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Background:We aimed to develop and validate a rule-based Natural Language

Processing (NLP) algorithm to detect sexual history documentation and its

five key components [partners, practices, past history of sexually transmitted

infections (STIs), protection from STIs, and prevention of pregnancy] among

adolescent encounters in the pediatric emergency and inpatient settings.

Methods: We iteratively designed a NLP algorithm using pediatric emergency

department (ED) provider notes from adolescent ED visits with specific

abdominal or genitourinary (GU) chief complaints. The algorithm is composed

of regular expressions identifying commonly used phrases in sexual history

documentation. We validated this algorithm with inpatient admission notes for

adolescents. We calculated the sensitivity, specificity, negative predictive value,

positive predictive value, and F1 score of the tool in each environment using

manual chart review as the gold standard.

Results: In the ED test cohort with abdominal or GU complaints, 97/179

(54%) provider notes had a sexual history documented, and the NLP algorithm

correctly classified each note. In the inpatient validation cohort, 97/321 (30%)

admission notes included a sexual history, and the NLP algorithm had 100%

sensitivity and 98.2% specificity. The algorithm demonstrated >97% sensitivity

and specificity in both settings for detection of elements of a high quality

sexual history including protection used and contraception. Type of sexual

practice and STI testing o�ered were also detected with >97% sensitivity and

specificity in the ED test cohort with slightly lower performance in the inpatient

validation cohort.

Conclusion: This NLP algorithm automatically detects the presence of sexual

history documentation and its key components in ED and inpatient settings.

KEYWORDS

adolescent, natural language processing (computer science), sexual health, free text,

sexually transmitted infections, regular expression (regex)
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Introduction

Despite the high incidence of sexually transmitted infections

(STIs) in the adolescent population, sexual health screenings

as recommended by the Centers for Disease Control and

Prevention (CDC) and American Academy of Pediatrics (AAP)

are not reliably accomplished with well visits alone (1–4). A

previous study by Goyal et al. revealed rates of sexual history

documentation (SHxD) as low as 21% in the primary care

setting and even lower STI screening rates (3). Acute care

visits, including hospitalizations and emergency department

(ED) encounters, provide additional opportunities to perform

sexual health screening and reduce morbidity associated with

delayed diagnosis. However, rates of SHxD range from 18 to 70%

in the pediatric ED and 43–62% in the inpatient setting, leaving

substantial room for improvement (5–8). To increase sexual

health screening rates, quality improvement efforts need reliable

process measures that can be easily tracked while conducting

Plan-Do-Study-Act cycles (9). Automated detection of SHxD

would facilitate these studies to address an important gap in the

provision of evidence-based care for adolescents.

A substantial amount of data in electronic health records

(EHRs) is stored as free text, which provides freedom of

expression to clinicians (10, 11). Natural Language Processing

(NLP) techniques can extract structured information from

free text to identify patients meeting inclusion criteria for

studies and inform clinical decision support, among other

purposes (12, 13). This technique has been employed to identify

different aspects of social history documented within clinical

notes (14). To our knowledge, only one prior study has

created a machine learning model to detect the presence of

social and behavioral determinants of health within clinician

notes and specifically looked for sexual history (15). A

simpler example of NLP is rule-based algorithms based on

regular expressions. Regular expressions are search patterns

defined by character types (16). For example, the pattern

“sex[a-z,.„/]” matches the word “sex” followed by letters, a

period, a space, or a slash. Thus, it matches “sexual activity,”

“does not have sex,” and “no sex/drug use,” but does not

match “Sex: Male.” While this approach is less sophisticated

than more complex machine learning NLP methods, regular

expression-based models are comparatively easy to implement

and interpret. In the past, researchers have utilized regular

expressions to extract information on various topics, such as

frequency of tobacco use and housing issues, from free-text

with relatively good success (17–20). For example, Turchin

et al. published an algorithm that recognized documentation

of elevated blood pressure with 98% sensitivity and 93%

positive predictive value (PPV) and documentation of anti-

hypertensive treatment intensification with 84% sensitivity and

86% PPV (20).

In this study, we aimed to develop and

validate a rule-based algorithm using regular

expressions to detect SHxD among adolescents

who received care in the pediatric ED or

inpatient setting.

Methods

Design

At a single academic children’s health system composed of

three urban hospitals, we extracted a retrospective cross-section

of pediatric ED provider notes from adolescent visits with

specific gastrointestinal or genitourinary/gynecologic chief

complaints. Our team consisted of an adolescent medicine

physician, a pediatric hospital medicine fellow, a pediatric

emergency medicine fellow, a pediatric hospitalist/clinical

informaticist, as well as a human factors engineer. As a team,

we reviewed 10 charts, or provider notes for the included

patient visit, and used them to develop the initial regex. All

five authors agreed upon the presence/absence of SHxD,

or any mention of sexual activity, and components of the

CDC recommended 5P’s question framework (Partners,

Practices, Past History of STIs, Protection from STIs, and

Prevention of Pregnancy), or any plausible response to the

suggested questions (21). Since there were no disagreements

among all five authors and the task was straightforward,

all subsequent notes were manually reviewed for the

presence/absence of SHxD and components of the 5Ps by

one author—the pediatric emergency medicine fellow or the

pediatric hospital medicine fellow depending on their area of

clinical practice.

While reviewing the initial charts, we iteratively generated

a NLP algorithm based on regular expressions defined by

subject matter experts—the clinicians noted above. We then

validated this algorithm using a retrospective cross-section

of inpatient admission notes for adolescents within the

same health system. Our gold standard for the presence

of SHxD and components of the 5P’s was manual chart

review by either a pediatric emergency medicine or a hospital

medicine fellow as stated above. For each model, we calculated

the following performance measures: sensitivity, specificity,

negative predictive value (NPV), positive predictive value

(PPV), and F1 score. We chose these measures as they are

commonly used to assess screening tools and Ford et al. utilized

the same metrics when comparing previously published NLP

algorithms (12). The entire process of reviewing the notes,

creating the NLP, and calculating its performance measures took

∼6 months.

Notes were extracted from the Epic Systems Clarity database

using Microsoft SQL server v18.3.1 (Redman, WA) and regular

expressions were applied within the same software using

Transact-SQL. The institutional review board of the children’s

health system approved this study.
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Algorithm development

We extracted the full text of ED provider notes from the EHR

(Epic systems©) for all ED visits of adolescents 13–21 years old

with the following chief complaints: genitourinary complaint,

menstrual problem, vaginal problem/discharge/bleeding,

penis/scrotum problem, testicular pain, pelvic pain, abdominal

cramping, dysuria, urinary complaint, hematuria, polyuria,

or anal mass/pain. Since ED visits are typically focused on

acute problems, we chose chief complaints that could be

caused by a STI. Patients seen for alleged sexual assault were

excluded as these notes are made private at our institution.

Notes were written by either attending physicians, residents, or

nurse practitioners.

As a group, the authors reviewed a sample of 10 notes to

identify commonly used phrases (e.g., “denied sexual activity”

and “sexually active”) in SHxD and for the 5P’s. Based on

these phrases, the team developed a set of candidate regular

expressions to identify sexual history and 5P documentation in

the notes. We then applied these candidate regular expression

models to notes from 2 months at a time (range: 136–201

notes) and compared model classification to manual review.

We reviewed misclassifications as a team, made adjustments

to the regular expressions, and applied them to an additional

2 months’ worth of notes. This technique, known as the top-

down approach, is an established method for creating regular

expressions (16). We made no further modifications to each

regular expression model when either (1) the sensitivity and

specificity reached >95% on a new sample or (2) the authors

could not identify any new patterns from misclassified notes

that could be practicably incorporated. Our last cohort consisted

of 179 notes. These were manually reviewed by the pediatric

emergency medicine fellow alone since agreement on the

presence/absence of SHxD and components of the 5P’s was

already established by the group. The final NLP rules and regular

expressions are described in Table 1.

Algorithm validation

We identified adolescents, 14–19 years old, who were

admitted to general pediatrics services over 2 months (n =

321) at the same health system. Ages of these patients were

slightly different than in the ED population solely due to the

desire to study this population in a future study. There were

no restrictions based on chief complaint. We extracted the

History & Physical (H&P) notes for each encounter. Notes were

written by either attending physicians or residents. The model’s

reported predictions for the presence of SHxD and the 5P’s

were compared to manual review performed by the pediatric

hospital medicine fellow. The same performance measures

were calculated.

Results

Emergency department

The model was able to correctly identify the 97 of 179

(54%) notes with a documented sexual history (Table 2).

Therefore, the NLP model exhibited 100% sensitivity and

specificity for detecting the presence of SHxD (Table 3). It

also had perfect accuracy for detection of type of sexual

practice and contraception use. Protection used and STI

testing offered/previously performed were identified with high

sensitivity (100% and 98.2%, respectively) and specificity (97.9%

and 98.4%, respectively). Documentation of a patient as not

sexually active was detected with high specificity (100%) but

lower sensitivity (89.7%). Documentation of partner gender had

high sensitivity (100%) but lower specificity (77.6%).

Inpatient

Out of the 321 H&P notes included in the inpatient

cohort, 97 (30%) included a sexual history (Table 2). The NLP

model demonstrated 100% sensitivity and 98.2% specificity for

detecting the presence of a SHxD (Table 3). It had excellent

performance in detection of protection used (sensitivity 100%,

specificity 97.3%) and contraception use (sensitivity 100%,

specificity 98.3%). The model detected denial of sexual activity

and type of sexual activity with high specificity (99.6 and 100%,

respectively), but lower sensitivity (78.8 and 87.5%, respectively).

Model performance was lower for detection of STI testing

offered/previously performed as well as for partner gender.

Discussion

To our knowledge, this is the first study to develop and

validate an automated method using regular expressions to

extract information regarding documentation of sexual history

in the adolescent population that can be applied at scale.

Prior studies reporting the rate of SHxD in the pediatric ED

and inpatient setting have relied on manual chart review.

This approach can be cumbersome and limit the number of

encounters included in these studies. The largest known study

to date in the inpatient setting reported the presence and quality

of SHxD for 752 adolescents (5). We employed this algorithm to

a cohort of 1,987 ED patients (22). Themethods described in this

study could also easily be applied to all adolescent encounters in

a health system and track changes in SHxD over time.

Although there are no rule-based algorithms for identifying

SHxD in any age group, a machine learning model was

described by Feller et al. to detect documentation of social

and behavioral determinants of health in adults, including

sexual history (15). Inputs for their model consisted of both
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TABLE 1 Regular expressions used in final rule-based natural language processing algorithm.

Information searched Regular expressions* used in query Examples

Sexual history sex[a-z,\.,\s,\/]|intercourse MATCH: “sexual activity,” “does not have sex,” no sex/drug use,” “had

sex”

NOT AMATCH: “Sex: Male”

Protection used protect|condom

condom cath|child protect

MATCH: “uses protection,” “uses condoms some of the time”

NOT AMATCH: “condom catheter,” “child protection services”

STI testing offered/previously

performed

GC[∧S]|G\/C|gonorr| gonnor|gonor|gonoc|chlam|

ST[I|D]\s(test|screen|lab)| test(ing|ed|\s)\sfor\sST[I|D]

chlam pneumo|chlamydia pneumo

MATCH: “will send GC/CT,” “STD testing,” “test for STI,” “chlamydia”

NOT AMATCH: “chlamydia pneumonia”

Not sexually active denies (any sex|history of sex|hx of sex|intercourse|hx of

intercourse|being sexual|ever being sexual)|no sex|never

(had sex|been sexual)|not sexually active

MATCHES: “denies ever being sexually active,” “never been sexually

active”

NOT AMATCH: “denies ever having been sexually active”

Partner gender Within substring of text 50 characters prior to and 50

characters after/ sex[a-z,\.,\s,\/]|intercourse/

male/boy/girl/men/man

MATCH: “has sex with female partners,” “hx of sexual activity with

women”

NOT AMATCH: “interested in men” (with no mention of sex or

intercourse within 50 characters)

Type of sexual practice (oral|vaginal|anal)\s(sex|penetration| intercourse) MATCH: “has had oral sex,” “anal penetration”

NOT AMATCH: “has had sex—both oral and anal”

Contraception used OCP|contraceptive|contraception, birth

control|planon|IUD|nuvaring| depo

MATCH: “is on OCP,” “Depo-provera 1 month ago,” “on birth control

for PCOS”

NOT AMATCH: “on mini pill”

*All regular expressions are given in Python format and were multi-line and case insensitive.

TABLE 2 Frequency of sexual history and the 5P’s in notes based on manual review.

Category ED notes (n= 179) Inpatient notes (n= 321)

Sexual history 97/179 (54.2%) 97/321 (30.2%)

Protection used 33/179 (18.4%) 23/321 (10.0%)

STI testing offered/previously performed 56/179 (31.3%) 37/321 (11.5%)

Not sexually active 39/179 (21.8%) 52/321 (16.2%)

Partner gender 26/179 (14.5%) 36/321 (11.2%)

Type of sexual practice 9/179 (5.0%) 8/321 (2.5%)

Contraception used 32/179 (17.9%) 21/321 (6.5%)

free-text from clinical notes as well as structured EHR data

(diagnoses, procedures, laboratory tests, and demographics).

They compared the performance of their model for detecting

SHxD based on free-text alone vs. free-text plus structured

EHR data. Both models had a reported F1 score of 79%,

which was lower than that of our algorithm. Previously

published, rule-based algorithms have been employed to extract

other information from free text or identify specific patient

populations, such as patients with acute respiratory infection,

obesity and associated comorbidities, and a history of tobacco

use (23–25). Ford et al. performed a systematic review of these

algorithms and calculated their average performance measures

to be the following: sensitivity of 96%, PPV of 85%, and F1

score of 49% (12). Our rule-based algorithm demonstrated a

sensitivity, PPV, and F1 score greater than this for detecting

sexual history.

For recognizing the 5P’s, our algorithm did not perform

at similar high standards for a few components. The lowest
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sensitivity was 78.8% for identifying documentation regarding

not sexually active. The lowest F1 scores were for detecting

partner gender (49%) and STI testing offered/previously

performed (61%). Many false positives for partner gender

occurred if “male” or “female” were noted in response to

a different question, such as gender identity. The use of

abbreviations, such as “BF” for boyfriend, lead to a few false

negatives. As for STI testing, many false positives occurred

due to the use of “g/c” text in other context, such as

“no clubbing/cyanosis.” Further iterations could be performed

to address these false positives. However, even the current

lowest performance measures would be sufficient for quality

improvement initiatives. In addition, regular expression-based

models are comparatively easier to implement and require

fewer technical resources than more complex machine learning

methods that may allow for higher sensitivity and specificity.

In general, our model demonstrated better performance

measures in the ED setting compared to the inpatient setting.

Since asking a sexual history was pertinent to the chief

complaints selected for the ED encounter notes, the rate of

SHxD and documentation of the 5P’s were generally higher

in the ED notes compared to the inpatient notes. Physicians

in the inpatient setting may not have elected to ask a sexual

history if the chief complaint was not related to STIs. Lower

inpatient SHxD and 5P documentation rates likely contributed

to lower PPVs for the model when applied in the inpatient

setting. Therefore, it is likely that the PPVmay vary based on the

baseline documentation rates of the healthcare setting in which

it is employed. Though, this should not affect the sensitivity or

specificity of the tool, which was high in both settings.

This study is limited in that the model development and

validation were performed at a single institution. Therefore,

performance of the algorithm may vary when implemented at

other institutions due to differences in documentation practices,

such as distinct note templates and abbreviations. Although this

method has not been validated at other centers, the regular

expressions are not specific to an HER vendor and could be

used in multicenter studies. Another limitation was the need

for repeated manual chart review to improve performance

of the algorithm. Some manual chart review will likely be

necessary when validating the algorithm at a new institution as

well. However, once complete, the algorithm can be applied to

numerous charts, avoiding grueling manual review of individual

charts to perform a large study.

Conclusion

Within this study, the SHxD rate in the ED was 54% despite

limiting notes to those for encounters with a related chief

complaint. The SHxD was even lower in the inpatient setting.

In order to reduce the morbidity from preventable and treatable

STIs in adolescents, there is a strong need for initiatives to
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improve screening practices in acute care settings and, therefore,

enhance accessibility. The rule-based algorithm developed and

validated in this study can be used at other institutions

to facilitate these research and quality efforts. In addition,

as health systems work to protect adolescent confidentiality

during the movement to Open Notes, this method could be

used to determine if sexual histories are documented less

frequently by surveying both shared and confidential notes

(26). Future studies could develop NLP models for other core

adolescent health services, such as mental health screening, and

advance quality improvement efforts for a variety of adolescent

health issues.
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