 1L∗

ĥ,v̂
)C∗

h

]

) < 0, (33)

where U
ĥ,v̂
, V

ĥ,v̂
, and W

ĥ,v̂
are matrix variables with appropriate dimensions. By pre- and post-multiplying (33) by







KT

ĥ,v̂
0 0

0 P
ĥ,v̂

0

0 0 QT

ĥ,v̂






and







K
ĥ,v̂

0 0

0 PT
ĥ,v̂

0

0 0 Q
ĥ,v̂






, respectively, the following inequality is obtained:

92 + 93 < 0, (34)

92 =







0 ∗ ∗

K
ĥ,v̂

0 ∗

(A∗
h,v

− A∗

ĥ,v̂
+ 1A∗ − (L∗

ĥ,v̂
+ 1L∗

ĥ,v̂
)(C∗

h
− C∗

ĥ
))K

ĥ,v̂
0 He((A∗

h,v
− (L∗

ĥ,v̂
+ 1L∗

ĥ,v̂
)C∗

h
)Q

ĥ,v̂
+ 1A∗)






,
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93=He(







KT

ĥ,v̂
U
ĥ,v̂

P
ĥ,v̂
V
ĥ,v̂

QT

ĥ,v̂
W

ĥ,v̂







[

91
3 −PT

ĥ,v̂
BB(L∗

ĥ,v̂
+ 1L∗

ĥ,v̂
)C∗

h
Q
ĥ,v̂

]

),

where 91
3=A

∗

ĥ,v̂
K
ĥ,v̂

+ B∗(F∗
ĥ,v̂

+ 1F∗
ĥ,v̂
)+ BB(L∗

ĥ,v̂
+ 1L∗

ĥ,v̂
)(C∗

h
− C∗

ĥ
)K

ĥ,v̂
.

Define U
ĥ,v̂

= K−T

ĥ,v̂
, V

ĥ,v̂
= εP−1

ĥ,v̂
,W

ĥ,v̂
= 0, and ε > 0. Then, inequality (34) can be represented as:

94 + 95 < 0, (35)

94 =







He(A∗

ĥ,v̂
K
ĥ,v̂

+ B∗(F∗
ĥ,v̂

+ 1F∗
ĥ,v̂
)) ∗ ∗

K
ĥ,v̂

+ ε(A∗

ĥ,v̂
K
ĥ,v̂

+ B∗(F∗
ĥ,v̂

+ 1F∗
ĥ,v̂
))− P

ĥ,v̂
−εHe(P

ĥ,v̂
) ∗

(A∗
h,v

− A∗

ĥ,v̂
)K

ĥ,v̂
+ 1A∗K

ĥ,v̂
0 He(1A∗Q

ĥ,v̂
+ A∗

h,v
Q
ĥ,v̂
)






,

95 =









He(BB(L∗
ĥ,v̂

+ 1L∗
ĥ,v̂
)(C∗

h
− C∗

ĥ
)K

ĥ,v̂
) ∗ ∗

εBB(L∗
ĥ,v̂

+ 1L∗
ĥ,v̂
)(C∗

h
− C∗

ĥ
)K

ĥ,v̂
0 ∗

91
5 ε(BB(L∗

ĥ,v̂
+ 1L∗

ĥ,v̂
)C∗

h
Q
ĥ,v̂
)
T
−He((L∗

ĥ,v̂
+ 1L∗

ĥ,v̂
)C∗

h
Q
ĥ,v̂
)T









,

where91
5 = (BB(L∗

ĥ,v̂
+ 1L∗

ĥ,v̂
)C∗

h
Q
ĥ,v̂
)
T
− (L∗

ĥ,v̂
+ 1L∗

ĥ,v̂
)(C∗

h
− C∗

ĥ
)K

ĥ,v̂
.

The corresponding auxiliary variables are introduced into the system, and the dimension of the system is increased with the
augmented method to eliminate the coupling between the Lyapunov function matrix Q

ĥ,v̂
and the observer gain matrix L∗

ĥ,v̂
in

inequality (35). The following equations are defined:

x4(t) = (BB(L∗
ĥ,v̂

+ 1L∗
ĥ,v̂
)C∗

h)
T
x1(t)+ ε(BB(L∗

ĥ,v̂
+ 1L∗

ĥ,v̂
)C∗

h)
T
x2(t)− ((L∗

ĥ,v̂
+ 1L∗

ĥ,v̂
)C∗

h)
Tx3(t), (36)

x5(t) = (BB(L∗
ĥ,v̂

+ 1L∗
ĥ,v̂
)C∗

ĥ
)
T
x1(t)+ ε(BB(L∗

ĥ,v̂
+ 1L∗

ĥ,v̂
)C∗

ĥ
)
T
x2(t)− ((L∗

ĥ,v̂
+ 1L∗

ĥ,v̂
)C∗

ĥ
)Tx3(t). (37)

Thus, inequality (35) can be expressed as:













x1(t)
x2(t)
x3(t)
x4(t)
x5(t)













T

96













x1(t)
x2(t)
x3(t)
x4(t)
x5(t)













< 0, (38)

96 =

















He(A∗

ĥ,v̂
K
ĥ,v̂

+ B∗(F∗
ĥ,v̂

+ 1F∗
ĥ,v̂
)) ∗ ∗ ∗ ∗

K
ĥ,v̂

+ ε(A∗

ĥ,v̂
K
ĥ,v̂

+ B∗(F∗
ĥ,v̂

+ 1F∗
ĥ,v̂
))− P

ĥ,v̂
−εHe(P

ĥ,v̂
) ∗ ∗ ∗

(A∗
h,v

− A∗

ĥ,v̂
)K

ĥ,v̂
+ 1A∗K

ĥ,v̂
0 He(1A∗Q

ĥ,v̂
+ A∗

h,v
Q
ĥ,v̂
) ∗ ∗

K
ĥ,v̂

0 Q
ĥ,v̂

0 ∗

−K
ĥ,v̂

0 0 0 0

















If (38) holds, then the following inequality can be obtained by Finsler’s lemma (lemma 3) under the constraints in Equations (36, 37).
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97 +He(98) < 0, (39)

97 =

















He(A∗

ĥ,v̂
K
ĥ,v̂

+ B∗(F∗
ĥ,v̂

+ 1F∗
ĥ,v̂
)) ∗ ∗ ∗ ∗

K
ĥ,v̂

− P
ĥ,v̂

+ ε(A∗

ĥ,v̂
K
ĥ,v̂

+ B∗(F∗
ĥ,v̂

+ 1F∗
ĥ,v̂
)) −εHe(P

ĥ,v̂
) ∗ ∗ ∗

(A∗
h,v

− A∗

ĥ,v̂
)K

ĥ,v̂
+ 1A∗K

ĥ,v̂
0 He(A∗

h,v
Q
ĥ,v̂

+ 1A∗Q
ĥ,v̂
) ∗ ∗

K
ĥ,v̂

0 Q
ĥ,v̂

0 ∗

−K
ĥ,v̂

0 0 0 0

















,

98 =



















0 0

0 (T∗

ĥ
R∗
2,ĥ,v̂

)T

(T∗
h
R∗
1,ĥ,v̂

)T 0

ε1(T
∗
h
R∗
1,ĥ,v̂

)T 0

0 ε2(T
∗

ĥ
R∗
2,ĥ,v̂

)T



















[

91
8 ε91

8 −((L∗
ĥ,v̂

+ 1L∗
ĥ,v̂
)C∗

h
)T −I 0

92
8 ε92

8 −((L∗
ĥ,v̂

+ 1L∗
ĥ,v̂
)C∗

ĥ
)T 0 −I

]

,

where 91
8 = (BB(L∗

ĥ,v̂
+ 1L∗

ĥ,v̂
)C∗

h
)
T
,92

8 = (BB(L∗
ĥ,v̂

+ 1L∗
ĥ,v̂
)C∗

ĥ
)
T
, R

1,ĥ,v̂
=

[

R1
1,ĥ,v̂

R2
1,ĥ,v̂

R3
1,ĥ,v̂

R4
1,ĥ,v̂

]

, R
2,ĥ,v̂

=

[

R1
2,ĥ,v̂

R2
2,ĥ,v̂

R3
2,ĥ,v̂

R4
2,ĥ,v̂

]

, R1
1,ĥ,v̂

=

[

R1 0p×(n−p)

R11
1,ĥ,v̂

R12
1,ĥ,v̂

]

, R1
2,ĥ,v̂

=

[

R1 0p×(n−p)

R11
2,ĥ,v̂

R12
2,ĥ,v̂

]

, T∗
h
=

[

Th 0
0 I

]

, T∗
⌢
h
=

[

T⌢
h
0

0 I

]

, R1 ∈ Rp×p, R11
1,ĥ,v̂

∈ R(n−p)×p, R12
1,ĥ,v̂

∈ R(n−p)×(n−p),

R11
2,ĥ,v̂

∈ R(n−p)×p, R12
2,ĥ,v̂

∈ R(n−p)×(n−p), R2
1,ĥ,v̂

∈ Rn×n, R3
1,ĥ,v̂

∈ Rn×n, R4
1,ĥ,v̂

∈ Rn×n, R2
2,ĥ,v̂

∈ Rn×n, R3
2,ĥ,v̂

∈ Rn×n, R4
2,ĥ,v̂

∈ Rn×n, and Th

and T
ĥ
satisfy assumption 3.

Inequality (39) can be rewritten as follows:

99 +He(



















B∗1F∗
ĥ,v̂

0 0 0 0

εB∗1F∗
ĥ,v̂

+ (BB̟4)
T

ε(BB̟4)
T

−̟4
T 0 0

1A∗K
ĥ,v̂

+ (BB̟3)
T

ε(BB̟3)
T

1A∗Q
ĥ,v̂

− ̟3
T 0 0

ε1(BB̟3)
T

ε1ε(BB̟3)
T

−ε1̟3
T 0 0

ε2(BB̟4)
T

ε2ε(BB̟4)
T

−ε2̟4
T 0 0



















) < 0, (40)

99 =















91
9 ∗ ∗ ∗ ∗

92
9 93

9 ∗ ∗ ∗

94
9 95

9 He(A∗
h,v
Q
ĥ,v̂

− ̟1) ∗ ∗

96
9 97

9 −T∗
h
R
1,ĥ,v̂

+ Q
ĥ,v̂

− ε1̟
T
1 −ε1He(T∗

h
R
1,ĥ,v̂

)T ∗

98
9 99

9 −ε2̟
T
2 0 −ε2He(T∗

ĥ
R
2,ĥ,v̂

)T















,

where 91
9 = He(A∗

ĥ,v̂
K
ĥ,v̂

+ B∗F∗
ĥ,v̂
), 92

9 = (BB̟2)
T
+ εA∗

ĥ,v̂
K
ĥ,v̂

− P
ĥ,v̂

+ K
ĥ,v̂

+ εB∗F∗
ĥ,v̂
, 93

9 = −εHe(P
ĥ,v̂

− BB̟2),

94
9 = (BB̟1)

T
+ A∗

h,v
K
ĥ,v̂

− A∗

ĥ,v̂
K
ĥ,v̂
, 95

9 = ε(BB̟1)
T
− L∗

ĥ,v̂
C∗

ĥ
T∗

ĥ
R
2ĥ,v̂

, 96
9 = K

ĥ,v̂
+ ε1(BB̟1)

T
, 97

9 = ε1ε(BB̟1)
T
,

98
9 = −K

ĥ,v̂
+ ε2(BB̟2)

T , 99
9 = ε2ε(BB̟2)

T
− T∗

ĥ
R
2,ĥ,v̂

, ̟1 = L∗
ĥ,v̂
C∗
h
T∗
h
R
1,ĥ,v̂

, ̟2 = L∗
ĥ,v̂
C∗

ĥ
T∗

ĥ
R
2,ĥ,v̂

, ̟3 = 1L∗
ĥ,v̂
C∗
h
T∗
h
R
1,ĥ,v̂

,

and ̟4 = 1L∗
ĥ,v̂
C∗

ĥ
T∗

ĥ
R
2,ĥ,v̂

.

Because 1L∗
ĥ,v̂

= M∗
LSLN

∗
LL

∗

ĥ,v̂
, 1F∗

ĥ,v̂
= MFSFNFF

∗

ĥ,v̂
, and 1A∗ = MF(t)N, inequality (40) can be rewritten as:

99 +He(M1SFN1+M2F(t)N2+M3SLN3) < 0, (41)
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M1 =
[

B∗MF εB∗MF 0 0 0
]T
,N1 =

[

NFF
∗

ĥ,v̂
0 0 0 0

]

, M2 =
[

0 0 M 0 0
]T
,

N2 =
[

NK
ĥ,v̂

0 NQ
ĥ,v̂

0 0
]

,M3 =
[

BBM∗
L εBBM∗

L −M∗
L 0 0

]T
,

N3 =
[

0 N∗
LL

∗

ĥ,v̂
C∗

ĥ
T∗

ĥ
R
2,ĥ,v̂

N∗
LL

∗

ĥ,v̂
C∗
h
T∗
h
R
1,ĥ,v̂

ε1N
∗
LL

∗

ĥ,v̂
C∗
h
T∗
h
R
1,ĥ,v̂

ε2N
∗
LL

∗

ĥ,v̂
C∗T∗R

1,ĥ,v̂

]

.

Based on lemma 2, (41) holds if there are positive real scalars ε
3,ĥ,v̂

, εA
4,ĥ,v̂

, εE
4,ĥ,v̂

, and ε
5,ĥ,v̂

that satisfy the following relation:

99 +M1ε3,ĥ,v̂M
T
1 + NT

1 ε−1

3,ĥ,v̂
N1 +M2ε4,ĥ,v̂M

T
2 + NT

2 ε−1

4,ĥ,v̂
N2 +M3ε5,ĥ,v̂M

T
3 + NT

3 ε−1

5,ĥ,v̂
N3 < 0, (42)

where ε
4,ĥ,v̂

=

[

εA
4,ĥ,v̂

I 0

0 εE
4,ĥ,v̂

I

]

. Using the Schur complement in lemma 1, (42) holds if and only if the following relation set is satisfied:





























91
10 ∗ ∗ ∗ ∗ ∗ ∗ ∗

92
10 93

10 ∗ ∗ ∗ ∗ ∗ ∗

94
10 95

10 96
10 ∗ ∗ ∗ ∗ ∗

97
10 ε1ε

(

BB̟1

)T
98

10 99
10 ∗ ∗ ∗ ∗

910
10 911

10 −ε2̟
T
2 0 −ε2He(T∗

ĥ
R
2,ĥ,v̂

)T ∗ ∗ ∗

NFF
∗

ĥ,v̂
0 0 0 0 −ε

3,ĥ,v̂
I ∗ ∗

NK∗

ĥ,v̂
0 NQ

ĥ,v̂
0 0 0 −ε

4,ĥ,v̂
I ∗

0 912
10 913

10 914
10 ε2N

∗
LL

∗

ĥ,v̂
C∗T∗R

1,ĥ,v̂
0 0 −ε

5,ĥ,v̂
I





























< 0 (43)

where 91
10 = He(A∗

ĥ,v̂
K
ĥ,v̂

+ B∗F∗
ĥ,v̂
) + B∗MFε3,ĥ,v̂M

T
F B

∗T + BBM∗
Lε5,ĥ,v̂M

∗T
L BB

T
, 92

10 =
(

BB̟2

)T
+ K

ĥ,v̂
+εA∗

ĥ,v̂
K
ĥ,v̂

− P
ĥ,v̂

+

εB∗F∗
ĥ,v̂

+ εB∗MFε3,ĥ,v̂M
T
F B

∗T + εBBM∗
Lε5,ĥ,v̂M

∗T
L BB

T
, 93

10 = ε2B∗MFε3,ĥ,v̂M
T
F B

∗T+ε2BBM∗
Lε5,ĥ,v̂M

∗T
L BB

T
− εHe

(

PT
ĥ,v̂

−
(

BB̟2

)T
)

,

94
10 =

(

BB̟1

)T
− M∗

Lε5,ĥ,v̂M
∗T
L BB

T
+ A∗

h,v
K
ĥ,v̂
−A∗

ĥ,v̂
K
ĥ,v̂
, 95

10 = ε
(

BB̟1

)T
− εM∗

Lε5,ĥ,v̂M
∗T
L BB

T
− L∗

ĥ,v̂
C∗

ĥ
T∗

ĥ
R
2ĥ,v̂

,

96
10 = He

(

A∗
h,v
Q
ĥ,v̂

− ̟1

)

+Mε
4,ĥ,v̂

MT + M∗
Lε5,ĥ,v̂M

∗T
L , 97

10 = K
ĥ,v̂

+ ε1
(

BB̟1

)T
, 98

10 = Q
ĥ,v̂

− ε1̟
T
1 −

T∗
h
R
1,ĥ,v̂

,99
10 =−ε1He(T∗

h
R
1,ĥ,v̂

)T ,910
10 = −K

ĥ,v̂
+ ε2(BB̟2)

T
, 911

10 = ε2ε(BB̟2)
T
− T∗

ĥ
R
2,ĥ,v̂

, 912
10 = N∗

LL
∗

ĥ,v̂
C∗

ĥ
T∗

ĥ
R
2,ĥ,v̂

,913
10 =

N∗
LL

∗

ĥ,v̂
C∗
h
T∗
h
R
1,ĥ,v̂

,914
10 = ε1N

∗
LL

∗

ĥ,v̂
C∗
h
T∗
h
R
1,ĥ,v̂

.

It is assumed that S∗ =
[

S∗1 S∗2
]

; thus, the matrix BB can be formulated as:

BB =

[

I 0

−B(S∗2B)
−1S∗1 I − B(S∗2B)

−1S∗2

]

. (44)

Then, the matrices in inequality (43) can be obtained as follows:

L∗
ĥ,v̂

=
[

0 LT
ĥ,v̂

]T
,T∗

h =

[

Th 0
0 I

]

,T∗

ĥ
=

[

T
ĥ
0

0 I

]

, T∗
hR1,ĥ,v̂ =

[

ThR
1

1,ĥ,v̂
ThR

2

1,ĥ,v̂

R3
1,ĥ,v̂

R4
1,ĥ,v̂

]

, ∗

L∗
ĥ,v̂
C∗
hT

∗
hR1,ĥ,v̂ =

[

0 0

L
ĥ,v̂
ChThR

1

1,ĥ,v̂
0

]

=

[

0n×n 0n×n
[

(L
ĥ,v̂
R1)

n×p
0n×(n−p)

]

0n×n

]

,
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BBL∗
ĥ,v̂
C∗
hT

∗
hR1,ĥ,v̂ =

[

0n×n 0n×n
[

((I − B(S∗2B)
−1S∗2)Lĥ,v̂R1)n×p

0n×(n−p)

]

0n×n
,

]

T∗

ĥ
R
2,ĥ,v̂

=

[

T
ĥ
R1
2,ĥ,v̂

T
ĥ
R2
2,ĥ,v̂

R3
2,ĥ,v̂

R4
2,ĥ,v̂

]

,

L∗
ĥ,v̂
C∗

ĥ
T∗

ĥ
R
2,ĥ,v̂

=

[

0 0

L
ĥ,v̂
C
ĥ
T
ĥ
R1
2,ĥ,v̂

0

]

=

[

0n×n 0n×n
[

(L
ĥ,v̂
R1)

n×p
0n×(n−p)

]

0n×n

]

,

BBL∗
ĥ,v̂
C∗
hT

∗
hR2,ĥ,v̂ =

[

0n×n 0n×n
[

((I − B(S∗2B)
−1S∗2)Lĥ,v̂R1)n×p

0n×(n−p)

]

0n×n

]

.

Therefore, inequality (27) is easily obtained from the above equalities and inequality (43), which completes the proof.
In some special cases, T-S fuzzy descriptor systems may not contain uncertainties, so the following theorem gives sufficient LMI

conditions for the stability of the closed-loop system in this case.
Theorem 3: Suppose that the T-S fuzzy descriptor system matrices in (2) satisfy 1A*=0 andCh = C

ĥ
= C∗. Given the constants

ε > 0 and ε1 > 0, the closed-loop systems are asymptotically stable if positive definite matrices P1 andQ1, scalars ε and ε1, and a set of
matrices P3,i,k, P4,i,k, Fi,k, K1,k, K2,k, K3,i, K4,i, Li,k, R1, R

11
1,i,k

, R12
1,i,k

, R2
1,i,k

, R3
1,i,k

, and R4
1,i,k

exist, where k ∈ {1, · · · , re} and i ∈ {1, · · · , r},
such that the following LMIs hold:





























He(K
3,ĥ
) ∗ ∗ ∗ ∗ ∗ ∗ ∗

32,1 32,2 ∗ ∗ ∗ ∗ ∗ ∗

33,1 33,2 −εHe(P1) ∗ ∗ ∗ ∗ ∗

34,1 34,2 −εP
3,ĥ,v̂

−εHe(P
4,ĥ,v̂

) ∗ ∗ ∗ ∗

0 35,2 0 ε(BY
ĥ,v̂
)
T

He(Q
3,ĥ
) ∗ ∗ ∗

36,1 36,2 0 0 36,5 36,6 ∗ ∗

0 37,2 0 ε1ε(BYĥ,v̂
)
T

37,5 37,6 37,7 ∗

0 0 0 0 38,5 38,6 38,7 38,8





























< 0, (45)

where32,1 = A
ĥ
K1,v̂ − Ev̂K3,ĥ

+ BF
ĥ,v̂

+ KT

4,ĥ
,32,2 = He(A

ĥ
K2,v̂ − Ev̂K4,ĥ

),33,1 = K1,v̂ − P1 + εK
3,ĥ
,33,2 = K2,v̂ + εK

4,ĥ
,34,1 =

K
3,ĥ

+ε(A
ĥ
K1,v̂−Ev̂K3,ĥ

+BF
ĥ,v̂
)−P

3,ĥ,v̂
,34,2 = ε(A

ĥ
K2,v̂−Ev̂K4,ĥ

)+K
4ĥ
−P

4,ĥ,v̂
,35,2 = (BY

ĥ,v̂
)
T
,36,1 = (Ah−A

ĥ
)K1,v̂−(Ev−Ev̂)K3,ĥ

,

36,2 = (Ah−A
ĥ
)K2,v̂−(Ev−Ev̂)K4,ĥ

,36,5 = AhQ1−EvQ3,ĥ
+QT

4,ĥ
−Y

ĥ,v̂
,36,6 = −He(EvQ4,ĥ

),37,2 = ε1(BYĥ,v̂
)
T
,37,5 = Q1−TR1

1,ĥ,v̂
,

37,6 = −ε1(Yĥ,v̂
)T − TR2

1,ĥ,v̂
,37,7 = −ε1He(TR1

1,ĥ,v̂
),38,5 = Q

3,ĥ
− R3

1,ĥ,v̂
,38,6 = Q

4,ĥ
− R4

1,ĥ,v̂
,38,7 = −ε1(TR

2

1,ĥ,v̂
)
T
− ε1R

3

1,ĥ,v̂
,

38,8 = −ε1He(R4
1,ĥ,v̂

), B = I − B(S∗2B)
−1S∗2 , R

1

1,ĥ,v̂
=

[

R1 0p×(n−p)

R11
1,ĥ,v̂

R12
1,ĥ,v̂

]

,R2
1,ĥ,v̂

=

[

0p×n

R21
1,ĥ,v̂

]

, and Y
ĥ,v̂

=
[

(L
ĥ,v̂
R1)

n×p
0n×(n−p)

]

.

Theorem 4: Suppose that the T-S fuzzy descriptor system matrices in (2) satisfy 1A*=0 and Ch 6= C
ĥ
. Given constants ε > 0,

ε1 > 0 and ε2 > 0, the closed-loop systems are asymptotically stable if positive definite matrices P1 and Q1 and a set of matrices P3,i,k,
P4,i,k, Fi,k, K1,k, K2,k, K3,i, K4,i, Li,k, R1, R

11
1,i,k

, R12
1,i,k

, R11
2,i,k

, R12
2,i,k

,R2
1,i,k

, R3
1,i,k

, R4
1,i,k

, R2
2,i,k

, R3
2,i,k

, and R4
2,i,k

exist, where i ∈ {1, · · · , r} and
k ∈ {1, · · · , re}, such that the following LMIs hold:

Frontiers in Neurorobotics | www.frontiersin.org 18 July 2022 | Volume 16 | Article 820389

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Huang et al. Non-Fragile Observer-Based Sliding Mode Controller



































He(K
3,ĥ
) ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

32,1 32,2 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

33,1 33,2 −εHe(P1) ∗ ∗ ∗ ∗ ∗ ∗ ∗

34,1 34,2 34,3 34,4 ∗ ∗ ∗ ∗ ∗ ∗

0 35,2 0 35,4 35,5 ∗ ∗ ∗ ∗ ∗

36,1 36,2 −Y
ĥ,v̂

0 36,5 36,6 ∗ ∗ ∗ ∗

K1,v̂ 37,2 0 37,4 37,5 37,6 37,7 ∗ ∗ ∗

K
3,ĥ

K
4,ĥ

0 0 38,5 38,6 38,7 38,8 ∗ ∗

K1,v̂ 39,2 39,3 39,4 0 39,6 0 0 39,9 ∗

K
3,ĥ

K
4,ĥ

−R3
2,ĥ,v̂

310,4 0 0 0 0 310,9 310,10



































< 0, (46)

where32,1 = A
ĥ
K1,v̂ − Ev̂K3,ĥ

+ BF
ĥ,v̂

+ KT

4,ĥ
,32,2 = He(A

ĥ
K2,v̂ − Ev̂K4,ĥ

),33,1 = K1,v̂ + εK
3,ĥ

− P1,33,2 = K2,v̂ + εK
4,ĥ

+ (BY
ĥ,v̂
)
T
,

34,1 = K
3,ĥ

+ε(A
ĥ
K1,v̂−Ev̂K3,ĥ

+BF
ĥ,v̂
)−P

3,ĥ,v̂
,34,2 = K

4,ĥ
−P

4,ĥ,v̂
+εA

ĥ
K2,v̂−εEv̂K4,ĥ

,34,3 = −εP
3,ĥ,v̂

+εBY
ĥ,v̂
,34,4 = −εHe(P

4,ĥ,v̂
),

35,2 = (BY
ĥ,v̂
)
T
,35,4 = ε(BY

ĥ,v̂
)
T
,35,5 = He(Q

3,ĥ
),36,1 = (Ah − A

ĥ
)K1,v̂ − (Ev − Ev̂)K3,ĥ

,36,2 = (Ah − A
ĥ
)K2,v̂ − (Ev − Ev̂)K4,ĥ

,

36,5 =AhQ1 − EvQ3,ĥ
+ QT

4,ĥ
− Y

ĥ,v̂
, 36,6 = −He(EvQ4,ĥ

), 37,2 = K2v̂ + ε1(BYĥ,v̂
)
T
,37,4 = ε1ε(BYĥ,v̂

)
T
, 37,5 = Q1 − ThR

1

1,ĥ,v̂
,

37,6 = −ε1(Yĥ,v̂
)T − ThR

2

1,ĥ,v̂
,37,7 = −ε1He(ThR

1

1,ĥ,v̂
), 38,5 = Q

3,ĥ
− R3

1,ĥ,v̂
,38,6 =Q

4,ĥ
− R4

1,ĥ,v̂
,38,7 = −ε1R

3

1,ĥ,v̂
− ε1

(

ThR
2

1,ĥ,v̂

)T
,

38,8 = −ε1He(R4
1,ĥ,v̂

), 39,2 = K2,v̂ + ε2(BBYĥ,v̂
)
T
, 39,3 = −T

ĥ
R1
2,ĥ,v̂

, 39,4 = ε2ε(BYĥ,v̂
)
T
− T

ĥ
R2
2,ĥ,v̂

, 39,6 = −ε2(Yĥ,v̂
)T ,

39,9 = −ε2He(T
ĥ
R1
2,ĥ,v̂

), 310,4 = −R4
2,ĥ,v̂

,310,9 = −ε2(Tĥ
R2
2,ĥ,v̂

)
T
− ε2R

3

2,ĥ,v̂
, 310,10 = −ε2He(T

ĥ
R4
2,ĥ,v̂

), B = I − B(S∗2B)
−1S∗2 ,

R1
1,ĥ,v̂

=

[

R1 0p×(n−p)

R11
1,ĥ,v̂

R12
1,ĥ,v̂

]

, R1
2,ĥ,v̂

=

[

R1 0p×(n−p)

R11
2,ĥ,v̂

R12
2,ĥ,v̂

]

, R2
1,ĥ,v̂

=

[

0p×n

R21
1,ĥ,v̂

]

, R2
2,ĥ,v̂

=

[

0p×n

R21
2,ĥ,v̂

]

, and Y
ĥ,v̂

=
[

(L
ĥ,v̂
R1)

n×p
0n×(n−p)

]

.

The corresponding proof can be obtained according to the proofs given for theorems 1 and 2, because theorems 3 and 4 are special
cases of theorems 1 and 2, respectively. Therefore, the specific process is omitted here.

Non-Fragile Observer-Based Adaptive Integral Sliding Mode Controller Design
In practical applications, it is difficult to accurately obtain the bounds of unknown uncertainties and perturbations in controller and
observer gains. Hence, an adaptive integral sliding mode controller is designed for T-S fuzzy descriptor systems with uncertainties
and perturbations.

Theorem 5: Suppose that the T-S fuzzy descriptor systemmatrices in (2) satisfy1A∗ 6= 0, and Ch = C
ĥ
= C∗. Assume that matrices

Fi,k, K1,k, K2,k, K3,i, K4,i, and Li,k, where k ∈ {1, · · · , re} and i ∈ {1, · · · , r}, satisfy theorem 1 and ζ > 0. System (2) can be driven to the
sliding surface (7) and maintain sliding motion based on the following ISMC equation:

u(t) = F∗
ĥ,v̂
K−1

ĥ,v̂
X̂∗(t)− (S∗B∗)−1(

∥

∥

∥
S∗L∗

ĥ,v̂
(y(t)− C∗X̂∗(t))

∥

∥

∥
+

∥

∥S∗M
∥

∥

∥

∥

∥
NX̂∗(t)

∥

∥

∥
+

∥

∥S∗ML

∥

∥

∥

∥

∥
NLL

∗

ĥ,v̂
(y(t)− C∗X̂∗(t))

∥

∥

∥
+ ζ )

sX̂∗(t)
∥

∥

∥
sX̂∗(t)

∥

∥

∥

− ‖MF‖
∥

∥

∥
NFF

∗

ĥ,v̂
K−1

ĥ,v̂
X̂∗(t)

∥

∥

∥

sX̂∗(t)
∥

∥

∥
sX̂∗(t)

∥

∥

∥

. (47)

Proof: Consider the following Lyapunov function candidate:

V(sX̂∗ (t)) =
1

2
sT
X̂∗ (t)sX̂∗ (t). (48)

The derivative of the Lyapunov function candidate (48) can be obtained as:

V̇(sX̂∗ (t)) = sT
X̂∗ (t)ṡX̂∗ (t)

= sT
X̂∗ (t)

{

S∗(B∗u(t)+ (L∗
ĥ,v̂

+ 1L∗
ĥ,v̂
)(y(t)− C∗X̂∗(t)))− S∗B∗(F∗

ĥ,v̂
+ 1F∗

ĥ,v̂
)K−1

ĥ,v̂
X̂∗(t)

}

. (49)
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By substituting (47) to (49), Equation (49) can be rewritten as

V̇(sX̂∗ (t)) = sT
X̂∗ (t)

{

S∗((L∗
ĥ,v̂

+ 1L∗
ĥ,v̂
)(y(t)− C∗X̂∗(t)))− S∗B∗1F∗

ĥ,v̂
K−1

ĥ,v̂
X̂∗(t)+

S∗B∗ ‖MF‖
∥

∥

∥
NFFĥ,v̂K

−1

ĥ,v̂
X̂∗(t)

∥

∥

∥

sX̂∗ (t)
∥

∥sX̂∗ (t)
∥

∥

−
∥

∥

∥
S∗L∗

ĥ,v̂
(y(t)− C∗X̂∗(t))

∥

∥

∥

sX̂∗ (t)
∥

∥sX̂∗ (t)
∥

∥

−

∥

∥

∥
S*M

∥

∥

∥

∥

∥

∥
NX̂∗(t)

∥

∥

∥

sX̂∗(t)
∥

∥

∥
sX̂∗(t)

∥

∥

∥

−
∥

∥

∥
S*ML

∥

∥

∥

∥

∥

∥
NLL

∗

ĥ,v̂
(y(t)− C∗X̂∗(t))

∥

∥

∥

sX̂∗(t)
∥

∥

∥
sX̂∗(t)

∥

∥

∥







. (50)

Then, from 1A∗ = MF(t)N, FT(t)F(t) ≤ I, 1L∗
ĥ,v̂

= M∗
LSLN

∗
LL

∗

ĥ,v̂
, STL SL ≤ I, 1F∗

ĥ,v̂
=MFSFNFF

∗

ĥ,v̂
, and STF SF ≤ I, it follows that:

V̇(sX̂(t)) ≤ sT
X̂
(t)

{

−ζS∗B∗
(S∗B∗)−1sX̂∗ (t)

∥

∥sX̂∗ (t)
∥

∥

}

≤ −ζ
∥

∥sX̂∗ (t)
∥

∥ . (51)

From the above analysis, T-S fuzzy descriptor systems can reach the desired sliding mode surface in finite time even in the presence of
uncertainties and external disturbances.

In some special cases, T-S fuzzy descriptor systems may not contain uncertainties, so the following theorem gives an observer-
designed ISMC strategy in this case.

Theorem 6: Suppose that the T-S fuzzy descriptor system matrices in (2) satisfy 1A∗ = 0 and Ch = C
ĥ
= C∗. Additionally, assume

that matrices Fi,k, K1,k, K2,k, K3,i, K4,i, and Li,k, where k ∈ {1, · · · , re} and i ∈ {1, · · · , r}, satisfy theorem 3 and that ζ > 0. System (2)
can be driven to the sliding surface and maintain sliding motion based on the following ISMC equation:

u(t) = F∗
ĥ,v̂
K−1

ĥ,v̂
X̂∗(t)− (S∗B∗)−1(

∥

∥

∥
S∗L∗

ĥ,v̂
(y(t)− C∗X̂∗(t))

∥

∥

∥
+ ζ )

sX̂∗ (t)
∥

∥sX̂∗ (t)
∥

∥

. (52)

The corresponding proof can be obtained according to the proofs given for theorem 5, because theorem 6 is a special case of theorem
5. Therefore, the specific process is omitted here.

EXAMPLES

In this section, a simple numerical example is simulated to verify the effectiveness and superiority of the proposed method. Consider
the following T-S fuzzy descriptor system:

∑2

k=1
vk(ξ (t))(Ek + 1E)ẋ(t) =

∑2

i=1
hi(z(t))((Ai + 1A)x(t)+ Bu(t)), (53)

where E1 =

[

1.1 −0.1
−0.2+ b 1.5

]

, E2 =

[

0.9 −0.1
0.2 0.2

]

, A1 =

[

−0.2 −1
−0.1 −1.9

]

, A2 =

[

1+ a 0.6
1.7 −0.3

]

,B =

[

0.7
0

]

, C =
[

1 0
]

, a ∈ [−10, 2],

b ∈ [−0.6, 1],x(t) =
[

x1(t) x2(t)
]T
,h1(z(t)) = x22(t)/4 , h2(z(t)) = 1− h1(z(t)), v1(ξ (t)) = 1/(1+ x22(t)) , and v2(ξ (t)) = 1− v1(ξ (t)).

Case 1: 1E = 0and1A = 0
The state feedback controller in (Lin et al., 2006) and the sliding mode controller in (Kchaou et al., 2014) for a class of fuzzy

descriptor systems are designed under conditions for which the system states must be measured. Moreover, in (Guerra et al., 2015; Li
et al., 2018), the premise variables were dependent on measurable vectors, e.g., the system states x1(t) andx2(t) based on the observer
strategy used. However, it is challenging to directly obtain the value of x2(t) with sensors. Therefore, the methods in (Lin et al., 2006;
Kchaou et al., 2014; Guerra et al., 2015; Li et al., 2018) cannot be directly applied to T-S fuzzy descriptor systems with unmeasurable
system states and premise variables. Several combinations of a and b are selected to compare the feasible solution region size of theorem
3 with those of theorems 2 (Ichalal et al., 2011) and 1 (Asemani and Majd, 2013), as shown in Figures 2A,B. These Figures show that
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the H∞ control method (Asemani and Majd, 2013) is less
conservative than the PDC control method based on the
traditional quadratic Lyapunov function (Ichalal et al., 2011)
for a T-S fuzzy system. The feasible area of the proposed
observer-based non-PDC ISMC method for a T-S fuzzy
descriptor system is larger than that of the previous two
methods. Therefore, in the non-PDC ISMC method, the fuzzy
Lyapunov function and descriptor redundancy lead to less
conservative results.

When 1A∗ = 0, the following values are set: a = 1,
b = 0.5, and ε = 0.0001. Based on theorem 3 and the
MATLAB LMI toolbox, the coefficient matrices of the observer-
based non-PDC integral sliding mode controller are obtained
as follows:

L11 =
[

34.8381 4.3355
]T
; L12 =

[

34.4535 1.2693
]T
;

L21 =
[

31.8954 2.2550
]T
; L22 =

[

31.3404 0.4542
]T
;

F11 =
[

−0.0306 0.0082
]

; F12 =
[

−0.0200 0.0024
]

;

F21 =
[

−0.0280 0.0039
]

; F22 =
[

−0.0175 0.0051
]

;

K11 =

[

0.0006 −0.0007
−0.0007 0.0022

]

;K12 =

[

0.0006 −0.0007
−0.0007 0.0022

]

;

K21 =

[

−1.3053e−6 −1.9676e−7

−1.2372e−7 9.3139e−8

]

;

K22 =

[

−1.9118e−6 −2.4874e−7

1.4374e−8 2.4554e−7

]

;

K31 =

[

−0.0031 0.0005
0.0008 −0.0033

]

;K32 =

[

−0.0031 0.0004
0.0005 −0.0018

]

;

K41 =

[

0.0181 −0.0007
3.4515e−5 0.0040

]

;K42 =

[

0.0166 −0.0006
−0.0011 0.0021

]

.

The controller parameters are selected as ζ = 0.003andS* =
[

1 1 0.7 0
]

. Assuming the initial states of x(0) =
[

x1(0) x2(0)
]T

=
[

0.1 0.2
]T
and x̂(0) =

[

x̂1(0) x̂2(0)
]T

=
[

−0.5 −0.4
]T
, the state responses, control input, and sliding

surface for the closed-loop system are shown in Figure 3. The
simulation results show that the proposed sliding mode observer
can accurately estimate the system state after four s, and that the
closed-loop system is asymptotically stable.

Case 2: 1E 6= 0and1A 6= 0.
Assume that the system uncertainties, observer gain

perturbation, and controller gain perturbation are expressed by

MA =
[

0.06 0.02
]T
, ME =

[

0.04 0.01
]T
, NA =

[

0.02 0.1
]

,
NE =

[

0.03 0.05
]

, FA (t) = 0.5 sin(x1(t)), FE (t) = 0.2 cos(x1(t)),

ML =
[

0.05 0.2
]T
, NL =

[

0.01 0.12
]

, MF = 0.1, NF = 0.2,
SL = 0.5 sin(x1(t)), and SF = 2sin(x1(t)) cos(x1(t)). In
this case, the parameters are selected as a = 1, b = 0.5,
ε = 0.1, and ε1 = 0.001. Moreover, using theorem 1 and
the MATLAB LMI toolbox, the following coefficient matrices
are obtained:

L11 =
[

42.1615 4.6701
]T
; L12 =

[

41.5437 1.4550
]T
;

L21 =
[

39.0960 2.5140
]T
; L22 =

[

37.9514 0.5004
]T
;

F11 =
[

−0.0349 0.0160
]

; F12 =
[

−0.0237 0.0075
]

;

F21 =
[

−0.0293 0.0070
]

; F22 =
[

−0.0126 0.0030
]

;

K11 =

[

0.0018 −0.0015
−0.0015 0.0046

]

;K12 =

[

0.0018 −0.0015
−0.0017 0.0039

]

;

K21 =

[

−0.0015 −0.0004
0.0001 0.0002

]

;

K22 =

[

−0.0022 −0.0004
0.0012 0.0006

]

;

K31 =

[

−0.0058 0.0022
0.0010 −0.0059

]

;K32 =

[

−0.0054 0.0015
0.0007 −0.0031

]

;

K41 =

[

0.0227 −0.0006
0.0006 0.0073

]

;K42 =

[

0.0186 −0.0005
−0.0012 0.0038

]

.

It is obvious that different initial system states will lead to
different simulation results. Therefore, if the proposed method
does not have a wide operating range, the system will not
be stable when changing the initial parameters. Therefore, the
following initial values of the systems are set to verify the
effectiveness of the proposed method for a wide operating

range: initial simulation case 1:x(0) =
[

0.1 0.2
]T
, x̂(0) =

[

−0.5 −0.4
]T
; initial simulation case 2: x(0) =

[

−0.8 0.5
]T
,

x̂(0) =
[

0.6 −0.7
]T
; initial simulation case 3: x(0) =

[

0.8 −0.5
]T
, x̂(0) =

[

−0.6 0.7
]T
; initial simulation case 4:

x(0) =
[

−0.5 −0.7
]T
, x̂(0) =

[

0.3 0.5
]T
.

When the controller parameters are set as ζ = 0.003and S∗ =
[

1 1 0.7 0
]

, the time responses for nonlinear states, the control
input, and the sliding mode surface are as shown in Figures 4–
6, respectively. The simulation results demonstrate that the
system state models display good convergence performance;
even when the system has uncertain characteristics, the sliding
mode observer can accurately estimate the real states for
a nonlinear system with different initial state values, and
the designed controller has good robustness and is not
fragile to system uncertainties, observer perturbations, and
controller perturbations.

CONCLUSIONS

The problem of non-fragile observer-based adaptive ISMC for
a class of T-S fuzzy descriptor systems with unmeasurable
premise variables is considered in this study. For unmeasurable
states, a sliding mode observer is designed, and an integral
sliding mode surface is constructed considering the features of
the fuzzy sliding mode observer system. Using the Lyapunov
theory and designing a fuzzy Lyapunov function, sufficient
conditions in terms of LMIs are obtained; additionally,
asymptotically stable dynamic estimation error and sliding
mode dynamics are achieved. An observer-based ISMC strategy
is obtained to meet the reachability conditions. Moreover, a
non-fragile observer and a non-fragile adaptive controller are
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FIGURE 6 | Nonlinear state x2(t) and the estimatedx̂2 (t). (A) Initial simulation case 1. (B) Initial simulation case 2. (C) Initial simulation case 3. (D) Initial simulation case

4.

developed such that system uncertainties and perturbations
associated with both the observer and the controller can be
mitigated. Simulation examples are presented to demonstrate
the excellent state estimation performance and effectiveness of
the controller.
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